Copyright
©The Author(s) 2024.
World J Gastrointest Oncol. Sep 15, 2024; 16(9): 3839-3850
Published online Sep 15, 2024. doi: 10.4251/wjgo.v16.i9.3839
Published online Sep 15, 2024. doi: 10.4251/wjgo.v16.i9.3839
Table 1 Discrepancy analysis of patient study metrics between the training and validation cohorts
Variables | Total (n = 550) | Group | Z/χ2 | P value | |
Training set (n = 385) | Validation set (n = 165) | ||||
Age | 53 (47, 59) | 53 (47, 59) | 53 (48, 58) | Z = -0.42 | 0.68 |
WBC (109/L) | 4.09 (2.98, 5.70) | 4.06 (2.97, 5.65) | 4.21 (3.00, 5.76) | Z = -0.71 | 0.48 |
RBC (1012/L) | 4.43 (3.83, 4.94) | 4.46 (3.84, 4.96) | 4.36 (3.83, 4.91) | Z = -0.43 | 0.67 |
HB (g/L) | 141.00 (121.00, 156.00) | 142.00 (121.00, 157.00) | 137.00 (121.00, 155.00) | Z = -1.00 | 0.32 |
PLT (109/L) | 88.00 (55.00, 138.00) | 85.00 (55.00, 136.00) | 92.00 (56.00, 142.00) | Z = -0.88 | 0.38 |
AFP (ng/mL) | 7.42 (2.96, 110.14) | 7.44 (2.95, 88.46) | 7.27 (3.07, 167.59) | Z = -0.21 | 0.84 |
PIVKA-II (mAU/mL) | 32.55 (20.48, 1555.89) | 33.85 (20.89, 1839.88) | 28.64 (19.52, 1157.19) | Z = -0.85 | 0.39 |
CEA (ng/mL) | 2.22 (1.42, 3.40) | 2.21 (1.35, 3.36) | 2.35 (1.54, 3.44) | Z = -1.28 | 0.20 |
CA199 (ng/mL) | 19.70 (10.43, 38.10) | 19.75 (10.60, 38.92) | 18.60 (9.37, 34.30) | Z = -0.88 | 0.38 |
CA125 (ng/mL) | 25.41 (13.18, 123.00) | 23.91 (12.77, 103.25) | 27.90 (14.70, 148.90) | Z = -1.24 | 0.22 |
Sex, n (%) | χ² = 0.91 | 0.34 | |||
Male | 406 (74.22) | 288 (75.39) | 118 (71.52) | ||
Female | 141 (25.78) | 94 (24.61) | 47 (28.48) |
Table 2 Univariate analysis of study parameters in the hepatocellular carcinoma and cirrhosis groups, n (%)
Variables | Total (n = 385) | Group | Z/χ2 | P value | |
Cirrhosis (n = 195) | HCC (n = 190) | ||||
Age | 53.00 (47.00, 59.00) | 51.00 (44.00, 56.00) | 55.00 (49.00, 60.00) | Z = -4.66 | < 0.001 |
WBC (109/L) | 4.06 (2.97, 5.65) | 3.50 (2.52, 4.54) | 4.65 (3.69, 6.40) | Z = -6.87 | < 0.001 |
RBC (1012/L) | 4.46 (3.84, 4.96) | 4.13 (3.54, 4.79) | 4.70 (4.11, 5.07) | Z = -5.18 | < 0.001 |
HB (g/L) | 142.00 (121.00, 157.00) | 134.00 (113.00, 151.75) | 149.00 (129.75, 160.00) | Z = -4.76 | < 0.001 |
PLT (109/L) | 85.00 (55.00, 136.00) | 64.50 (48.25, 100.00) | 122.00 (70.50, 168.25) | Z = -7.95 | < 0.001 |
AFP (ng/mL) | 7.44 (2.95, 88.46) | 3.79 (2.34, 9.32) | 49.16 (5.84, 1220.00) | Z = -9.35 | < 0.001 |
PIVKA-II (mAU/mL) | 33.85 (20.89, 1839.88) | 22.59 (16.30, 32.28) | 854.40 (37.98, 14001.70) | Z = -11.58 | < 0.001 |
CEA (ng/mL) | 2.21 (1.35, 3.36) | 2.08 (1.28, 3.39) | 2.27 (1.42, 3.36) | Z = -1.41 | 0.16 |
CA199 (ng/mL) | 19.75 (10.60, 38.92) | 18.07 (9.85, 34.82) | 21.25 (12.70, 43.17) | Z = -1.58 | 0.115 |
CA125 (ng/mL) | 23.91 (12.77, 103.25) | 33.51 (14.52, 143.25) | 19.70 (12.24, 55.62) | Z = -3.05 | 0.002 |
Sex, n (%) | χ² = 9.90 | 0.002 | |||
Male | 288 (75.39) | 130 (68.42) | 158 (82.29) | ||
Female | 94 (24.61) | 60 (31.58) | 34 (17.71) |
Table 3 Performance of modeling indicators and prediction models in the diagnosis of hepatocellular carcinoma
Variables | AUC (95%CI) | Cut-off | Accuracy (%) | Se (%) | Sp (%) | PPV (%) | NPV (%) | F1 Score |
Age | 0.638 (0.582, 0.693) | 53.50 | 62.57 | 59.90 | 65.26 | 63.54 | 61.69 | 0.62 |
WBC (109/L) | 0.703 (0.651, 0.755) | 4.10 | 67.54 | 65.63 | 69.47 | 68.48 | 66.67 | 0.67 |
RBC (1012/L) | 0.653 (0.598, 0.708) | 4.22 | 63.09 | 70.83 | 55.26 | 61.54 | 65.22 | 0.66 |
PLT (109/L) | 0.735 (0.685, 0.785) | 109.00 | 68.32 | 55.73 | 81.05 | 74.83 | 64.44 | 0.64 |
AFP (ng/mL) | 0.776 (0.729, 0.823) | 19.05 | 73.30 | 59.90 | 86.84 | 82.14 | 68.18 | 0.69 |
PIVKA-II (mAU/mL) | 0.842 (0.802, 0.882) | 90.91 | 79.32 | 69.79 | 88.95 | 86.45 | 74.45 | 0.77 |
LR-training set | 0.850 (0.812, 0.888) | 0.47 | 78.01 | 63.02 | 93.16 | 90.30 | 71.37 | 0.74 |
LR-validation set | 0.827 (0.764, 0.890) | 0.47 | 74.55 | 65.06 | 84.15 | 80.60 | 70.41 | 0.79 |
SVM-training set | 0.860 (0.822, 0.898) | 0.54 | 80.10 | 71.35 | 88.95 | 86.71 | 75.45 | 0.72 |
SVM-validation set | 0.803 (0.735, 0.871) | 0.54 | 72.73 | 68.67 | 76.83 | 75.00 | 70.79 | 0.77 |
RF-training set | 0.969 (0.955, 0.984) | 0.52 | 92.15 | 88.02 | 96.32 | 96.02 | 88.83 | 0.78 |
RF-validation set | 0.858 (0.800, 0.917) | 0.52 | 80.00 | 75.90 | 84.15 | 82.89 | 77.53 | 0.72 |
LASSO-training set | 0.845 (0.806, 0.884) | 0.18 | 78.80 | 69.27 | 88.42 | 85.81 | 74.01 | 0.72 |
LASSO-validation set | 0.831 (0.769, 0.893) | 0.18 | 72.73 | 68.67 | 76.83 | 75.00 | 70.79 | 0.81 |
ASAP-training set | 0.866 (0.829, 0.903) | 0.93 | 82.20 | 73.96 | 90.53 | 88.75 | 77.48 | 0.92 |
ASAP-validation set | 0.813 (0.747, 0.879) | 0.93 | 73.94 | 61.45 | 86.59 | 82.26 | 68.93 | 0.70 |
- Citation: Wang YY, Yang WX, Du QJ, Liu ZH, Lu MH, You CG. Construction and evaluation of a liver cancer risk prediction model based on machine learning. World J Gastrointest Oncol 2024; 16(9): 3839-3850
- URL: https://www.wjgnet.com/1948-5204/full/v16/i9/3839.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v16.i9.3839