Retrospective Study
Copyright ©The Author(s) 2024.
World J Gastrointest Oncol. May 15, 2024; 16(5): 1808-1820
Published online May 15, 2024. doi: 10.4251/wjgo.v16.i5.1808
Table 1 Baseline characteristics in training, test, and validation sets for predicting vessels encapsulating tumor clusters, n (%)
CharacteristicTraining set (n = 177)
Test set (n = 78)
Validation set (n = 54)
VETC negative (n = 91)
VETC positive (n = 86)
P value
VETC negative (n = 37)
VETC positive (n = 41)
VETC negative (n = 26)
VETC positive (n = 28)
Clinical features
Age55.960 ± 10.10254.350 ± 11.5410.32354.590 ± 9.49458.510 ± 12.38656.270 ± 10.29458.930 ± 8.675
Gender0.578
Male71 (40.1)70 (39.5)32 (41.0)36 (46.2)22 (40.7)22 (40.7)
Female20 (11.3)16 (9.0)5 (6.4)5 (6.4)4 (7.4)6 (11.1)
Liver disease0.750
HAV0 (0.0)1 (0.6)0 (0)0 (0.0)0 (0.0)0 (0.0)
HBV77 (43.5)75 (42.4)35 (44.9)37 (47.4)19 (35.2)25 (46.3)
HCV3 (1.7)2 (1.1)0 (0.0)0 (0.0)2 (3.7)0 (0.0)
None 11 (6.2)8 (4.5)2 (2.6)4 (5.1)5 (9.3)3 (5.6)
AFP-L30.886
Negative69 (39.0)66 (37.3)28 (35.9)34 (43.6)20 (37.0)21 (38.9)
Positive22 (12.4)20 (11.3)9 (11.5)7 (9.0)6 (11.1)7 (13.0)
AFP_lg101.07 (0.49-2.05)1.48 (0.92-2.36)0.0091.10 (0.64-1.85)1.47 (0.85-2.45)1.23 (0.69-1.90)1.95 (0.90-2.64)
PIVKA-II (mAU/mL)50 (27.00-194.05)83 (28.00-213.75)0.63541 (24.5-135.5)88 (31.00-193.52)58 (27.75-321.5)60 (23.00-295.75)
CA199 (U/mL)12.6 (7.6-21.7)17.85 (7.4-32.5)0.00316.7 (10.6-27.6)19.6 (10.4-28.9)18.66 (9.4-29.4)28.3 (13.6-49.4)
HBsAg0.621
Negative14 (7.9)11 (6.2)2 (2.6)6 (7.7)7 (13.0)4 (7.4)
Positive77 (43.5)75 (42.4)35 (44.9)35 (44.9)19 (35.2)24 (44.4)
HBV/C-DNA, IU/mL 0.083
< 5055 (31.1)37 (20.9)20 (25.6)23 (29.5)15 (27.8)17 (31.5)
50-10310 (5.6)17 (9.6)8 (10.3)7 (9.0)6 (11.1)3 (5.6)
103-10514 (7.9)13 (7.3)4 (5.1)5 (6.4)3 (5.6)4 (7.4)
> 10512 (6.8)19 (10.7)5 (6.4)6 (7.7)2 (3.7)3 (5.6)
MRI features
Tumor diameter (cm)2.151 ± 0.5902.185 ± 0.5600.6892.089 ± 0.5902.083 ± 0.6202.371 ± 0.6002.086 ± 0.600
Tumor number0.894
Solitary82 (46.3)78 (44.1)33 (42.3)38 (48.7)26 (48.1)25 (46.3)
Multiple9 (5.1)8 (4.5)4 (5.1)3 (3.8)0 (0.0)3 (5.6)
Shape0.004
Regular54 (30.5)32 (18.1)17 (21.8)15 (19.2)22 (40.7)15 (27.8)
Irregular37 (20.9)54 (30.5)20 (25.6)26 (33.3)4 (7.4)13 (24.1)
Margin0.003
Smooth52 (29.4)30 (16.9)22 (28.2)8 (10.3)21 (38.9)15 (27.8)
Non-smooth39 (22.0)56 (31.6)15 (19.2)33 (42.3)5 (9.3)13 (24.1)
Radiological capsule enhancement0.231
Complete25 (14.1)33 (18.6)11 (14.1)6 (7.7)17 (31.5)13 (24.1)
Incomplete49 (27.7)36 (20.3)16 (20.5)27 (34.6)4 (7.4)9 (16.7)
Absent17 (9.6)17 (9.6)10 (12.8)8 (10.3)5 (9.3)6 (11.1)
Restricted diffusion0.276
Present88 (49.7)80 (45.2)36 (46.2)35 (44.9)25 (46.3)28 (51.9)
Absent3 (1.7)6 (3.4)1 (1.3)6 (7.7)1 (1.9)0 (0.0)
Non-rim APHE0.689
Present67 (37.9)61 (34.5)23 (29.5)28 (35.9)24 (44.4)24 (44.4)
Absent24 (13.6)25 (14.1)14 (17.9)13 (16.7)2 (3.7)4 (7.4)
Rim APHE0.037
Absent27 (15.3)14 (7.9)24 (30.8)32 (41.0)24 (44.4)22 (40.7)
Present64 (36.2)72 (40.7)Present13 (16.7)9 (11.5)2 (3.7)6 (11.1)
Arterial peritumoral enhancement< 0.001
Absent83 (46.9)52 (29.4)34 (43.6)27 (34.6)22 (40.7)15 (27.8)
Present8 (4.5)34 (19.2)3 (3.8)14 (17.9)4 (7.4)13 (24.1)
Nonperipheral “washout”0.823
Present61 (34.5)59 (33.3)21 (26.9)29 (37.2)19 (35.2)22 (40.7)
Absent30 (16.9)27 (15.3)16 (20.5)12 (15.4)7 (13.0)6 (11.1)
Enhancement pattern0.832
Typical60 (33.9)58 (32.8)20 (25.6)28 (35.9)19 (35.2)22 (40.7)
Atypical31 (17.5)28 (15.8)17 (21.8)13 (16.7)7 (13.0)6 (11.1)
Table 2 Univariate and multivariate logistic regression analyses in training set for predicting vessels encapsulating tumor clusters
VariableUnivariable logistic regression
Multivariable logistic regression
OR
95%CI
P value
OR
95%CI
P valuea
HBV/C-DNA (IU/mL)0.083
50-1032.5271.043, 6.1250.040
103-1050.4640.583, 3.2690.464
> 1052.3541.022, 5.4210.044
AFP_Lg101.6071.126, 2.2930.0091.8571.212, 2.8450.004
CA1991.0331.011, 1.0550.0031.0351.010, 1.0610.006
Shape (Irregular)2.4631.345, 4.5110.0043.8811.750, 8.6090.001
Margin (non-smooth)2.4891.356, 4.5690.0033.4091.526, 7.6160.003
Arterial peritumoral enhancement (present)6.7842.915, 15.786< 0.0014.6791.847, 11.8530.001
Table 3 Model performance in training, test, and validation sets for predicting vessels encapsulating tumor clusters

Training
Test
Validation
AUC 0.811 (0.749, 0.873)0.800 (0.702, 0.898)0.791 (0.669, 0.914)
Accuracy0.7340.7050.722
Sensitivity0.6740.6830.750
Specificity0.8130.8110.769