Retrospective Study
Copyright ©The Author(s) 2024.
World J Gastrointest Oncol. Mar 15, 2024; 16(3): 857-874
Published online Mar 15, 2024. doi: 10.4251/wjgo.v16.i3.857
Table 1 Characteristic baseline of patients in sets
Variables
Total set (n = 190)
Training set (n = 106)
Internal test set (n = 47)
External test set (n = 37)
P value
VETC (%)0.986
Positive94 (49)53 (50)23 (49)18 (49)
Negative96 (51)53 (50)24 (51)19 (51)
Age (median, IQR)57 (51, 66)58.5 (51, 65.75)56 (51.5, 67.5)57 (50, 64)0.708
Sex (%)0.555
Male153 (81)83 (78)38 (81)32 (86)
Female37 (19)23 (22)9 (19)5 (14)
Hepatitis (%)0.799
HBV or/and HCV171 (90)96 (91)41 (87)34 (92)
Negative19 (10)10 (9)6 (13)3 (8)
Cirrhosis (%)0.008
Present158 (83)85 (80)36 (77)37 (100)
Absent32 (17)21 (20)11 (23)0 (0)
ALT (median, IQR)32 (19, 51.75)28 (18, 49)40 (22.5, 63)33 (22, 45)0.094
AST (median, IQR)37 (25, 61.5)36.5 (23.25, 1.75)49 (28.5, 78)30 (24, 46)0.041
GGT (median, IQR)59.25 (31, 131.25)61.75 (30, 127)76 (38.5, 143.5)49 (27, 98)0.157
AFP (median, IQR)49.06 (5.54, 9.25)62.74 (6.62, 9.25)56.78 (5.87, 16.5)34.74 (5.22, 798)0.516
Main tumor size (median, IQR)5.7 (3.2, 9.28)6.05 (3.02, 9.3)6.9 (3.45, 11.15)4.11 (3.2, 6.5)0.098
Multiplicity (%)0.037
≥ 246 (24)29 (27)14 (30)3 (8)
1144 (76)77 (73)33 (70)34 (92)
Single lobe involvement (%)0.064
Present141 (74)74 (70)34 (72)33 (89)
Absent49 (26)32 (30)13 (28)4 (11)
Intratumor hemorrhage (%)0.179
Present12 (6)9 (8)3 (6)0 (0)
Absent178 (94)97 (92)44 (94)37 (100)
Intratumor necrosis (%)0.131
Present95 (50)57 (54)25 (53)13 (35)
Absent95 (50)49 (46)22 (47)24 (65)
Arterial phase hyper enhancement (%)0.701
Present179 (94)101 (95)44 (94)34 (92)
Absent11 (6)5 (5)3 (6)3 (8)
Well defined capsule (%)0.143
Present140 (74)75 (71)33 (70)32 (86)
Absent50 (26)31 (29)14 (30)5 (14)
Washout (%)0.249
Present187 (98)105 (99)45 (96)37 (100)
Absent3 (2)1 (1)2 (4)0 (0)
Non-smooth tumor margin (%)0.435
Present116 (61)69 (65)26 (55)21 (57)
Absent74 (39)37 (35)21 (45)16 (43)
Table 2 Univariable and Multivariable logistic regression for upstaging in the training set
VariablesVETC- (n = 53)VETC+ (n = 53)Univariate analysis
Multivariate analysis
OR
P value
OR
P value
Age, median (IQR)63 (50, 67)55 (51, 62)0.9970.096
Sex (%)1.3440.637
Male40 (75)43 (81)
Female13 (25)10 (19)
Hepatitis (%)1.1330.74
HBV or/and HCV47 (89)49 (92)
Negative6 (11)4 (8)
Cirrhosis (%)0.6690.626
Present44 (83)41 (77)
Absent9 (17)12 (23)
ALT, median (IQR)23 (15, 38)36 (20, 52)1.0100.0111.0010.738
AST, median (IQR)29 (21, 50)40 (28, 68)0.9890.0220.9910.450
GGT, median (IQR)39 (27, 87)100 (40, 185)1.0000.0011.0000.209
AFP, median (IQR)62.23 (5.48, 446.4)78.51 (8.05, 8213)0.9990.076
Main tumor size, median (IQR)4.1 (2.4, 6.5)8.9 (5.6, 10.8)2.815< 0.0011.873< 0.001
Multiplicity (%)0.7990.0090.9070.660
≥ 28 (15)21 (40)
145 (85)32 (60)
Single lobe involvement (%)0.620< 0.0010.9520.617
Present46 (87)28 (53)
Absent7 (13)25 (47)
Intratumor hemorrhage (%)0.6091
Present4 (8)5 (9)
Absent49 (92)48 (91)
Intratumor necrosis (%)0.850< 0.0017.947< 0.001
Present13 (25)44 (83)
Absent40 (75)9 (17)
Arterial phase hyperenhancement (%)1.1120.363
Present49 (92)52 (98)
Absent4 (8)1 (2)
Well defined capsule (%)1.0181
Present38 (72)37 (70)
Absent15 (28)16 (30)
Washout (%)1.8151
Present52 (98)53 (100)
Absent1 (2)0 (0)
Non-smooth tumor margin (%)1.7170.0141.1090.881
Present28 (53)41 (77)
Absent25 (47)12 (23)
Table 3 Selected radiomics features in intratumoral, peritumoral, and combined radiomics models on the training set
Intratumoral radiomics model
Peritumoral radiomics model
Combined radiomics model
Original_GLDM_DependenceEntropyOriginal_shape_SphericityOriginal_GLDM_DependenceEntropy1
Lbp-3D-k_GLRLM_ShortRunHighGrayLevelEmphasisLbp-2D_firstorder_InterquartileRangeOriginal_GLRLM_RunLengthNonUniformity1
Lbp-3D-k_GLDM_SmallDependenceEmphasisLbp-3D-k_firstorder_MinimumWavelet-HHH_GLCM_SumEntropy1
Original_GLRLM_RunLengthNonUniformityWavelet-HHH_GLCM_SumEntropyWavelet-HHH_GLCM_SumEntropy2
Wavelet-HHH_GLCM_SumEntropyOriginal_GLRLM_RunVarianceOriginal_GLRLM_RunVariance2
Lbp-3D-k_firstorder_KurtosisWavelet-LHL_firstorder_VarianceLogarithm_firstorder_InterquartileRange1
Wavelet-HLH_GLRLM_GrayLevelNonUniformityNormalizedLbp-3D-m1_firstorder_SkewnessWavelet-LHL_firstorder_Variance2
Squareroot_firstorder_MinimumLogarithm_firstorder_10PercentileWavelet-HHH_GLCM_MCC1
Wavelet-LLH_GLCM_Imc2Squareroot_firstorder_10PercentileLbp-3D-k_firstorder_Kurtosis1
Wavelet-LHL_GLCM_MaximumProbabilityWavelet-HLL_firstorder_KurtosisWavelet-HHH_firstorder_Kurtosis2
Wavelet-HLH_GLCM_MaximumProbabilityLbp-3D-m1_firstorder_Skewness2
Wavelet-HLH_GLRLM_GrayLevelNonUniformityNormalized_V11
Logarithm_firstorder_90Percentile2
Table 4 Performance of logistic regression, support vector machine, decision tree, and random forest in the combined radiomics for predicting vessels encapsulating tumor clusters
Set
ML model
AUC (95%CI)
Accuracy
Sensitivity
Specificity
PPV
NPV
Training
LR0.825 (0.747-0.903)0.7260.7360.7170.7220.731
SVM0.874 (0.805-0.943)0.7640.7920.7360.7450.765
DT0.862 (0.794-0.930)0.8200.8110.8300.8270.815
RF1 (1.000-1.000)11111
Internal test
LR0.788 (0.649-0.927)0.7450.7830.7080.7200.773
SVM0.766 (0.629-0.903)0.6810.7390.6250.6540.714
DT0.698 (0.556-0.840)0.6590.6960.6250.6400.682
RF0.723 (0.577-0.869)0.7020.7390.6670.6670.696
External test
LR0.680 (0.498-0.862)0.6760.5000.8420.7500.640
SVM0.632 (0.438-0.826)0.6760.5000.8420.750.640
DT0.667 (0.482-0.852)0.6760.5000.8420.7500.640
RF0.614 (0.428-0.800)0.5680.4440.6840.5710.565
Table 5 Performance evaluation of the logistic regression models on the training set and the two test sets
Set
Model
AUC (95%CI)
Accuracy
Sensitivity
Specificity
PPV
NPV
Training
Intratumoral radiomics0.772 (0.684-0.860)0.6890.7360.6420.6730.708
Peritumoral radiomics0.823 (0.745-0.901)0.7450.7740.7170.7320.760
Combined radiomics0.825 (0.747-0.903)0.7260.7360.7170.7220.731
Internal test
Intratumoral radiomics0.768 (0.628-0.908)0.6380.6960.5830.6150.667
Peritumoral radiomics0.757 (0.615-0.899)0.7020.7830.6250.7500.667
Combined radiomics0.788 (0.649-0.927)0.7450.7830.7080.7200.773
External test
Intratumoral radiomics0.673 (0.495-0.851)0.5680.5560.5790.5560.579
Peritumoral radiomics0.605 (0.418-0.792)0.5680.3890.7370.5600.583
Combined radiomics0.680 (0.498-0.862)0.6760.5000.8420.7500.640
Table 6 Diagnostic performance of the clinical-radiological feature, combined radiomics, and radiomics nomogram models
Set
Model
AUC (95%CI)
Accuracy
Sensitivity
Specificity
PPV
NPV
Training
Clinical-radiological feature0.833 (0.753-0.913)0.7920.8300.7540.7370.776
Combined radiomics0.825 (0.747-0.903)0.7260.7360.7170.7220.731
Radiomics nomogram0.859 (0.787-0.931)0.7920.8300.7540.7720.816
Internal test
Clinical-radiological feature0.781 (0.644-0.918)0.7440.7820.7080.7200.773
Combined radiomics0.788 (0.649-0.927)0.7450.7830.7090.7200.773
Radiomics nomogram0.848 (0.726-0.970)0.7870.8260.7500.7600.818
External test
Clinical-radiological feature0.684 (0.498-0.862)0.6760.5000.8420.7500.64
Combined radiomics0.680 (0.502-0.866)0.6760.5000.8420.7500.640
Radiomics nomogram0.757 (0.592-0.922)0.7290.6110.8420.7500.783