Zhang J, Wang Q, Guo TH, Gao W, Yu YM, Wang RF, Yu HL, Chen JJ, Sun LL, Zhang BY, Wang HJ. Computed tomography-based radiomic model for the prediction of neoadjuvant immunochemotherapy response in patients with advanced gastric cancer. World J Gastrointest Oncol 2024; 16(10): 4115-4128 [PMID: 39473942 DOI: 10.4251/wjgo.v16.i10.4115]
Corresponding Author of This Article
Hai-Ji Wang, MD, PhD, Associate Chief Doctor, Associate Professor, Department of Radiation Oncology, Affiliated Hospital of Qingdao University, No. 59 Haier Road, Laoshan District, Qingdao 266000, Shandong Province, China. wanghaiji@qdu.edu.cn
Research Domain of This Article
Gastroenterology & Hepatology
Article-Type of This Article
Retrospective Study
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Gastrointest Oncol. Oct 15, 2024; 16(10): 4115-4128 Published online Oct 15, 2024. doi: 10.4251/wjgo.v16.i10.4115
Table 1 Comparison of clinical characteristics between responders and non-responders, n (%)
Characteristics
Responders (n = 15)
Non-responders (n = 45)
P value
Age (years), average (mean ± SD)
57.53 (12.710)
58.64 (11.682)
0.756
Sex
0.856
Male
12 (80.0)
35 (77.8)
Female
3 (20.0)
10 (22.2)
Treatment cycles
0.579
2
2 (13.3)
8 (17.8)
3
9 (60.0)
20 (44.4)
4 +
4 (26.7)
17 (37.8)
Differentiation
0.526
High
1 (6.7)
1 (2.2)
Moderate
5 (33.3)
11 (24.4)
Poor
9 (60.0)
33 (73.3)
Primary tumor location
0.977
Cardia
3 (20.0)
8 (17.8)
Body
6 (40.0)
16 (35.6)
Antrum
4 (26.7)
14 (31.1)
Horn
2 (13.3)
7 (15.6)
PD-L1(22C3) CPS
0.237
≥ 5
10 (66.7)
26 (57.8)
< 5
5 (33.3)
19 (42.2)
CEA, median (IQR)
2.84 (0.93-17.84)
4.15 (1.75-9.52)
0.706
CA199, median (IQR)
9.08 (3.85-28.89)
16.23 (8.37-37.61)
0.264
T stage
0.004
1
4 (26.7)
0 (0)
2
1 (6.7)
4 (8.9)
3
3 (20.0)
18 (40.0)
4
7 (46.7)
23 (51.1)
N stage
0.044
0
0 (0)
1 (2.2)
1
11 (73.3)
18 (40.0)
2
4 (26.7)
18 (40.0)
3
0 (0)
8 (17.8)
Table 2 Baseline characteristics of enrolled advanced gastric cancer patients in the training cohort and test cohorts, n (%)
Characteristics
Total (n = 60)
Training (n = 42)
Test (n = 18)
P value
Age (years), average (mean ± SD)
58.37 (11.846)
58.26 (11.847)
58.6 (12.186)
0.918
Sex
0.945
Male
47 (78.3)
33 (78.6)
14 (77.8)
Female
13 (21.7)
9 (21.4)
4 (22.2)
Treatment cycles
0.201
2
10 (16.7)
5 (11.9)
5 (27.8)
3
29 (48.3)
23 (54.8)
6 (33.3)
4 +
21 (35)
14 (33.3)
7 (38.9)
Differentiation
0.642
High
2 (3.3)
2 (4.8)
0 (0.0)
Moderate
16 (26.7)
11 (26.2)
5 (27.8)
Poor
42 (70)
29 (69.0)
13 (72.2)
Primary tumor location
0.467
Cardia
11 (18.3)
9 (21.4)
2 (11.1)
Body
22 (36.7)
13 (31.0)
9 (50.0)
Antrum
18 (30.0)
14 (33.3)
4 (22.2)
Horn
9 (15.0)
6 (14.3)
3 (16.7)
PD-L1(22C3) CPS
0.767
≥ 5
36 (60.0)
24 (57.1)
12 (66.7)
< 5
24 (40.0)
18 (42.9)
6 (33.3)
CEA, median (IQR)
3.54 (1.41-11.09)
3.51 (1.49-11.74)
4.75 (2.10-7.89)
0.959
CA199, median (IQR)
14.63 (7.36-33.39)
16.37 (7.59-36.25)
11.13 (4.92-26.16)
0.948
T stage
0.456
1
4 (6.7)
4 (9.5)
0 (0)
2
5 (8.3)
4 (9.5)
1 (5.6)
3
21 (35.0)
13 (30.9)
8 (44.4)
4
30 (50.0)
21 (50.0)
9 (50.0)
N stage
0.344
0
1 (1.7)
0 (0)
1 (5.6)
1
29 (48.3)
22 (52.4)
7 (38.9)
2
22 (36.7)
14 (33.3)
8 (44.4)
3
8 (13.3)
6 (14.3)
2 (11.1)
Table 3 Comparison of radiomic models based on various machine learning methods
Radiomic model
Accuracy
AUC
95%CI
Sensitivity
Specificity
PPV
NPV
LR
Train
0.976
1
1.0000-1.0000
0.909
1
1
0.969
Test
0.778
0.786
0.4783-1.0000
0.5
0.857
0.5
0.857
SVM
Train
0.976
1
1.0000-1.0000
0.909
1
1
0.969
Test
0.722
0.75
0.4478-1.0000
0.5
0.786
0.4
0.846
KNN
Train
0.81
0.897
0.8034-0.9913
0.545
0.903
0.667
0.848
Test
0.778
0.821
0.6369-1.0000
0.5
0.857
0.5
0.857
RF
Train
0.976
1
1.0000-1.0000
0.909
1
1
0.969
Test
0.833
0.679
0.2120-1.0000
0.25
1
1
0.824
Extra trees
Train
0.976
1
1.0000-1.0000
0.909
1
1
0.969
Test
0.722
0.616
0.2080-1.0000
0.25
0.857
0.333
0.8
XGBoost
Train
0.976
1
1.0000-1.0000
0.909
1
1
0.969
Test
0.833
0.75
0.4352-1.0000
0.25
1
1
0.824
MLP
Train
0.952
0.997
0.9889-1.0000
0.909
0.968
0.909
0.968
Test
0.722
0.768
0.4914-1.0000
0.5
0.786
0.4
0.846
Table 4 Comparison of clinical models based on various machine learning methods
Clinical model
Accuracy
AUC
95%CI
Sensitivity
Specificity
PPV
NPV
LR
Train
0.81
0.837
0.6807-0.9938
0.636
0.871
0.636
0.871
Test
0.278
0.482
0.1362-0.8281
0.75
0.143
0.2
0.667
SVM
Train
0.238
0.151
0.0000-0.3234
0.909
0
0.244
0
Test
0.444
0.571
0.2439-0.8990
0.75
0.357
0.25
0.833
KNN
Train
0.786
0.787
0.6543-0.9205
0.182
1
1
0.775
Test
0.722
0.607
0.3612-0.8531
0.25
0.857
0.333
0.8
RF
Train
0.929
0.993
0.9763-1.0000
0.818
0.968
0.9
0.937
Test
0.556
0.688
0.4253-0.9497
0.75
0.5
0.3
0.875
Extra trees
Train
0.976
0.999
0.9945-1.0000
0.909
1
1
0.969
Test
0.611
0.589
0.2299-0.9487
0.5
0.643
0.286
0.818
XGBoost
Train
0.857
0.937
0.8683-1.0000
0.818
0.871
0.692
0.931
Test
0.667
0.696
0.4403-0.9526
0.5
0.714
0.333
0.833
MLP
Train
0.833
0.82
0.6535-0.9858
0.727
0.871
0.667
0.9
Test
0.722
0.429
0.0520-0.8052
0
0.929
0
0.765
Citation: Zhang J, Wang Q, Guo TH, Gao W, Yu YM, Wang RF, Yu HL, Chen JJ, Sun LL, Zhang BY, Wang HJ. Computed tomography-based radiomic model for the prediction of neoadjuvant immunochemotherapy response in patients with advanced gastric cancer. World J Gastrointest Oncol 2024; 16(10): 4115-4128