Zhang JQ, Mi JJ, Wang R. Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysis. World J Gastrointest Oncol 2023; 15(11): 1998-2016 [PMID: 38077641 DOI: 10.4251/wjgo.v15.i11.1998]
Corresponding Author of This Article
Rong Wang, MM, Chief Physician, Professor, Department of Gastroenterology, The Fifth Hospital of Shanxi Medical University (Shanxi Provincial People’s Hospital), No. 29 Shuangta West Street, Taiyuan 030012, Shanxi Province, China. wangxiongzai@126.com
Research Domain of This Article
Gastroenterology & Hepatology
Article-Type of This Article
Meta-Analysis
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Table 2 Full detail and meta-analysis and subgroup analysis convolutional neural network model for the diagnosis of esophageal cancers or neoplasms in the still image-based analysis
Number of studies
Sensitivity (95%CI)
Specificity (95%CI)
PLR (95%CI)
NLR (95%CI)
DOR (95%CI)
AUC (95%CI)
P value
CNN
19
0.95 (0.92-0.97)
0.92 (0.89-0.94)
11.5 (8.3-16.0)
0.06 (0.04-0.09)
205 (115-365)
0.98 (0.96-0.99)
Continent
0.65
Asian
12
0.95 (0.92-0.97)
0.91 (0.87-0.95)
11.1 (7.0-17.5)
0.05 (0.03-0.09)
222 (110-444)
0.98 (0.96-0.99)
Europe/Ameica
5
0.91 (0.86-0.94)
0.90 (0.87-0.92)
9.3 (7.0-12.3)
0.10 (0.06-0.16)
91 (45-186)
0.95 (0.93-0.97)
Public
2
Scale
0.61
Unicenter
12
0.94 (0.90-0.97)
0.93 (0.88-0.96)
13.2 (7.8-22.5)
0.06 (0.03-0.11)
219 (103-465)
0.98 (0.96-0.99)
Multicenter
7
0.95 (0.91-0.98)
0.90 (0.87-0.93)
10.0 (7.3-13.8)
0.05 (0.03-0.10)
191 (78-471)
0.97 (0.95-0.98)
External validation or not
0.94
External validation
5
0.95 (0.88-0.98)
0.91 (0.87-0.94)
10.5 (6.9-16.0)
0.06 (0.02-0.14)
186 (55-635)
0.97 (0.95-0.98)
No external validation
14
0.95 (0.91-0.97)
0.92 (0.88-0.95)
12.1 (7.7-19.1)
0.06 (0.03-0.09)
213 (111-407)
0.98 (0.96-0.99)
Format
0.84
Retrospective
16
0.95 (0.92-0.97)
0.92 (0.88-0.95)
12.0 (8.1-17.7)
0.05 (0.03-0.09)
223 (121-411)
0.98 (0.96-0.99)
Prospective
3
Case type
0.1
Image
14
0.95 (0.92-0.97)
0.93 (0.90-0.95)
13.7 (9.6-19.6)
0.05 (0.03-0.09)
252 (132-478)
0.98 (0.96-0.99)
Patient
5
0.95 (0.84-0.98)
0.84 (0.75-0.90)
5.8 (3.8-8.9)
0.06 (0.02-0.19)
94 (34-265)
0.92 (0.90-0.94)
Real-time or not
0.9
Real-time
7
0.94 (0.88-0.97)
0.91 (0.88-0.94)
11.0 (7.6-16.0)
0.06 (0.03-0.13)
175 (65-471)
0.96 (0.94-0.98)
No real-time
12
0.95 (0.92-0.97)
0.91 (0.87-0.95)
11.1 (7.0-17.7)
0.05 (0.03-0.09)
210 (103-430)
0.98 (0.96-0.99)
Histological type
0.01
ESCN
9
0.97 (0.94-0.98)
0.90 (0.83-0.94)
9.6 (5.6-16.3)
0.04 (0.02-0.06)
272 (106-699)
0.98 (0.97-0.99)
Barrett’s neoplasia
6
0.92 (0.85-0.96)
0.91 (0.87-0.93)
9.7 (6.7-14.1)
0.09 (0.05-0.17)
108 (43-272)
0.96 (0.93-0.97)
ESCC/EAC
4
0.92 (0.85-0.96)
0.96 (0.94-0.97)
23.0 (17.2-30.6)
0.08 (0.04-0.16)
283 (178-450)
0.98 (0.96-0.99)
Image type
0.07
WLI
13
0.95 (0.91-0.97)
0.89 (0.85-0.92)
8.3 (6.2-11.0)
0.06 (0.03-0.11)
143 (75-273)
0.96 (0.94-0.97)
Advanced imaging
10
0.95 (0.91-0.97)
0.93 (0.88-0.96)
13.6 (7.5-24.6)
0.06 (0.03-0.10)
237 (107-525)
0.98 (0.96-0.99)
Quality
0.1
High
16
0.96 (0.93-0.97)
0.91 (0.88-0.94)
10.7 (7.6-15.2)
0.05 (0.03-0.08)
223 (115-434)
0.98 (0.96-0.99)
Low
3
Table 3 Characteristics of the still video-based studies
Table 4 Full detail and meta-analysis and subgroup analysis convolutional neural network model for the diagnosis of esophageal cancers or neoplasms in the video-based analysis
Number of studies
Sensitivity (95%CI)
Specificity (95%CI)
PLR (95%CI)
NLR (95%CI)
DOR (95%CI)
AUC (95%CI)
P value
CNN
0.85 (0.77-0.91)
0.73 (0.59-0.83)
3.1 (1.9-5.0)
0.20 (0.12-0.34)
15 (6-38)
0.87 (0.84-0.90)
Continent
0.73
Asian
6
0.86 (0.76-0.93)
0.71 (0.53-0.85)
3.0 (1.6-5.5)
0.19 (0.09-0.40)
16 (5-54)
0.87 (0.84-0.90)
Europe/Ameica
2
Scale
0.55
Unicenter
4
0.87 (0.68-0.96)
0.77 (0.62-0.87)
3.8 (2.0-7.0)
0.17 (0.06-0.49)
23 (5-106)
0.87 (0.84-0.90)
Multicenter
4
0.81 (0.77-0.85)
0.65 (0.43-0.82)
2.3 (1.3-4.2)
0.29 (0.20-0.41)
8 (3-20)
0.82 (0.78-0.85)
External validation or not
0.94
External validation
0.85 (0.78-0.91)
0.73 (0.63-0.80)
3.1 (2.4-4.1)
0.20 (0.14-0.29)
16 (10-24)
0.87 (0.84-0.90)
No external validation
0.85 (0.66-0.94)
0.74 (0.45-0.90)
3.2 (1.2-8.5)
0.20 (0.07-0.60)
16 (2-106)
0.87 (0.84-0.90)
Format
0.89
Retrospective
5
0.85 (0.76-0.91)
0.73 (0.58-0.84)
3.1 (1.9-5.3)
0.21 (0.12-0.36)
15 (6-41)
0.87 (0.84-0.90)
Prospective
1
Real-time or not
0.13
Real-time
6
0.82 (0.74-0.87)
0.68 (0.52-0.80)
2.5 (1.6-3.9)
0.27 (0.19-0.39)
9 (5-18)
0.83 (0.80-0.86)
No real-time
2
Histological type
0.73
ESCN
6
0.86 (0.76-0.93)
0.71 (0.53-0.85)
3.0 (1.6-5.5)
0.19 (0.09-0.40)
16 (5-54)
0.87 (0.84-0.90)
Barrett’s neoplasia
2
Image type
0.76
WLI
4
0.83 (0.71-0.91)
0.49 (0.27-0.71)
1.6 (0.9-2.8)
0.34 (0.13-0.88)
5 (1-20)
0.80 (0.77-0.84)
Advanced imaging
5
0.83 (0.77-0.88)
0.71 (0.56-0.82)
2.9 (1.9-4.3)
0.24 (0.19-0.30)
12 (8-19)
0.86 (0.82-0.88)
Table 5 Characteristics of the studies about diagnosis of invasion depth of esophageal cancers
Citation: Zhang JQ, Mi JJ, Wang R. Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysis. World J Gastrointest Oncol 2023; 15(11): 1998-2016