Meta-Analysis
Copyright ©The Author(s) 2023.
World J Gastrointest Oncol. Nov 15, 2023; 15(11): 1998-2016
Published online Nov 15, 2023. doi: 10.4251/wjgo.v15.i11.1998
Table 1 Characteristics of the still image-based studies
Ref.
Format
Scale
Continent
Case type
Architecture of CNN
Image type
Histological type
Real-time
External validation
Quality
Endoscopist control
Patients training set
Images training set
Patients test set
Images test set
TP
FP
FN
TN
Li et al[17], 2021RetrospectiveMulticenterAsiaImageVisual geometry groupNBI/WLIESCCNoNoHigh2064747351126322523714329
Ohmori et al[20], 2020RetrospectiveUnicenterAsiaPatientSSDNBI/BLIESCCNoNoHigh15NM225622377275116134
Cai et al[34], 2019RetrospectiveMulticenterAsiaImage8-layer convolutional neural networkWLIESCCNoNoHigh167462428521878914282
Ebigbo et al[35], 2019ProspectiveUnicenterEuropeImageResNetWLI/NBIEACNoNoHigh131132486274325136
Ghatwary et al[36], 2019RetrospectiveUnicenterPublicImageR-CNN, Fast R-CNN, Faster R-CNN, SSDWLIEACNoNoHighNo21NM39100484246
Kumagai et al[37], 2019RetrospectiveUnicenterAsiaPatientGoogLeNetECSESCCNoNoHighNo2404715551520253225
Zhao et al[38], 2019RetrospectiveUnicenterAsiaIPCLs imageImageNet VGG-16ME-NBIESCCNoNoHigh9NM261NM1383102333153174
Liu et al[39], 2020RetrospectiveUnicenterAsiaImageInception-ResNetWLIESCC/EACNoNoHighNoNM1017NM127274888
Guo et al[40], 2020RetrospectiveMulticenterPublicImageSegNetNBIESCCYesYesHighNo5496473212366711451258294933
Ebigbo et al[41], 2020RetrospectiveUnicenterEuropeImageResNetWLIEACYesNoLowNoNM1291462300626
Hashimoto et al[42], 2020RetrospectiveUnicenterAmeicaImageInception-ResNet v2NBI/WLIBarrett’s neoplasia (HGD/EAC)YesNoHighNo100183239458217138220
de Groof et al[43], 2020ProspectiveMulticenterEuropePatientResNet/U-NetWLIBarrett’s neoplasia (HGD/EAC)YesYesHigh53NM1544201442515896
de Groof et al[44], 2020RetrospectiveMulticenterEuropeImageResNet/U-NetWLIBarrett’s neoplasia (HGD/EAC)YesYesLow53157004956112554571863123217
Du et al[45], 2021RetrospectiveUnicenterAsiaImageDenseNetWLIESCC/EACNoNoLowNo325316771824419411061091032876
Tang et al[46], 2021RetrospectiveMulticenterAsiaImageResNet50WLIESCCYesYesHigh10107840022431033297876643
Yang et al[47], 2021RetrospectiveUnicenterAsiaImageYolo V3WLI/ME-OEESCCNoNoHigh6621532373NM1123263135774
Wang et al[48], 2021RetrospectiveUnicenterAsiaPatientSSDWLI/NBIESCN (HGD/ESCC)NoNoHighNo469362022641695226
Gong et al[49], 2022ProspectiveMulticenterAsiaImageGrad-CAMWLIESCC/EACNoYesHighNoNM4387NM16116315821901
Zhao et al[50], 2022RetrospectiveUnicenterAsiaPatientGoogLeNet-Inception V3NBIESCC/EACNoNoHigh2200NM100NM454546
Table 2 Full detail and meta-analysis and subgroup analysis convolutional neural network model for the diagnosis of esophageal cancers or neoplasms in the still image-based analysis

Number of studies
Sensitivity (95%CI)
Specificity (95%CI)
PLR (95%CI)
NLR (95%CI)
DOR (95%CI)
AUC (95%CI)
P value
CNN190.95 (0.92-0.97)0.92 (0.89-0.94)11.5 (8.3-16.0)0.06 (0.04-0.09)205 (115-365)0.98 (0.96-0.99)
Continent0.65
Asian120.95 (0.92-0.97)0.91 (0.87-0.95)11.1 (7.0-17.5)0.05 (0.03-0.09)222 (110-444)0.98 (0.96-0.99)
Europe/Ameica50.91 (0.86-0.94)0.90 (0.87-0.92)9.3 (7.0-12.3)0.10 (0.06-0.16)91 (45-186)0.95 (0.93-0.97)
Public2
Scale0.61
Unicenter120.94 (0.90-0.97)0.93 (0.88-0.96)13.2 (7.8-22.5)0.06 (0.03-0.11)219 (103-465)0.98 (0.96-0.99)
Multicenter70.95 (0.91-0.98)0.90 (0.87-0.93)10.0 (7.3-13.8)0.05 (0.03-0.10)191 (78-471)0.97 (0.95-0.98)
External validation or not0.94
External validation50.95 (0.88-0.98)0.91 (0.87-0.94)10.5 (6.9-16.0)0.06 (0.02-0.14)186 (55-635)0.97 (0.95-0.98)
No external validation140.95 (0.91-0.97)0.92 (0.88-0.95)12.1 (7.7-19.1)0.06 (0.03-0.09)213 (111-407)0.98 (0.96-0.99)
Format0.84
Retrospective160.95 (0.92-0.97)0.92 (0.88-0.95)12.0 (8.1-17.7)0.05 (0.03-0.09)223 (121-411)0.98 (0.96-0.99)
Prospective3
Case type0.1
Image140.95 (0.92-0.97)0.93 (0.90-0.95)13.7 (9.6-19.6)0.05 (0.03-0.09)252 (132-478)0.98 (0.96-0.99)
Patient50.95 (0.84-0.98)0.84 (0.75-0.90)5.8 (3.8-8.9)0.06 (0.02-0.19)94 (34-265)0.92 (0.90-0.94)
Real-time or not0.9
Real-time70.94 (0.88-0.97)0.91 (0.88-0.94)11.0 (7.6-16.0)0.06 (0.03-0.13)175 (65-471)0.96 (0.94-0.98)
No real-time120.95 (0.92-0.97)0.91 (0.87-0.95)11.1 (7.0-17.7)0.05 (0.03-0.09)210 (103-430)0.98 (0.96-0.99)
Histological type0.01
ESCN90.97 (0.94-0.98)0.90 (0.83-0.94)9.6 (5.6-16.3)0.04 (0.02-0.06)272 (106-699)0.98 (0.97-0.99)
Barrett’s neoplasia60.92 (0.85-0.96)0.91 (0.87-0.93)9.7 (6.7-14.1)0.09 (0.05-0.17)108 (43-272)0.96 (0.93-0.97)
ESCC/EAC40.92 (0.85-0.96)0.96 (0.94-0.97)23.0 (17.2-30.6)0.08 (0.04-0.16)283 (178-450)0.98 (0.96-0.99)
Image type0.07
WLI130.95 (0.91-0.97)0.89 (0.85-0.92)8.3 (6.2-11.0)0.06 (0.03-0.11)143 (75-273)0.96 (0.94-0.97)
Advanced imaging100.95 (0.91-0.97)0.93 (0.88-0.96)13.6 (7.5-24.6)0.06 (0.03-0.10)237 (107-525)0.98 (0.96-0.99)
Quality0.1
High160.96 (0.93-0.97)0.91 (0.88-0.94)10.7 (7.6-15.2)0.05 (0.03-0.08)223 (115-434)0.98 (0.96-0.99)
Low3
Table 3 Characteristics of the still video-based studies
Ref.
Format
Scale
Continent
Case type
Architecture of CNN
Image type
Histological type
Real-time
External validation
Quality
Endoscopist control
Patients training set
Videos training set
Patients test set
Videos test set
TP
FP
FN
TN
de Groof et al[43], 2020ProspectiveMulticenterEuropeVideoResNet/U-NetWLIBarrett’s neoplasia (HGD/EAC)YesYesHgh53NM154420209317
Yang et al[47], 2021RetrospectiveUnicenterAsiaVideoYolo V3WLIESCCNoNoHigh6621532373 image/104 videoNM68392126
Fukuda et al[51], 2020RetrospectiveUnicenterAsiaVideoSSD/VGG-16NBI/BLIESCCYesYesHigh13200228333NM23880531095
Struyvenberg et al[52], 2021RetrospectiveMulticenterEuropeVideoResNet/U-NetNBIBarrett’s neoplasia (HGD/EAC)YesYesHighNo15700495611504711415836236
Waki et al[53], 2021RetrospectiveMulticenterAsiaVideoResNet/ImageNetWLI/NBI/BLIESCCYesNoHigh21157218797113200103662334
Shiroma et al[54], 2021RetrospectiveUnicenterAsiaVideoSSDNBIESCCYesNoHigh18nm84284080114916
Yuan et al[55], 2022RetrospectiveMulticenterAsiaVideoYOLO v3WLIESCCYesYesHigh112621 image/19 video53933 image/142 videoNM38175214
Tajiri et al[56], 2022RetrospectiveUnicenterAsiaVideoResNet/ImageNetWLI/NBI/BLIESCCNoNoHigh1918432979413014771161248
Table 4 Full detail and meta-analysis and subgroup analysis convolutional neural network model for the diagnosis of esophageal cancers or neoplasms in the video-based analysis

Number of studies
Sensitivity (95%CI)
Specificity (95%CI)
PLR (95%CI)
NLR (95%CI)
DOR (95%CI)
AUC (95%CI)
P value
CNN0.85 (0.77-0.91)0.73 (0.59-0.83)3.1 (1.9-5.0)0.20 (0.12-0.34)15 (6-38)0.87 (0.84-0.90)
Continent0.73
Asian60.86 (0.76-0.93)0.71 (0.53-0.85)3.0 (1.6-5.5)0.19 (0.09-0.40)16 (5-54)0.87 (0.84-0.90)
Europe/Ameica2
Scale0.55
Unicenter40.87 (0.68-0.96)0.77 (0.62-0.87)3.8 (2.0-7.0)0.17 (0.06-0.49)23 (5-106)0.87 (0.84-0.90)
Multicenter40.81 (0.77-0.85)0.65 (0.43-0.82) 2.3 (1.3-4.2)0.29 (0.20-0.41)8 (3-20)0.82 (0.78-0.85)
External validation or not0.94
External validation0.85 (0.78-0.91)0.73 (0.63-0.80)3.1 (2.4-4.1)0.20 (0.14-0.29)16 (10-24)0.87 (0.84-0.90)
No external validation0.85 (0.66-0.94)0.74 (0.45-0.90)3.2 (1.2-8.5)0.20 (0.07-0.60)16 (2-106)0.87 (0.84-0.90)
Format0.89
Retrospective50.85 (0.76-0.91)0.73 (0.58-0.84)3.1 (1.9-5.3)0.21 (0.12-0.36)15 (6-41)0.87 (0.84-0.90)
Prospective1
Real-time or not0.13
Real-time60.82 (0.74-0.87)0.68 (0.52-0.80)2.5 (1.6-3.9)0.27 (0.19-0.39)9 (5-18)0.83 (0.80-0.86)
No real-time2
Histological type0.73
ESCN60.86 (0.76-0.93)0.71 (0.53-0.85)3.0 (1.6-5.5)0.19 (0.09-0.40)16 (5-54)0.87 (0.84-0.90)
Barrett’s neoplasia2
Image type0.76
WLI40.83 (0.71-0.91)0.49 (0.27-0.71)1.6 (0.9-2.8)0.34 (0.13-0.88)5 (1-20)0.80 (0.77-0.84)
Advanced imaging50.83 (0.77-0.88)0.71 (0.56-0.82)2.9 (1.9-4.3)0.24 (0.19-0.30)12 (8-19)0.86 (0.82-0.88)
Table 5 Characteristics of the studies about diagnosis of invasion depth of esophageal cancers
Ref.
Format
Scale
Continent
Depth
Architecture of CNN
Image type
Histological type
Real-time
External validation
Quality
Endoscopist control
Patients training set
Images training set
Patients test set
Images test set
TP
FP
FN
TN
Horie et al[29], 2019RetrospectiveUnicenterAsiaT1a, T1b vs T2-4SSDWLI/NBIESCC/EACYesNoHighNo3848428NM1681422123
Nakagawa et al[31], 2019RetrospectiveUnicenterAsiapEP-SM1, pEP-MMSSDWLI/NBI/BLIESCCNoNoHigh16804143381559147142460132
Tokai et al[57], 2020RetrospectiveUnicenterAsiapEP-SM1SSDNBI/WLIESCCNoNoHigh13NM10179NM279159243066