Copyright
©The Author(s) 2023.
World J Gastrointest Oncol. Nov 15, 2023; 15(11): 1998-2016
Published online Nov 15, 2023. doi: 10.4251/wjgo.v15.i11.1998
Published online Nov 15, 2023. doi: 10.4251/wjgo.v15.i11.1998
Table 1 Characteristics of the still image-based studies
Ref. | Format | Scale | Continent | Case type | Architecture of CNN | Image type | Histological type | Real-time | External validation | Quality | Endoscopist control | Patients training set | Images training set | Patients test set | Images test set | TP | FP | FN | TN |
Li et al[17], 2021 | Retrospective | Multicenter | Asia | Image | Visual geometry group | NBI/WLI | ESCC | No | No | High | 20 | 647 | 4735 | 112 | 632 | 252 | 37 | 14 | 329 |
Ohmori et al[20], 2020 | Retrospective | Unicenter | Asia | Patient | SSD | NBI/BLI | ESCC | No | No | High | 15 | NM | 22562 | 237 | 727 | 51 | 16 | 1 | 34 |
Cai et al[34], 2019 | Retrospective | Multicenter | Asia | Image | 8-layer convolutional neural network | WLI | ESCC | No | No | High | 16 | 746 | 2428 | 52 | 187 | 89 | 14 | 2 | 82 |
Ebigbo et al[35], 2019 | Prospective | Unicenter | Europe | Image | ResNet | WLI/NBI | EAC | No | No | High | 13 | 113 | 248 | 62 | 74 | 32 | 5 | 1 | 36 |
Ghatwary et al[36], 2019 | Retrospective | Unicenter | Public | Image | R-CNN, Fast R-CNN, Faster R-CNN, SSD | WLI | EAC | No | No | High | No | 21 | NM | 39 | 100 | 48 | 4 | 2 | 46 |
Kumagai et al[37], 2019 | Retrospective | Unicenter | Asia | Patient | GoogLeNet | ECS | ESCC | No | No | High | No | 240 | 4715 | 55 | 1520 | 25 | 3 | 2 | 25 |
Zhao et al[38], 2019 | Retrospective | Unicenter | Asia | IPCLs image | ImageNet VGG-16 | ME-NBI | ESCC | No | No | High | 9 | NM | 261 | NM | 1383 | 1023 | 33 | 153 | 174 |
Liu et al[39], 2020 | Retrospective | Unicenter | Asia | Image | Inception-ResNet | WLI | ESCC/EAC | No | No | High | No | NM | 1017 | NM | 127 | 27 | 4 | 8 | 88 |
Guo et al[40], 2020 | Retrospective | Multicenter | Public | Image | SegNet | NBI | ESCC | Yes | Yes | High | No | 549 | 6473 | 2123 | 6671 | 1451 | 258 | 29 | 4933 |
Ebigbo et al[41], 2020 | Retrospective | Unicenter | Europe | Image | ResNet | WLI | EAC | Yes | No | Low | No | NM | 129 | 14 | 62 | 30 | 0 | 6 | 26 |
Hashimoto et al[42], 2020 | Retrospective | Unicenter | Ameica | Image | Inception-ResNet v2 | NBI/WLI | Barrett’s neoplasia (HGD/EAC) | Yes | No | High | No | 100 | 1832 | 39 | 458 | 217 | 13 | 8 | 220 |
de Groof et al[43], 2020 | Prospective | Multicenter | Europe | Patient | ResNet/U-Net | WLI | Barrett’s neoplasia (HGD/EAC) | Yes | Yes | High | 53 | NM | 1544 | 20 | 144 | 25 | 15 | 8 | 96 |
de Groof et al[44], 2020 | Retrospective | Multicenter | Europe | Image | ResNet/U-Net | WLI | Barrett’s neoplasia (HGD/EAC) | Yes | Yes | Low | 53 | 15700 | 495611 | 255 | 457 | 186 | 31 | 23 | 217 |
Du et al[45], 2021 | Retrospective | Unicenter | Asia | Image | DenseNet | WLI | ESCC/EAC | No | No | Low | No | 3253 | 16771 | 824 | 4194 | 1106 | 109 | 103 | 2876 |
Tang et al[46], 2021 | Retrospective | Multicenter | Asia | Image | ResNet50 | WLI | ESCC | Yes | Yes | High | 10 | 1078 | 4002 | 243 | 1033 | 297 | 87 | 6 | 643 |
Yang et al[47], 2021 | Retrospective | Unicenter | Asia | Image | Yolo V3 | WLI/ME-OE | ESCC | No | No | High | 6 | 6215 | 32373 | NM | 1123 | 263 | 13 | 5 | 774 |
Wang et al[48], 2021 | Retrospective | Unicenter | Asia | Patient | SSD | WLI/NBI | ESCN (HGD/ESCC) | No | No | High | No | 46 | 936 | 202 | 264 | 169 | 5 | 2 | 26 |
Gong et al[49], 2022 | Prospective | Multicenter | Asia | Image | Grad-CAM | WLI | ESCC/EAC | No | Yes | High | No | NM | 4387 | NM | 1611 | 631 | 58 | 21 | 901 |
Zhao et al[50], 2022 | Retrospective | Unicenter | Asia | Patient | GoogLeNet-Inception V3 | NBI | ESCC/EAC | No | No | High | 2 | 200 | NM | 100 | NM | 45 | 4 | 5 | 46 |
Table 2 Full detail and meta-analysis and subgroup analysis convolutional neural network model for the diagnosis of esophageal cancers or neoplasms in the still image-based analysis
Number of studies | Sensitivity (95%CI) | Specificity (95%CI) | PLR (95%CI) | NLR (95%CI) | DOR (95%CI) | AUC (95%CI) | P value | |
CNN | 19 | 0.95 (0.92-0.97) | 0.92 (0.89-0.94) | 11.5 (8.3-16.0) | 0.06 (0.04-0.09) | 205 (115-365) | 0.98 (0.96-0.99) | |
Continent | 0.65 | |||||||
Asian | 12 | 0.95 (0.92-0.97) | 0.91 (0.87-0.95) | 11.1 (7.0-17.5) | 0.05 (0.03-0.09) | 222 (110-444) | 0.98 (0.96-0.99) | |
Europe/Ameica | 5 | 0.91 (0.86-0.94) | 0.90 (0.87-0.92) | 9.3 (7.0-12.3) | 0.10 (0.06-0.16) | 91 (45-186) | 0.95 (0.93-0.97) | |
Public | 2 | |||||||
Scale | 0.61 | |||||||
Unicenter | 12 | 0.94 (0.90-0.97) | 0.93 (0.88-0.96) | 13.2 (7.8-22.5) | 0.06 (0.03-0.11) | 219 (103-465) | 0.98 (0.96-0.99) | |
Multicenter | 7 | 0.95 (0.91-0.98) | 0.90 (0.87-0.93) | 10.0 (7.3-13.8) | 0.05 (0.03-0.10) | 191 (78-471) | 0.97 (0.95-0.98) | |
External validation or not | 0.94 | |||||||
External validation | 5 | 0.95 (0.88-0.98) | 0.91 (0.87-0.94) | 10.5 (6.9-16.0) | 0.06 (0.02-0.14) | 186 (55-635) | 0.97 (0.95-0.98) | |
No external validation | 14 | 0.95 (0.91-0.97) | 0.92 (0.88-0.95) | 12.1 (7.7-19.1) | 0.06 (0.03-0.09) | 213 (111-407) | 0.98 (0.96-0.99) | |
Format | 0.84 | |||||||
Retrospective | 16 | 0.95 (0.92-0.97) | 0.92 (0.88-0.95) | 12.0 (8.1-17.7) | 0.05 (0.03-0.09) | 223 (121-411) | 0.98 (0.96-0.99) | |
Prospective | 3 | |||||||
Case type | 0.1 | |||||||
Image | 14 | 0.95 (0.92-0.97) | 0.93 (0.90-0.95) | 13.7 (9.6-19.6) | 0.05 (0.03-0.09) | 252 (132-478) | 0.98 (0.96-0.99) | |
Patient | 5 | 0.95 (0.84-0.98) | 0.84 (0.75-0.90) | 5.8 (3.8-8.9) | 0.06 (0.02-0.19) | 94 (34-265) | 0.92 (0.90-0.94) | |
Real-time or not | 0.9 | |||||||
Real-time | 7 | 0.94 (0.88-0.97) | 0.91 (0.88-0.94) | 11.0 (7.6-16.0) | 0.06 (0.03-0.13) | 175 (65-471) | 0.96 (0.94-0.98) | |
No real-time | 12 | 0.95 (0.92-0.97) | 0.91 (0.87-0.95) | 11.1 (7.0-17.7) | 0.05 (0.03-0.09) | 210 (103-430) | 0.98 (0.96-0.99) | |
Histological type | 0.01 | |||||||
ESCN | 9 | 0.97 (0.94-0.98) | 0.90 (0.83-0.94) | 9.6 (5.6-16.3) | 0.04 (0.02-0.06) | 272 (106-699) | 0.98 (0.97-0.99) | |
Barrett’s neoplasia | 6 | 0.92 (0.85-0.96) | 0.91 (0.87-0.93) | 9.7 (6.7-14.1) | 0.09 (0.05-0.17) | 108 (43-272) | 0.96 (0.93-0.97) | |
ESCC/EAC | 4 | 0.92 (0.85-0.96) | 0.96 (0.94-0.97) | 23.0 (17.2-30.6) | 0.08 (0.04-0.16) | 283 (178-450) | 0.98 (0.96-0.99) | |
Image type | 0.07 | |||||||
WLI | 13 | 0.95 (0.91-0.97) | 0.89 (0.85-0.92) | 8.3 (6.2-11.0) | 0.06 (0.03-0.11) | 143 (75-273) | 0.96 (0.94-0.97) | |
Advanced imaging | 10 | 0.95 (0.91-0.97) | 0.93 (0.88-0.96) | 13.6 (7.5-24.6) | 0.06 (0.03-0.10) | 237 (107-525) | 0.98 (0.96-0.99) | |
Quality | 0.1 | |||||||
High | 16 | 0.96 (0.93-0.97) | 0.91 (0.88-0.94) | 10.7 (7.6-15.2) | 0.05 (0.03-0.08) | 223 (115-434) | 0.98 (0.96-0.99) | |
Low | 3 |
Table 3 Characteristics of the still video-based studies
Ref. | Format | Scale | Continent | Case type | Architecture of CNN | Image type | Histological type | Real-time | External validation | Quality | Endoscopist control | Patients training set | Videos training set | Patients test set | Videos test set | TP | FP | FN | TN |
de Groof et al[43], 2020 | Prospective | Multicenter | Europe | Video | ResNet/U-Net | WLI | Barrett’s neoplasia (HGD/EAC) | Yes | Yes | Hgh | 53 | NM | 1544 | 20 | 20 | 9 | 3 | 1 | 7 |
Yang et al[47], 2021 | Retrospective | Unicenter | Asia | Video | Yolo V3 | WLI | ESCC | No | No | High | 6 | 6215 | 32373 image/104 video | NM | 68 | 39 | 2 | 1 | 26 |
Fukuda et al[51], 2020 | Retrospective | Unicenter | Asia | Video | SSD/VGG-16 | NBI/BLI | ESCC | Yes | Yes | High | 13 | 2002 | 28333 | NM | 238 | 80 | 53 | 10 | 95 |
Struyvenberg et al[52], 2021 | Retrospective | Multicenter | Europe | Video | ResNet/U-Net | NBI | Barrett’s neoplasia (HGD/EAC) | Yes | Yes | High | No | 15700 | 495611 | 50 | 471 | 141 | 58 | 36 | 236 |
Waki et al[53], 2021 | Retrospective | Multicenter | Asia | Video | ResNet/ImageNet | WLI/NBI/BLI | ESCC | Yes | No | High | 21 | 1572 | 18797 | 113 | 200 | 103 | 66 | 23 | 34 |
Shiroma et al[54], 2021 | Retrospective | Unicenter | Asia | Video | SSD | NBI | ESCC | Yes | No | High | 18 | nm | 8428 | 40 | 80 | 11 | 4 | 9 | 16 |
Yuan et al[55], 2022 | Retrospective | Multicenter | Asia | Video | YOLO v3 | WLI | ESCC | Yes | Yes | High | 11 | 2621 image/19 video | 53933 image/142 video | NM | 38 | 17 | 5 | 2 | 14 |
Tajiri et al[56], 2022 | Retrospective | Unicenter | Asia | Video | ResNet/ImageNet | WLI/NBI/BLI | ESCC | No | No | High | 19 | 1843 | 29794 | 130 | 147 | 71 | 16 | 12 | 48 |
Table 4 Full detail and meta-analysis and subgroup analysis convolutional neural network model for the diagnosis of esophageal cancers or neoplasms in the video-based analysis
Number of studies | Sensitivity (95%CI) | Specificity (95%CI) | PLR (95%CI) | NLR (95%CI) | DOR (95%CI) | AUC (95%CI) | P value | |
CNN | 0.85 (0.77-0.91) | 0.73 (0.59-0.83) | 3.1 (1.9-5.0) | 0.20 (0.12-0.34) | 15 (6-38) | 0.87 (0.84-0.90) | ||
Continent | 0.73 | |||||||
Asian | 6 | 0.86 (0.76-0.93) | 0.71 (0.53-0.85) | 3.0 (1.6-5.5) | 0.19 (0.09-0.40) | 16 (5-54) | 0.87 (0.84-0.90) | |
Europe/Ameica | 2 | |||||||
Scale | 0.55 | |||||||
Unicenter | 4 | 0.87 (0.68-0.96) | 0.77 (0.62-0.87) | 3.8 (2.0-7.0) | 0.17 (0.06-0.49) | 23 (5-106) | 0.87 (0.84-0.90) | |
Multicenter | 4 | 0.81 (0.77-0.85) | 0.65 (0.43-0.82) | 2.3 (1.3-4.2) | 0.29 (0.20-0.41) | 8 (3-20) | 0.82 (0.78-0.85) | |
External validation or not | 0.94 | |||||||
External validation | 0.85 (0.78-0.91) | 0.73 (0.63-0.80) | 3.1 (2.4-4.1) | 0.20 (0.14-0.29) | 16 (10-24) | 0.87 (0.84-0.90) | ||
No external validation | 0.85 (0.66-0.94) | 0.74 (0.45-0.90) | 3.2 (1.2-8.5) | 0.20 (0.07-0.60) | 16 (2-106) | 0.87 (0.84-0.90) | ||
Format | 0.89 | |||||||
Retrospective | 5 | 0.85 (0.76-0.91) | 0.73 (0.58-0.84) | 3.1 (1.9-5.3) | 0.21 (0.12-0.36) | 15 (6-41) | 0.87 (0.84-0.90) | |
Prospective | 1 | |||||||
Real-time or not | 0.13 | |||||||
Real-time | 6 | 0.82 (0.74-0.87) | 0.68 (0.52-0.80) | 2.5 (1.6-3.9) | 0.27 (0.19-0.39) | 9 (5-18) | 0.83 (0.80-0.86) | |
No real-time | 2 | |||||||
Histological type | 0.73 | |||||||
ESCN | 6 | 0.86 (0.76-0.93) | 0.71 (0.53-0.85) | 3.0 (1.6-5.5) | 0.19 (0.09-0.40) | 16 (5-54) | 0.87 (0.84-0.90) | |
Barrett’s neoplasia | 2 | |||||||
Image type | 0.76 | |||||||
WLI | 4 | 0.83 (0.71-0.91) | 0.49 (0.27-0.71) | 1.6 (0.9-2.8) | 0.34 (0.13-0.88) | 5 (1-20) | 0.80 (0.77-0.84) | |
Advanced imaging | 5 | 0.83 (0.77-0.88) | 0.71 (0.56-0.82) | 2.9 (1.9-4.3) | 0.24 (0.19-0.30) | 12 (8-19) | 0.86 (0.82-0.88) |
Table 5 Characteristics of the studies about diagnosis of invasion depth of esophageal cancers
Ref. | Format | Scale | Continent | Depth | Architecture of CNN | Image type | Histological type | Real-time | External validation | Quality | Endoscopist control | Patients training set | Images training set | Patients test set | Images test set | TP | FP | FN | TN |
Horie et al[29], 2019 | Retrospective | Unicenter | Asia | T1a, T1b vs T2-4 | SSD | WLI/NBI | ESCC/EAC | Yes | No | High | No | 384 | 8428 | NM | 168 | 142 | 2 | 1 | 23 |
Nakagawa et al[31], 2019 | Retrospective | Unicenter | Asia | pEP-SM1, pEP-MM | SSD | WLI/NBI/BLI | ESCC | No | No | High | 16 | 804 | 14338 | 155 | 914 | 714 | 24 | 60 | 132 |
Tokai et al[57], 2020 | Retrospective | Unicenter | Asia | pEP-SM1 | SSD | NBI/WLI | ESCC | No | No | High | 13 | NM | 10179 | NM | 279 | 159 | 24 | 30 | 66 |
- Citation: Zhang JQ, Mi JJ, Wang R. Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysis. World J Gastrointest Oncol 2023; 15(11): 1998-2016
- URL: https://www.wjgnet.com/1948-5204/full/v15/i11/1998.htm
- DOI: https://dx.doi.org/10.4251/wjgo.v15.i11.1998