1
|
Xie C, Qi C, Zhang J, Wang W, Meng X, Aikepaer A, Lin Y, Su C, Liu Y, Feng X, Gao H. When short-chain fatty acids meet type 2 diabetes mellitus: Revealing mechanisms, envisioning therapies. Biochem Pharmacol 2025; 233:116791. [PMID: 39894305 DOI: 10.1016/j.bcp.2025.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2024] [Revised: 01/19/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Evidence is accumulating that short-chain fatty acids (SCFAs) produced by the gut microbiota play pivotal roles in host metabolism. They contribute to the metabolic regulation and energy homeostasis of the host not only by preserving intestinal health and serving as energy substrates but also by entering the systemic circulation as signaling molecules, affecting the gut-brain axis and neuroendocrine-immune network. This review critically summarizes the current knowledge regarding the effects of SCFAs in the fine-tuning of the pathogenesis of type 2 diabetes mellitus (T2DM) and insulin resistance, with an emphasis on the complex relationships among diet, microbiota-derived metabolites, T2DM inflammation, glucose metabolism, and the underlying mechanisms involved. We hold an optimistic view that elucidating how diet can influence gut bacterial composition and activity, SCFA production, and metabolic functions in the host will advance our understanding of the mutual interactions of the intestinal microbiota with other metabolically active organs, and may pave the way for harnessing these pathways to develop novel personalized therapeutics for glucometabolic disorders.
Collapse
Affiliation(s)
- Cong Xie
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Cong Qi
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Jianwen Zhang
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617 China
| | - Wei Wang
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China
| | - Xing Meng
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617 China
| | - Aifeila Aikepaer
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; Dongzhimen Hospital, the First Clinical Medical School of Beijing University of Chinese Medicine, Beijing 100700 China
| | - Yuhan Lin
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China; Dongzhimen Hospital, the First Clinical Medical School of Beijing University of Chinese Medicine, Beijing 100700 China
| | - Chang Su
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124 China
| | - Yunlu Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700 China
| | - Xingzhong Feng
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China.
| | - Huijuan Gao
- Department of Endocrinology, Yuquan Hospital, School of Clinical Medicine, Tsinghua University, Beijing 100040 China.
| |
Collapse
|
2
|
Baker ZR, Zhang Y, Zhang H, Franklin HC, Serpa PBS, Southard T, Li L, Hsu BB. Sustained in situ protein production and release in the mammalian gut by an engineered bacteriophage. Nat Biotechnol 2025:10.1038/s41587-025-02570-7. [PMID: 39966654 DOI: 10.1038/s41587-025-02570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2023] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Oral administration of biologic drugs is challenging because of the degradative activity of the upper gastrointestinal tract. Strategies that use engineered microbes to produce biologics in the lower gastrointestinal tract are limited by competition with resident commensal bacteria. Here we demonstrate the engineering of bacteriophage (phage) that infect resident commensals to express heterologous proteins released during cell lysis. Working with the virulent T4 phage, which targets resident, nonpathogenic Escherichia coli, we first identify T4-specific promoters with maximal protein expression and minimal impact on T4 phage titers. We engineer T4 phage to express a serine protease inhibitor of a pro-inflammatory enzyme with increased activity in ulcerative colitis and observe reduced enzyme activity in a mouse model of colitis. We also apply the approach to reduce weight gain and inflammation in mouse models of diet-induced obesity. This work highlights an application of virulent phages in the mammalian gut as engineerable vectors to release therapeutics from resident gut bacteria.
Collapse
Affiliation(s)
- Zachary R Baker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Haiyan Zhang
- Metabolism Core, Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Hollyn C Franklin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Priscila B S Serpa
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Teresa Southard
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Bryan B Hsu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
3
|
Chakravarty K, Gaur S, Kumar R, Jha NK, Gupta PK. Exploring the Multifaceted Therapeutic Potential of Probiotics: A Review of Current Insights and Applications. Probiotics Antimicrob Proteins 2025; 17:341-363. [PMID: 39069588 DOI: 10.1007/s12602-024-10328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
The interplay between human health and the microbiome has gained extensive attention, with probiotics emerging as pivotal therapeutic agents due to their vast potential in treating various health issues. As significant modulators of the gut microbiota, probiotics are crucial in maintaining intestinal homeostasis and enhancing the synthesis of short-chain fatty acids. Despite extensive research over the past decades, there remains an urgent need for a comprehensive and detailed review that encapsulates probiotics' latest insights and applications. This review focusses on the multifaceted roles of probiotics in promoting health and preventing disease, highlighting the complex mechanisms through which these beneficial bacteria influence both gut flora and the human body at large. This paper also explores probiotics' neurological and gastrointestinal applications, focussing on their significant impact on the gut-brain axis and their therapeutic potential in a broad spectrum of pathological conditions. Current innovations in probiotic formulations, mainly focusing on integrating genomics and biotechnological advancements, have also been comprehensively discussed herein. This paper also critically examines the regulatory landscape that governs probiotic use, ensuring safety and efficacy in clinical and dietary settings. By presenting a comprehensive overview of recent studies and emerging trends, this review aims to illuminate probiotics' extensive therapeutic capabilities, leading to future research and clinical applications. However, besides extensive research, further advanced explorations into probiotic interactions and mechanisms will be essential for developing more targeted and effective therapeutic strategies, potentially revolutionizing health care practices for consumers.
Collapse
Affiliation(s)
- Kashyapi Chakravarty
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Smriti Gaur
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India.
| | - Rohit Kumar
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Piyush Kumar Gupta
- Centre for Development of Biomaterials and Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
4
|
Luangphiphat W, Prombutara P, Jamjuree P, Chantarangkul C, Vitheejongjaroen P, Muennarong C, Fukfon K, Onwan M, Taweechotipatr M. The efficacy of Lacticaseibacillus paracasei MSMC39-1 and Bifidobacterium animalis TA-1 probiotics in modulating gut microbiota and reducing the risk of the characteristics of metabolic syndrome: A randomized, double-blinded, placebo-controlled study. PLoS One 2025; 20:e0317202. [PMID: 39792908 PMCID: PMC11723615 DOI: 10.1371/journal.pone.0317202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Modern treatment, a healthy diet, and physical activity routines lower the risk factors for metabolic syndrome; however, this condition is associated with all-cause and cardiovascular mortality worldwide. This investigation involved a randomized controlled trial, double-blind, parallel study. Fifty-eight participants with risk factors of metabolic syndrome according to the inclusion criteria were randomized into two groups and given probiotics (Lacticaseibacillus paracasei MSMC39-1 and Bifidobacterium animalis TA-1) (n = 31) or a placebo (n = 27). The participants had a mean age of 42.29 ± 7.39 and 43.89 ± 7.54 years in the probiotics and placebo groups, respectively. Stool samples, anthropometric data, and blood chemistries were taken at baseline and at 12 weeks. The primary outcome was achieved by the probiotics group as their low-density lipoprotein-cholesterol level dramatically lowered compared to the placebo group (the difference was 39.97 ± 26.83 mg/dl, p-value <0.001). Moreover, significant reductions in body weight, body mass index, waist circumference, systolic blood pressure, and total cholesterol were observed in the volunteers treated with probiotics compared to the placebo. In the gut microbiome analysis, the results showed statistically significant differences in the beta diversity in the post-intervention probiotics group. Blautia, Roseburia, Collinsella, and Ruminococcus were among the gut microbiomes that were more prevalent in the post-intervention probiotics group. In addition, this group exhibited increases in the predicted functional changes in ATP-binding cassette (ABC) transporters, as well as ribonucleic acid transport, the biosynthesis of unsaturated fatty acids, glycerophospholipid metabolism, and pyruvate metabolism. In conclusion, this research demonstrated that the probiotics L. paracasei MSMC39-1 and B. animalis TA-1 have the efficacy to lower risk factors associated with metabolic syndrome.
Collapse
Affiliation(s)
- Wongsakorn Luangphiphat
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Division of Cardiology, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Mod Gut Co., Ltd, Bangkok, Thailand
| | | | | | | | | | - Krittapat Fukfon
- Boromarajonani College of Nursing Phayao, Faculty of Nursing, Praboromarajchanok Institute, Phayao, Thailand
| | - Manasvin Onwan
- Department of Preventive and Social Medicine, Faculty of Medicine, Srinakharinwirot University, Ongkharak, Nakhon Nayok, Thailand
- Clinical Research Center, Faculty of Medicine, Srinakharinwirot University, Ongkharak, Nakhon Nayok, Thailand
| | - Malai Taweechotipatr
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok, Thailand
- Clinical Research Center, Faculty of Medicine, Srinakharinwirot University, Ongkharak, Nakhon Nayok, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
5
|
Manoj H, Gomes SM, Thimmappa PY, Nagareddy PR, Jamora C, Joshi MB. Cytokine signalling in formation of neutrophil extracellular traps: Implications for health and diseases. Cytokine Growth Factor Rev 2024:S1359-6101(24)00102-3. [PMID: 39681501 DOI: 10.1016/j.cytogfr.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Neutrophils, as essential component of the innate immune response, form a crucial part in the defence mechanisms through the release of extracellular traps (NETs). These web-like structures, composed of chromatin and antimicrobial proteins, are essential for the entrapment and inactivation of pathogens. However, either constitutive formation or inefficient clearance of NETs leads to adverse effects such as fibrosis, thrombosis, delayed wound healing and tissue damage in multiple diseases associated with sterile inflammation. This dichotomy casts NETs as both protective agents and harmful factors in several diseases such as autoimmune diseases, metabolic syndromes, systemic infections, and malignancies. Besides microbes and their products, variety of stimulants including pro-inflammatory cytokines induce NETs. The complex interactions and cross talk among the pro-inflammatory cytokines including IL-8, IL-6, GM-CSF, TNF-α, IFNs, and IL-1β activate neutrophils to form NETs and also contributes to a vicious circle of inflammatory cascade, leading to increased inflammation, oxidative stress, and thrombotic events. Emerging evidence indicates that the dysregulated cytokine milieus in diseases, such as diabetes mellitus, obesity, atherosclerosis, stroke, rheumatoid arthritis, and systemic lupus erythematosus, potentiate NETs release, thereby promoting disease development. Thus, neutrophils represent both critical effectors and potential therapeutic targets, underscoring their importance in the context of cytokine-mediated therapies for a spectrum of diseases. In the present review, we describe various cytokines and associated signalling pathways activating NETs formation in different human pathologies. Further, the review identifies potential strategies to pharmacologically modulate cytokine pathways to reduce NETs.
Collapse
Affiliation(s)
- Haritha Manoj
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sarah Michael Gomes
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pooja Yedehalli Thimmappa
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Prabhakara R Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma, OK, USA
| | - Colin Jamora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
6
|
García G, Soto J, Netherland M, Hasan NA, Buchaca E, Martínez D, Carlin M, de Jesus Cano R. Evaluating the Effects of Sugar Shift ® Symbiotic on Microbiome Composition and LPS Regulation: A Double-Blind, Placebo-Controlled Study. Microorganisms 2024; 12:2525. [PMID: 39770729 PMCID: PMC11678924 DOI: 10.3390/microorganisms12122525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
(1) Background: This study evaluated the effects of BiotiQuest® Sugar Shift®, a novel probiotic formulation, for its impact on gut microbiome composition and metabolic health in type 2 diabetes mellitus (T2D). T2D is characterized by chronic inflammation and gut microbiome imbalances, yet the therapeutic potential of targeted probiotics remains underexplored. (2) Methods: In a 12-week randomized, double-blind, placebo-controlled trial, 64 adults with T2D received either Sugar Shift or placebo capsules twice daily. Each dose provided 18 billion CFU of eight GRAS-certified bacterial strains and prebiotics. Clinical samples were analyzed for metabolic markers, and microbiome changes were assessed using 16S rRNA sequencing and metagenomics. (3) Results: Sugar Shift significantly reduced serum lipopolysaccharide (LPS) levels, improved insulin sensitivity (lower HOMA-IR scores), and increased short-chain fatty acid (SCFA)-producing genera, including Bifidobacterium, Faecalibacterium, Fusicatenibacter, and Roseburia. Pro-inflammatory taxa like Enterobacteriaceae decreased, with reduced LPS biosynthesis genes and increased SCFA production genes. The Lachnospiraceae:Enterobactericeae ratio emerged as a biomarker of reduced inflammation. (4) Conclusions: These findings demonstrate the potential of Sugar Shift to restore gut homeostasis, reduce inflammation, and improve metabolic health in T2D. Further studies are warranted to explore its long-term efficacy and broader application in metabolic disease management.
Collapse
Affiliation(s)
- Gissel García
- Pathology Department, Clinical Hospital “Hermanos Ameijeiras” (HHA), Calle San Lázaro No 701, Esq.a Belascoaín, Centro Habana, La Habana 10400, Cuba;
| | - Josanne Soto
- Clinical Laboratory Department, Clinical Hospital “Hermanos Ameijeiras” (HHA), Calle San Lázaro No 701, Esq.a Belascoaín, Centro Habana, La Habana 10400, Cuba;
| | | | - Nur A. Hasan
- EzBiome, 704 Quince Orchard Rd, Gaithersburg, MD 20878, USA (N.A.H.)
| | - Emilio Buchaca
- Internal Medicine Department, Clinical Hospital “Hermanos Ameijeiras” (HHA), Calle San Lázaro No 701, Esq.a Belascoaín, Centro Habana, La Habana 10400, Cuba;
| | - Duniesky Martínez
- Research and Development Department, Center for Genetic Engineering and Biotechnology of Sancti Spíritus (CIGBSS), Circunvalante Norte S/N, Olivos 3, Apartado Postal 83, Sancti Spíritus 60200, Cuba;
| | - Martha Carlin
- The BioCollective, LLC, 4800 Dahlia Street, G8, Denver, CO 80216, USA;
| | - Raúl de Jesus Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
7
|
Chudzicka-Strugała I, Kubiak A, Banaszewska B, Wysocka E, Zwozdziak B, Siakowska M, Pawelczyk L, Duleba AJ. Six-month randomized, placebo controlled trial of synbiotic supplementation in women with polycystic ovary syndrome undergoing lifestyle modifications. Arch Gynecol Obstet 2024:10.1007/s00404-024-07833-3. [PMID: 39636391 DOI: 10.1007/s00404-024-07833-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/30/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE To determine whether long-term administration of synbiotics affects clinical, endocrine and metabolic aspects of polycystic ovary syndrome (PCOS) in overweight and obese subjects undergoing intensive lifestyle modifications. METHODS During six-month trial, all subjects underwent intensive lifestyle modifications (diet and exercise). The subjects were randomized (1:1) to receive synbiotic supplementation (Synbiotic Group) or placebo (Placebo Group). RESULTS Subjects in the Placebo Group and the Synbiotic Group experienced significant reduction of BMI (- 8% and - 11%, respectively; both at P < 0.0001) and body fat percentage (- 11% and - 14%, respectively; both at P < 0.0001). These effects were statistically comparable for both groups. Total testosterone was not significantly changed in the Placebo Group (- 5%, P = 0.41) while it greatly declined in the Synbiotic Group (- 40%; P < 0.0001); the difference between these groups was significant (P = 0.0002). Synbiotic supplementation was superior to placebo in reducing LH (- 21%; P = 0.047), total cholesterol (- 6%; P = 0.002), low-density lipoprotein cholesterol (- 6%; P = 0.044), triglycerides (- 29%; P = 0.049), LPS (- 23%; P = 0.001) and LPS-binding protein (- 21%; P = 0.001). CONCLUSIONS Synbiotic supplementation led to a marked improvement of several key clinical and laboratory aspects of PCOS including an improvement of hyperandrogenism, lipid profile, and markers of endotoxemia. TRIAL REGISTRATION Clinical Trial Registration Number: NCT03325023 (URL, clinicaltrials.gov; date of registration 10/26/2017).
Collapse
Affiliation(s)
| | - Anna Kubiak
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535, Poznan, Poland
| | - Beata Banaszewska
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 60-569, Poznan, Poland
| | - Ewa Wysocka
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, 60-569, Poznan, Poland
| | - Barbara Zwozdziak
- Department of Medical Microbiology, Poznan University of Medical Sciences, 60-535, Poznan, Poland
| | - Martyna Siakowska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535, Poznan, Poland
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535, Poznan, Poland
| | - Antoni J Duleba
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, 9500 Gilman Drive, 0633, San Diego, CA, 92093-0633, USA.
| |
Collapse
|
8
|
Wu S, Hu L, Fu Y, Chen Y, Hu Z, Li H, Liu Z. Effects of Intestinal M Cells on Intestinal Barrier and Neuropathological Properties in an AD Mouse Model. Mol Neurobiol 2024; 61:10006-10022. [PMID: 38066398 DOI: 10.1007/s12035-023-03807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2024]
Abstract
Intestinal microfold cells (M cells) play a critical role in the immune response of the intestinal mucosa by actively taking up antigens, facilitating antigen presentation to immune cells, and promoting the production of secretory immunoglobulin A by B cells. Despite their known important functions in the gut, the effect of M cells on the central nervous system remains unclear. We investigated the expression of M cell-related factor genes and protein levels in Peyer's patches (PPs) of 3-month-old and 9-month-old APP/PS1 mice, as well as the expression of intestinal barrier proteins in the ileum and colon of these mice. Furthermore, we employed intestinal M cell conditional ablation mice (i.e., RankΔIEC mice) to assess the influence of M cells on the intestinal barrier and Alzheimer's disease (AD)-like behavioral and pathological features. Our findings revealed that compared to wild-type mice, APP/PS1 mice showed altered M cell-related genes and disrupted intestinal barriers. In addition, there is a significant decrease in glycoprotein 2 (GP2) mRNA levels in the PPs of 3-month-old APP/PS1 mice, with the relative expression of GP2 mRNA tending to zero. Parameters related to the intestinal barrier (IgA, MUC2, Claudin-5, ZO-1) were significantly downregulated in both 3-month-old and 9-month-old APP/PS1 mice compared to wild-type controls, and the differences were more pronounced in the 9-month-old mice. Moreover, M cell ablation in APP/PS1 mice (i.e., APP/PS1ΔMC mice) resulted in more severe intestinal barrier destruction. Notably, we observed through water maze experiments that APP/PS1ΔMC mice at 6 months of age exhibited significantly poorer spatial learning memory compared to APP/PS1 mice. And the neuropathological alterations were also observed in APP/PS1ΔMC mice at 6 months of age that when intestinal M cells are damaged in APP/PS1 mice, brain microglia are activated, Tau phosphorylation is exacerbated, and the number of neurons is reduced. Our results suggest for the first time that the absence of intestinal M cells might further aggravate intestinal leakage, lead to neuropathological damage, and subsequently cause the impairment of learning memory ability in AD mice. Our research highlights the impact of intestinal M cells on the intestinal barrier and AD neuropathogenesis in AD mouse model.
Collapse
Affiliation(s)
- Shijing Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yiwei Fu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yating Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhibin Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
9
|
Chen P, Jiang X, Fu J, Ou C, Li Y, Jia J, Liao C. The potential mechanism of action of gut flora and bile acids through the TGR5/TRPV1 signaling pathway in diabetic peripheral neuropathic pain. Front Endocrinol (Lausanne) 2024; 15:1419160. [PMID: 39619328 PMCID: PMC11604420 DOI: 10.3389/fendo.2024.1419160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/17/2024] [Accepted: 10/22/2024] [Indexed: 12/13/2024] Open
Abstract
Diabetic peripheral neuropathic pain (DPNP) is a major complication of diabetes that markedly affects the quality of life and health status of patients. Recent studies have investigated the potential regulatory influence of gut flora and bile acids on DPNP via the TGR5/TRPV1 signaling pathway. Dysbiosis of the gut flora not only directly affects bile acid metabolism but also significantly correlates with diabetes-associated neuropathy through interactions with the bile acid receptor TGR5 and the ion channel TRPV1. This review describes how alterations in the gut flora and bile acid metabolism contribute to the pathogenesis of DPNP through the TGR5/TRPV1 signaling pathway, revealing potential applications for this pathway in DPNP management. Furthermore, experimental and clinical studies have demonstrated the modulation of gut flora and bile acid metabolism as well as targeting the TGR5/TRPV1 signaling pathway as an innovative therapeutic approach. Further studies are warranted to elucidate the underlying mechanism and develop treatment modalities based on gut flora regulation and signaling pathway interventions, thus providing novel insights and approaches for DPNP therapy.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Xian Jiang
- Department of Anesthesiology, Luzhou People’s Hospital, Luzhou, Sichuan, China
| | - Jia Fu
- Department of Pain Management, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Cehua Ou
- Department of Pain Management, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yao Li
- Department of Science and Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Changli Liao
- Department of Science and Technology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
10
|
AlMalki SM, Alfawaz HA, Binmoammar TA, AlBahlei SF, Al Bakr LM, Alzahrani AM, Alshammari SS, Hussain SD, Sabico S, Al-Daghri NM. Effects of probiotics on selected anthropometrics and biochemical measures in overweight or obese Saudi subjects: a double-blind, placebo-controlled, randomised clinical trial. Public Health Nutr 2024; 27:e225. [PMID: 39501805 PMCID: PMC11645120 DOI: 10.1017/s1368980024002003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE This study aimed to assess the effects of multi-strain probiotics on anthropometric and biochemical measures in Saudi adults with overweight or obesity. DESIGN Single-centre, double-blind, placebo-controlled, randomised clinical trial. SETTING Occupational Health Clinics at King Saud University Medical City, Riyadh, Saudi Arabia. PARTICIPANTS Ninety-three Saudi participants with overweight or obesity were randomly assigned to receive twice-daily doses of either placebo (n 49) or 30 × 109 CFU/g of HEXBIO® containing three Lactobacillus and three Bifidobacterium species (n 44) in a double-blind manner over a 12-week period, respectively. Both groups adhered to a hypoenergetic diet. Anthropometric measurements, glycaemic indices and lipid profiles were evaluated at baseline and post-intervention. RESULTS Following the 12-week intervention, no statistically significant differences were found in all between the probiotic group and placebo group comparisons, except for fat intake, where the group*time interaction showed a significant decrease in favour of the probiotic group (P = 0·02). However, significant within-group reductions were observed in the probiotic group: body weight (-0·9 kg, P = 0·02), HC (-1·5 cm, P = 0·002), energy intake (-387·3 kcal/d, P = 0·002), fasting glucose (-0·7, P = 0·002) and LDL-cholesterol (-0·7, P = 0·02). CONCLUSION Consumption of multi-strain probiotic supplementation over 12 weeks significantly decreased fat intake in Saudi adults with overweight or obesity, with the probiotic group highlighting improved anthropometric and biochemical parameters. Further research is needed to evaluate the long-term clinical significance of this dietary practice and whether it has a meaningful impact on overall health beyond the placebo effect.
Collapse
Affiliation(s)
- Samira M AlMalki
- Department of Food Science and Nutrition, College of Food & Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Hanan A Alfawaz
- Department of Food Science and Nutrition, College of Food & Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Turki A Binmoammar
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Saleh F AlBahlei
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Luluah M Al Bakr
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Alzahrani
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Salem S Alshammari
- Department of Family and Community Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Syed Danish Hussain
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shaun Sabico
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nasser M Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Bano N, Khan S, Ahamad S, Kanshana JS, Dar NJ, Khan S, Nazir A, Bhat SA. Microglia and gut microbiota: A double-edged sword in Alzheimer's disease. Ageing Res Rev 2024; 101:102515. [PMID: 39321881 DOI: 10.1016/j.arr.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The strong association between gut microbiota (GM) and brain functions such as mood, behaviour, and cognition has been well documented. Gut-brain axis is a unique bidirectional communication system between the gut and brain, in which gut microbes play essential role in maintaining various molecular and cellular processes. GM interacts with the brain through various pathways and processes including, metabolites, vagus nerve, HPA axis, endocrine system, and immune system to maintain brain homeostasis. GM dysbiosis, or an imbalance in GM, is associated with several neurological disorders, including anxiety, depression, and Alzheimer's disease (AD). Conversely, AD is sustained by microglia-mediated neuroinflammation and neurodegeneration. Further, GM and their products also affect microglia-mediated neuroinflammation and neurodegeneration. Despite the evidence connecting GM dysbiosis and AD progression, the involvement of GM in modulating microglia-mediated neuroinflammation in AD remains elusive. Importantly, deciphering the mechanism/s by which GM regulates microglia-dependent neuroinflammation may be helpful in devising potential therapeutic strategies to mitigate AD. Herein, we review the current evidence regarding the involvement of GM dysbiosis in microglia activation and neuroinflammation in AD. We also discuss the possible mechanisms through which GM influences the functioning of microglia and its implications for therapeutic intervention. Further, we explore the potential of microbiota-targeted interventions, such as prebiotics, probiotics, faecal microbiota transplantation, etc., as a novel therapeutic strategy to mitigate neuroinflammation and AD progression. By understanding and exploring the gut-brain axis, we aspire to revolutionize the treatment of neurodegenerative disorders, many of which share a common theme of microglia-mediated neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Jitendra Singh Kanshana
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburg, PA, USA.
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA.
| | - Sumbul Khan
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow, UP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
12
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
13
|
Ratsika A, Codagnone MG, Bastiaanssen TFS, Hoffmann Sarda FA, Lynch CMK, Ventura-Silva AP, Rosell-Cardona C, Caputi V, Stanton C, Fülling C, Clarke G, Cryan JF. Maternal high-fat diet-induced microbiota changes are associated with alterations in embryonic brain metabolites and adolescent behaviour. Brain Behav Immun 2024; 121:317-330. [PMID: 39032541 DOI: 10.1016/j.bbi.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/23/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
The developing central nervous system is highly sensitive to nutrient changes during the perinatal period, emphasising the potential impact of alterations of maternal diet on offspring brain development and behaviour. A growing body of research implicates the gut microbiota in neurodevelopment and behaviour. Maternal overweight and obesity during the perinatal period has been linked to changes in neurodevelopment, plasticity and affective disorders in the offspring, with implications for microbial signals from the maternal gut. Here we investigate the impact of maternal high-fat diet (mHFD)-induced changes in microbial signals on offspring brain development, and neuroimmune signals, and the enduring effects on behaviour into adolescence. We first demonstrate that maternal caecal microbiota composition at term pregnancy (embryonic day 18: E18) differs significantly in response to maternal diet. Moreover, mHFD resulted in the upregulation of microbial genes in the maternal intestinal tissue linked to alterations in quinolinic acid synthesis and elevated kynurenine levels in the maternal plasma, both neuronal plasticity mediators related to glutamate metabolism. Metabolomics of mHFD embryonic brains at E18 also detected molecules linked to glutamate-glutamine cycle, including glutamic acid, glutathione disulphide, and kynurenine. During adolescence, the mHFD offspring exhibited increased locomotor activity and anxiety-like behaviour in a sex-dependent manner, along with upregulation of glutamate-related genes compared to controls. Overall, our results demonstrate that maternal exposure to high-fat diet results in microbiota changes, behavioural imprinting, altered brain metabolism, and glutamate signalling during critical developmental windows during the perinatal period.
Collapse
Affiliation(s)
- Anna Ratsika
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Martin G Codagnone
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Fabiana A Hoffmann Sarda
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Caoimhe M K Lynch
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | - Cristina Rosell-Cardona
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | - Valentina Caputi
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | | | - Christine Fülling
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork T12YT20, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12YT20, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12YT20, Ireland.
| |
Collapse
|
14
|
Wan C, Yan S, Lu R, Zhu C, Yang Y, Wu X, Yu Z, Jiang M, Peng W, Song W, Wu H, Fang B, He Y. Astragalus Polysaccharide improves immunogenicity of influenza vaccine as well as modulate gut microbiota in BALB/c mice. Microb Pathog 2024; 195:106893. [PMID: 39197333 DOI: 10.1016/j.micpath.2024.106893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/25/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Vaccination is the best way to prevent influenza virus infection, and insufficient antibodies make it difficult to resist influenza virus invasion. Astragalus Polysaccharide (APS) has a boosting effect on immunity, so we evaluate the effect of APS as an immune adjuvant for H1N1 influenza vaccines in this study. METHODS The mice were immunized twice with influenza A (H1N1) vaccine and APS. Subsequently, the serum antibody levels were assessed using enzyme-linked immunosorbent assay (ELISA). The frequency of peripheral immune T cells was determined by flow cytometry. Following this, the immunized mice were exposed to a lethal dose of the virus, and changes in body weight and survival rates were recorded. Hematoxylin-eosin staining was employed to observe pathological alterations in lung and intestinal tissues. Western blot analysis was conducted to detect the expression of intestinal barrier function proteins (Occludin and Claudin-1). ELISA was utilized to measure the expression level of serum inflammatory cytokine TNF-α. Fresh mouse feces were collected after the initial immunization as well as after viral infection for 16S rRNA analysis aimed at detecting alterations in gut microbiota. RESULTS Compared to the Hemagglutinin (HA) group, the APS group demonstrated higher levels of immunoglobulin G (IgG), IgG1, and IgG3, as well as neutralizing antibody levels. Additionally, it increased the frequency of CD8+ cells to enhance resistance against lethal infection. On day 14 post-infection, the high-dose APS group exhibited a higher survival rate (71.40 %) compared to the HA group (14.28 %), along with faster weight recovery. Furthermore, APS was found to ameliorate alveolar damage in lung tissue and rectify intestinal structural disorder. It also upregulated the expression levels of tight junction proteins Occludin and Claudin-1 in intestinal tissue while reducing serum TNF-α expression levels. In addition, populations of Colidextribacter, Peptococcaceae, and Ruminococcaceae were the dominant gut microbiota in the APS group after viral infection. CONCLUSION APS has an immune-enhancing effect and is expected to be a novel adjuvant in the H1N1 influenza vaccine.
Collapse
Affiliation(s)
- Chuanqi Wan
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Sijing Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rufeng Lu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chen Zhu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yang Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaowei Wu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhihong Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mei Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Peng
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China
| | - Wenwen Song
- Shenzhen Kang Jian Mai de Technology Co., Ltd., Shenzhen, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Xuhui, China.
| | - Yuzhou He
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Hu J, Yao Q, Zhao L. Evidences and perspectives on the association between gut microbiota and sepsis: A bibliometric analysis from 2003 to 2023. Heliyon 2024; 10:e37921. [PMID: 39315201 PMCID: PMC11417584 DOI: 10.1016/j.heliyon.2024.e37921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Background In the last two decades, the role of the gut microbiome in the development, maintenance, and outcome of sepsis has received increased attention; however, few descriptive studies exist on its research focus, priorities, and future prospects. This study aimed to identify the current state, evolution, and emerging trends in the field of gut microbiota and sepsis using bibliometric analysis. Methods All publications on sepsis and gut microbiota were retrieved from the Web of Science Core Collection and included in this study. VOSviewer, CiteSpace, and the Web of Science online analysis platform were used to visualize trends based on publication country, institution, author, journal, and keywords. Results A total of 1,882 articles on sepsis-related gut microbiota were screened, mainly from 95 countries or regions and 2,581 institutions. The United States and China contributed the most to this research field, with 521 (27.683 %) and 376 (19.979 %) articles, respectively. Scientists from the University of California were the most prolific, publishing 63 (3.348 %) articles. Cani PD published papers with the highest H-index, establishing himself as a leader in the field. The most publications were published in the journals "Nutrients" and "PLOS One." The journals with the most co-citations were "PLOS One," "Nature," and "Gut." The most used keywords were prebiotics, gut microbiota, and sepsis. The keyword burst research analysis revealed that research on treatment strategies based on the intestinal microbiota, intestine-liver axis, and regulatory mechanisms of bacterial metabolites are currently hot directions. Conclusion This study presents a global overview of the current state and potential trends in the field of sepsis-related gut microbiota. This study identified hot research sub-directions and new trends through comparison and analysis, which will aid in the development of this field.
Collapse
Affiliation(s)
- Jiahui Hu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou City, 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City, 310003, China
| | - Linjun Zhao
- Department of Emergency, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, 261 Huansha Rd, Hangzhou City, 310006, China
| |
Collapse
|
16
|
Lombardo GE, Navarra M, Cremonini E. A flavonoid-rich extract of bergamot juice improves high-fat diet-induced intestinal permeability and associated hepatic damage in mice. Food Funct 2024; 15:9941-9953. [PMID: 39263833 DOI: 10.1039/d4fo02538e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/13/2024]
Abstract
Consumption of high-fat diets (HFDs) is a contributing factor to obesity, insulin resistance and non-alcoholic fatty liver disease (NAFLD). Several studies suggested the protective role of bioactives present in Citrus fruits against the above mentioned chronic metabolic conditions. In this study, we evaluated if a flavonoid-rich extract of Citrus bergamia (bergamot) juice (BJe) could inhibit HFD-induced intestinal permeability and endotoxemia and, through this mechanism, mitigate the associated hepatic damage in C57BL/6J mice. After 12 weeks of the treatment, HFD consumption caused high body weight (BW) gain, hyperinsulinemia, hyperglycemia, and dyslipidemia, which were mitigated by BJe (50 mg per kg BW) supplementation. Furthermore, supplementation with BJe prevented HFD-induced liver alterations, including increased plasma alanine aminotransferase (ALT) activity, increased hepatic lipid deposition, high NAS, and fibrosis. Mice fed a HFD for 12 weeks showed (i) a decrease in small intestine tight junction protein levels (ZO-1, occludin, and claudin-1), (ii) increased intestinal permeability, and (iii) endotoxemia. All these adverse events were mitigated by BJe supplementation. Linking the capacity of BJe to prevent HFD-associated endotoxemia, supplementation with this extract decreased the HFD-induced overexpression of hepatic TLR-4, downstream signaling pathways (MyD88, NF-κB and MAPK), and the associated inflammation, evidenced by increased MCP-1, TNF-α, IL-6, iNOS, and F4/80 levels. Overall, we suggest that BJe could mitigate the harmful consequences of western style diet consumption on liver physiology by protecting the gastrointestinal tract from permeabilization and associated metabolic endotoxemia.
Collapse
Affiliation(s)
- Giovanni E Lombardo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
- Prof. Antonio Imbesi Foundation, Messina, Italy
- Department of Medicine and Surgery, "Kore" University of Enna, Enna, Italy
- Department of Nutrition, University of California, Davis, USA.
| | - Michele Navarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | | |
Collapse
|
17
|
Xue L, Li K, Jia Y, Yao D, Guo X, Zhang S. Impact of High-Temperature Feeds on Gut Microbiota and MAFLD. J Microbiol Biotechnol 2024; 34:1789-1802. [PMID: 39113196 PMCID: PMC11473614 DOI: 10.4014/jmb.2405.05023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 10/01/2024]
Abstract
The purpose of this study is to investigate the effects of non-obese MAFLD on the gut microbiota and metabolic pathways caused by high-temperature processed meals. It was decided to divide the eighteen male Sprague-Dawley rats into three groups: the control group, the dry-fried soybeans (DFS) group, and the high-fat diet (HFD) group. Following the passage of twelve weeks, a series of physical, biochemical, histological, and microbiological examinations were carried out. There were distinct pathological abnormalities brought about by each diet. The DFS diet was found to cause the development of fatty liver and to demonstrate strong relationships between components of the gut microbiota, such as Akkermansia and Mucispirillum, and indices of liver health. Diet-induced changes in the gut microbiome have a significant impact on liver pathology in non-obese patients with metabolically altered liver disease (MAFLD), which suggests that dietary interventions that target gut microbiota could be used to manage or prevent the illness.
Collapse
Affiliation(s)
- Lijun Xue
- Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P.R. China
| | - Kaimin Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Jinan 250013, P.R. China
| | - Dongxue Yao
- Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P.R. China
| | - Xuexing Guo
- Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P.R. China
| | - Shuhong Zhang
- Digestive Department 2, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, P.R. China
| |
Collapse
|
18
|
Chen Y, Ni H, Zhang H. Exploring the relationship between live microbe intake and obesity prevalence in adults. Sci Rep 2024; 14:21724. [PMID: 39289456 PMCID: PMC11408724 DOI: 10.1038/s41598-024-72961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024] Open
Abstract
Obesity has become a global health problem. In recent years, the influence of dietary microbes in the obese population has attracted the attention of scholars. Our study aimed to investigate the link between live microbe intake and obesity in adults. Participants (aged over 20 years) for this study were from the 1999-2018 National Health and Nutrition Examination Survey (NHANES). Participants were categorised into low, medium and high dietary live microbe intake groups. Linear regression was used to analyse the link between live microbe intake and body mass index (BMI) and waist circumference (WC). Logistic regression was used to analyse the link between live microbe intake and obesity and abdominal obesity prevalence. Restricted cubic spline curves (RCS) were used to check whether there was a non-linear relationship between live microbe intake and obesity. A total of 42,749 participants were included in this study and the number of obese reached 15,463. We found that live microbe intake was negatively linked to BMI and WC. In models adjusted for all confounders, the high live microbe intake group had lower obesity (OR = 0.812, 95%CI: 0.754-0.873) and abdominal obesity prevalence (OR = 0.851, 95%CI: 0.785-0.923) than the lowest intake group. Upon further quantification of live microbe intake, we found similar results. RCS analyses showed that live microbe intake was nonlinearly negatively correlated with BMI, WC, obesity, and abdominal obesity prevalence (P for non-linearity < 0.05). This study preliminarily reveals a negative link between live microbe intake and obesity in adults.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhejiang Chinese Medical University, No.54, Youdian Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Haixiang Ni
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhejiang Chinese Medical University, No.54, Youdian Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China
| | - Hong Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhejiang Chinese Medical University, No.54, Youdian Road, Shangcheng District, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
19
|
Peng X, Xian H, Ge N, Hou L, Tang T, Xie D, Gao L, Yue J. Effect of probiotics on glycemic control and lipid profiles in patients with type 2 diabetes mellitus: a randomized, double blind, controlled trial. Front Endocrinol (Lausanne) 2024; 15:1440286. [PMID: 39351535 PMCID: PMC11439702 DOI: 10.3389/fendo.2024.1440286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/29/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction This double-blind, placebo-controlled, randomized (1:1) clinical trial was conducted at the West China Hospital, Sichuan University, from March to September 2017. Methods Eligible participants included adults aged 18 years and older, living in the community, diagnosed with type 2 Diabetes Mellitus according to ADA guidelines, capable of self-managing their diabetes, and able to visit the study site for follow-up. The intervention group received 25 ml of a probiotic beverage containing with over 10^8 CFU/mL of Lactobacillus, administered four times daily. An equal volume of inactivated Lactobacillus was administered to the control group and the control group was administered the same volume of inactivated Lactobacillus. This study aimed to evaluate the effectiveness of probiotics on glycemic control and other diabetes-related outcomes in patients with type 2 diabetes patients. The primary outcomes were changes in HbA1c and FBG levels post-intervention. Investigators, participants, and study site personnel were blinded to the treatment allocation until the conclusion of the study. This double-blind, randomized, placebo-controlled clinical trial was registered in the Chinese Clinical Trial Registry (ChiCTR-POR-17010850). Results Of the 490 participants screened, 213 were randomized to either the probiotics group (n = 103) or the placebo group (n = 110). After 16 weeks of follow-up, the probiotic group showed reductions in HbA1c [-0.44 (-0.66 to -0.22)] and FBG [-0.97 (-1.49 to 0.46)] post-intervention, similar to the placebo group with reductions in HbA1c [-0.33 (-0.52 to -0.15)] and FBG [-0.90 (-1.32 to -0.47)], but these changes were not statistically significant in PP and ITT analyses (P>0.05). Adverse events were similarly distributed among groups, indicating comparable safety profiles. Discussion Overall, 16-week probiotic supplementation showed no beneficial effects on glycemic control, lipid profiles, or weight. Clinical Trial Registration https://www.chictr.org.cn/showproj.html?proj=18421, identifier ChiCTR-POR-17010850.
Collapse
Affiliation(s)
| | | | - Ning Ge
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West
China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | - Jirong Yue
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West
China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Yeom M, Ahn S, Hahm DH, Jang SY, Jang SH, Park SY, Jang JH, Park J, Oh JY, Lee IS, Kim K, Kwon SK, Park HJ. Acupuncture ameliorates atopic dermatitis by modulating gut barrier function in a gut microbiota-dependent manner in mice. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:600-613. [PMID: 39138075 DOI: 10.1016/j.joim.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/17/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Atopic dermatitis (AD) is a chronic inflammatory skin disease that may be linked to changes in the gut microbiome. Acupuncture has been proven to be effective in reducing AD symptoms without serious adverse events, but its underlying mechanism is not completely understood. The purpose of this study was to investigate whether the potential effect of acupuncture on AD is gut microbiota-dependent. METHODS AD-like skin lesions were induced by applying MC903 topically to the cheek of the mouse. Acupuncture was done at the Gok-Ji (LI11) acupoints. AD-like symptoms were assessed by lesion scores, scratching behavior, and histopathological changes; intestinal barrier function was measured by fecal output, serum lipopolysaccharide levels, histopathological changes, and mRNA expression of markers involved in intestinal permeability and inflammation. Gut microbiota was profiled using 16S rRNA gene sequencing from fecal samples. RESULTS Acupuncture effectively improved chronic itch as well as the AD-like skin lesions with epidermal thickening, and also significantly altered gut microbiota structure as revealed by β-diversity indices and analysis of similarities. These beneficial effects were eliminated by antibiotic depletion of gut microbiota, but were reproduced in gut microbiota-depleted mice that received a fecal microbiota transplant from acupuncture-treated mice. Interestingly, AD mice had intestinal barrier dysfunction as indicated by increased intestinal permeability, atrophy of the mucosal structure (reduced villus height and crypt depth), decreased expression of tight junctions and mucus synthesis genes, and increased expression of inflammatory mediators in the ileum. Acupuncture attenuated these abnormalities, which was gut microbiota-dependent. CONCLUSION Acupuncture ameliorates AD-like phenotypes in a gut microbiota-dependent manner and some of these positive benefits are explained by modulation of the intestinal barrier, providing new perspective for non-pharmacological strategies for modulating gut microbiota to prevent and treat AD. Please cite this article as: Yeom M, Ahn S, Hahm DH, Jang SY, Jang SH, Park SY, Jang JH, Park J, Oh JY, Lee IS, Kim K, Kwon SK, Park HJ. Acupuncture ameliorates atopic dermatitis by modulating gut barrier function in a gut microbiota-dependent manner in mice. J Integr Med. 2024; 22(5): 600-613.
Collapse
Affiliation(s)
- Mijung Yeom
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sora Ahn
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Physiology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun-Young Jang
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Se Hoon Jang
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su-Yang Park
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Hwan Jang
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jihan Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ju-Young Oh
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soon-Kyeong Kwon
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
21
|
Shen X, Ma C, Yang Y, Liu X, Wang B, Wang Y, Zhang G, Bian X, Zhang N. The Role and Mechanism of Probiotics Supplementation in Blood Glucose Regulation: A Review. Foods 2024; 13:2719. [PMID: 39272484 PMCID: PMC11394447 DOI: 10.3390/foods13172719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
With economic growth and improved living standards, the incidence of metabolic diseases such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood glucose and complications in patients seriously affect the quality of life and increase the economic burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics, which are safe, economical, and effective, have good application prospects in disease prevention and remodeling of intestinal microecological health and are gradually becoming a research hotspot for diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications, among other things. Probiotic supplementation is a microbiologically based approach to the treatment of type 2 diabetes mellitus (T2DM), which can achieve anti-diabetic efficacy through the regulation of different tissues and metabolic pathways. In this study, we summarize recent findings that probiotic intake can achieve blood glucose regulation by modulating intestinal flora, decreasing chronic low-grade inflammation, modulating glucagon-like peptide-1 (GLP-1), decreasing oxidative stress, ameliorating insulin resistance, and increasing short-chain fatty acids (SCFAs) content. Moreover, the mechanism, application, development prospect, and challenges of probiotics regulating blood glucose were discussed to provide theoretical references and a guiding basis for the development of probiotic preparations and related functional foods regulating blood glucose.
Collapse
Affiliation(s)
- Xinyu Shen
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chunmin Ma
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yang Yang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xiaofei Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Bing Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Yan Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Guang Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Bian
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Na Zhang
- College of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
22
|
Shijimaya T, Tahara T, Yamazaki J, Kobayashi S, Matsumoto Y, Nakamura N, Takahashi Y, Tomiyama T, Fukui T, Shibata T, Naganuma M. Microbiome of esophageal endoscopic wash samples is associated with resident flora in the esophagus and incidence of cancer. Sci Rep 2024; 14:19525. [PMID: 39174555 PMCID: PMC11341785 DOI: 10.1038/s41598-024-67410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2024] [Accepted: 07/10/2024] [Indexed: 08/24/2024] Open
Abstract
Change in mucosal microbiome is associated with various types of cancer in digestive tract. We hypothesized that microbial communities in the esophageal endoscopic wash fluids reflects resident flora in esophageal mucosa that is associated with esophageal carcinoma (EC) risk and/or directly correlates microbiome derived from EC tumor tissue. Studying microbial communities in esophageal endoscopic wash samples would be therefore useful to predict the incidence or risk of EC. We examined microbial communities of the endoscopic wash samples from 45 primary EC and 20 respective non-EC controls using 16S rRNA V3-V4 amplicon sequencing. The result was also compared with microbial communities in matched endoscopic biopsies from EC and non-cancerous esophageal mucosa. Compared with non-EC controls, 6 discriminative bacterial genera were detected in EC patients. Among them, relative abundance ratio of Prevotella and Shuttlewarthia, as well as decrease of genus Prevotella presented good prognostic performance to discriminate EC from controls (area under curve, 0.86, 0.82, respectively). Multivariate analysis showed occurrence of EC was an independent factor associated with decrease of this bacteria. Abundance of genus Prevotella in the esophageal endoscopic wash samples was significantly correlated with the abundance of this bacteria in the matched endoscopic biopsies from non-cancerous esophageal mucosa but not in the EC tissues. Our findings suggest that microbiome composition in the esophageal endoscopic wash samples reflects resident flora in the esophagus and significantly correlates with the incidence of EC.
Collapse
Affiliation(s)
- Takuya Shijimaya
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Tomomitsu Tahara
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan.
| | - Jumpei Yamazaki
- Translational Research Unit, Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Sanshiro Kobayashi
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Yasushi Matsumoto
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Naohiro Nakamura
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Yu Takahashi
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Takashi Tomiyama
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Toshiro Fukui
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Makoto Naganuma
- Third Department of Internal Medicine, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
23
|
Machado MSG, Rodrigues VF, Barbosa SC, Elias-Oliveira J, Pereira ÍS, Pereira JA, Pacheco TCF, Carlos D. IL-1 Receptor Contributes to the Maintenance of the Intestinal Barrier via IL-22 during Obesity and Metabolic Syndrome in Experimental Model. Microorganisms 2024; 12:1717. [PMID: 39203559 PMCID: PMC11357463 DOI: 10.3390/microorganisms12081717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal permeability and bacterial translocation are increased in obesity and metabolic syndrome (MS). ILC3 cells contribute to the integrity of intestinal epithelium by producing IL-22 via IL-1β and IL-23. This study investigates the role of IL-1R1 in inducing ILC3 cells and conferring protection during obesity and MS. For this purpose, C57BL/6 wild-type (WT) and IL-1R1-deficient mice were fed a standard diet (SD) or high-fat diet (HFD) for 16 weeks. Weight and blood glucose levels were monitored, and adipose tissue and blood samples were collected to evaluate obesity and metabolic parameters. The small intestine was collected to assess immunological and junction protein parameters through flow cytometry and RT-PCR, respectively. The intestinal permeability was analyzed using the FITC-dextran assay. The composition of the gut microbiota was also analyzed by qPCR. We found that IL-1R1 deficiency exacerbates MS in HFD-fed mice, increasing body fat and promoting glucose intolerance. A worsening of MS in IL-1R1-deficient mice was associated with a reduction in the ILC3 population in the small intestine. In addition, we found decreased IL-22 expression, increased intestinal permeability and bacterial translocation to the visceral adipose tissue of these mice compared to WT mice. Thus, the IL-1R1 receptor plays a critical role in controlling intestinal homeostasis and obesity-induced MS, possibly through the differentiation or activation of IL-22-secreting ILC3s.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniela Carlos
- Laboratory of Immunoregulation of Metabolic Disease, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (M.S.G.M.); (V.F.R.); (S.C.B.); (J.E.-O.); (Í.S.P.); (J.A.P.); (T.C.F.P.)
| |
Collapse
|
24
|
Tan C, Qin G, Wang QQ, Li KM, Zhou YC, Yao SK. Comprehensive serum proteomics profiles and potential protein biomarkers for the early detection of advanced adenoma and colorectal cancer. World J Gastrointest Oncol 2024; 16:2971-2987. [PMID: 39072170 PMCID: PMC11271786 DOI: 10.4251/wjgo.v16.i7.2971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/10/2023] [Revised: 03/08/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The majority of colorectal cancer (CRC) cases develop from precursor advanced adenoma (AA). With the development of proteomics technologies, blood protein biomarkers have potential applications in the early screening of AA and CRC in the general population. AIM To identify serum protein biomarkers for the early screening of AA and CRC. METHODS We collected 43 serum samples from 8 normal controls (NCs), 19 AA patients and 16 CRC patients at China-Japan Friendship Hospital. Quantitative proteomic analysis was performed using liquid chromatography-mass spectrometry/mass spectrometry and data independent acquisition, and differentially expressed proteins (DEPs) with P-values < 0.05 and absolute fold changes > 1.5 were screened out, followed by bioinformatics analysis. Prognosis was further analyzed based on public databases, and proteins expression in tissues were validated by immunohistochemistry. RESULTS A total of 2132 proteins and 17365 peptides were identified in the serum samples. There were 459 upregulated proteins and 118 downregulated proteins in the NC vs AA group, 289 and 180 in the NC vs CRC group, and 52 and 248 in the AA vs CRC group, respectively. Bioinformatic analysis revealed that these DEPs had different functions and participated in extensive signaling pathways. We also identified DIAPH1, VASP, RAB11B, LBP, SAR1A, TUBGCP5, and DOK3 as important proteins for the progression of AA and CRC. Furthermore, VASP (P < 0.01), LBP (P = 0.01), TUBGCP5 (P < 0.01), and DOK3 (P < 0.01) were associated with a poor prognosis. In addition, we propose that LBP and VASP may be more promising protein biomarkers for the early screening of colorectal tumors. CONCLUSION Our study elucidated the serum proteomic profiles of AA and CRC patients, and the identified proteins, such as LBP and VASP, may contribute to the early detection of AA and CRC.
Collapse
Affiliation(s)
- Chang Tan
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Geng Qin
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qian-Qian Wang
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Kai-Min Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yuan-Chen Zhou
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Shu-Kun Yao
- Graduate School, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing 100029, China
| |
Collapse
|
25
|
Zhou Y, Zhang D, Cheng H, Wu J, Liu J, Feng W, Peng C. Repairing gut barrier by traditional Chinese medicine: roles of gut microbiota. Front Cell Infect Microbiol 2024; 14:1389925. [PMID: 39027133 PMCID: PMC11254640 DOI: 10.3389/fcimb.2024.1389925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Gut barrier is not only part of the digestive organ but also an important immunological organ for the hosts. The disruption of gut barrier can lead to various diseases such as obesity and colitis. In recent years, traditional Chinese medicine (TCM) has gained much attention for its rich clinical experiences enriched in thousands of years. After orally taken, TCM can interplay with gut microbiota. On one hand, TCM can modulate the composition and function of gut microbiota. On the other hand, gut microbiota can transform TCM compounds. The gut microbiota metabolites produced during the actions of these interplays exert noticeable pharmacological effects on the host especially gut barrier. Recently, a large number of studies have investigated the repairing and fortifying effects of TCM on gut barriers from the perspective of gut microbiota and its metabolites. However, no review has summarized the mechanism behand this beneficiary effects of TCM. In this review, we first briefly introduce the unique structure and specific function of gut barrier. Then, we summarize the interactions and relationship amidst gut microbiota, gut microbiota metabolites and TCM. Further, we summarize the regulative effects and mechanisms of TCM on gut barrier including physical barrier, chemical barrier, immunological barrier, and microbial barrier. At last, we discuss the effects of TCM on diseases that are associated gut barrier destruction such as ulcerative colitis and type 2 diabetes. Our review can provide insights into TCM, gut barrier and gut microbiota.
Collapse
Affiliation(s)
- Yaochuan Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
26
|
Tahara T, Shijimaya T, Yamazaki J, Kobayashi S, Horitani A, Matsumoto Y, Nakamura N, Okazaki T, Takahashi Y, Tomiyama T, Honzawa Y, Fukata N, Fukui T, Naganuma M. Fusobacterium Detected in Barrett's Esophagus and Esophageal Adenocarcinoma Tissues. Cancer Invest 2024; 42:469-477. [PMID: 38913915 DOI: 10.1080/07357907.2024.2359980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2023] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
We examined Fusobacterium nucreatum (F. nucleatum) and whole Fusobacterium species (Pan-fusobacterium) in non-neoplastic Barrett's esophagus (BE) from patients without cancer (n = 67; N group), with esophageal adenocarcinoma (EAC) (n = 27) and EAC tissue (n = 22). F. nucleatum was only detectable in 22.7% of EAC tissue. Pan-fusobacterium was enriched in EAC tissue and associated with aggressive clinicopathological features. Amount of Pan-fusobacterium in non-neoplastic BE was correlated with presence of hital hernia and telomere shortening. The result suggested potential association of Fusobacterium species in EAC and BE, featuring clinicpathological and molecular features.
Collapse
Affiliation(s)
- Tomomitsu Tahara
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Takuya Shijimaya
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Jumpei Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Sanshiro Kobayashi
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Anna Horitani
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yasushi Matsumoto
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Naohiro Nakamura
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Takashi Okazaki
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yu Takahashi
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Takashi Tomiyama
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Yusuke Honzawa
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Norimasa Fukata
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Toshiro Fukui
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | - Makoto Naganuma
- Third department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
27
|
Anwer M, Wei MQ. Harnessing the power of probiotic strains in functional foods: nutritive, therapeutic, and next-generation challenges. Food Sci Biotechnol 2024; 33:2081-2095. [PMID: 39130669 PMCID: PMC11315846 DOI: 10.1007/s10068-024-01630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 08/13/2024] Open
Abstract
Functional foods have become an essential element of the diet in developed nations, due to their health benefits and nutritive values. Such food products are only called functional if they, "In addition to basic nutrition, have valuable effects on one or multiple functions of the human body, thereby enhancing general and physical conditions and/or reducing the risk of disease progression". Functional foods are currently one of the most extensively researched areas in the food and nutrition sciences. They are fortified and improved food products. Presently, probiotics are regarded as the most significant and commonly used functional food product. Diverse probiotic food products and supplements are used according to the evidence that supports their strength, functionality, and recommended dosage. This review provides an overview of the current functional food market, with a particular focus on probiotic microorganisms as pivotal functional ingredients. It offers insights into current research endeavors and outlines potential future directions in the field.
Collapse
Affiliation(s)
- Muneera Anwer
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215 Australia
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ming Q. Wei
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215 Australia
| |
Collapse
|
28
|
Mincic AM, Antal M, Filip L, Miere D. Modulation of gut microbiome in the treatment of neurodegenerative diseases: A systematic review. Clin Nutr 2024; 43:1832-1849. [PMID: 38878554 DOI: 10.1016/j.clnu.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND AIMS Microbiota plays an essential role in maintaining body health, through positive influences on metabolic, defensive, and trophic processes and on intercellular communication. Imbalance in intestinal flora, with the proliferation of harmful bacterial species (dysbiosis) is consistently reported in chronic illnesses, including neurodegenerative diseases (ND). Correcting dysbiosis can have a beneficial impact on the symptoms and evolution of ND. This review examines the effects of microbiota modulation through administration of probiotics, prebiotics, symbiotics, or prebiotics' metabolites (postbiotics) in patients with ND like multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). METHODS PubMed, Web of Science, Medline databases and ClinicalTrials.gov registry searches were performed using pre-/pro-/postbiotics and ND-related terms. Further references were obtained by checking relevant articles. RESULTS Although few compared to animal studies, the human studies generally show positive effects on disease-specific symptoms, overall health, metabolic parameters, on oxidative stress and immunological markers. Therapy with probiotics in various forms (mixtures of bacterial strains, fecal microbiota transplant, diets rich in fermented foods) exert favorable effects on patients' mental health, cognition, and quality of life, targeting pathogenetic ND mechanisms and inducing reparatory mechanisms at the cellular level. More encouraging results have been observed in prebiotic/postbiotic therapy in some ND. CONCLUSIONS The effects of probiotic-related interventions depend on the patients' ND stage and pre-existing allopathic medication. Further studies on larger cohorts and long term comprehensive neuropsychiatric, metabolic, biochemical testing, and neuroimaging monitoring are necessary to optimize therapeutic protocols in ND.
Collapse
Affiliation(s)
- Adina M Mincic
- Center for Systems Neuroscience, University of Oradea, Oradea, Romania; Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.
| | - Miklos Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lorena Filip
- Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Doina Miere
- Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
29
|
Kamer AR, Pushalkar S, Hamidi B, Janal MN, Tang V, Annam KRC, Palomo L, Gulivindala D, Glodzik L, Saxena D. Periodontal Inflammation and Dysbiosis Relate to Microbial Changes in the Gut. Microorganisms 2024; 12:1225. [PMID: 38930608 PMCID: PMC11205299 DOI: 10.3390/microorganisms12061225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Periodontal disease (PerioD) is a chronic inflammatory disease of dysbiotic etiology. Animal models and few human data showed a relationship between oral bacteria and gut dysbiosis. However, the effect of periodontal inflammation and subgingival dysbiosis on the gut is unknown. We hypothesized that periodontal inflammation and its associated subgingival dysbiosis contribute to gut dysbiosis even in subjects free of known gut disorders. We evaluated and compared elderly subjects with Low and High periodontal inflammation (assessed by Periodontal Inflamed Surface Area (PISA)) for stool and subgingival derived bacteria (assayed by 16S rRNA sequencing). The associations between PISA/subgingival dysbiosis and gut dysbiosis and bacteria known to produce short-chain fatty acid (SCFA) were assessed. LEfSe analysis showed that, in Low PISA, species belonging to Lactobacillus, Roseburia, and Ruminococcus taxa and Lactobacillus zeae were enriched, while species belonging to Coprococcus, Clostridiales, and Atopobium were enriched in High PISA. Regression analyses showed that PISA associated with indicators of dysbiosis in the gut mainly reduced abundance of SCFA producing bacteria (Radj = -0.38, p = 0.03). Subgingival bacterial dysbiosis also associated with reduced levels of gut SCFA producing bacteria (Radj = -0.58, p = 0.002). These results suggest that periodontal inflammation and subgingival microbiota contribute to gut bacterial changes.
Collapse
Affiliation(s)
- Angela R. Kamer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Smruti Pushalkar
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA;
| | - Babak Hamidi
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Malvin N. Janal
- Department of Epidemiology and Health Promotion, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA;
| | - Vera Tang
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Kumar Raghava Chowdary Annam
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Leena Palomo
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Deepthi Gulivindala
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA; (B.H.); (V.T.); (K.R.C.A.); (L.P.); (D.G.)
| | - Lidia Glodzik
- Department of Radiology, Weill Cornell Medicine, Brain Health Imaging Institute Cornell University, New York, NY 10021, USA
| | - Deepak Saxena
- Department of Basic Sciences and Craniofacial Biology, College of Dentistry, New York University, 345 East 24th Street, New York, NY 10010, USA;
| |
Collapse
|
30
|
Martemucci G, Khalil M, Di Luca A, Abdallah H, D’Alessandro AG. Comprehensive Strategies for Metabolic Syndrome: How Nutrition, Dietary Polyphenols, Physical Activity, and Lifestyle Modifications Address Diabesity, Cardiovascular Diseases, and Neurodegenerative Conditions. Metabolites 2024; 14:327. [PMID: 38921462 PMCID: PMC11206163 DOI: 10.3390/metabo14060327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Several hallmarks of metabolic syndrome, such as dysregulation in the glucose and lipid metabolism, endothelial dysfunction, insulin resistance, low-to-medium systemic inflammation, and intestinal microbiota dysbiosis, represent a pathological bridge between metabolic syndrome and diabesity, cardiovascular, and neurodegenerative disorders. This review aims to highlight some therapeutic strategies against metabolic syndrome involving integrative approaches to improve lifestyle and daily diet. The beneficial effects of foods containing antioxidant polyphenols, intestinal microbiota control, and physical activity were also considered. We comprehensively examined a large body of published articles involving basic, animal, and human studie, as well as recent guidelines. As a result, dietary polyphenols from natural plant-based antioxidants and adherence to the Mediterranean diet, along with physical exercise, are promising complementary therapies to delay or prevent the onset of metabolic syndrome and counteract diabesity and cardiovascular diseases, as well as to protect against neurodegenerative disorders and cognitive decline. Modulation of the intestinal microbiota reduces the risks associated with MS, improves diabetes and cardiovascular diseases (CVD), and exerts neuroprotective action. Despite several studies, the estimation of dietary polyphenol intake is inconclusive and requires further evidence. Lifestyle interventions involving physical activity and reduced calorie intake can improve metabolic outcomes.
Collapse
Affiliation(s)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | - Alessio Di Luca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (A.D.L.); (A.G.D.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70121 Bari, Italy;
| | | |
Collapse
|
31
|
Liu FH, Guo JK, Xing WY, Bai XL, Chang YJ, Lu Z, Yang M, Yang Y, Li WJ, Jia XX, Zhang T, Yang J, Chen JT, Gao S, Wu L, Zhang DY, Liu C, Gong TT, Wu QJ. ABO and Rhesus blood groups and multiple health outcomes: an umbrella review of systematic reviews with meta-analyses of observational studies. BMC Med 2024; 22:206. [PMID: 38769523 PMCID: PMC11106863 DOI: 10.1186/s12916-024-03423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/29/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Numerous studies have been conducted to investigate the relationship between ABO and Rhesus (Rh) blood groups and various health outcomes. However, a comprehensive evaluation of the robustness of these associations is still lacking. METHODS We searched PubMed, Web of Science, Embase, Scopus, Cochrane, and several regional databases from their inception until Feb 16, 2024, with the aim of identifying systematic reviews with meta-analyses of observational studies exploring associations between ABO and Rh blood groups and diverse health outcomes. For each association, we calculated the summary effect sizes, corresponding 95% confidence intervals, 95% prediction interval, heterogeneity, small-study effect, and evaluation of excess significance bias. The evidence was evaluated on a grading scale that ranged from convincing (Class I) to weak (Class IV). We assessed the certainty of evidence according to the Grading of Recommendations Assessment, Development, and Evaluation criteria (GRADE). We also evaluated the methodological quality of included studies using the A Measurement Tool to Assess Systematic Reviews (AMSTAR). AMSTAR contains 11 items, which were scored as high (8-11), moderate (4-7), and low (0-3) quality. We have gotten the registration for protocol on the PROSPERO database (CRD42023409547). RESULTS The current umbrella review included 51 systematic reviews with meta-analysis articles with 270 associations. We re-calculated each association and found only one convincing evidence (Class I) for an association between blood group B and type 2 diabetes mellitus risk compared with the non-B blood group. It had a summary odds ratio of 1.28 (95% confidence interval: 1.17, 1.40), was supported by 6870 cases with small heterogeneity (I2 = 13%) and 95% prediction intervals excluding the null value, and without hints of small-study effects (P for Egger's test > 0.10, but the largest study effect was not more conservative than the summary effect size) or excess of significance (P < 0.10, but the value of observed less than expected). And the article was demonstrated with high methodological quality using AMSTAR (score = 9). According to AMSTAR, 18, 32, and 11 studies were categorized as high, moderate, and low quality, respectively. Nine statistically significant associations reached moderate quality based on GRADE. CONCLUSIONS Our findings suggest a potential relationship between ABO and Rh blood groups and adverse health outcomes. Particularly the association between blood group B and type 2 diabetes mellitus risk.
Collapse
Affiliation(s)
- Fang-Hua Liu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Kai Guo
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Hospital Management Office, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei-Yi Xing
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Li Bai
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu-Jiao Chang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhao Lu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Yang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Yang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wen-Jing Li
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xian-Xian Jia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tao Zhang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Tong Chen
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Song Gao
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lang Wu
- Cancer Epidemiology Division, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - De-Yu Zhang
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Chuan Liu
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Qi-Jun Wu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China.
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China.
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| |
Collapse
|
32
|
Yang J, Zhou Y, Wang T, Li N, Chao Y, Gao S, Zhang Q, Wu S, Zhao L, Dong X. A multi-omics study to monitor senescence-associated secretory phenotypes of Alzheimer's disease. Ann Clin Transl Neurol 2024; 11:1310-1324. [PMID: 38605603 DOI: 10.1002/acn3.52047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is characterized by the progressive degeneration and damage of neurons in the brain. However, developing an accurate diagnostic assay using blood samples remains a challenge in clinic practice. The aim of this study was to explore senescence-associated secretory phenotypes (SASPs) in peripheral blood using mass spectrometry based multi-omics approach and to establish diagnostic assays for AD. METHODS This retrospective study included 88 participants, consisting of 29 AD patients and 59 cognitively normal (CN) individuals. Plasma and serum samples were examined using high-resolution mass spectrometry to identify proteomic and metabolomic profiles. Receiver operating characteristic (ROC) analysis was employed to screen biomarkers with diagnostic potential. K-nearest neighbors (KNN) algorithm was utilized to construct a multi-dimensional model for distinguishing AD from CN. RESULTS Proteomics analysis revealed upregulation of five plasma proteins in AD, including RNA helicase aquarius (AQR), zinc finger protein 587B (ZNF587B), C-reactive protein (CRP), fibronectin (FN1), and serum amyloid A-1 protein (SAA1), indicating their potential for AD classification. Interestingly, KNN-based three-dimensional model, comprising AQR, ZNF587B, and CRP, demonstrated its high accuracy in AD recognition, with evaluation possibilities of 0.941, 1.000, and 1.000 for the training, testing, and validation datasets, respectively. Besides, metabolomics analysis suggested elevated levels of serum phenylacetylglutamine (PAGIn) in AD. INTERPRETATION The multi-omics outcomes highlighted the significance of the SASPs, specifically AQR, ZNF587B, CRP, and PAGIn, in terms of their potential for diagnosing AD and suggested neuronal aging-associated pathophysiology.
Collapse
Affiliation(s)
- Jingzhi Yang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yinge Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tianjiao Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yufan Chao
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Songyan Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Qun Zhang
- Department of Internal Medicine, Shanghai Baoshan Elderly Nursing Hospital, Shanghai, 200435, China
| | - Shuo Wu
- Neurology Department, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Xin Dong
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Suzhou Innovation Center of Shanghai University, Suzhou, 215000, Jiangsu, China
| |
Collapse
|
33
|
Yan Y, Zhang W, Wang Y, Yi C, Yu B, Pang X, Li K, Li H, Dai Y. Crosstalk between intestinal flora and human iron metabolism: the role in metabolic syndrome-related comorbidities and its potential clinical application. Microbiol Res 2024; 282:127667. [PMID: 38442456 DOI: 10.1016/j.micres.2024.127667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The interaction of iron and intestinal flora, both of which play crucial roles in many physiologic processes, is involved in the development of Metabolic syndrome (MetS). MetS is a pathologic condition represented by insulin resistance, obesity, dyslipidemia, and hypertension. MetS-related comorbidities including type 2 diabetes mellitus (T2DM), obesity, metabolism-related fatty liver (MAFLD), hypertension polycystic ovary syndrome (PCOS), and so forth. In this review, we examine the interplay between intestinal flora and human iron metabolism and its underlying mechanism in the pathogenesis of MetS-related comorbidities. The composition and metabolites of intestinal flora regulate the level of human iron by modulating intestinal iron absorption, the factors associated with iron metabolism. On the other hand, the iron level also affects the abundance, composition, and metabolism of intestinal flora. The crosstalk between these factors is of significant importance in human metabolism and exerts varying degrees of influence on the manifestation and progression of MetS-related comorbidities. The findings derived from these studies can enhance our comprehension of the interplay between intestinal flora and iron metabolism, and open up novel potential therapeutic approaches toward MetS-related comorbidities.
Collapse
Affiliation(s)
- Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yulin Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoli Pang
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kunyang Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - HuHu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
34
|
Tian D, Zhang W, Lu L, Yu Y, Yu Y, Zhang X, Li W, Shi W, Liu G. Enrofloxacin exposure undermines gut health and disrupts neurotransmitters along the microbiota-gut-brain axis in zebrafish. CHEMOSPHERE 2024; 356:141971. [PMID: 38604519 DOI: 10.1016/j.chemosphere.2024.141971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/12/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The environmental prevalence of antibiotic residues poses a potential threat to gut health and may thereby disrupt brain function through the microbiota-gut-brain axis. However, little is currently known about the impacts of antibiotics on gut health and neurotransmitters along the microbiota-gut-brain axis in fish species. Taking enrofloxacin (ENR) as a representative, the impacts of antibiotic exposure on the gut structural integrity, intestinal microenvironment, and neurotransmitters along the microbiota-gut-brain axis were evaluated in zebrafish in this study. Data obtained demonstrated that exposure of zebrafish to 28-day environmentally realistic levels of ENR (6 and 60 μg/L) generally resulted in marked elevation of two intestinal integrity biomarkers (diamine oxidase (DAO) and malondialdehyde (MDA), upregulation of genes that encode inter-epithelial tight junction proteins, and histological alterations in gut as well as increase of lipopolysaccharide (LPS) in plasma, indicating an evident impairment of the structural integrity of gut. Moreover, in addition to significantly altered neurotransmitters, markedly higher levels of LPS while less amount of two short-chain fatty acids (SCFAs), namely acetic acid and valeric acid, were detected in the gut of ENR-exposed zebrafish, suggesting a disruption of gut microenvironment upon ENR exposure. Along with corresponding changes detected in gut, significant disruption of neurotransmitters in brain indicated by marked alterations in the contents of neurotransmitters, the activity of acetylcholin esterase (AChE), and the expression of neurotransmitter-related genes were also observed. These findings suggest exposure to environmental antibiotic residues may impair gut health and disrupt neurotransmitters along the microbiota-gut-brain axis in zebrafish. Considering the prevalence of antibiotic residues in environments and the high homology of zebrafish to other vertebrates including human, the risk of antibiotic exposure to the health of wild animals as well as human deserves more attention.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou, 535011, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
35
|
Pires L, González-Paramás AM, Heleno SA, Calhelha RC. The Role of Gut Microbiota in the Etiopathogenesis of Multiple Chronic Diseases. Antibiotics (Basel) 2024; 13:392. [PMID: 38786121 PMCID: PMC11117238 DOI: 10.3390/antibiotics13050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Chronic diseases (CD) may result from a combination of genetic factors, lifestyle and social behaviours, healthcare system influences, community factors, and environmental determinants of health. These risk factors frequently coexist and interact with one another. Ongoing research and a focus on personalized interventions are pivotal strategies for preventing and managing chronic disease outcomes. A wealth of literature suggests the potential involvement of gut microbiota in influencing host metabolism, thereby impacting various risk factors associated with chronic diseases. Dysbiosis, the perturbation of the composition and activity of the gut microbiota, is crucial in the etiopathogenesis of multiple CD. Recent studies indicate that specific microorganism-derived metabolites, including trimethylamine N-oxide, lipopolysaccharide and uremic toxins, contribute to subclinical inflammatory processes implicated in CD. Various factors, including diet, lifestyle, and medications, can alter the taxonomic species or abundance of gut microbiota. Researchers are currently dedicating efforts to understanding how the natural progression of microbiome development in humans affects health outcomes. Simultaneously, there is a focus on enhancing the understanding of microbiome-host molecular interactions. These endeavours ultimately aim to devise practical approaches for rehabilitating dysregulated human microbial ecosystems, intending to restore health and prevent diseases. This review investigates how the gut microbiome contributes to CD and explains ways to modulate it for managing or preventing chronic conditions.
Collapse
Affiliation(s)
- Lara Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Ana M. González-Paramás
- Grupo de Investigación en Polifenoles en Alimentos, Implicaciones en la Calidad y en Salud Humana, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain;
| | - Sandrina A. Heleno
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.P.); (S.A.H.)
- Laboratório Associado para Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
36
|
Wang K, Lai W, Min T, Wei J, Bai Y, Cao H, Guo J, Su Z. The Effect of Enteric-Derived Lipopolysaccharides on Obesity. Int J Mol Sci 2024; 25:4305. [PMID: 38673890 PMCID: PMC11050189 DOI: 10.3390/ijms25084305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endotoxin is a general term for toxic substances in Gram-negative bacteria, whose damaging effects are mainly derived from the lipopolysaccharides (LPS) in the cell walls of Gram-negative bacteria, and is a strong pyrogen. Obesity is a chronic, low-grade inflammatory condition, and LPS are thought to trigger and exacerbate it. The gut flora is the largest source of LPS in the body, and it is increasingly believed that altered intestinal microorganisms can play an essential role in the pathology of different diseases. Today, the complex axis linking gut flora to inflammatory states and adiposity has not been well elucidated. This review summarises the evidence for an interconnection between LPS, obesity, and gut flora, further expanding our understanding of LPS as a mediator of low-grade inflammatory disease and contributing to lessening the effects of obesity and related metabolic disorders. As well as providing targets associated with LPS, obesity, and gut flora, it is hoped that interventions that combine targets with gut flora address the individual differences in gut flora treatment.
Collapse
Affiliation(s)
- Kai Wang
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwen Lai
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tianqi Min
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jintao Wei
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (K.W.); (W.L.); (T.M.); (J.W.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
37
|
Wang MY, Sang LX, Sun SY. Gut microbiota and female health. World J Gastroenterol 2024; 30:1655-1662. [PMID: 38617735 PMCID: PMC11008377 DOI: 10.3748/wjg.v30.i12.1655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/25/2023] [Revised: 01/10/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The gut microbiota is recognized as an endocrine organ with the capacity to influence distant organs and associated biological pathways. Recent advancements underscore the critical role of gut microbial homeostasis in female health; with dysbiosis potentially leading to diseases among women such as polycystic ovarian syndrome, endometriosis, breast cancer, cervical cancer, and ovarian cancer etc. Despite this, there has been limited discussion on the underlying mechanisms. This editorial explores the three potential mechanisms through which gut microbiota dysbiosis may impact the development of diseases among women, namely, the immune system, the gut microbiota-estrogen axis, and the metabolite pathway. We focused on approaches for treating diseases in women by addressing gut microbiota imbalances through probiotics, prebiotics supplementation, and fecal microbiota transplantation (FMT). Future studies should focus on determining the molecular mechanisms underlying associations between dysbiosis of gut microbiota and female diseases to realize precision medicine, with FMT emerging as a promising intervention.
Collapse
Affiliation(s)
- Meng-Yao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, Liaoning Province, China
| | - Si-Yu Sun
- Department of Gastroenterology, Endoscopic Center, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
38
|
Ma X, Qiu Y, Mao M, Lu B, Zhao H, Pang Z, Li S. PuRenDan alleviates type 2 diabetes mellitus symptoms by modulating the gut microbiota and its metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117627. [PMID: 38147943 DOI: 10.1016/j.jep.2023.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/27/2023] [Revised: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE PuRenDan (PRD) is a traditional Chinese medicine formula comprising five herbs that have been traditionally used to treat type 2 diabetes mellitus (T2DM). While PRD has been shown to be effective in treating T2DM in clinical and animal studies, the mechanisms by which it works on the gut microbiome and metabolites related to T2DM are not well understood. AIM OF THE STUDY The objective of this study was to partially elucidate the mechanism of PRD in treating T2DM through analyses of the gut microbiota metagenome and metabolome. MATERIALS AND METHODS Sprague-Dawley rats were fed high-fat diets (HFDs) and injected with low-dose streptozotocin (STZ) to replicate T2DM models. Then the therapeutic effects of PRD were evaluated by measuring clinical markers such as blood glucose, insulin resistance (IR), lipid metabolism biomarkers (total cholesterol, low-density lipoprotein, non-esterified fatty acids, and triglycerides), and inflammatory factors (tumor necrosis factor alpha, interleukin-6 [IL-6], interferon gamma, and IL-1β). Colon contents were collected, and metagenomics, combined with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry metabolic profiling, was performed to evaluate the effects of T2DM and PRD on gut microbiota and its metabolites in rats. Spearman analysis was used to calculate the correlation coefficient among different microbiota, clinical indices, and metabolites. RESULTS PRD exhibited significant improvement in blood glucose and IR, and reduced serum levels of lipid metabolism biomarkers and inflammatory factors. Moreover, the diversity and abundance of gut microbiota undergo significant changes in rats with T2DM that PRD was able to reverse. The gut microbiota associated with T2DM including Rickettsiaceae bacterium 4572_127, Psychrobacter pasteurii, Parabacteroides sp. CAG409, and Paludibacter propionicigenes were identified. The gut microbiota most closely related to PRD were Prevotella sp. 10(H), Parabacteroides sp. SN4, Flavobacteriales bacterium, Bacteroides massiliensis, Alistipes indistinctus, and Ruminococcus flavefaciens. Additionally, PRD regulated the levels of gut microbiota metabolites including pantothenic acid, 1-Methylhistamine, and 1-Methylhistidine; these affected metabolites were involved in pantothenate and coenzyme A biosynthesis, histidine metabolism, and secondary bile acid biosynthesis. Correlation analysis illustrated a close relationship among gut microbiota, its metabolites, and T2DM-related indexes. CONCLUSION Our study provides insights into the gut microbiota and its metabolites of PRD therapy for T2DM. It clarifies the role of gut microbiota and the metabolites in the pathogenesis of T2DM, highlighting the potential of PRD for the treatment of this disease.
Collapse
Affiliation(s)
- Xiaoqin Ma
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Yuqing Qiu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Minghui Mao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Huanhu Zhao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Shuchun Li
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| |
Collapse
|
39
|
Mitsou EK, Katsagoni CN, Janiszewska K. Knowledge of Dietitians on Gut Microbiota in Health-An Online Survey of the European Federation of the Associations of Dietitians (EFAD). Nutrients 2024; 16:621. [PMID: 38474750 DOI: 10.3390/nu16050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Explorations of current knowledge of dietitians about gut-health interconnection and the role of diet in gut microbiota manipulation are rather scarce in the literature. In this online survey we assessed the perceived and current knowledge of dietitians across Europe about gut microbiota and systemic health, nutrition as a modulator of the gut ecosystem, and the role of probiotics and prebiotics. Pre-graduate dietetic students and other professionals were also invited to participate. A total of 179 full responses were recorded (dietitians, n = 155), mainly from Southern and Western regions. Most participants (>78.0%) reported an average to good level of perceived knowledge, with significant positive correlations between perceived and current knowledge in all sections and overall (p for all <0.05). Nevertheless, a rather low current knowledge scoring of participants about probiotics and prebiotics was observed. Features such as being a dietitian, having a higher educational level as dietitian and working in an academic/research setting were usually associated with higher current knowledge. Further analysis revealed that dietitians had a trend for higher scoring about probiotics and prebiotics compared to pre-graduate students or other professionals. Moreover, for dietitians, working in an academic or research setting was an independent factor for scoring in the highest quartile in all tested sections and overall (p for all <0.05). In conclusion, this online survey shed some light on the current knowledge of dietitians across Europe about gut microbiota parameters, including dietary modulation, highlighting in parallel possible knowledge determinants. Potential areas for future educational efforts in this rather unexplored field were indicated.
Collapse
Affiliation(s)
- Evdokia K Mitsou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 17671 Athens, Greece
| | - Christina N Katsagoni
- Department of Clinical Nutrition, Agia Sofia Children's Hospital, 11527 Athens, Greece
- The European Federation of the Associations of Dietitians (EFAD), Gooimeer 4-15, 1411 DC Naarden, The Netherlands
| | - Katarzyna Janiszewska
- The European Federation of the Associations of Dietitians (EFAD), Gooimeer 4-15, 1411 DC Naarden, The Netherlands
| |
Collapse
|
40
|
Gao Y, Zhang J, Chen H, Jin X, Lin Z, Fan C, Shan Z, Teng W, Li J. Dynamic changes in the gut microbiota during three consecutive trimesters of pregnancy and their correlation with abnormal glucose and lipid metabolism. Eur J Med Res 2024; 29:117. [PMID: 38347605 PMCID: PMC10860297 DOI: 10.1186/s40001-024-01702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION During normal pregnancy, changes in the gut microbiota (GM) in response to physiological alterations in hormonal secretion, immune functions and homeostasis have received extensive attention. However, the dynamic changes in the GM during three consecutive trimesters of pregnancy and their relationship with glucose and lipid metabolism have not been reported. In this study, we aimed to investigate the dynamic changes in the diversity and species of the GM during three consecutive trimesters in women who naturally conceived, and their relationships with abnormal fasting blood glucose (FBG) and serum lipid levels. METHODS A total of 30 pregnant women without any known chronic or autoimmune inflammatory disease history before pregnancy were enrolled during the first trimester. Serum and stool samples were collected during the first trimester, the second trimester, and the third trimester. Serum samples were tested for FBG and blood lipid levels, and stool specimens were analyzed by 16S rDNA sequencing. RESULTS The abundance ratio of bacteroidetes/firmicutes showed an increasing tendency in most of the subjects (19/30, 63.3%) from the first to the third trimester. LEfSe analysis showed that the abundance of Bilophila was significantly increased from the first to the third trimester. In addition, at the genus level, the increased relative abundance of Mitsuokella, Clostridium sensu stricto and Weissella were potentially involved in the development of high FBG during pregnancy. The raised relative abundance of Corynebacterium, Rothia and Granulicatella potentially contributed to the occurrence of dyslipidemia during pregnancy. CONCLUSIONS There are dynamic changes in the GM during the three trimesters, and the alterations in some bacterium abundance may contribute to the development of high FBG and dyslipidemia during pregnancy. Monitoring enterotypes and correcting dysbiosis in the first trimester may become new strategies for predicting and preventing glucolipid metabolism disorders during pregnancy.
Collapse
Affiliation(s)
- Yiyang Gao
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jinjia Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Haiying Chen
- Department of Obstetrics and Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaohui Jin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Zhenyu Lin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
41
|
Lima Oliveira M, Biggers A, Oddo VM, Naylor KB, Chen Z, Hamm A, Pezley L, Peñalver Bernabé B, Gabel K, Sharp LK, Tussing-Humphreys LM. Design of a Remote Time-Restricted Eating and Mindfulness Intervention to Reduce Risk Factors Associated with Early-Onset Colorectal Cancer Development among Young Adults. Nutrients 2024; 16:504. [PMID: 38398828 PMCID: PMC10893350 DOI: 10.3390/nu16040504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/23/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Early-onset colorectal cancer (EOCRC) is defined as a diagnosis of colorectal cancer (CRC) in individuals younger than 50 years of age. While overall CRC rates in the United States (US) decreased between 2001 and 2018, EOCRC rates have increased. This research project aims to evaluate the feasibility and acceptability of Time-Restricted Eating (TRE), Mindfulness, or TRE combined with Mindfulness among young to middle-aged adults at risk of EOCRC. Forty-eight participants will be randomly assigned to one of four groups: TRE, Mindfulness, TRE and Mindfulness, or Control. Data on feasibility, adherence, and acceptability will be collected. Measures assessed at baseline and post-intervention will include body weight, body composition, dietary intake, physical activity, sleep behavior, circulating biomarkers, hair cortisol, and the gut microbiome. The effects of the intervention on the following will be examined: (1) acceptability and feasibility; (2) body weight, body composition, and adherence to TRE; (3) circulating metabolic, inflammation, and oxidative stress biomarkers; (4) intestinal inflammation; and (5) the gut microbiome. TRE, combined with Mindfulness, holds promise for stress reduction and weight management among individuals at risk of EOCRC. The results of this pilot study will inform the design and development of larger trials aimed at preventing risk factors associated with EOCRC.
Collapse
Affiliation(s)
- Manoela Lima Oliveira
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA; (V.M.O.); (A.H.); (K.G.)
- University of Illinois Cancer Center, Chicago, IL 60612, USA; (K.B.N.)
| | - Alana Biggers
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Vanessa M. Oddo
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA; (V.M.O.); (A.H.); (K.G.)
| | - Keith B. Naylor
- University of Illinois Cancer Center, Chicago, IL 60612, USA; (K.B.N.)
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zhengjia Chen
- University of Illinois Cancer Center, Chicago, IL 60612, USA; (K.B.N.)
| | - Alyshia Hamm
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA; (V.M.O.); (A.H.); (K.G.)
| | - Lacey Pezley
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA; (V.M.O.); (A.H.); (K.G.)
| | | | - Kelsey Gabel
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA; (V.M.O.); (A.H.); (K.G.)
| | - Lisa K. Sharp
- University of Illinois Cancer Center, Chicago, IL 60612, USA; (K.B.N.)
- Institute for Health Research and Policy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lisa Marie Tussing-Humphreys
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL 60612, USA; (V.M.O.); (A.H.); (K.G.)
- University of Illinois Cancer Center, Chicago, IL 60612, USA; (K.B.N.)
| |
Collapse
|
42
|
Zhong X, Zhang G, Huang J, Chen L, Shi Y, Wang D, Zheng Q, Su H, Li X, Wang C, Zhang J, Guo L. Effects of Intestinal Microbiota on the Biological Transformation of Arsenic in Zebrafish: Contribution and Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2247-2259. [PMID: 38179619 DOI: 10.1021/acs.est.3c08010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2024]
Abstract
Both the gut microbiome and their host participate in arsenic (As) biotransformation, while their exact roles and mechanisms in vivo remain unclear and unquantified. In this study, as3mt-/- zebrafish were treated with tetracycline (TET, 100 mg/L) and arsenite (iAsIII) exposure for 30 days and treated with probiotic Lactobacillus rhamnosus GG (LGG, 1 × 108 cfu/g) and iAsIII exposure for 15 days, respectively. Structural equation modeling analysis revealed that the contribution rates of the intestinal microbiome to the total arsenic (tAs) and inorganic As (iAs) metabolism approached 44.0 and 18.4%, respectively. Compared with wild-type, in as3mt-/- zebrafish, microbial richness and structure were more significantly correlated with tAs and iAs, and more differential microbes and microbial metabolic pathways significantly correlated with arsenic metabolites (P < 0.05). LGG supplement influenced the microbial communities, significantly up-regulated the expressions of genes related to As biotransformation (gss and gst) in the liver, down-regulated the expressions of oxidative stress genes (sod1, sod2, and cat) in the intestine, and increased arsenobetaine concentration (P < 0.05). Therefore, gut microbiome promotes As transformation and relieves As accumulation, playing more active roles under iAs stress when the host lacks key arsenic detoxification enzymes. LGG can promote As biotransformation and relieve oxidative stress under As exposure.
Collapse
Affiliation(s)
- Xiaoting Zhong
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Guiwei Zhang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen 518000, China
| | - Jieliang Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Linkang Chen
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Yingying Shi
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Dongbin Wang
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qiuyi Zheng
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Hongtian Su
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Xiang Li
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Chunchun Wang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Zhanjiang Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Lianxian Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
43
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
44
|
Chen M, Li Y, Li L, Ma Q, Zhou X, Ding F, Mo X, Zhu W, Bian Q, Zou X, Xue F, Yan L, Li X, Chen J. Qi-Zhi-Wei-Tong granules alleviates chronic non-atrophic gastritis in mice by altering the gut microbiota and bile acid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117304. [PMID: 37838294 DOI: 10.1016/j.jep.2023.117304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/12/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, Qi-zhi-wei-tong granule (QZWT) significantly reduced the major gastrointestinal and psychological symptoms of functional dyspepsia. AIM OF THE STUDY We aimed to explore the therapeutic effect of QZWT treated chronic non-atrophic gastritis (CNAG) and to elucidate its potential mechanism. MATERIALS AND METHODS The composition of QZWT was analysed by UPLC-Q/TOF-MS. The CNAG mice model was established by chronic restraint stress (CRS) in combination with iodoacetamide (IAA). Morphological staining was utilized to reveal the impact of QZWT on stomach and gut integrity. RT‒qPCR and ELISA were used to measure proinflammatory cytokines in the stomach, colon tissues and serum of CNAG mice. Next-generation sequencing of 16 S rDNA was applied to analyse the gut microbiota community of faecal samples. Finally, we investigated the faecal bile acid composition using GC‒MS. RESULTS Twenty-one of the compounds from QZWT were successfully identified by UPLC-Q/TOF-MS analysis. QZWT enhanced gastric and intestinal integrity and suppressed inflammatory responses in CNAG mice. Moreover, QZWT treatment reshaped the gut microbiota structure by increasing the levels of the Akkermansia genus and decreasing the populations of the Desulfovibrio genus in CNAG mice. The alteration of gut microbiota was associated with gut bacteria BA metabolism. In addition, QZWT reduced BAs and especially decreased conjugated BAs in CNAG mice. Spearman's correlation analysis further confirmed the links between the changes in the gut microbiota and CNAG indices. CONCLUSIONS QZWT can effectively inhibited gastrointestinal inflammatory responses of CNAG symptoms in mice; these effects may be closely related to restoring the balance of the gut microbiota and regulating BA metabolism to protect the gastric mucosa. This study provides a scientific reference for the pathogenesis of CNAG and the mechanism of QZWT treatment.
Collapse
Affiliation(s)
- Man Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Ying Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Lan Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Xuan Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Fengmin Ding
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Xiaowei Mo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Wenjun Zhu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Qinglai Bian
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Xiaojuan Zou
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China
| | - Feifei Xue
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China
| | - Li Yan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Jiaxu Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, PR China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
45
|
Moretti JB, Drouin A, Truong C, Youn E, Cloutier A, Alvarez F, Paganelli M, Grzywacz K, Jantchou P, Dubois J, Levy E, El Jalbout R. Effects of polyphenol supplementation on hepatic steatosis, intima-media thickness and non-invasive vascular elastography in obese adolescents: a pilot study protocol. BMJ Open 2024; 14:e074882. [PMID: 38296273 PMCID: PMC10828866 DOI: 10.1136/bmjopen-2023-074882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/20/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is increasingly prevalent in obese adolescents. Increased systemic inflammation and decreased gut microbial diversity linked to obesity affect the liver and are also associated with cardiovascular diseases in adulthood. However, NAFLD and vascular alterations are reversible. METHODS AND ANALYSIS This pilot study evaluated the feasibility of a prospective open-label randomised controlled trial evaluating the effects of polyphenols on NAFLD and vascular parameters in obese adolescents. Children aged 12-18 years with hepatic steatosis (n=60) will be recruited. The participants will be randomised with a 1:1 allocation ratio to receive polyphenol supplementation one time per day for 8 weeks along with the clinician-prescribed treatment (group B, n=30) or to continue the prescribed treatment without taking any polyphenols (group A, n=30). The outcome measures will be collected from both the groups at day 1 before starting polyphenol supplementation, at day 60 after 8 weeks of supplementation and at day 120, that is, 60 days after supplementation. The changes in hepatic steatosis and vascular parameters will be measured using liver and vascular imaging. Furthermore, anthropometric measures, blood tests and stool samples for gut microbiome analysis will be collected. After evaluating the study's feasibility, we hypothesise that, as a secondary outcome, compared with group A, the adolescents in group B will have improved NAFLD, vascular parameters, systemic inflammation and gut microbiome. ETHICS AND DISSEMINATION This study is approved by Health Canada and the hospital ethics. Participants and their parents/tutors will both provide consent. Trial results will be communicated to the collaborating gastroenterologists who follow the enrolled participants. Abstracts and scientific articles will be submitted to high-impact radiological societies and journals. CLINICALTRIALS gov ID: NCT03994029. Health Canada authorisation referral number: 250 811. Protocole version 13, 2 June 2023. TRIAL REGISTRATION NUMBER NCT03994029.
Collapse
Affiliation(s)
| | | | | | | | - Anik Cloutier
- CHU Sainte-Justine Centre de Recherche, Montreal, Québec, Canada
| | | | | | | | | | | | - Emile Levy
- CHU Sainte-Justine, Montreal, Québec, Canada
| | - Ramy El Jalbout
- Medical Imaging Department, CHU Sainte-Justine, Montreal, Québec, Canada
| |
Collapse
|
46
|
Halkjær SI, Refslund Danielsen M, de Knegt VE, Andersen LO, Stensvold CR, Nielsen HV, Mirsepasi-Lauridsen HC, Krogfelt KA, Cortes D, Petersen AM. Multi-strain probiotics during pregnancy in women with obesity influence infant gut microbiome development: results from a randomized, double-blind placebo-controlled study. Gut Microbes 2024; 16:2337968. [PMID: 38591920 PMCID: PMC11005804 DOI: 10.1080/19490976.2024.2337968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 04/10/2024] Open
Abstract
Probiotics have been described to influence host health and prevent the risk of obesity by gut microbiome (GM) modulation. In a randomized double-blinded placebo-controlled feasibility study, we investigated whether Vivomixx® multi-strain probiotics administered to 50 women with obesity during pregnancy altered the GM composition and perinatal health outcomes of their infants up to 9 months after birth. The mothers and infants were followed up with four visits after birth: at 3 d, and at 3, 6, and 9 months after delivery. The infants were monitored by anthropometric measurements, fecal sample analysis, and questionnaires regarding health and diet.The study setup after birth was feasible, and the women and infants were willing to participate in additional study visits and collection of fecal samples during the 9-month follow-up. In total, 47 newborns were included for microbiome analysis.Maternal prenatal Vivomixx® administration did not alter infant GM diversity nor differential abundance, and the probiotic strains were not vertically transferred. However, the infant GM exhibited a decreased prevalence of the obesity-associated genera, Collinsella, in the probiotic group and of the metabolic health-associated Akkermansia in the placebo group, indicating that indirect community-scale effects of Vivomixx® on the GM of the mothers could be transferred to the infant.Moreover, 3 d after birth, the GM of the infant was influenced by mode of delivery and antibiotics administered during birth. Vaginally delivered infants had increased diversity and relative abundance of the metabolic health-associated Bifidobacterium and Bacteroides while having a decreased relative abundance of Enterococcus compared with infants delivered by cesarean section. Maternal antibiotic administration during birth resulted in a decreased relative abundance of Bifidobacteriumin the GM of the infants. In conclusion, this study observed potential effects on obesity-associated infant GM after maternal probiotic supplementation.
Collapse
Affiliation(s)
- Sofie Ingdam Halkjær
- Gastrounit,Medical Division, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | | | - Victoria E. de Knegt
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Lee O’Brien Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Henrik Vedel Nielsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hengameh Chloé Mirsepasi-Lauridsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Dina Cortes
- Department of Pediatrics and Adolescent Medicine, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Munk Petersen
- Gastrounit,Medical Division, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
47
|
Hasani M, Pilerud ZA, Kami A, Vaezi AA, Sobhani S, Ejtahed HS, Qorbani M. Association between Gut Microbiota Compositions with MicrovascularComplications in Individuals with Diabetes: A Systematic Review. Curr Diabetes Rev 2024; 20:e240124226068. [PMID: 38275035 DOI: 10.2174/0115733998280396231212114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/03/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Diabetes is one of the chronic and very complex diseases that can lead to microvascular complications. Recent evidence demonstrates that dysbiosis of the microbiota composition might result in low-grade, local, and systemic inflammation, which contributes directly to the development of diabetes mellitus and its microvascular consequences. OBJECTIVE The aim of this systematic review was to investigate the association between diabetes microvascular complications, including retinopathy, neuropathy, nephropathy, and gut microbiota composition. METHODS A systematic search was carried out in PubMed, Scopus, and ISI Web of Science from database inception to March 2023. Screening, data extraction, and quality assessment were performed by two independent authors. The Newcastle-Ottawa Quality Assessment Scale was used for quality assessment. RESULTS About 19 articles were selected from 590 retrieved articles. Among the included studies, nephropathy has been studied more than other complications of diabetes, showing that the composition of the healthy microbiota is changed, and large quantities of uremic solutes that cause kidney injury are produced by gut microbes. Phyla, including Fusobacteria and Proteobacteria, accounted for the majority of the variation in gut microbiota between Type 2 diabetic patients with and without neuropathy. In cases with retinopathy, an increase in pathogenic and proinflammatory bacteria was observed. CONCLUSION Our results revealed that increases in Bacteroidetes, Proteobacteria and Fusobacteria may be associated with the pathogenesis of diabetic nephropathy, neuropathy, and retinopathy. In view of the detrimental role of intestinal dysbiosis in the development of diabetes-related complications, gut microbiota assessment may be used as a biomarker in the future and interventions that modulate the composition of microbiota in individuals with diabetes can be used to prevent and control these complications.
Collapse
Affiliation(s)
- Motahareh Hasani
- Department of Nutrition, School of Health, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Asadi Pilerud
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Atefe Kami
- Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Abbas Vaezi
- Department of Internal Medicine, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sahar Sobhani
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Zheng J, An Y, Du Y, Song Y, Zhao Q, Lu Y. Effects of short-chain fatty acids on blood glucose and lipid levels in mouse models of diabetes mellitus: A systematic review and network meta-analysis. Pharmacol Res 2024; 199:107041. [PMID: 38128856 DOI: 10.1016/j.phrs.2023.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Short-chain fatty acids (SCFAs), the main metabolites of gut microbiota, have been associated with lower blood glucose and lipid levels in diabetic mice. However, a comprehensive summary and comparison of the effects of different SCFA interventions on blood glucose and lipid levels in diabetic mice is currently unavailable. This study aims to compare and rank the effects of different types of SCFAs on blood glucose and lipid levels by collecting relevant animal research. A systematic search through PubMed, Embase, Cochrane Library, and Web of Science database was conducted to identify relevant studies from inception to March 17, 2023. Both pairwise meta-analysis and Bayesian network meta-analysis were used for statistical analyses. In total, 18 relevant studies involving 5 interventions were included after screening 3793 citations and 53 full-text articles. Notably, butyrate therapy (mean difference [MD] = -4.52, 95% confidence interval [-6.29, -2.75]), acetate therapy (MD = -3.12, 95% confidence interval [-5.79, -0.46]), and propionate therapy (MD = -2.96, 95% confidence interval [-5.66, -0.26]) significantly reduced the fasting blood glucose levels compared to the control group; butyrate therapy was probably the most effective intervention, with a surface under the cumulative ranking curve (SUCRA) value of 85.5%. Additionally, acetate plus propionate therapy was probably the most effective intervention for reducing total cholesterol (SUCRA = 85.8%) or triglyceride levels (SUCRA = 88.1%). These findings underscore the potential therapeutic implications of SCFAs for addressing metabolic disorders, particularly in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Jie Zheng
- School of Nursing, Peking University, Beijing 100191, China
| | - Yu An
- Department of Endocrinology, Beijing Chaoyang Hospital, Beijing 100020, China
| | - Yage Du
- School of Nursing, Peking University, Beijing 100191, China
| | - Ying Song
- School of Nursing, Peking University, Beijing 100191, China
| | - Qian Zhao
- Department of Nursing, Shanxi Provincial People's hospital, 29th Shuangta Temple Street, Taiyuan 030012, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China.
| |
Collapse
|
49
|
Li P, Tong T, Wu Y, Zhou X, Zhang M, Liu J, She Y, Li Z, Li Y. The Synergism of Human Lactobacillaceae and Inulin Decrease Hyperglycemia via Regulating the Composition of Gut Microbiota and Metabolic Profiles in db/db Mice. J Microbiol Biotechnol 2023; 33:1657-1670. [PMID: 37734909 PMCID: PMC10772568 DOI: 10.4014/jmb.2304.04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023]
Abstract
This study aimed to evaluate the effects of Limosilactobacillus fermentum and Lactiplantibacillus plantarum isolated from human feces coordinating with inulin on the composition of gut microbiota and metabolic profiles in db/db mice. These supplements were administered to db/db mice for 12 weeks. The results showed that the Lactobacillaceae coordinating with inulin group (LI) exhibited lower fasting blood glucose levels than the model control group (MC). Additionally, LI was found to enhance colon tissue and increase the levels of short-chain fatty acids. 16S rRNA sequencing revealed that the abundance of Corynebacterium and Proteus, which were significantly increased in the MC group compared with NC group, were significantly decreased by the treatment of LI that also restored the key genera of the Lachnospiraceae_NK4A136_group, Lachnoclostridium, Ruminococcus_gnavus_group, Desulfovibrio, and Lachnospiraceae_UCG-006. Untargeted metabolomics analysis showed that lotaustralin, 5-hydroxyindoleacetic acid, and 13(S)-HpODE were increased while L-phenylalanine and L-tryptophan were decreased in the MC group compared with the NC group. However, the intervention of LI reversed the levels of these metabolites in the intestine. Correlation analysis revealed that Lachnoclostridium and Ruminococcus_gnavus_group were negatively correlated with 5-hydroxyindoleacetic acid and 13(S)-HpODE, but positively correlated with L-tryptophan. 13(S)-HpODE was involved in the "linoleic acid metabolism". L-tryptophan and 5-hydroxyindoleacetic acid were involved in "tryptophan metabolism" and "serotonergic synapse". These findings suggest that LI may alleviate type 2 diabetes symptoms by modulating the abundance of Ruminococcus_gnavus_group and Lachnoclostridium to regulate the pathways of "linoleic acid metabolism", "serotonergic synapse", and" tryptophan metabolism". Our results provide new insights into prevention and treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Peifan Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Tong Tong
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Yusong Wu
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Xin Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Michael Zhang
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Sino Canada health engineering research institute, Hefei, P.R. China
| | - Jia Liu
- Internal Trade Food Science and Technology (Beijing) Co., Ltd, Beijing, 102209, P.R. China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Science, Beijing, P.R. China
| | - Zuming Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, P.R. China
| | - Yongli Li
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
50
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|