1
|
Bartolomucci A, Nobrega M, Ferrier T, Dickinson K, Kaorey N, Nadeau A, Castillo A, Burnier JV. Circulating tumor DNA to monitor treatment response in solid tumors and advance precision oncology. NPJ Precis Oncol 2025; 9:84. [PMID: 40122951 DOI: 10.1038/s41698-025-00876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/11/2025] [Indexed: 03/25/2025] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a dynamic biomarker in cancer, as evidenced by its increasing integration into clinical practice. Carrying tumor specific characteristics, ctDNA can be used to inform treatment selection, monitor response, and identify drug resistance. In this review, we provide a comprehensive, up-to-date summary of ctDNA in monitoring treatment response with a focus on lung, colorectal, and breast cancers, and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Monyse Nobrega
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Tadhg Ferrier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nivedita Kaorey
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Amélie Nadeau
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Alberto Castillo
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
- Department of Pathology, McGill University, Montreal, QC, Canada.
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Sun HT. Helicobacter pylori-related serum indicators: Cutting-edge advances to enhance the efficacy of gastric cancer screening. World J Gastrointest Oncol 2025; 17:100739. [PMID: 40092953 PMCID: PMC11866254 DOI: 10.4251/wjgo.v17.i3.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection induces pathological changes via chronic inflammation and virulence factors, thereby increasing the risk of gastric cancer development. Compared with invasive examination methods, H. pylori-related serum indicators are cost-effective and valuable for the early detection of gastric cancer (GC); however, large-scale clinical validation and sufficient understanding of the specific molecular mechanisms involved are lacking. Therefore, a comprehensive review and analysis of recent advances in this field is necessary. In this review, we systematically analyze the relationship between H. pylori and GC and discuss the application of new molecular biomarkers in GC screening. We also summarize the screening potential and application of anti-H. pylori immunoglobulin G and virulence factor-related serum antibodies for identifying GC risk. These indicators provide early warning of infection and enhance screening accuracy. Additionally, we discuss the potential combination of multiple screening indicators for the comprehensive analysis and development of emerging testing methods to improve the accuracy and efficiency of GC screening. Although this review may lack sufficient evidence due to limitations in existing studies, including small sample sizes, regional variations, and inconsistent testing methods, it contributes to advancing personalized precision medicine in high-risk populations and developing GC screening strategies.
Collapse
Affiliation(s)
- Hao-Tian Sun
- Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
3
|
Dong C, Liu Y, Chong S, Zeng J, Bian Z, Chen X, Fan S. Deciphering Dormant Cells of Lung Adenocarcinoma: Prognostic Insights from O-glycosylation-Related Tumor Dormancy Genes Using Machine Learning. Int J Mol Sci 2024; 25:9502. [PMID: 39273449 PMCID: PMC11395112 DOI: 10.3390/ijms25179502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Lung adenocarcinoma (LUAD) poses significant challenges due to its complex biological characteristics and high recurrence rate. The high recurrence rate of LUAD is closely associated with cellular dormancy, which enhances resistance to chemotherapy and evasion of immune cell destruction. Using single-cell RNA sequencing (scRNA-seq) data from LUAD patients, we categorized the cells into two subclusters: dormant and active cells. Utilizing high-density Weighted Gene Co-expression Network Analysis (hdWGCNA) and pseudo-time cell trajectory, aberrant expression of genes involved in protein O-glycosylation was detected in dormant cells, suggesting a crucial role for O-glycosylation in maintaining the dormant state. Intercellular communication analysis highlighted the interaction between fibroblasts and dormant cells, where the Insulin-like Growth Factor (IGF) signaling pathway regulated by O-glycosylation was crucial. By employing Gene Set Variation Analysis (GSVA) and machine learning, a risk score model was developed using hub genes, which showed high accuracy in determining LUAD prognosis. The model also demonstrated robust performance on the training dataset and excellent predictive capability, providing a reliable basis for predicting patient clinical outcomes. The group with a higher risk score exhibited a propensity for adverse outcomes in the tumor microenvironment (TME) and tumor mutational burden (TMB). Additionally, the 50% inhibitory concentration (IC50) values for chemotherapy exhibited significant variations among the different risk groups. In vitro experiments demonstrated that EFNB2, PTTG1IP, and TNFRSF11A were upregulated in dormant tumor cells, which also contributed greatly to the diagnosis of LUAD. In conclusion, this study highlighted the crucial role of O-glycosylation in the dormancy state of LUAD tumors and developed a predictive model for the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Chenfei Dong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yang Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Suli Chong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiayue Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ziming Bian
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoming Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Sairong Fan
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Glycobiological Engineering, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
4
|
Ntzifa A, Marras T, Georgoulias V, Lianidou E. Liquid biopsy for the management of NSCLC patients under osimertinib treatment. Crit Rev Clin Lab Sci 2024; 61:347-369. [PMID: 38305080 DOI: 10.1080/10408363.2024.2302116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Therapeutic management of NSCLC patients is quite challenging as they are mainly diagnosed at a late stage of disease, and they present a high heterogeneous molecular profile. Osimertinib changed the paradigm shift in treatment of EGFR mutant NSCLC patients achieving significantly better clinical outcomes. To date, osimertinib is successfully administered not only as first- or second-line treatment, but also as adjuvant treatment while its efficacy is currently investigated during neoadjuvant treatment or in stage III, unresectable EGFR mutant NSCLC patients. However, resistance to osimertinib may occur due to clonal evolution, under the pressure of the targeted therapy. The utilization of liquid biopsy as a minimally invasive tool provides insight into molecular heterogeneity of tumor clonal evolution and potent resistance mechanisms which may help to develop more suitable therapeutic approaches. Longitudinal monitoring of NSCLC patients through ctDNA or CTC analysis could reveal valuable information about clinical outcomes during osimertinib treatment. Therefore, several guidelines suggest that liquid biopsy in addition to tissue biopsy should be considered as a standard of care in the advanced NSCLC setting. This practice could significantly increase the number of NSCLC patients that will eventually benefit from targeted therapies, such as EGFR TKIs.
Collapse
Affiliation(s)
- Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasilis Georgoulias
- First Department of Medical Oncology, Metropolitan General Hospital of Athens, Cholargos, Greece
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
5
|
Li Q, Wang T, Tang Y, Zou X, Shen Z, Tang Z, Zhou Y, Shi J. A novel prognostic signature based on smoking-associated genes for predicting prognosis and immune microenvironment in NSCLC smokers. Cancer Cell Int 2024; 24:171. [PMID: 38750571 PMCID: PMC11094918 DOI: 10.1186/s12935-024-03347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/27/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND As a highly heterogeneous tumor, non-small cell lung cancer (NSCLC) is famous for its high incidence and mortality worldwide. Smoking can cause genetic changes, which leading to the occurrence and progress of NSCLC. Nevertheless, the function of smoking-related genes in NSCLC needs more research. METHODS We downloaded transcriptome data and clinicopathological parameters from Gene Expression Omnibus (GEO) databases, and screened smoking-related genes. Lasso regression were applied to establish the 7-gene signature. The associations between the 7-gene signature and immune microenvironment analysis, survival analysis, drug sensitivity analysis and enriched molecular pathways were studied. Ultimately, cell function experiments were conducted to research the function of FCGBP in NSCLC. RESULTS Through 7-gene signature, NSCLC samples were classified into high-risk group (HRG) and low-risk group (LRG). Significant difference in overall survival (OS) between HRG and LRG was found. Nomograms and ROC curves indicated that the 7-gene signature has a stable ability in predicting prognosis. Through the analysis of immune microenvironment, we found that LRG patients had better tumor immune activation. FCGBP showed the highest mutation frequency among the seven prognostic smoking related genes (LRRC31, HPGD, FCGBP, SPINK5, CYP24A1, S100P and FGG), and was notable down-regulated in NSCLC smokers compared with non-smoking NSCLC patients. The cell experiments confirmed that FCGBP knockdown promoting proliferation, migration, and invasion in NSCLC cells. CONCLUSION This smoking-related prognostic signature represents a promising tool for assessing prognosis and tumor microenvironment in smokers with NSCLC. The role of FCGBP in NSCLC was found by cell experiments, which can be served as diagnostic biomarker and immunotherapy target for NSCLC.
Collapse
Affiliation(s)
- Qixuan Li
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yijie Tang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xian Zou
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zhongqi Shen
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zixin Tang
- Medical School of Nantong University, Nantong, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
- School of Public Health, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
6
|
Guo L, Zhou G, Huang M, Tang K, Xu J, Chen J. The impact of EGFR T790M mutation status following the development of Osimertinib resistance on the efficacy of Osimertinib in non-small cell lung cancer: A meta-analysis. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13748. [PMID: 38584122 PMCID: PMC10999367 DOI: 10.1111/crj.13748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Previous studies have suggested that loss of the EGFR T790M gene mutation may contribute to the development of resistance to Osimertinib in non-small cell lung cancer (NSCLC). AIMS This study aims to assess the relationship between the clinical effectiveness of Osimertinib in NSCLC patients and the T790M mutation status following resistance to Osimertinib and examine differences between plasma and tissue tests and between Asian and non-Asian groups. METHODS The PubMed, Web of Science, Cochrane, and EMBASE databases were comprehensively searched for studies on the association between T790M mutation status and the efficacy of Osimertinib between January 2014 and November 2023. Meta-analysis was carried out using Review Manager 5.4 software. RESULTS After evaluating 2727 articles, a total of 14 studies were included in the final analysis. Positive correlations between EGFR T790M mutation status after Osimertinib resistance and longer PFS (HR: 0.44, 95% CI: 0.30-0.66), longer OS (HR: 0.3, 95% CI: 0.10-0.86), longer TTD (HR: 0.69, 95% CI: 0.45-1.07), and improved clinical outcomes including PFS and TTD subgroups (HR: 0.58, 95% CI: 0.47-0.73) were observed. Subgroup analysis revealed that, compared with the blood tests, the results of the T790M mutation tests by the tissue are more significant (HR: 0.24, 95% CI: 0.11-0.52 for tissue tests; HR: 0.47, 95% CI: 0.22-1.00 for plasma tests), and the PFS of Osimertinib were similar for Asian and non-Asian patients (HR: 0.46, 95% CI: 0.31-0.68 for Asians; HR: 0.12, 95% CI: 0.01-1.27 for non-Asians). CONCLUSIONS Persistence of the T790M gene mutation after the development of Osimertinib resistance is associated with higher therapeutic benefits of Osimertinib in NSCLC patients. The results of tissue detection are more significant than those of plasma detection.
Collapse
Affiliation(s)
- Liuxian Guo
- Department of Pharmacy, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- School of Pharmaceutical Sciences, Sun Yat‐Sen University E‐132# Waihuandong RoadGuangzhou University CityGuangzhouChina
| | - Guojin Zhou
- Department of Pharmacy, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- School of Pharmaceutical Sciences, Sun Yat‐Sen University E‐132# Waihuandong RoadGuangzhou University CityGuangzhouChina
| | - Min Huang
- School of Pharmaceutical Sciences, Sun Yat‐Sen University E‐132# Waihuandong RoadGuangzhou University CityGuangzhouChina
| | - Kejing Tang
- Department of Pharmacy, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jing Xu
- Department of Pharmacy, Dermatology HospitalSouthern Medical UniversityGuangzhouChina
| | - Jie Chen
- Department of Pharmacy, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
7
|
Lou H, Wu Z, Wei G. CDC6 may serve as an indicator of lung adenocarcinoma prognosis and progression based on TCGA and GEO data mining and experimental analyses. Oncol Rep 2024; 51:35. [PMID: 38186304 PMCID: PMC10807357 DOI: 10.3892/or.2024.8694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most lethal types of cancer worldwide, and accurately predicting patient prognosis is an important challenge. Gene prediction models, which are known for their simplicity and efficiency, have the potential to be used for prognostic predictions. However, the availability of models with true clinical value is limited. The present study integrated tissue sequencing and the clinical information of patients with LUAD from The Cancer Genome Atlas and Gene Expression Omnibus databases using bioinformatics. This comprehensive approach enabled the identification of 252 differentially expressed genes. Subsequently, univariate and multivariate Cox analyses were performed using these genes, and 14 and 3 genes [including cell division cycle 6 (CDC6), hyaluronan mediated motility receptor and STIL centriolar assembly protein] were selected for the construction of two prognostic models. Notably, the 3‑gene prognostic model exhibited a comparable predictive ability to that of the 14‑gene model. Functionally, pathway enrichment analysis revealed that CDC6 played a role in regulating the cell cycle and promoting tumor staging. To further investigate the relevance of CDC6, in vitro experiments involving the downregulation of CDC6 expression were conducted, which resulted in significant inhibition of tumor cell migration, invasion and proliferation. Moreover, in vivo experiments demonstrated that downregulating CDC6 expression significantly reduced the burden and metastasis of in situ lung tumors in mice. These findings suggested that CDC6 may be a critical gene involved in the development and prognosis of LUAD. In summary, the present study successfully constructed a simple yet accurate prognostic prediction model consisting of 3 genes. Additionally, the functional importance of CDC6 as a key gene in the model was identified. These findings lay a crucial foundation for further exploration of prognostic prediction models and a deeper understanding of the functional mechanisms of CDC6. Notably, these results have potential clinical implications for improving personalized treatment and prognosis evaluation for patients with LUAD.
Collapse
Affiliation(s)
- Hao Lou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
| | - Zelai Wu
- Department of Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Guangyou Wei
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, P.R. China
- Department of Pediatrics, Bozhou Municipal People's Hospital, Bozhou, Anhui 236800, P.R. China
- Department of Pediatrics, Bozhou Clinical Medicine of Anhui University of Science and Technology School, Bozhou, Anhui 236800, P.R. China
| |
Collapse
|
8
|
Qin C, Fan X, Sai X, Yin B, Zhou S, Addeo A, Bian T, Yu H. Development and validation of a DNA damage repair-related gene-based prediction model for the prognosis of lung adenocarcinoma. J Thorac Dis 2023; 15:6928-6945. [PMID: 38249902 PMCID: PMC10797339 DOI: 10.21037/jtd-23-1746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Background Lung cancer is the leading cause of morbidity and mortality among all cancer types, with lung adenocarcinoma (LUAD) being the most prevalent subtype. DNA damage repair (DDR)-related genes are closely associated with cancer progression and treatment, with emerging evidence highlighting their correlation with tumor development. However, the relationship between LUAD prognosis and DDR-related genes remains unclear. Methods RNA sequencing (RNA-seq) data and clinical information were obtained from The Cancer Genome Atlas (TCGA) database. The GSE31210 dataset, utilized for external validation, was retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed DDR genes were identified, and a DDR-related prognostic model was established and validated using Kaplan-Meier (KM) survival analysis, time-dependent receiver operating characteristic (ROC) curves, gene set enrichment analysis (GSEA), tumor mutational burden (TMB) analysis, and immune cell infiltration. A P value of less than 0.05 was considered statistically significant. Results A total of 514 patients with LUAD from TCGA database were divided into distinct subtypes to characterize the diversity within the DDR pathway. DDR-activated and DDR-suppressed subgroups showed distinct clinical characteristics, molecular characteristics, and immune profiles. Nine genes were identified as hub DDR-related genes, including CASP14, DKK1, ECT2, FLNC, HMMR, IGFBP1, KRT6A, TYMS, and FCER2. By using the expression levels of these selected genes, the corresponding risk scores for each sample was predicted. In the training group, KM survival analysis revealed that the high-risk group exhibited significantly diminished overall survival (OS) [hazard ratio (HR) =3.341, P=1.38e-08]. The corresponding area under the curve (AUC) values for the 1-year follow-up periods was 0.767, respectively. Upon validation in the external cohort, patients with higher risk scores manifested significantly reduced OS (HR =2.372, P=1.87e-03). The AUC values of the ROC curves for the 1-year OS in the validation cohort was 0.87, respectively. Moreover, advanced DDR risk score was correlated with increased TMB scores, a heightened frequency of TP53 mutations, an increased abundance of cancer-testicular antigens (CTAs), and a lower tumor immune dysfunction and exclusion (TIDE) score in patients with LUAD (P<0.05). Conclusions A nine-gene risk signature associated with DDR in LUAD was effectively developed, demonstrating its potential as a robust and reliable classification tool for clinical practice. This model exhibited the capability to accurately predict the prognosis and survival outcomes of LUAD patients.
Collapse
Affiliation(s)
- Chu Qin
- Department of Respiratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaodong Fan
- Department of Respiratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoyan Sai
- Department of Respiratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Bo Yin
- Department of Respiratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Shufang Zhou
- Department of Respiratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Alfredo Addeo
- Oncology Department, Geneva University Hospital (CH), Geneva, Switzerland
| | - Tao Bian
- Department of Respiratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Haoda Yu
- Department of Respiratory Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| |
Collapse
|
9
|
Ryu WK, Yong SH, Lee SH, Gwon HR, Kim HR, Hong MH, Oh GE, Jung S, Kim CY, Chang YS, Kim EY. Usefulness of bronchial washing fluid for detection of EGFR mutations in non-small cell lung cancer. Lung Cancer 2023; 186:107390. [PMID: 37820540 DOI: 10.1016/j.lungcan.2023.107390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/04/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION The implementation of bronchial washing fluid (BWF) as a diagnostic specimen may complement the low diagnostic yields of plasma in detecting EGFR mutation (mEGFR) in non-small cell lung cancer. However, the diagnostic value of BWF in detecting mEGFR has yet to be clarified. MATERIALS AND METHODS From March 2021 to August 2022, patients with histologically confirmed NSCLC with matched tumor tissue, BWF, and/or plasma samples were enrolled. Patients were classified into either initial diagnosis or rebiopsy groups. Diagnostic yields of mEGFR in BWF and plasma were evaluated using droplet digital polymerase chain reaction and compared to mEGFR in tumor tissue as standard. RESULTS The study included 123 patients (74.1 %) in the initial diagnosis and 43 patients (25.9 %) in the rebiopsy group. BWF showed higher sensitivity, specificity, and concordance rates than plasma in both the initial diagnosis (57.4 %, 96.4 %, and 74.0 % vs. 16.4 %, 96.2 %, and 53.1 %) and the rebiopsy group (87.9 %, 60.0 %, and 81.4 % vs. 25.0 %, 75.0 %, and 41.7 %). In the initial diagnosis group, mEGFR was detected in the BWF of 13 out of 16 patients, even in the absence of tumor cells in the tissue biopsy. In these cases, EGFR test results obtained from BWF showed concordance with EGFR test results from the tumor tissue obtained through repeated biopsy or surgery later. In the rebiopsy group, T790M was detected in 16 patients (37.2 %) by tissue biopsy. The combined use of tissue biopsy and BWF increased detection, confirming T790M in 22 patients (51.2 %). DISCUSSION The detection of mEGFR using BWF shows higher diagnostic yields than plasma for both initial diagnosis and rebiopsy. T790M was detected earlier in BWF than in tissue rebiopsy in some cases, providing patients with an early opportunity to access third-generation EGFR-TKIs. The complementary use of BWF with tumor tissue may improve precision in EGFR-mutated NSCLC treatment strategies.
Collapse
Affiliation(s)
- Woo Kyung Ryu
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; Division of Pulmonology, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27, Inhang‑ro, Jung‑gu, Incheon 22332, Republic of Korea
| | - Seung Hyun Yong
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang Hoon Lee
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hye Ran Gwon
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hye Ryun Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min Hee Hong
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Go Eun Oh
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sehee Jung
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chi Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yoon Soo Chang
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eun Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Wang H, Shi Y, Xu X, Xu S, Shi Y, Chen W, Wang K. A novel neutrophil extracellular traps-related lncRNA signature predicts prognosis in patients with early-stage lung adenocarcinoma. Ann Med 2023; 55:2279754. [PMID: 37980632 PMCID: PMC10836256 DOI: 10.1080/07853890.2023.2279754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) could entrap tumour cells and promote their dissemination and metastasis. Further analysis of NETs-related molecules is expected to provide a new strategy for prognosis prediction and treatment of lung adenocarcinoma (LUAD) patients. METHODS The model construction was established through co-expression analysis, Lasso Cox regression, univariate and multivariate COX regression, Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway. The potential drugs and analysed drug sensitivity were screened by pRRophetic packages. RESULTS In this study, we constructed a 15 NETs-related long non-coding RNAs (lncRNAs) prognostic prediction model (AC091057.1, SPART-AS1, AC023796.2, AL031600.2, AC084781.1, AC032011.1, FAM66C, C026355.2, AL096870.2, AC092718.5, PELATON, AC008635.1, AL162632.3, AC087501.4 and AC123768.3) for patients with early-stage LUAD based on public databases and datasets. The signature is associated with immune cell functions, tumour mutation burden and treatment sensitivity in LUAD patients. Additionally, we found that FAM66C is highly expressed in lung cancer patients for the first time, which is associated with poor prognosis. FAM66C knockdown significantly inhibited the proliferation and migration ability of the tumour cells. CONCLUSIONS In conclusion, this model is a new and effective prognostic and efficacy predictive biomarker, FAM66C plays an oncogene role in the process of LUAD development. It may provide a new theoretical basis for the clinical diagnosis and treatment in LUAD patients in early stage.
Collapse
Affiliation(s)
- Huan Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xia Xu
- Department of Pathology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shumin Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yuting Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Weiyu Chen
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
11
|
Xin L, Yue Y, Zihan R, Youbin C, Tianyu L, Rui W. Clinical application of liquid biopsy based on circulating tumor DNA in non-small cell lung cancer. Front Physiol 2023; 14:1200124. [PMID: 37351260 PMCID: PMC10282751 DOI: 10.3389/fphys.2023.1200124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
Lung cancer is a widely occurring and deadly malignancy, with high prevalence rates in China and across the globe. Specifically, non-small cell lung cancer (NSCLC) represents about 85% of all lung cancer cases. The 5-year disease-free survival rate after surgery for stage IB-IIIB NSCLC patients (disease-free survival, DFS) has notably declined from 73% to 13%. Early detection of abnormal cancer molecules and subsequent personalized treatment plans are the most effective ways to address this problem. Liquid biopsy, surprisingly, enables safe, accurate, non-invasive, and dynamic tracking of disease progression. Among the various modalities, circulating tumor DNA (ctDNA) is the most commonly used liquid biopsy modality. ctDNA serves as a credible "liquid biopsy" diagnostic tool that, to a certain extent, overcomes tumor heterogeneity and harbors genetic mutations in malignancies, thereby providing early information on tumor genetic alterations. Despite considerable academic interest in the clinical significance of ctDNA, consensus on its utility remains lacking. In this review, we assess the role of ctDNA testing in the diagnosis and management of NSCLC as a reference for clinical intervention in this disease. Lastly, we examine future directions to optimize ctDNA for personalized therapy.
Collapse
Affiliation(s)
| | | | | | | | - Lu Tianyu
- *Correspondence: Wang Rui, ; Lu Tianyu,
| | - Wang Rui
- *Correspondence: Wang Rui, ; Lu Tianyu,
| |
Collapse
|
12
|
Wu G, Hu Q, Chen H, He M, Ma H, Zhou L, Xu K, Ren H, Qi J. Cuproptosis-related signature predicts prognosis, immunotherapy efficacy, and chemotherapy sensitivity in lung adenocarcinoma. Front Oncol 2023; 13:1127768. [PMID: 37007124 PMCID: PMC10050597 DOI: 10.3389/fonc.2023.1127768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundCuproptosis is a novel form of programmed cell death that disrupts the tricarboxylic acid (TCA) cycle and mitochondrial function. The mechanism of cuproptosis is quite different from that of common forms of cell death such as apoptosis, pyroptosis, necroptosis, and ferroptosis. However, the potential connection between cuproptosis and tumor immunity, especially in lung adenocarcinoma (LUAD), is poorly understood.MethodsWe used machine learning algorithms to develop a cuproptosis-related scoring system. The immunological features of the scoring system were investigated by exploring its association with clinical outcomes, immune checkpoint expression, and prospective immunotherapy response in LUAD patients. The system predicted the sensitivity to chemotherapeutic agents. Unsupervised consensus clustering was performed to precisely identify the different cuproptosis-based molecular subtypes and to explore the underlying tumor immunity.ResultsWe determined the aberrant expression and prognostic relevance of cuproptosis-related genes (CRGs) in LUAD. There were significant differences in survival, biological function, and immune infiltration among the cuproptosis subtypes. In addition, the constructed cuproptosis scoring system could predict clinical outcomes, tumor microenvironment, and efficacy of targeted drugs and immunotherapy in patients with LUAD. After validating with large-scale data, we propose that combining the cuproptosis score and immune checkpoint blockade (ICB) therapy can significantly enhance the efficacy of immunotherapy and guide targeted drug application in patients with LUAD.ConclusionThe Cuproptosis score is a promising biomarker with high accuracy and specificity for determining LUAD prognosis, molecular subtypes, immune cell infiltration, and treatment options for immunotherapy and targeted therapies for patients with LUAD. It provides novel insights to guide personalized treatment strategies for patients with LUAD.
Collapse
Affiliation(s)
- Gujie Wu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Qin Hu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hongyu Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, China
| | - Min He
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huiyun Ma
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
- Research Center of Clinical Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, China
| | - Lin Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Kun Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hefei Ren
- Department of Laboratory Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Juntao Qi
- Research Center of Clinical Medicine, Shenzhen Hospital of Shanghai University of Traditional Chinese Medicine, Shenzhen, China
- *Correspondence: Juntao Qi,
| |
Collapse
|
13
|
Li YZ, Kong SN, Liu YP, Yang Y, Zhang HM. Can Liquid Biopsy Based on ctDNA/cfDNA Replace Tissue Biopsy for the Precision Treatment of EGFR-Mutated NSCLC? J Clin Med 2023; 12:jcm12041438. [PMID: 36835972 PMCID: PMC9966257 DOI: 10.3390/jcm12041438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
More and more clinical trials have explored the role of liquid biopsy in the diagnosis and treatment of EGFR-mutated NSCLC. In certain circumstances, liquid biopsy has unique advantages and offers a new way to detect therapeutic targets, analyze drug resistance mechanisms in advanced patients, and monitor MRD in patients with operable NSCLC. Although its potential cannot be ignored, more evidence is needed to support the transition from the research stage to clinical application. We reviewed the latest progress in research on the efficacy and resistance mechanisms of targeted therapy for advanced NSCLC patients with plasma ctDNA EGFR mutation and the evaluation of MRD based on ctDNA detection in perioperative and follow-up monitoring.
Collapse
|
14
|
Shao L, Wang X, Yu Q, Gong J, Zhang X, Zhou Y. In lung adenocarcinoma, low expression of the cell surface extracellular nucleotidase CD39 is related to immune infiltration and a poor prognosis. J Thorac Dis 2022; 14:4938-4950. [PMID: 36647506 PMCID: PMC9840027 DOI: 10.21037/jtd-22-1696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022]
Abstract
Background Extracellular nucleotidase on the cell surface CD39 plays a crucial role in the tumor microenvironment in the immunosuppressive adenosine pathway. However, the association between CD39 and lung adenocarcinoma has rarely been recorded. This study aimed to explore the involvement of CD39 in the biological processes of lung cancer. Methods First, a prediction model was established by analyzing the expression of CD39 in lung adenocarcinoma and its relationships with clinical evidence of lung adenocarcinoma using The Cancer Genome Atlas (TCGA) and Tumor IMmune Estimation Resource (TIMER) databases. In the TCGA and TIMER databases, the relationship between CD39 and immune cells and the relationship with immune-related expressed genes were studied. Subsequently, using gene set enrichment analysis (GSEA), the potential mechanism of action was investigated. Results Lung adenocarcinoma patients with elevated CD39 expression had improved overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). CD39 expression was reduced in lung adenocarcinoma tumor tissue in the TCGA and TIMER databases. The nomogram's C-index was 0.688 (0.665-0.712), indicating some consistency in the prediction model. According to the TIMER and TCGA databases, CD39 expression was strongly connected with several immune cells invading and with immune checkpoint-related markers such as PDCD1, CD274, CTLA-4, and several functional T cells. GSEA revealed that CD39 influences the extracellular matrix, immunological microenvironment, programmed death 1 (PD-1) expression, glucose metabolism, PTEN stability, inflammatory response, and angiogenesis in lung cancer. Conclusions The current study's findings demonstrated that CD39 can be employed as a possible predictive biomarker for lung adenocarcinoma and may enhance the patients' poor prognosis by preventing the immunological escape of tumor cells from the lung adenocarcinoma tumor microenvironment.
Collapse
Affiliation(s)
- Lili Shao
- Department of Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Xiaoli Wang
- Department of Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Qiongzhu Yu
- Department of Pathology, The Affiliated Changshu Hospital of Xuzhou Medical University, Suzhou, China
| | - Jun Gong
- Department of Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Xiaodong Zhang
- Department of Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| | - Yan Zhou
- Department of Oncology, Tumor Hospital Affiliated to Nantong University & Nantong Tumor Hospital, Nantong, China
| |
Collapse
|
15
|
Fang X, Yu S, Jiang Y, Xiang Y, Lu K. Circulating tumor DNA detection in MRD assessment and diagnosis and treatment of non-small cell lung cancer. Front Oncol 2022; 12:1027664. [PMID: 36387176 PMCID: PMC9646858 DOI: 10.3389/fonc.2022.1027664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Circulating tumor DNA (ctDNA) has contributed immensely to the management of hematologic malignancy and is now considered a valuable detection tool for solid tumors. ctDNA can reflect the real-time tumor burden and be utilized for analyzing specific cancer mutations via liquid biopsy which is a non-invasive procedure that can be used with a relatively high frequency. Thus, many clinicians use ctDNA to assess minimal residual disease (MRD) and it serves as a prognostic and predictive biomarker for cancer therapy, especially for non-small cell lung cancer (NSCLC). Advanced methods have been developed to detect ctDNA, and recent clinical trials have shown the rationality and feasibility of ctDNA for identifying mutations and guiding treatments in NSCLC. Here, we have reviewed recently developed ctDNA detection methods and the importance of sequence analyses of ctDNA in NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Kaihua Lu
- Department of Oncology, The First Affiliated Hosptial of Nanjing Medicial University, Nanjing, China
| |
Collapse
|
16
|
García-Pardo M, Makarem M, Li JJN, Kelly D, Leighl NB. Integrating circulating-free DNA (cfDNA) analysis into clinical practice: opportunities and challenges. Br J Cancer 2022; 127:592-602. [PMID: 35347327 PMCID: PMC9381753 DOI: 10.1038/s41416-022-01776-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
In the current era of precision medicine, the identification of genomic alterations has revolutionised the management of patients with solid tumours. Recent advances in the detection and characterisation of circulating tumour DNA (ctDNA) have enabled the integration of liquid biopsy into clinical practice for molecular profiling. ctDNA has also emerged as a promising biomarker for prognostication, monitoring disease response, detection of minimal residual disease and early diagnosis. In this Review, we discuss current and future clinical applications of ctDNA primarily in non-small cell lung cancer in addition to other solid tumours.
Collapse
Affiliation(s)
- Miguel García-Pardo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Maisam Makarem
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Janice J N Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Deirdre Kelly
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Natasha B Leighl
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
17
|
Zhu J, Wang J, Wang T, Zhou H, Xu M, Zha J, Feng C, Shen Z, Jiang Y, Chen J. Identification of molecular subtypes, risk signature, and immune landscape mediated by necroptosis-related genes in non-small cell lung cancer. Front Oncol 2022; 12:955186. [PMID: 35965497 PMCID: PMC9367639 DOI: 10.3389/fonc.2022.955186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNon-small cell lung cancer (NSCLC) is a highly heterogeneous malignancy with an extremely high mortality rate. Necroptosis is a programmed cell death mode mediated by three major mediators, RIPK1, RIPK3, and MLKL, and has been shown to play a role in various cancers. To date, the effect of necroptosis on NSCLC remains unclear.MethodsIn The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, we downloaded transcriptomes of lung adenocarcinoma (LUAD) patients and their corresponding clinicopathological parameters. We performed multi-omics analysis using consensus clustering based on the expression levels of 40 necroptosis-related genes. We constructed prognostic risk models and used the receiver operating characteristic (ROC) curves, nomograms, and survival analysis to evaluate prognostic models.ResultsWith the use of consensus clustering analysis, two distinct subtypes of necroptosis were identified based on different mRNA expression levels, and cluster B was found to have a better survival advantage. Correlation results showed that necroptosis was significantly linked with clinical features, overall survival (OS) rate, and immune infiltration. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis confirmed that these differential genes were valuable in various cellular and biological functions and were significantly enriched in various pathways such as the P53 signaling pathway and cell cycle. We further identified three genomic subtypes and found that gene cluster B patients had better prognostic value. Multivariate Cox analysis identified the 14 best prognostic genes for constructing prognostic risk models. The high-risk group was found to have a poor prognosis. The construction of nomograms and ROC curves showed stable validity in prognostic prediction. There were also significant differences in tumor immune microenvironment, tumor mutational burden (TMB), and drug sensitivity between the two risk groups. The results demonstrate that the 14 genes constructed in this prognostic risk model were used as tumor prognostic biomarkers to guide immunotherapy and chemotherapy. Finally, we used qRT-PCR to validate the genes involved in the signature.ConclusionThis study promotes our new understanding of necroptosis in the tumor microenvironment of NSCLC, mines prognostic biomarkers, and provides a potential value for guiding immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jinjie Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Tianyi Wang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Hao Zhou
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Mingming Xu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jiliang Zha
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Chen Feng
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Zihao Shen
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yun Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Jianle Chen, ; Yun Jiang,
| | - Jianle Chen
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- *Correspondence: Jianle Chen, ; Yun Jiang,
| |
Collapse
|
18
|
Targeting Glioblastoma Stem Cells to Overcome Chemoresistance: An Overview of Current Therapeutic Strategies. Biomedicines 2022; 10:biomedicines10061308. [PMID: 35740330 PMCID: PMC9220281 DOI: 10.3390/biomedicines10061308] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/20/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant primary brain tumor. The current standard approach in GBM is surgery, followed by treatment with radiation and temozolomide (TMZ); however, GBM is highly resistant to current therapies, and the standard of care has not been revised over the last two decades, indicating an unmet need for new therapies. GBM stem cells (GSCs) are a major cause of chemoresistance due to their ability to confer heterogeneity and tumorigenic capacity. To improve patient outcomes and survival, it is necessary to understand the properties and mechanisms underlying GSC chemoresistance. In this review, we describe the current knowledge on various resistance mechanisms of GBM to therapeutic agents, with a special focus on TMZ, and summarize the recent findings on the intrinsic and extrinsic mechanisms of chemoresistance in GSCs. We also discuss novel therapeutic strategies, including molecular targeting, autophagy inhibition, oncolytic viral therapy, drug repositioning, and targeting of GSC niches, to eliminate GSCs, from basic research findings to ongoing clinical trials. Although the development of effective therapies for GBM is still challenging, this review provides a better understanding of GSCs and offers future directions for successful GBM therapy.
Collapse
|
19
|
The potential of liquid biopsy in the management of cancer patients. Semin Cancer Biol 2022; 84:69-79. [PMID: 35331850 DOI: 10.1016/j.semcancer.2022.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
|
20
|
Integrative Analysis of m6A RNA Methylation Regulators and the Tumor Immune Microenvironment in Non-Small-Cell Lung Cancer. DISEASE MARKERS 2022; 2022:2989200. [PMID: 35186164 PMCID: PMC8849944 DOI: 10.1155/2022/2989200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/21/2022] [Indexed: 12/21/2022]
Abstract
Background Non-small-cell lung cancer (NSCLC) is a major component of lung cancer and is significantly correlated with poor prognosis. N6-methyladenosine (m6A) RNA methylation is closely related to the occurrence, progression, and prognosis of cancer. The potential biological functions and mechanisms of m6A RNA methylation in the immune microenvironment are still unclear. Methods We assessed m6A RNA methylation modification patterns in 1326 NSCLC patient samples based on 20 m6A regulators, linking these clusters to the tumor microenvironment and immune cell infiltration. The m6Ascore was created to quantify the m6A modification patterns of individual tumors. We then assessed the value of NSCLC patients in terms of clinical prognosis and immunotherapy response. Results According to different mRNA expression levels, two different m6A clusters were identified. m6A aggregation was significantly associated with clinical prognostic characteristics, the tumor microenvironment, and immune-related biological processes. Fifteen differential genes were screened based on these two m6A clusters, and to further investigate the mechanisms of action of these differential genes, they were subjected to unsupervised clustering analysis, which classified them into four different genomic isoforms. Prognostic analysis indicated that the survival advantage of the m6A gene cluster A modification mode was significantly prominent. We continued to construct the m6Ascore, which was used as a scoring tool to evaluate tumor typing, immunity, and prognosis. Patients with a low m6Ascore showed a significant survival advantage, and the group with a low m6Ascore had a better prognosis predicted by immunotherapy. The anti-PD-1/L1 immunotherapy cohort showed that a lower m6Ascore was associated with higher efficacy of immunotherapy. Conclusions The results suggest that m6A RNA methylation regulators make an important difference in the tumor immune microenvironment of patients with NSCLC. m6A gene characterization and the construction of the m6Ascore provide us with a richer understanding of m6A RNA methylation modification patterns in NSCLC patients and help to predict clinical prognosis and immunotherapeutic response.
Collapse
|
21
|
Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC. Nat Commun 2021; 12:6770. [PMID: 34799585 PMCID: PMC8605017 DOI: 10.1038/s41467-021-27022-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
Accurately evaluating minimal residual disease (MRD) could facilitate early intervention and personalized adjuvant therapies. Here, using ultradeep targeted next-generation sequencing (NGS), we evaluate the clinical utility of circulating tumor DNA (ctDNA) for dynamic recurrence risk and adjuvant chemotherapy (ACT) benefit prediction in resected non-small cell lung cancer (NSCLC). Both postsurgical and post-ACT ctDNA positivity are significantly associated with worse recurrence-free survival. In stage II-III patients, the postsurgical ctDNA positive group benefit from ACT, while ctDNA negative patients have a low risk of relapse regardless of whether or not ACT is administered. During disease surveillance, ctDNA positivity precedes radiological recurrence by a median of 88 days. Using joint modeling of longitudinal ctDNA analysis and time-to-recurrence, we accurately predict patients’ postsurgical 12-month and 15-month recurrence status. Our findings reveal longitudinal ctDNA analysis as a promising tool to detect MRD in NSCLC, and we show pioneering work of using postsurgical ctDNA status to guide ACT and applying joint modeling to dynamically predict recurrence risk, although the results need to be further confirmed in future studies. ctDNA has been shown to identify minimal residual disease (MRD) and is thus dynamically monitored in different types of tumours. Here, the authors show that serial longitudinal ctDNA analysis can be used as a tool to detect MRD, inform the use of adjuvant therapy, and predict recurrence risk in lung cancer.
Collapse
|
22
|
Zhang W, Yao S, Huang H, Zhou H, Zhou H, Wei Q, Bian T, Sun H, Li X, Zhang J, Liu Y. Molecular subtypes based on ferroptosis-related genes and tumor microenvironment infiltration characterization in lung adenocarcinoma. Oncoimmunology 2021; 10:1959977. [PMID: 34527427 PMCID: PMC8437492 DOI: 10.1080/2162402x.2021.1959977] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recently, several molecular subtypes with different prognosis have been found in lung adenocarcinoma (LUAD). However, the characteristics of the ferroptosis molecular subtypes and the associated tumor microenvironment (TME) cell infiltration have not been fully studied in LUAD. Using 1160 lung adenocarcinoma samples, we explored the molecular subtypes mediated by ferroptosis-related genes, along with the associated TME cell infiltration. The ferroptosis score was constructed using the least absolute shrinkage and selection operator regression (LASSO) method to quantify the ferroptosis characteristics of a single tumor. Three different molecular subtypes related to ferroptosis, with different prognoses, were identified in LUAD. Analysis of TME cell infiltration revealed immune heterogeneity among the three subtypes. Cluster A was characterized by immunosuppression and was associated with stromal activation. Cluster C was characterized by a large number of immune cells infiltrating the TME, promoting tumor immune response, and it was significantly enriched in immune activation-related signaling pathways. Relatively less infiltration of immune cells was a feature of cluster B. The ferroptosis score can predict tumor subtype, immunity and prognosis. A low ferroptosis score was characterized by immune activation and good prognosis, as seen in the cluster C subtype. Relative immunosuppression and poor prognosis were the characteristics of a high ferroptosis score, as seen in cluster A and B subtypes. At the same time, the anti-PD-1/L1 immunotherapy cohort demonstrated that a low ferroptosis score was associated with higher efficacy of immunotherapy. The ferroptosis score is a promising biomarker that could be of great significance to determine the prognosis, molecular subtypes, TME cell infiltration characteristics and immunotherapy effects in patients with LUAD.
Collapse
Affiliation(s)
- Weiju Zhang
- Department of Pathology, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Sumei Yao
- Department Of Respiratory, Nantong First People ' s Hospital, Second Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hao Zhou
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Haomiao Zhou
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Qishuang Wei
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hui Sun
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoli Li
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, China
| |
Collapse
|
23
|
Li J, Wang N, Zhang F, Jin S, Dong Y, Dong X, Chen Y, Kong X, Tong Y, Mi Q, Zhao Y, Zhang Y. PIWI-interacting RNAs are aberrantly expressed and may serve as novel biomarkers for diagnosis of lung adenocarcinoma. Thorac Cancer 2021; 12:2468-2477. [PMID: 34346164 PMCID: PMC8447905 DOI: 10.1111/1759-7714.14094] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the main subtype of primary lung cancer and is a leading cause of cancer-related death worldwide. PIWI-interacting RNAs (piRNAs) are a type of small non-coding RNAs that may play crucial roles in cancer progression and serve as biomarkers for tumor detection. This study aimed to explore the expression profiles and diagnostic values of piRNAs in LUAD. METHODS Small RNA sequencing was performed to investigate tissue piRNA profiles of LUAD. The expression of selected upregulated piRNAs were detected in tissues and serum exosome samples by quantitative real-time polymerase chain reaction (qRT-PCR). Serum exosomes were identified by transmission electron microscope, nanoparticle tracking analysis, and western blot analysis. Receiver operating characteristic (ROC) curve was adopted to quantify the diagnostic potentials of piRNAs in LUAD. Finally, a piRNA panel was developed by multivariate logistic regression model. RESULTS We identified that 76 piRNAs were overexpressed and 9 piRNAs were underexpressed in LUAD tissues compared with adjacent non-tumor tissues. Among the top 10 overexpressed piRNAs, 4 piRNAs (piR-hsa-26925, piR-hsa-5444, piR-hsa-30636, and piR-hsa-8757) were verified by qRT-PCR to be significantly upregulated in LUAD tissues. Moreover, piR-hsa-26925 and piR-hsa-5444 had a significantly higher level in serum exosome samples of LUAD patients than those of healthy controls. We finally established a 2-piRNA panel composed of piR-hsa-26925 and piR-hsa-5444, which showed higher diagnostic performance for LUAD with an AUC of 0.833. CONCLUSIONS Our finding revealed the abnormally expressed piRNAs in LUAD, and serum exosomal piR-hsa-26925 and piR-hsa-5444 could serve as potential biomarkers for LUAD diagnosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Nan Wang
- School of Public HealthShandong First Medical University & Shandong Academy of Medical SciencesTaianChina
| | - Fang Zhang
- Department of PharmacyCentral Hospitlal Affiliated to Shandong First Medical UniversityJinanChina
| | - Shan Jin
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yaqi Dong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xiangjun Dong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yuqing Chen
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Xue Kong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Qi Mi
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yi Zhang
- Department of Respiratory and Critical Care MedicineQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
24
|
Zhou H, Zheng M, Shi M, Wang J, Huang Z, Zhang H, Zhou Y, Shi J. Characteristic of molecular subtypes in lung adenocarcinoma based on m6A RNA methylation modification and immune microenvironment. BMC Cancer 2021; 21:938. [PMID: 34416861 PMCID: PMC8379743 DOI: 10.1186/s12885-021-08655-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a major subtype of lung cancer and closely associated with poor prognosis. N6-methyladenosine (m6A), one of the most predominant modifications in mRNAs, is found to participate in tumorigenesis. However, the potential function of m6A RNA methylation in the tumor immune microenvironment is still murky. METHODS The gene expression profile cohort and its corresponding clinical data of LUAD patients were downloaded from TCGA database and GEO database. Based on the expression of 21 m6A regulators, we identified two distinct subgroups by consensus clustering. The single-sample gene-set enrichment analysis (ssGSEA) algorithm was conducted to quantify the relative abundance of the fraction of 28 immune cell types. The prognostic model was constructed by Lasso Cox regression. Survival analysis and receiver operating characteristic (ROC) curves were used to evaluate the prognostic model. RESULT Consensus classification separated the patients into two clusters (clusters 1 and 2). Those patients in cluster 1 showed a better prognosis and were related to higher immune scores and more immune cell infiltration. Subsequently, 457 differentially expressed genes (DEGs) between the two clusters were identified, and then a seven-gene prognostic model was constricted. The survival analysis showed poor prognosis in patients with high-risk score. The ROC curve confirmed the predictive accuracy of this prognostic risk signature. Besides, further analysis indicated that there were significant differences between the high-risk and low-risk groups in stages, status, clustering subtypes, and immunoscore. Low-risk group was related to higher immune score, more immune cell infiltration, and lower clinical stages. Moreover, multivariate analysis revealed that this prognostic model might be a powerful prognostic predictor for LUAD. Ultimately, the efficacy of this prognostic model was successfully validated in several external cohorts (GSE30219, GSE50081 and GSE72094). CONCLUSION Our study provides a robust signature for predicting patients' prognosis, which might be helpful for therapeutic strategies discovery of LUAD.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Miaosen Zheng
- Department of Pathology, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Muqi Shi
- Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Jinjie Wang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Zhanghao Huang
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Haijian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Youlang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University and Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
25
|
Circulating tumor DNA in lung cancer: real-time monitoring of disease evolution and treatment response. Chin Med J (Engl) 2021; 133:2476-2485. [PMID: 32960843 PMCID: PMC7575184 DOI: 10.1097/cm9.0000000000001097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is one of the leading causes of all cancer-related deaths. Circulating tumor DNA (ctDNA) is released from apoptotic and necrotic tumor cells. Several sensitive techniques have been invented and adapted to quantify ctDNA genomic alterations. Applications of ctDNA in lung cancer include early diagnosis and detection, prognosis prediction, detecting mutations and structural alterations, minimal residual disease, tumor mutational burden, and tumor evolution tracking. Compared to surgical biopsy and radiographic imaging, the advantages of ctDNA are that it is a non-invasive procedure, allows real-time monitoring, and has relatively high sensitivity and specificity. Given the massive research on non-small cell lung cancer, attention should be paid to small cell lung cancer.
Collapse
|
26
|
Chen Y, Jin L, Jiang Z, Liu S, Feng W. Identifying and Validating Potential Biomarkers of Early Stage Lung Adenocarcinoma Diagnosis and Prognosis. Front Oncol 2021; 11:644426. [PMID: 33937050 PMCID: PMC8085413 DOI: 10.3389/fonc.2021.644426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/22/2021] [Indexed: 01/05/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. At present, most patients with LUAD are diagnosed at an advanced stage, and the prognosis of advanced LUAD is poor. Hence, we aimed to identify novel biomarkers for the diagnosis and treatment of early stage LUAD and to explore their predictive value. Methods The microarray datasets GSE63459, GSE27262, and GSE33532 were searched, and the differentially expressed genes (DEGs) were obtained using GEO2R. The DEGs were subjected to gene ontology (GO) and pathway enrichment analyses using METASCAPE. A protein–protein interaction (PPI) network was plotted with STRING and visualized by Cytoscape. Module analysis of the PPI network was performed using MCODE. Overall survival (OS) analysis and analysis of the mRNA expression levels of genes identified by MCODE were performed with UALCAN. Western blot analysis of hub genes in LUAD patients, MTS assays, and clonogenic assays were performed to test the effects of the hub genes on cell proliferation in vitro. Results A total of 341 DEGs were obtained, which were mainly enriched in terms related to blood vessel development, growth factor binding, and extracellular matrix organization. A PPI network consisting of 300 nodes and 1140 edges was constructed, and a significant module including 15 genes was identified. Elevated expression of ASPM, CCNB2, CDCA5, PRC1, KIAA0101, and UBE2T was associated with poor OS in LUAD patients. In the protein level, the hub gene was overexpressed in LUAD patients. In vitro experiments showed that knockdown of the hub genes in the LUAD cell lines could promote cell proliferation. Conclusions DEGs are potential biomarkers for early stage lung adenocarcinoma and could have utility for the diagnosis and predicting treatment efficacy.
Collapse
Affiliation(s)
- Yingji Chen
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Longyu Jin
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhibin Jiang
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Suo Liu
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Feng
- Department of Cardiothoracic Surgery, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Park C, Lee S, Lee JC, Choi C, Lee SY, Jang T, Oh I, Kim Y. Phase II open-label multicenter study to assess the antitumor activity of afatinib in lung cancer patients with activating epidermal growth factor receptor mutation from circulating tumor DNA: Liquid-Lung-A. Thorac Cancer 2021; 12:444-452. [PMID: 33270375 PMCID: PMC7882376 DOI: 10.1111/1759-7714.13763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Mutation analysis of circulating tumor DNA (ctDNA) is used for diagnosing lung cancer. This trial aimed to assess the efficacy of afatinib in treatment-naïve patients with lung cancer harboring epidermal growth factor receptor mutations (EGFRm, exon 19 deletions or exon 21 point mutations) detected based on ctDNA. METHODS The primary objective was the objective response rate (ORR) in the response evaluable (RE) population. EGFRm analysis of ctDNA was performed using PANA Mutype. Of the 331 patients screened, ctDNA was positive in 21% (68/331) in the detection of activating EGFRm. Among 81 subjects with tumor EGFRm, 48 showed matched EGFRm in their ctDNA (59% sensitivity). RESULTS Therapy with afatinib 40 mg was initiated in 21 (female, 17; adenocarcinoma, 20) patients (intention-to-treat, ITT); dose modifications were made in 15 (71%). The ORR was 74% in the RE population (14/19); 11 patients showed EGFRm only in ctDNA (Group A), whereas 10 exhibited the same EGFRm in their ctDNA and tumor DNA (Group B). There was no significant difference in ORR between Groups A and B (80% and 67% RE, respectively). Median progression-free survival (PFS) was 12.0 months, and no significant difference was observed according to the final afatinib dose, type of EGFRm, and Group A versus B. After progression, T790M mutation was found in 40% (6/15) of patients, and osimertinib was used as a second-line treatment. CONCLUSIONS Afatinib showed similar ORR and PFS in patients with lung cancer harboring EGFRm in their ctDNA regardless of tumor EGFRm results. KEY POINTS SIGNIFICANT FINDINGS OF THE STUDY: Afatinib showed favorable ORR and PFS regardless of the tumor EGFR mutation status results, similar to the findings of previous trials assessing afatinib as first-line treatment of EGFR-mutated non-small cell lung cancer based on tumor genotyping. WHAT THIS STUDY ADDS Our findings emphasize that the survival benefit of afatinib treatment can be achieved not only by appropriate dose reduction with frequent and detailed monitoring of toxicities, but also by using noninvasive (ctDNA) assays in a real-world setting.
Collapse
Affiliation(s)
- Cheol‐Kyu Park
- Department of Internal MedicineChonnam National University Medical School and CNU Hwasun HospitalHwasunJeonnamKorea
| | - Sung‐Yong Lee
- Department of Internal MedicineKorea University Guro HospitalSeoulKorea
| | - Jae Cheol Lee
- Department of Oncology, Pulmonary and Critical Care MedicineCollege of Medicine, University of Ulsan, Asan Medical CenterSeoulKorea
| | - Chang‐Min Choi
- Department of Oncology, Pulmonary and Critical Care MedicineCollege of Medicine, University of Ulsan, Asan Medical CenterSeoulKorea
| | - Shin Yup Lee
- Department of Internal Medicine, School of MedicineKyungpook National UniversityDaeguKorea
| | - Tae‐Won Jang
- Department of Internal Medicine, School of MedicineKosin University Gospel HospitalPusanKorea
| | - In‐Jae Oh
- Department of Internal MedicineChonnam National University Medical School and CNU Hwasun HospitalHwasunJeonnamKorea
| | - Young‐Chul Kim
- Department of Internal MedicineChonnam National University Medical School and CNU Hwasun HospitalHwasunJeonnamKorea
| |
Collapse
|
28
|
Gao C, Zhuang J, Li H, Liu C, Zhou C, Liu L, Feng F, Sun C. Gene signatures of 6-methyladenine regulators in women with lung adenocarcinoma and development of a risk scoring system: a retrospective study using the cancer genome atlas database. Aging (Albany NY) 2021; 13:3957-3968. [PMID: 33428597 PMCID: PMC7906130 DOI: 10.18632/aging.202364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/23/2020] [Indexed: 01/22/2023]
Abstract
Although the emergence of new treatments has improved the prognosis of women with lung adenocarcinoma (LUAD), the emergence of drug resistance limits their clinical efficacy. Therefore, there is an urgent need to identify new targets and develop a risk scoring system to evaluate the prognosis of patients. 6-methyladenine (M6A), as the most common methyl modification in RNA modification, its clinicopathological features, diagnosis and prognostic value in lung cancer, especially in LUAD remain to be discussed. We analyzed the clinical and sequencing data of the female LUAD cohort from The Cancer Genome Atlas (TCGA), evaluated the expression profiles of 16 M6A regulation-related genes in the cohort and the relationships between genetic changes and clinical characteristics, developed an M6A-related risk scoring system using Cox analysis. Finally, the copy number variations (CNVs) of the related genes in the samples were analyzed and verified using the cBioPortal platform. Compared with other clinical factors, this risk scoring system showed a higher predictive sensitivity and specificity. The M6A-related risk scoring system developed in this study may help to improve the screening of female patients at high risk of LUAD and provides important theoretical bioinformatics support for evaluating the prognosis of such patients.
Collapse
Affiliation(s)
- Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Huayao Li
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, PR China
| | - Chao Zhou
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Lijuan Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Fubin Feng
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China
| | - Changgang Sun
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang 261041, Shandong, PR China.,Cancer and Immunology Institute, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| |
Collapse
|
29
|
Jiawei Z, Min M, Yingru X, Xin Z, Danting L, Yafeng L, Jun X, Wangfa H, Lijun Z, Jing W, Dong H. Identification of Key Genes in Lung Adenocarcinoma and Establishment of Prognostic Mode. Front Mol Biosci 2020; 7:561456. [PMID: 33195408 PMCID: PMC7653064 DOI: 10.3389/fmolb.2020.561456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The development of human tumors is associated with the abnormal expression of various functional genes, and a massive tumor-based database needs to be deeply mined. Based on a multigene prediction model, access to urgent prognosis of patients has become possible. MATERIALS AND METHODS We selected three RNA expression profiles (GSE32863, GSE10072, and GSE43458) from the lung adenocarcinoma (LUAD) database of the Gene Expression Omnibus (GEO) and analyzed the differentially expressed genes (DEGs) between tumor and normal tissue using GEO2R program. After that, we analyzed the transcriptome data of 479 LUAD samples (54 normal tissue samples and 425 cancer tissue samples) and their clinical follow-up data from the (TCGA) database. Kaplan-Meier (KM) curve and receiver operating characteristic (ROC) were used to assess the prediction model. Multivariate Cox analysis was used to identify independent predictors. TCGA pancreatic adenocarcinoma datasets were used to establish a nomogram model. RESULTS We found 98 significantly prognosis-related genes using KM and COX analysis, among which six genes were found to be the DEGs in GEO. Using multivariate analysis, it was found that a single gene could not be used as an independent predictor of prognosis. However, the risk score calculated by weighting these six genes could serve as an independent prognosis predictor. COX analysis performed with multiple covariates such as age, gender, tumor stage, and TNM typing showed that risk score could still be utilized as an independent risk factor for patient survival rate (p = 0.013) and had an applicable reliability (area under the curve, AUC = 0.665). By combining risk score and various clinical features, the nomogram model was constructed, which had been proven to have high consistency for the prediction of 3- and 5-year survival rate (concordance = 0.751) and high accuracy as tested by ROC (AUC = 0.71;AUC = 0.708). CONCLUSION We proposed a method to predict the prognosis of LUAD by weighting multiple genes and constructed a nomogram model suitable for the prognostic evaluation of LUAD, which could provide a new tool for the identification of therapeutic targets and the efficacy evaluation of LUAD.
Collapse
Affiliation(s)
- Zhou Jiawei
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Mu Min
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Xing Yingru
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, China
| | - Zhang Xin
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Li Danting
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Liu Yafeng
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Xie Jun
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, China
| | - Hu Wangfa
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, China
| | - Zhang Lijun
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Wu Jing
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Hu Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Key Laboratory of Industrial Dust Prevention and Control and Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
30
|
Clinical and analytical validation of FoundationOne Liquid CDx, a novel 324-Gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS One 2020; 15:e0237802. [PMID: 32976510 PMCID: PMC7518588 DOI: 10.1371/journal.pone.0237802] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022] Open
Abstract
As availability of precision therapies expands, a well-validated circulating cell-free DNA (cfDNA)-based comprehensive genomic profiling assay has the potential to provide considerable value as a complement to tissue-based testing to ensure potentially life-extending therapies are administered to patients most likely to benefit. Additional data supporting the clinical validity of cfDNA-based testing is necessary to inform optimal use of these assays in the clinic. The FoundationOne®Liquid CDx assay is a pan-cancer cfDNA-based comprehensive genomic profiling assay that was recently approved by FDA. Validation studies included >7,500 tests and >30,000 unique variants across >300 genes and >30 cancer types. Clinical validity results across multiple tumor types are presented. Additionally, results demonstrated a 95% limit of detection of 0.40% variant allele fraction for select substitutions and insertions/deletions, 0.37% variant allele fraction for select rearrangements, 21.7% tumor fraction for copy number amplifications, and 30.4% TF for copy number losses. The limit of detection for microsatellite instability and blood tumor mutational burden were also determined. The false positive variant rate was 0.013% (approximately 1 in 8,000). Reproducibility of variant calling was 99.59%. In comparison with an orthogonal method, an overall positive percent agreement of 96.3% and negative percent agreement of >99.9% was observed. These study results demonstrate that FoundationOne Liquid CDx accurately and reproducibly detects the major types of genomic alterations in addition to complex biomarkers such as microsatellite instability, blood tumor mutational burden, and tumor fraction. Critically, clinical validity data is presented across multiple cancer types.
Collapse
|
31
|
Park CK, Cho HJ, Choi YD, Oh IJ, Kim YC. A Phase II Trial of Osimertinib as the First-Line Treatment of Non-Small Cell Lung Cancer Harboring Activating EGFR Mutations in Circulating Tumor DNA: LiquidLung-O-Cohort 1. Cancer Res Treat 2020; 53:93-103. [PMID: 32972042 PMCID: PMC7812005 DOI: 10.4143/crt.2020.459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/17/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose Osimertinib is a potent, irreversible third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor for both EGFR-activating and T790M resistant mutation. The treatment efficacy of osimertinib was assessed in previously untreated patients with metastatic non–small cell lung carcinoma (NSCLC) harboring activating EGFR mutations in circulating tumor DNA (ctDNA) as well as tumor DNA. Materials and Methods Patients with activating EGFR mutations in their tumor DNA underwent screening with ctDNA analysis using Mutyper and Cobas v2 assays. Enrolled subjects received osimertinib 80 mg, once daily. Primary endpoint was objective response rate (ORR) and secondary endpoints were ctDNA test sensitivity, progression-free survival (PFS), duration of response (DoR), and safety. Results Among 39 screened patients, 29 were ctDNA positive for activating EGFR mutations and 19 were enrolled (ex19del, n=11; L858R/L861Q, n=7; G719A, n=1). Median age was 70 and most patients had brain metastases (15/19, 79%). ctDNA test sensitivity for activating EGFR mutations was 74% using both methods and 62% (Mutyper) or 64% (Cobas v2) for individual methods. ORR was 68% (13/19), median PFS was 11.1 months (95% confidence interval [CI], 0.0 to 26.7), and median DoR was 17.6 months (95% CI, 3.5 to 31.7). ORR and median PFS were significantly superior with ex19del (91%; 21.9 months; 95% CI, 5.5 to 38.3) than with L858R/L861Q (43%; 5.1 months; 95% CI, 2.3 to 7.9). One patient discontinued the drug because of drug-related interstitial pneumonitis. Conclusion Osimertinib had favorable efficacy in the first-line treatment of metastatic NSCLC harboring activating EGFR mutations in ctDNA as well as tumor DNA.
Collapse
Affiliation(s)
- Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Ju Cho
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
32
|
Huang Y, Mu J, Qi L, Ge W, Fang X, Song Y, Yuan Y, Zheng S. Diverse fragment lengths dismiss size selection for serum cell-free DNA: a comparative study of serum and plasma samples. Clin Chem Lab Med 2020; 58:1451-1459. [PMID: 32229658 DOI: 10.1515/cclm-2020-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Background The objective of this study was to determine the features of fragment length for circulating cell-free DNA (cfDNA) from plasma and serum samples. Methods Plasma and serum samples from different sources were randomly collected. Circulating cfDNA was extracted and purified by a precipitation-enriched and spin-column-based kit. The concentration of the purified DNA was immediately measured by a highly sensitive dsDNA quantitative assay, and then the fragment length was analyzed by capillary electrophoresis. The abundance of a specific fragment was estimated by the area under curve (AUC) for the fragment peak in the capillary electrophoresis. Results A total of 199 plasma and 117 serum samples were extracted and analyzed. The average yield of cfDNA from the serum samples (131.67 ng/mL) was significantly higher than that from the plasma samples (32.78 ng/mL, p < 0.001). The average abundance of the 20-400 bp fragments in plasma cfDNA (84.4%) was significantly higher than that of serum cfDNA (51.9%, p < 0.001). Fragment peaks in serum cfDNA always presented in regions around 190 bp, 430 bp, and 630 bp, but plasma cfDNA generally showed a sharp peak in the 165-190 bp region and a much lower peak in the 300<uni-2013;400 bp region. Large fragments in plasma cfDNA were longer than 1000 bp and peaked around the 3000<uni-2013;4000 bp region while the large fragments in serum cfDNA were always shorter and peaked around the 1000 bp region. Conclusions The fragment lengths of serum cfDNA and plasma cfDNA have very different features. Fragment size selection is suitable for plasma cfDNA but may not apply to serum cfDNA.
Collapse
Affiliation(s)
- Yanqin Huang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Jiayi Mu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Lina Qi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Weiting Ge
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, P.R. China
| | - Xuefeng Fang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Yongmao Song
- Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang,P.R. China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province), The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road,Hangzhou, Zhejiang Province,P.R. China, Phone: +8657187784501, Fax: +8657187214404
| |
Collapse
|
33
|
Liu J, Li X, Shao Y, Guo X, He J. The efficacy and safety of osimertinib in treating nonsmall cell lung cancer: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21826. [PMID: 32846826 PMCID: PMC7447427 DOI: 10.1097/md.0000000000021826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is the primary treatment in treating with EGFR mutant nonsmall cell lung cancer (NSCLC). This systematic review and meta-analysis aimed to evaluate the efficacy and safety of the third-generation EGFR-TKI, osimertinib, and summarize the risk factors associating with outcome after osimertinib treatment. METHOD The Ovid Medline, Embase, Cochrane Library, and Pubmed were systematically searched due to December 10, 2019. All the studies that mentioned the overall survival (OS), progression-free survival (PFS), treatment response, and adverse events (AEs) of osimertinib were involved in our study. Hazard ratio (HR) with 95% confidence intervals was used for comparing OS and PFS. RESULT A total of 47 studies were included in the systematic review, of which 14 studies were used to compare the efficacy between osimertinib and other EGFR-TKI or chemotherapy. Patients treating with osimertinib favors a higher OS and PFS in all the patients (HR = 0.56 and 0.38, P < .001, respectively), and in subgroup analysis, compared with other treatments. Median 55% T790 mutant NSCLC patients might experience partial response, and 25% of patients remained as stable disease. The incidence of severe AE ranged from 0% to 5%, and the most common severe AE was pneumonia (3%). Patients with the T858R mutation may have a better OS than Del 19 mutation (HR = 0.55, P = .037), while patients who have a smoking history may have a higher risk of progression than never-smoker patients (HR = 1.47, P = .028). CONCLUSION Osimertinib has an impressive antitumor activity compared with prior EGFR-TKI and chemotherapy with an acceptable response and tolerable AEs. EGFR mutation type and smoking status were the risk factors for mortality and progression in NSCLC patients.
Collapse
|
34
|
Pender A, Hughesman C, Law E, Kristanti A, McNeil K, Wong S, Tucker T, Bosdet I, Young S, Laskin J, Karsan A, Yip S, Ho C. EGFR circulating tumour DNA testing: identification of predictors of ctDNA detection and implications for survival outcomes. Transl Lung Cancer Res 2020; 9:1084-1092. [PMID: 32953487 PMCID: PMC7481591 DOI: 10.21037/tlcr-19-581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background EGFR T790M testing is the standard of care for activating EGFR mutation (EGFRm) non-small cell lung cancer (NSCLC) progressing on 1st/2nd generation TKIs to select patients for osimertinib. Despite sensitive assays, detection of circulating tumour deoxyribonucleic acid (ctDNA) is variable and influenced by clinical factors. The number and location of sites of progressive disease at time of testing were reviewed to explore the effect on EGFR ctDNA detection. The prognostic value of EGFR ctDNA detection on survival outcomes was assessed. Methods Following extraction of cell-free DNA from plasma using the QIAamp Circulating Nucleic Acid Kit, custom droplet digital polymerase chair reaction (ddPCR) assays were used to assess EGFR ctDNA using the Bio-Rad QX200 system. The ddPCR assay has a limit of detection of ≤0.15% variant allele fraction. Baseline characteristics and imaging reports at time of EGFR ctDNA testing were reviewed retrospectively for a 1 year period. Results The study included 177 patients who had an EGFR ctDNA test. Liver (aOR 3.13) or bone (aOR 2.76) progression or 3–5 sites of progression (aOR 2.22) were predictive of EGFR ctDNA detection. The median OS from first ctDNA test after multiple testing iterations was 12.3 m undetectable EGFR ctDNA, 7.6 m for original EGFR mutation only and 24.1 m with T790M (P=0.001). Conclusions Patients with liver or bone progression and 3–5 progressing sites are more likely to have informative EGFR ctDNA testing. Detection of EGFR ctDNA is a negative prognostic indicator in the absence of a T790M resistance mutation, potentially reflecting the disease burden in the absence of targeted therapy options.
Collapse
Affiliation(s)
- Alexandra Pender
- Department of Medical Oncology, Royal Free London NHS Foundation Trust and North Middlesex University Hospital, London, UK
| | - Curtis Hughesman
- Cancer Genetics & Genomics Laboratory, BC Cancer, Vancouver, Canada
| | - Elaine Law
- Cancer Genetics & Genomics Laboratory, BC Cancer, Vancouver, Canada
| | - Amadea Kristanti
- Cancer Genetics & Genomics Laboratory, BC Cancer, Vancouver, Canada
| | - Kelly McNeil
- Cancer Genetics & Genomics Laboratory, BC Cancer, Vancouver, Canada
| | - Selina Wong
- Department of Medical Oncology, BC Cancer, Vancouver, Canada
| | - Tracy Tucker
- Cancer Genetics & Genomics Laboratory, BC Cancer, Vancouver, Canada
| | - Ian Bosdet
- Cancer Genetics & Genomics Laboratory, BC Cancer, Vancouver, Canada
| | - Sean Young
- Cancer Genetics & Genomics Laboratory, BC Cancer, Vancouver, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, Canada.,University of British Columbia, Vancouver, Canada
| | - Aly Karsan
- University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, Canada
| | - Stephen Yip
- Cancer Genetics & Genomics Laboratory, BC Cancer, Vancouver, Canada.,University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, Canada
| | - Cheryl Ho
- Department of Medical Oncology, BC Cancer, Vancouver, Canada.,University of British Columbia, Vancouver, Canada
| |
Collapse
|
35
|
Rescue of Non-Informative Circulating Tumor DNA to Monitor the Mutational Landscape in NSCLC. Cancers (Basel) 2020; 12:cancers12071917. [PMID: 32708545 PMCID: PMC7409026 DOI: 10.3390/cancers12071917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
In non-small cell lung cancer (NSCLC) the usage of plasma-derived circulating tumor DNA (ctDNA) have come into focus to obtain a comprehensive genetic profile of a given lung cancer. Despite the usage of specific sampling tubes, archived plasma samples as well as inappropriately treated blood samples still cause a loss of information due to cell lysis and contamination with cellular DNA. Our aim was to establish a reliable protocol to rescue ctDNA from such non-informative samples to monitor the mutational landscape in NSCLC. As a proof-of-concept study we used archived plasma samples derived from whole blood EDTA samples of 51 patients suffering from NSCLC. Analysis of the isolated plasma DNA determined only a small fraction of ctDNA in a range of 90-250 bp. By applying a specific purification procedure, we were able to increase the informative ctDNA content and improve in a cohort of 42 patients the detection of driver mutations from 32% to 79% of the mutations found in tissue biopsies. Thus, we present here an easy to perform, time and cost effective procedure to rescue non-informative ctDNA samples, which is sufficient to detect oncogenic mutations in NGS approaches and is therefore a valuable technical improvement for laboratories handling liquid biopsy samples.
Collapse
|
36
|
Circulating tumour DNA: A new biomarker to monitor resistance in NSCLC patients treated with EGFR-TKIs. Biochim Biophys Acta Rev Cancer 2020; 1873:188363. [PMID: 32275933 DOI: 10.1016/j.bbcan.2020.188363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022]
Abstract
Targeted molecular therapies have markedly improved the therapeutic management of lung cancer, while the discovery of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has revolutionized the treatment of non-small cell lung cancer (NSCLC). However, the clinical benefit of targeted therapies is limited by the eventual emergence of resistance. Identifying and monitoring the underlying mechanism of EGFR-TKI resistance could lead to more precise therapy and advances in treatment. Presently, tissue biopsy remains the gold standard for genotyping but it is limited by sampling bias, lack of available tissue, and potential complications. Analysis of circulating tumour DNA (ctDNA) may overcome the current limitations of tissue biopsies and provide a comprehensive landscape of the resistance mechanisms in a minimally invasive manner. Well-developed, analytically valid detection technologies are prerequisites for integrating ctDNA detection into clinical cancer management. Here, we provide an overview of available methodologies for ctDNA detection and we also discuss the potential clinical applications of ctDNA to monitor the resistance mechanisms.
Collapse
|
37
|
Zhao Z, Li L, Wang Z, Duan J, Bai H, Wang J. The Status of the EGFR T790M Mutation is associated with the Clinical Benefits of Osimertinib Treatment in Non-small Cell Lung Cancer Patients: A Meta-Analysis. J Cancer 2020; 11:3106-3113. [PMID: 32231715 PMCID: PMC7097959 DOI: 10.7150/jca.38411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/30/2019] [Indexed: 01/26/2023] Open
Abstract
Background and Purpose: Pervious studies have demonstrated that the loss of EGFR T790M after Osimertinib treatment may be the cause of Osimertinib resistance. Here, we conducted a meta-analysis to evaluate the association between the persistence of EGFR T790M and the clinical benefits of Osimertinib in non-small cell lung cancer (NSCLC) patients with baseline EGFR T790M mutation. Experimental design and Methods: PUBMED, EMBASE, and Cochrane databases were searched for eligible studies that provided the survival outcomes including overall survival (OS), progression-free survival (PFS) or time to discontinuation (TTD) data for each patient treated with Osimertinib with the status of the T790M mutation tested after Osimertinib resistance. The hazard ratios (HRs) and their 95% confidence intervals (CI) were calculated for each study. Results: In total, eight eligible studies were included in the analysis, among which six studies provided the data on PFS, and the other two studies provided the TTD data. Overall, 312 patients (151 patients with the persistence of T790M) were identified. The persistence of T790M was associated with longer PFS (HR, 0.40; 95% CI, 0.19-0.84; P=0.01) and TTD (HR, 0.54; 95% CI, 0.39-0.76; P=0.0004). Furthermore, overall analysis the survival outcomes including PFS and TTD subgroups also showed preferable clinical benefits for patients with the T790M persistence (HR, 0.57; 95%CI, 0.45-0.73; P<0.00001). Conclusions: Our findings confirm the persistence of T790M is associated with the clinical benefits of Osimertinib in NSCLC patients with baseline EGFR T790M mutation treated with Osimertinib.
Collapse
Affiliation(s)
- Zhe Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lu Li
- Health Service Department of the Guard Bureau of the Joint Staff Department, Beijing, 100017, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
38
|
Dong S, Men W, Yang S, Xu S. Identification of lung adenocarcinoma biomarkers based on bioinformatic analysis and human samples. Oncol Rep 2020; 43:1437-1450. [PMID: 32323809 PMCID: PMC7108011 DOI: 10.3892/or.2020.7526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma is one of the most common malignant tumors worldwide. Although efforts have been made to clarify its pathology, the underlying molecular mechanisms of lung adenocarcinoma are still not clear. The microarray datasets GSE75037, GSE63459 and GSE32863 were downloaded from the Gene Expression Omnibus (GEO) database to identify biomarkers for effective lung adenocarcinoma diagnosis and therapy. The differentially expressed genes (DEGs) were identified by GEO2R, and function enrichment analyses were conducted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). The STRING database and Cytoscape software were used to construct and analyze the protein-protein interaction network (PPI). We identified 376 DEGs, consisting of 83 upregulated genes and 293 downregulated genes. Functional and pathway enrichment showed that the DEGs were mainly focused on regulation of cell proliferation, the transforming growth factor β receptor signaling pathway, cell adhesion, biological adhesion, and responses to hormone stimulus. Sixteen hub genes were identified and biological process analysis showed that these 16 hub genes were mainly involved in the M phase, cell cycle phases, the mitotic cell cycle, and nuclear division. We further confirmed the two genes with the highest node degree, DNA topoisomerase IIα (TOP2A) and aurora kinase A (AURKA), in lung adenocarcinoma cell lines and human samples. Both these genes were upregulated and associated with larger tumor size. Upregulation of AURKA in particular, was associated with lymphatic metastasis. In summary, identification of the DEGs and hub genes in our research enables us to elaborate the molecular mechanisms underlying the genesis and progression of lung adenocarcinoma and identify potential targets for the diagnosis and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Siyuan Dong
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wanfu Men
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shize Yang
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shun Xu
- Department of Thoracic Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
39
|
Oliveira KC, Ramos IB, Silva JM, Barra WF, Riggins GJ, Palande V, Pinho CT, Frenkel-Morgenstern M, Santos SE, Assumpcao PP, Burbano RR, Calcagno DQ. Current Perspectives on Circulating Tumor DNA, Precision Medicine, and Personalized Clinical Management of Cancer. Mol Cancer Res 2020; 18:517-528. [DOI: 10.1158/1541-7786.mcr-19-0768] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/13/2019] [Accepted: 01/23/2020] [Indexed: 11/16/2022]
|
40
|
Xu C, Cao H, Shi C, Feng J. The Role Of Circulating Tumor DNA In Therapeutic Resistance. Onco Targets Ther 2019; 12:9459-9471. [PMID: 31807023 PMCID: PMC6850686 DOI: 10.2147/ott.s226202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/09/2019] [Indexed: 12/22/2022] Open
Abstract
The application of precision medicine in cancer treatment has partly succeeded in reducing the side effects of unnecessary chemotherapeutics and in improving the survival rate of patients. However, with the long-term use of therapy, the dynamically changing intratumoral and intertumoral heterogeneity eventually gives rise to therapeutic resistance. In recent years, a novel testing technology (termed liquid biopsy) using circulating tumor DNAs (ctDNAs) extracted from peripheral blood samples from patients with cancer has brought about new expectations to the medical community. Using ctDNAs, clinicians can trace the heterogeneity pattern to duly adjust individual therapy and prolong overall survival for patients with cancer. Technological advances in detecting and characterizing ctDNAs (eg, development of next-generation sequencing) have provided clinicians with a valuable tool for genotyping tumors individually and identifying genetic and epigenetic alterations of the entire tumor to capture mutations associated with therapeutic resistance.
Collapse
Affiliation(s)
- Chenxin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| | - Haixia Cao
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Chen Shi
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
41
|
Huang L, Huang H, Zhou XP, Liu JF, Li CR, Fang M, Wu JR. Osimertinib or EGFR-TKIs/chemotherapy in patients with EGFR-mutated advanced nonsmall cell lung cancer: A meta-analysis. Medicine (Baltimore) 2019; 98:e17705. [PMID: 31651902 PMCID: PMC6824777 DOI: 10.1097/md.0000000000017705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The aim of this meta-analysis is to investigate the impact of Osimertinib on treatment efficacy in advanced nonsmall cell lung cancer (NSCLC). METHODS Trials comparing Osimertinib against epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs)/chemotherapy in patients with NSCLC with an epidermal growth factor receptor (EGFR) mutation were included, and the pooled data for progression-free survival (PFS), overall survival (OS), overall response rate (ORR), disease control rate (DCR), and adverse events (AEs) were analyzed. RESULTS Analysis results based on 6 eligible trials showed that Osimertinib significantly improved the overall PFS (hazard ratio [HR] = 0.38, 95% confidence interval [CI] = 0.29-0.50), improved the OS (HR = 0.66, 95% CI = 0.48-0.89), increased the ORR (odds ratio [OR] = 1.76, 95% CI = 1.14-2.72), increased the overall DCR (OR = 1.18, 95% CI = 1.02-1.37), and reduced the grade 3 or greater AEs (relative ratio [RR] = 0.50, 95% CI = 0.33-0.75) in all subgroups except in the ORR in the Exon 19 deletion (Ex19del) and/or L858R subgroup. Compared to patients with Ex19del and/or L858R mutation, patients with the T790M mutation had the benefits of a greater PFS (41.7%), a greater ORR (80.0%), a greater DCR (71.2%), and fewer grade 3 or greater AEs (70.7%) (each P < .05). Race, sex, age, EGFR mutation, and smoking history may significantly predict additional benefits from Osimertinib, but there were no significant differences between subgroups stratified by these clinical characteristics. CONCLUSIONS Osimertinib showed greater treatment benefit for patients with NSCLC with EGFR mutation than EGFR-TKIs/chemotherapy, especially for T790M mutation-positive patients.
Collapse
Affiliation(s)
- Lei Huang
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Hao Huang
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Xiao-Ping Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jin-Feng Liu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Chun-Rong Li
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Min Fang
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University
| | - Jun-Rong Wu
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University
| |
Collapse
|
42
|
Lu J, Shi Q, Zhang L, Wu J, Lou Y, Qian J, Zhang B, Wang S, Wang H, Zhao X, Han B. Integrated Transcriptome Analysis Reveals KLK5 and L1CAM Predict Response to Anlotinib in NSCLC at 3rd Line. Front Oncol 2019; 9:886. [PMID: 31572680 PMCID: PMC6749025 DOI: 10.3389/fonc.2019.00886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
The oral multi-targeted tyrosine kinase inhibitor (TKI) anlotinib is effective for non-small cell lung cancer (NSCLC) in clinical trials at 3rd line. However, a fraction of patients remains non-responsive, raising the need of how to identify anlotinib-responsive patients. In the present study, we aimed to screen potential biomarkers for anlotinib-responsive stratification via integrated transcriptome analysis. Comparing with the anlotinib-sensitive lung cancer cell NCI-H1975, we found 1,315 genes were differentially expressed in anlotinib-resistant NCI-H1975 cells. Among the enriched angiogenesis-related genes, we observed high expression of KLK5 and L1CAM was mostly associated with poor clinical outcomes in NSCLC patients through Kaplan-Meier survival analysis in a TCGA cohort. Moreover, an independent validation in a cohort of ALTER0303 (NCT02388919) indicated that high serum levels of KLK5 and L1CAM were also associated with poor anlotinib response in NSCLC patients at 3rd line. Lastly, we demonstrated that knockdown of KLK5 and L1CAM increases anlotinib-induced cytotoxicity in anlotinib-resistant NCI-H1975 cells. Collectively, our study suggested serum levels of KLK5 and L1CAM potentially serve as biomarkers for anlotinib-responsive stratification in NSCLC patients at 3rd line.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qin Shi
- Department of Oncology, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lele Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - Yuqing Lou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Qian
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuyuan Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Kim YW, Kim YH, Song Y, Kim HS, Sim HW, Poojan S, Eom BW, Kook MC, Joo J, Hong KM. Monitoring circulating tumor DNA by analyzing personalized cancer-specific rearrangements to detect recurrence in gastric cancer. Exp Mol Med 2019; 51:1-10. [PMID: 31395853 PMCID: PMC6802636 DOI: 10.1038/s12276-019-0292-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/24/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has emerged as a candidate biomarker for cancer screening. However, studies on the usefulness of ctDNA for postoperative recurrence monitoring are limited. The present study monitored ctDNA in postoperative blood by employing cancer-specific rearrangements. Personalized cancer-specific rearrangements in 25 gastric cancers were analyzed by whole-genome sequencing (WGS) and were employed for ctDNA monitoring with blood up to 12 months after surgery. Personalized cancer-specific rearrangements were identified in 19 samples. The median lead time, which is the median duration between a positive ctDNA detection and recurrence, was 4.05 months. The presence of postoperative ctDNA prior to clinical recurrence was significantly correlated with cancer recurrence within 12 months of surgery (P = 0.029); in contrast, no correlation was found between cancer recurrence and the presence of preoperative ctDNA, suggesting the clinical usefulness of postoperative ctDNA monitoring for cancer recurrence in gastric cancer patients. However, the clinical application of ctDNA can be limited by the presence of ctDNA non-shedders (42.1%, 8/19) and by inconsistent postoperative ctDNA positivity. Fragments of tumor DNA, or circulating tumor DNA (ctDNA), in blood can help predict stomach cancer recurrence within 12 months of surgery. Kyeong-Man Hong at the National Cancer Center, in Goyang-si, South Korea, and colleagues, carried out whole genome sequencing of stomach tumor samples from 25 patients to identify personalized cancer-specific rearranged DNA sequences. When they used this information to monitor ctDNA in blood samples obtained after surgical removal of the tumor, they found a significant correlation between the presence of ctDNA and cancer recurrence. In most cases, ctDNA was detected around four months prior to clinical recurrence, highlighting the potential usefulness of ctDNA monitoring. The lack of correlation between ctDNA levels and tumor size suggests that further research into the factors determining ctDNA levels is needed.
Collapse
Affiliation(s)
- Young-Woo Kim
- Center for Gastric Cancer, National Cancer Center Hospital, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea.,Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Sience and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Young-Ho Kim
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Yura Song
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Han-Seong Kim
- Department of Pathology, Inje University Ilsan Paik Hospital, Ilsanseo-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hye Won Sim
- Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Sience and Policy, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea.,Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Shiv Poojan
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Bang Wool Eom
- Center for Gastric Cancer, National Cancer Center Hospital, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Myeong-Cherl Kook
- Center for Gastric Cancer, National Cancer Center Hospital, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jungnam Joo
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Kyeong-Man Hong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|