1
|
Zhan C, Peng C, Wei H, Wei K, Ou Y, Zhang Z. Diverse Subsets of γδT Cells and Their Specific Functions Across Liver Diseases. Int J Mol Sci 2025; 26:2778. [PMID: 40141420 PMCID: PMC11943347 DOI: 10.3390/ijms26062778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
γδT cells, a distinct group of T lymphocytes, serve as a link between innate and adaptive immune responses. They are pivotal in the pathogenesis of various liver disorders, such as viral hepatitis, nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), liver fibrosis, autoimmune liver diseases, and hepatocellular carcinoma (HCC). Despite their importance, the functional diversity and regulatory mechanisms of γδT cells remain incompletely understood. Recent advances in high-throughput single-cell sequencing and spatial transcriptomics have revealed significant heterogeneity among γδT cell subsets, particularly Vδ1+ and Vδ2+, which exhibit distinct immunological roles. Vδ1+ T cells are mainly tissue-resident and contribute to tumor immunity and chronic inflammation, while Vδ2+ T cells, predominantly found in peripheral blood, play roles in systemic immune surveillance but may undergo dysfunction in chronic liver diseases. Additionally, γδT17 cells exacerbate inflammation in NAFLD and ALD, whereas IFN-γ-secreting γδT cells contribute to antiviral and antifibrotic responses. These discoveries have laid the foundation for the creation of innovative solutions. γδT cell-based immunotherapeutic approaches, such as adoptive cell transfer, immune checkpoint inhibition, and strategies targeting metabolic pathways. Future research should focus on harnessing γδT cells' therapeutic potential through targeted interventions, offering promising prospects for precision immunotherapy in liver diseases.
Collapse
Affiliation(s)
- Chenjie Zhan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Chunxiu Peng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Huaxiu Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Ke Wei
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Yangzhi Ou
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
| | - Zhiyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China; (C.Z.); (C.P.)
- Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, New Brunswick, NJ 08901-8554, USA
| |
Collapse
|
2
|
Dabbaghizadeh A, Dion J, Maali Y, Fouda A, Bédard N, Evaristo G, Hassan GS, Tchervenkov J, Shoukry NH. Novel RORγt inverse agonists limit IL-17-mediated liver inflammation and fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf014. [PMID: 40073158 DOI: 10.1093/jimmun/vkaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/16/2025] [Indexed: 03/14/2025]
Abstract
Liver fibrosis is a global health problem. IL-17A has proven profibrogenic properties in liver disease making it an interesting therapeutic target. IL-17A is regulated by RORγt and produced by Th17 CD4+ and γδ-T cells. We hypothesized that blocking IL-17A production will limit fibrosis progression by reducing recruitment of inflammatory cells. Herein, we tested the therapeutic potential of 2 novel RORγt inverse agonists (2,3 derivatives of 4,5,6,7-tetrahydro-benzothiophene) in a mouse model of CCl4-induced liver injury. C57BL/6 mice received 2 weekly injections of CCl4 for 4 weeks. As of week 3, mice were treated with the 2 novel inverse agonists (TF-S10 and TF-S14) and GSK805 as a positive control. Mice treated with the inverse agonists showed reduced immune cells infiltrate around the portal and central veins. TF-S14 significantly reduced AST levels (P < 0.05), and all inhibitors led to an improvement in relative liver weight (liver index). Flow cytometry analysis demonstrated that all inhibitors reduced the numbers of intrahepatic lymphocytes (CD4+, CD8+, and γδ-T cells, P < 0.05), and myeloid (CD11b+) cells (P = 0.04), most significantly eosinophils (P < 0.05). Furthermore, IL-17A production by CD4+ and γδ-T cells was diminished (P < 0.05 and P < 0. 01, respectively). Finally, livers from inhibitors-treated mice showed decreased markers of hepatic stellate cell activation (desmin and ɑ-smooth muscle actin [ɑ-SMA]) and significantly reduced expression of the profibrogenic genes (Col1a1, Acta, Loxl2, and Tgfβ) (P < 0.001). This was accompanied by diminished collagen deposition as measured by Picrosirius Red staining (P < 0.001). In conclusion, our results suggest that inhibition of the IL-17A pathway could be a promising therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Afrooz Dabbaghizadeh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Jessica Dion
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Yousef Maali
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ahmed Fouda
- Division of Surgical and Interventional Science, Department of Surgery, McGill University, Montreal, QC, Canada
- Division of General Surgery, Section of Transplant Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- McGill University Health Centre, Montréal, QC, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Gertruda Evaristo
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | - Ghada S Hassan
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Jean Tchervenkov
- Division of Surgical and Interventional Science, Department of Surgery, McGill University, Montreal, QC, Canada
- Division of General Surgery, Section of Transplant Surgery, Department of Surgery, McGill University, Montreal, QC, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
3
|
Zhang Z, Wang J, Li H, Niu Q, Tao Y, Zhao X, Zeng Z, Dong H. The role of the interleukin family in liver fibrosis. Front Immunol 2025; 16:1497095. [PMID: 39995661 PMCID: PMC11847652 DOI: 10.3389/fimmu.2025.1497095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Liver fibrosis represents a wound-healing response to chronic liver injury caused by viral infections, alcohol, and chemicals agents. It is a critical step in the progression from chronic liver disease to cirrhosis and hepatocellular carcinoma. No chemical or biological drugs have been approved for the treatment of liver fibrosis. Relevant studies have demonstrated that effective inhibition of hepatitis B virus (HBV) replication by nucleoside (acid) analogs or polyethylene glycol alpha-interferon can lead to recovery in some patients with hepatitis B liver fibrosis, However, some patients with liver fibrosis do not show improvement, even after achieving a complete serologic and virologic response. A similar situation occurs in patients with hepatitis C-related liver fibrosis. The liver, with its unique anatomical and immunological structure, is the largest immune organ and produces a large number of cytokines in response to external stimuli, which are crucial for the progression of liver fibrosis. cytokines can act either by directly affecting hepatic stellate cells (HSCs) or by indirectly regulating immune target cells. Among these, the interleukin family activates a complex cascade of responses, including cytokines, chemokines, adhesion molecules, and lipid mediators, playing a key role in the initiation and regulation of inflammation, as well as innate and adaptive immunity. In this paper, we systematically summarize recent literature to elucidate the pathogenesis of interleukin-mediated liver fibrosis and explore potential therapeutic targets for liver fibrosis treatment.
Collapse
Affiliation(s)
- Zixin Zhang
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahui Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qun Niu
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yujing Tao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zijian Zeng
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haijian Dong
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Deng CC, Xu XY, Zhang Y, Liu LC, Wang X, Chen JY, Yao LY, Zhu DH, Yang B. Single-cell RNA-seq reveals immune cell heterogeneity and increased Th17 cells in human fibrotic skin diseases. Front Immunol 2025; 15:1522076. [PMID: 39872534 PMCID: PMC11769821 DOI: 10.3389/fimmu.2024.1522076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/16/2024] [Indexed: 01/30/2025] Open
Abstract
Background Fibrotic skin disease represents a major global healthcare burden, characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix components. The immune cells are postulated to exert a pivotal role in the development of fibrotic skin disease. Single-cell RNA sequencing has been used to explore the composition and functionality of immune cells present in fibrotic skin diseases. However, these studies detected the gene expression of all cells in fibrotic skin diseases and did not enrich immune cells. Thus, the precise immune cell atlas in fibrotic skin diseases remains unknown. In this study, we plan to investigate the intricate cellular landscape of immune cells in keloid, a paradigm of fibrotic skin diseases. Methods CD45+ immune cells were enriched by fluorescence-activated cell sorting. Single-cell RNA sequencing was used to analyze the cellular landscape of immune cells in keloid and normal scar tissues. Ki-67 staining, a scratch experiment, real-time PCR, and Western blotting were used to explore the effect of the Th17 cell supernatant on keloid fibroblasts. Results Our findings revealed the intricate cellular landscape of immune cells in fibrotic skin diseases. We found that the percentage of Th17 cells was significantly increased in keloids compared to normal scars. All the subclusters of macrophages and dendritic cells (DCs) showed similar proportions between keloid samples and normal scar samples. However, upregulated genes in keloid M1 macrophages, M2 macrophages, and cDC2 are associated with the MHC class II protein complex assembly and antigen assembly, indicating that macrophages and cDC2 are active in keloids. Functional studies suggested that the supernatant of Th17 cells could promote proliferation, collagen expression, and migration of keloid fibroblasts through interleukin 17A. Importantly, increased Th17 cells are also found in other fibrotic skin diseases, such as hypertrophic scars and scleroderma, suggesting this represents a broad mechanism for skin fibrosis. Conclusion In summary, we built a single-cell atlas of fibrotic skin diseases in this study. In addition, we explored the function of Th17 cell-fibroblast interaction in skin fibrosis. These findings will help to understand fibrotic skin disease pathogenesis in depth and identify potential targets for fibrotic skin disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ding-Heng Zhu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Zeng X, Liao Y, Cheng W. Transient receptor potential channel 6 knockout ameliorates hepatic fibrosis by inhibiting the activation and proliferation of hepatic stellate cells. J Gastroenterol Hepatol 2025; 40:294-303. [PMID: 39511967 DOI: 10.1111/jgh.16802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/25/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND AND AIM Hepatic fibrosis is a common outcome of chronic liver injury and can eventually lead to cirrhosis, which is a major public health concern. Hepatic stellate cells (HSCs) are the major producers of extracellular matrix (ECM) and regulate the synthesis and decomposition of ECM, but the specific mechanism of them remains unclear. Transient receptor potential channel 6 (TRPC6), a non-selective cation channel, plays an important role in organic fibrosis. However, the role of TRPC6 in liver fibrosis is rarely studied. METHODS Here, we investigated the function of TRPC6 in the activation of the human hepatic stellate cell line LX-2 in vitro and bile duct ligation (BDL)-induced hepatic fibrosis in vivo by western blot, Ca2+ imaging, and immunohistochemistry. RESULTS We first found that TRPC6 was upregulated in fibrotic liver tissues and TRPC6 knockout inhibited BDL-induced hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) treatment increased TRPC6 expression and thapsigargin (Tg)-mediated SOCE in LX-2 cells, which was decreased by the TRPC6 specific inhibitor SAR7334. Blockage of TRPC6 by SAR7334 or TRPC6-shRNA transfection attenuated TGF-β1-induced LX-2 cell activation and proliferation via the PI3K/AKT/p70S6K signaling pathway. CONCLUSIONS These observations suggested that TRPC6 contribute to LX-2 cell activation and hepatic fibrosis, and downregulation of TRPC6 may become a therapeutic strategy for the treatment of hepatic fibrosis in the future.
Collapse
Affiliation(s)
- Xixi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanhong Liao
- Department of Anatomy, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Weiyi Cheng
- Department of Pain, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Ran J, Yin S, Issa R, Zhao Q, Zhu G, Zhang H, Zhang Q, Wu C, Li J. Key role of macrophages in the progression of hepatic fibrosis. Hepatol Commun 2025; 9:e0602. [PMID: 39670853 PMCID: PMC11637753 DOI: 10.1097/hc9.0000000000000602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/10/2024] [Indexed: 12/14/2024] Open
Abstract
Liver fibrosis is a pathological change characterized by excessive deposition of extracellular matrix caused by chronic liver injury, and the mechanisms underlying its development are associated with endothelial cell injury, inflammatory immune cell activation, and HSC activation. Furthermore, hepatic macrophages exhibit remarkable heterogeneity and hold central functions in the evolution of liver fibrosis, with different subgroups exerting dual effects of promotion and regression. Currently, targeted macrophage therapy for reversing hepatic fibrosis has been extensively studied and has shown promising prospects. In this review, we will discuss the dual role of macrophages in liver fibrosis and provide new insights into reversing liver fibrosis based on macrophages.
Collapse
Affiliation(s)
- Jinqiu Ran
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Shengxia Yin
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Rahma Issa
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Qianwen Zhao
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Guangqi Zhu
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Huan Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qun Zhang
- Department of Infectious Diseases, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chao Wu
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Disease, Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Tsukanov VV, Veselova NE, Vasyutin AV, Savchenko A, Tonkikh JL, Borisov AG. Blood MAIT cells phenotype in patients with Opisthorchis felineus invasion depending on the severity of liver fibrosis. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2024:139-145. [DOI: 10.21518/ms2024-338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Introduction. MAIT cells are a new subpopulation of T cells that protect mucous barriers against penetration of foreign substances. There are practically no studies devoted to the participation of these cells in the pathogenesis of parasitic diseases.Aim. To study the phenotype of blood MAIT cells in patients with Opisthorchis felineus (O. felineus) invasion depending on the severity of liver fibrosis.Materials and methods. A total of 78 patients with O. felineus invasion (42 men and 36 women) and 26 control group individuals (14 men and 12 women) were examined. Opisthorchiasis was diagnosed using coproovoscopy and duodenal contents microscopy. All patients underwent liver elastometry using Aixplorer (France) or Siemens Acuson S2000 (Germany) systems with determination of the liver fibrosis degree according to METAVIR. The phenotype composition of lymphocytes was investigated using a Navios flow cytometer (Beckman Coulter, USA). T cells, T helpers, and T cytotoxic lymphocytes were isolated and the presence of NCR Va7.2 and CD161 on the surface of these cells was assessed.Results. The content of MAIT T-helpers was decreased in patients with O. felineus invasion compared to healthy individuals (p < 0.001). In MAIT T-cytotoxic cells, a similar pattern was not detected (p = 0.5). In patients with liver fibrosis F2 according to METAVIR compared to individuals with F0 according to METAVIR, a decrease in the total number of T-cells, T-helpers and T-cytotoxic cells, as well as MAIT T-helpers and MAIT T-cytotoxic cells was observed. Thus, the content of CD161+ NCR Va7.2+ T-helpers was 0.020% [0.004–0.042%] in patients with opisthorchiasis with F0 according to METAVIR and 0.0% [0.0–0.003%] in individuals with liver fibrosis F2 according to METAVIR (p = 0.001). For CD161+ NCR Va7.2+ T-cytotoxic cells, these indicators were, respectively, 1.47% [0.41–2.49%] and 0.12% [0.07–0.31%] (p < 0.001).Conclusion. Further study of MAIT cells in patients with liver pathology has undoubted prospects for the creation of new therapeutic and diagnostic technologies.
Collapse
Affiliation(s)
- V. V. Tsukanov
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences of Scientific Research Institute of Medical Problems of the North
| | - N. E. Veselova
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences of Scientific Research Institute of Medical Problems of the North
| | - A. V. Vasyutin
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences of Scientific Research Institute of Medical Problems of the North
| | - A. Savchenko
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences of Scientific Research Institute of Medical Problems of the North
| | - J. L. Tonkikh
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences of Scientific Research Institute of Medical Problems of the North
| | - A. G. Borisov
- Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences of Scientific Research Institute of Medical Problems of the North
| |
Collapse
|
8
|
Chang N, Liu Y, Li W, Ma Y, Zhou X, Zhao X, Yang L, Li L. Neutrophil-secreted S100A8/A9 participates in fatty liver injury and fibrosis by promoting myofibroblast migration. J Mol Med (Berl) 2024; 102:1117-1133. [PMID: 38995368 DOI: 10.1007/s00109-024-02469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Fatty liver, which is induced by abnormal lipid metabolism, is one of the most common causes of chronic liver disease globally and causes liver fibrosis. During this process, bone marrow-derived mesenchymal stromal cells (BMSCs) and hepatic stellate cells (HSCs) migrate toward the injured liver and participate in fibrogenesis by transdifferentiating into myofibroblasts. S100A8/A9 is a powerful inducer of cell migration and is involved in liver injury. But there are few reports about the effects of S100A8/A9 on BMSC/HSC migration. In the current study, we found that S100A8/A9 expression was increased during fatty liver injury/fibrogenesis. Moreover, S100A8/A9 expression had a positive correlation with fibrosis marker gene expressions in the injured liver. S100A8/A9 was mainly produced by neutrophils in the fibrotic liver. In vitro, neutrophil-secreted S100A8/A9 promoted BMSC/HSC migration via remodeling of microfilaments. Using specific siRNA and inhibitor, we proved that S100A8/A9-induced BMSC/HSC migration is dependent on TLR4/Rho GTPases signaling. Moreover, S100A8/A9 knock-down alleviated liver injury and fibrogenesis in vivo, while injection of S100A9 neutralizing antibody performed similar roles. We proved that S100A8/A9 was involved in liver injury and fibrogenesis via inducing BMSC/HSC migration. Our research reveals a new mechanism underlying BMSC/HSC migration in liver fibrosis and suggests S100A8/A9 as a potential therapeutic target of liver fibrosis. KEY MESSAGES: S100A8/A9 is secreted by neutrophils and increased in fatty liver injury. Neutrophil-secreted S100A8/A9 is a mediator of BMSC/HSC migration in vitro. S100A8/A9-induced BMSC/HSC migration is dependent on TLR4/Rho GTPases signaling. S100A8/A9 blockade alleviates liver injury and fibrogenesis in vivo.
Collapse
Affiliation(s)
- Na Chang
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yuran Liu
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Weiyang Li
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yuehan Ma
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Xuan Zhou
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Xinhao Zhao
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Lin Yang
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Liying Li
- Department of Cell Biology, Laboratory for Clinical Medicine, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
9
|
Takeshima R, Kamata M, Suzuki S, Ito M, Watanabe A, Uchida H, Chijiwa C, Okada Y, Azuma S, Nagata M, Egawa S, Hiura A, Fukaya S, Hayashi K, Fukuyasu A, Tanaka T, Ishikawa T, Tada Y. Interleukin-23 inhibitors decrease Fibrosis-4 index in psoriasis patients with elevated Fibrosis-4 index but not inteleukin-17 inhibitors. J Dermatol 2024; 51:1216-1224. [PMID: 38804254 DOI: 10.1111/1346-8138.17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Recent studies indicate that hepatic diseases are associated with psoriasis. Non-invasive tests, including the Fibrosis-4 (FIB-4) index, which can confidently rule out the presence of advanced fibrosis, are currently receiving attention. However, data on the FIB-4 index in psoriasis patients and the effects of biologics on the FIB-4 index are limited. We investigated the relationships between the FIB-4 index and demographic or clinical characteristics as well as the effects of biologics on the FIB-4 index in psoriasis patients. Psoriasis patients aged 36-64 years, whose treatment was initiated with interleukin (IL)-17 inhibitors or IL-23 inhibitors for psoriasis from May 2015 to December 2022, were consecutively included. Data were collected retrospectively from the patients' charts. A total of 171 psoriasis patients were included in this study. Thirty-four, 43, 21, 32, and 41 psoriasis patients were treated with secukinumab, ixekizumab, brodalumab, guselkumab, or risankizumab, respectively. In biologics-naïve patients, a significant but weak positive correlation was observed between the FIB-4 index and age (r = 0.3246, p = 0.0018). There was no significant correlation between the FIB-4 index and other demographic or clinical characteristics. Regarding the effects of biologics on the FIB-4 index, no significant change was observed in psoriasis patients treated with any biologics. However, in psoriasis patients with a baseline FIB-4 index of >1.3, patients treated with guselkumab and those treated with either IL-23 inhibitor showed significantly decreased FIB-4 index scores 6 months after initiating the biologics (p = 0.0323, p = 0.0212). In contrast, no change was observed in FIB-4 index scores in patients treated with IL-17 inhibitors. In conclusion, our study revealed that the FIB-4 index was correlated with age in psoriasis patients. Furthermore, IL-23 inhibitors (but not IL-17 inhibitors) decreased the FIB-4 index score at 6 months in psoriasis patients with elevated FIB-4 index scores at baseline. Further studies are needed to clarify whether IL-23 inhibitors improve liver fibrosis physiologically and functionally.
Collapse
Affiliation(s)
- Ryosuke Takeshima
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Masahiro Kamata
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shoya Suzuki
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Makoto Ito
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Ayu Watanabe
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hideaki Uchida
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Chika Chijiwa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshiki Okada
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Saori Azuma
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Mayumi Nagata
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shota Egawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Azusa Hiura
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Saki Fukaya
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Kotaro Hayashi
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Atsuko Fukuyasu
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takamitsu Tanaka
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takeko Ishikawa
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yayoi Tada
- Department of Dermatology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Sun J, Yang F, Zheng Y, Huang C, Fan X, Yang L. Pathogenesis and interaction of neutrophils and extracellular vesicles in noncancer liver diseases. Int Immunopharmacol 2024; 137:112442. [PMID: 38889508 DOI: 10.1016/j.intimp.2024.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Liver disease ranks as the eleventh leading cause of mortality, leading to approximately 2 million deaths annually worldwide. Neutrophils are a type of immune cell that are abundant in peripheral blood and play a vital role in innate immunity by quickly reaching the site of liver injury. They exert their influence on liver diseases through autocrine, paracrine, and immunomodulatory mechanisms. Extracellular vesicles, phospholipid bilayer vesicles, transport a variety of substances, such as proteins, nucleic acids, lipids, and pathogenic factors, for intercellular communication. They regulate cell communication and perform their functions by delivering biological information. Current research has revealed the involvement of the interaction between neutrophils and extracellular vesicles in the pathogenesis of liver disease. Moreover, more research has focused on targeting neutrophils as a therapeutic strategy to attenuate disease progression. Therefore, this article summarizes the roles of neutrophils, extracellular vesicles, and their interactions in noncancerous liver diseases.
Collapse
Affiliation(s)
- Jie Sun
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China; Medical College, Tibet University, Lhasa, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
12
|
Cebi M, Yilmaz Y. Immune system dysregulation in the pathogenesis of non-alcoholic steatohepatitis: unveiling the critical role of T and B lymphocytes. Front Immunol 2024; 15:1445634. [PMID: 39148730 PMCID: PMC11324455 DOI: 10.3389/fimmu.2024.1445634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), characterized by the excessive accumulation of fat within the cytoplasm of hepatocytes (exceeding 5% of liver weight) in individuals without significant alcohol consumption, has rapidly evolved into a pressing global health issue, affecting approximately 25% of the world population. This condition, closely associated with obesity, type 2 diabetes, and the metabolic syndrome, encompasses a spectrum of liver disorders ranging from simple steatosis without inflammation to non-alcoholic steatohepatitis (NASH) and cirrhotic liver disease. Recent research has illuminated the complex interplay between metabolic and immune responses in the pathogenesis of NASH, underscoring the critical role played by T and B lymphocytes. These immune cells not only contribute to necroinflammatory changes in hepatic lobules but may also drive the onset and progression of liver fibrosis. This narrative review aims to provide a comprehensive exploration of the effector mechanisms employed by T cells, B cells, and their respective subpopulations in the pathogenesis of NASH. Understanding the immunological complexity of NASH holds profound implications for the development of targeted immunotherapeutic strategies to combat this increasingly prevalent and burdensome metabolic liver disease.
Collapse
Affiliation(s)
- Merve Cebi
- Department of Medical Biology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, United States
| |
Collapse
|
13
|
Fatehi Hassanabad A, Zarzycki AN, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: On the precipice of personalized and precision medicine. Cardiovasc Pathol 2024; 71:107635. [PMID: 38508436 DOI: 10.1016/j.carpath.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
14
|
Ouyang Y, Dai M. Causal relationships between systemic inflammatory cytokines and adhesive capsulitis: a bidirectional Mendelian randomization study. Front Immunol 2024; 15:1380889. [PMID: 38979412 PMCID: PMC11228239 DOI: 10.3389/fimmu.2024.1380889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Background Mounting evidence suggests a connection between inflammatory cytokines and adhesive capsulitis (AC). However, the specific systemic inflammatory cytokines contributing to AC have not been clearly identified. This study employed Mendelian randomization (MR) to explore the causal relationships between 41 inflammatory cytokines and AC. Methods In this bidirectional, two-sample MR analysis, genetic variations associated with AC were derived from a comprehensive genome-wide association study (GWAS). The inflammatory cytokines data were sourced from a GWAS summary involving 8,293 healthy participants. The primary MR method employed was inverse variance weighting, supplemented by MR-Egger, weighted median, and MR-pleiotropy residual sum and outlier for sensitivity analysis. Heterogeneity was assessed using Cochran's Q test, and the MR results were validated using the leave-one-out method. Results Elevated levels of interferon gamma-induced protein 10 (IP-10) (odds ratio (OR) = 1.086, 95% confidence interval (CI) = 1.002-1.178) and regulated on activation, normal T cell expressed and secreted (RANTES) (OR = 1.107, 95% CI = 1.026-1.195) were linked to an increased risk of AC. Increased levels of stromal cell-derived factor-1 alpha (SDF-1α) (OR = 0.879, 95% CI = 0.793-0.974) and tumor necrosis factor-alpha (TNF-α) (OR = 0.911, 95% CI = 0.831-0.999) were associated with a reduced AC risk. Moreover, genetically predicted AC exhibited associations with elevated cutaneous T cell attracting (CTACK) levels (OR = 1.202, 95% CI = 1.007-1.435) and diminished levels of interleukin-17 (IL-17) (OR = 0.678, 95% CI = 0.518-0.888) and interleukin-5 (IL-5) (OR = 0.786, 95% CI = 0.654-0.944), as confirmed through inverse-variance weighted (IVW) methods. Conclusion The present study successfully establishes a causal association between genetically proxied circulating levels of IP-10, RANTES, SDF-1α, and TNF-α and the risk of AC. Additionally, AC contributes to an increase in CTACK and a decrease in IL-17 and IL-5. This significant finding not only enhances the understanding of the pathogenesis of AC but also holds promise for the development of effective clinical management strategies.
Collapse
Affiliation(s)
- Yi Ouyang
- Department of Joint Surgery, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan, Guangdong, China
| | - Miaomiao Dai
- Department of Ophthalmology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde, Foshan), Foshan, Guangdong, China
| |
Collapse
|
15
|
Garcia Moreno AS, Guicciardi ME, Wixom AQ, Jessen E, Yang J, Ilyas SI, Bianchi JK, Pinto e Vairo F, Lazaridis KN, Gores GJ. IL-17 signaling in primary sclerosing cholangitis patient-derived organoids. Hepatol Commun 2024; 8:e0454. [PMID: 38829197 PMCID: PMC11150034 DOI: 10.1097/hc9.0000000000000454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/15/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The pathogenesis of primary sclerosing cholangitis (PSC) is unclear, although studies implicate IL-17A as an inflammatory mediator in this disease. However, a direct assessment of IL-17 signaling in PSC cholangiocytes is lacking. In this study, we aimed to investigate and characterize the response of PSC extrahepatic cholangiocyte organoids (ECO) to IL-17A stimulation. METHODS Cholangiocytes obtained from patients with PSC and without PSC by endoscopic retrograde cholangiography were cultured as ECO. The ECO were treated with vehicle or IL-17A and assessed by transcriptomics, secretome analysis, and genome sequencing. RESULTS Unsupervised clustering of all integrated single-cell RNA sequencing data identified 8 cholangiocyte clusters that did not differ between PSC and non-PSC ECO. However, PSC ECO cells demonstrated a robust response to IL-17 treatment, as noted by an increased number of differentially expressed genes by transcriptomics and more abundant chemokine and cytokine expression and secretion. After rigorous filtering, genome sequencing identified candidate somatic variants shared among PSC ECO from unrelated individuals. However, no candidate rare variants in genes regulating the IL-17 pathway were identified, but rare variants regulating the MAPK signaling pathway were present in all PSC ECO. CONCLUSIONS PSC and non-PSC patient-derived ECO respond differently to IL-17 stimulation, implicating this pathway in the pathogenesis of PSC.
Collapse
Affiliation(s)
- Ana S. Garcia Moreno
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria E. Guicciardi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander Q. Wixom
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Erik Jessen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Jingchun Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jackie K. Bianchi
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Filippo Pinto e Vairo
- Center for Individualized Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Konstantinos N. Lazaridis
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Ni JS, Fu SY, Wang ZY, Ding WB, Huang J, Guo XG, Gu FM. Interleukin-17A educated hepatic stellate cells promote hepatocellular carcinoma occurrence through fibroblast activation protein expression. J Gene Med 2024; 26:e3693. [PMID: 38860366 DOI: 10.1002/jgm.3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Liver cancer is typified by a complex inflammatory tumor microenvironment, where an array of cytokines and stromal cells orchestrate a milieu that significantly influences tumorigenesis. Interleukin-17A (IL-17A), a pivotal pro-inflammatory cytokine predominantly secreted by Th17 cells, is known to play a substantial role in the etiology and progression of liver cancer. However, the precise mechanism by which IL-17A engages with hepatic stellate cells (HSCs) to facilitate the development of hepatocellular carcinoma (HCC) remains to be fully elucidated. This investigation seeks to unravel the interplay between IL-17A and HSCs in the context of HCC. METHODS An HCC model was established in male Sprague-Dawley rats using diethylnitrosamine to explore the roles of IL-17A and HSCs in HCC pathogenesis. In vivo overexpression of Il17a was achieved using adeno-associated virus. A suite of molecular techniques, including RT-qPCR, enzyme-linked immunosorbent assays, Western blotting, cell counting kit-8 assays and colony formation assays, was employed for in vitro analyses. RESULTS The study findings indicate that IL-17A is a key mediator in HCC promotion, primarily through the activation of hepatic progenitor cells (HPCs). This pro-tumorigenic influence appears to be mediated by HSCs, rather than through a direct effect on HPCs. Notably, IL-17A-induced expression of fibroblast activation protein (FAP) in HSCs emerged as a critical factor in HCC progression. Silencing Fap in IL-17A-stimulated HSCs was observed to reverse the HCC-promoting effects of HSCs. CONCLUSIONS The collective evidence from this study implicates the IL-17A/FAP signaling axis within HSCs as a contributor to HCC development by enhancing HPC activation. These findings bolster the potential of IL-17A as a diagnostic and preventative target for HCC, offering new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Jun-Sheng Ni
- The Third Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Si-Yuan Fu
- The Third Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zong-Yan Wang
- The Third Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wen-Bin Ding
- The Third Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jian Huang
- The Third Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xing-Gang Guo
- The Third Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fang-Ming Gu
- The Third Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
17
|
Matsuda KM, Kotani H, Hisamoto T, Kuzumi A, Fukasawa T, Yoshizaki-Ogawa A, Sato S, Yoshizaki A. Dual blockade of interleukin-17A and interleukin-17F as a therapeutic strategy for liver fibrosis: Investigating the potential effect and mechanism of brodalumab. Cytokine 2024; 178:156587. [PMID: 38531177 DOI: 10.1016/j.cyto.2024.156587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Liver fibrosis is a terminal manifestation of various chronic liver diseases. There are no drugs that can reverse the condition. Recently, the importance of interleukin-17 (IL17) in the pathophysiology has been revealed and has attracted attention as a therapeutic target. We aimed to reveal the roles of IL17A and IL17F in liver fibrosis, and to validate the potential of their dual blockade as therapeutic strategy. First, we retrospectively reviewed the longitudinal change of FIB-4 index, a clinical indicator of liver fibrosis, among psoriasis patients treated by brodalumab, which blocks IL17 receptor A (IL17RA). Next, we examined anti-fibrotic efficacy of anti-IL17RA antibody (Ab) in two murine liver fibrosis models by histopathological investigation and real-time reverse transcription polymerase chain reaction (RT-PCR). Finally, we analyzed the effect of IL17A and IL17F upon human hepatic stellate cells with RNA sequencing, real-time RT-PCR, western blotting, chromatin immunoprecipitation, and flow cytometry. Clinical data showed that FIB-4 index significantly decreased among psoriasis patients treated by brodalumab. In vivo studies additionally demonstrated that anti-IL17RA Ab ameliorates liver fibrosis induced by tetrachloride and methionine-choline deficient diet. Furthermore, in vitro experiments revealed that both IL17A and IL17F enhance cell-surface expression of transforming growth factor-β receptor II and promote pro-fibrotic gene expression via the JUN pathway in human hepatic stellate cells. Our insights suggest that IL17A and IL17F share their pro-fibrotic function in the context of liver fibrosis, and moreover, dual blockade of IL17A and IL17F by anti-IL17RA Ab would be a promising strategy for the management of liver fibrosis.
Collapse
Affiliation(s)
- Kazuki M Matsuda
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hirohito Kotani
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Teruyoshi Hisamoto
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ai Kuzumi
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takemichi Fukasawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
18
|
Sun D, Li W, Ding D, Tan K, Ding W, Wang Z, Fu S, Hou G, Zhou WP, Gu F. IL-17a promotes hepatocellular carcinoma by increasing FAP expression in hepatic stellate cells via activation of the STAT3 signaling pathway. Cell Death Discov 2024; 10:230. [PMID: 38740736 DOI: 10.1038/s41420-024-01995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Studies have shown that hepatic stellate cells (HSCs) and interleukin-17a (IL-17a) play important roles in liver tumorigenesis. In addition, fibroblast activation protein-α (FAP) has been shown to be a key regulator of hepatic stellate cell activation. In this study, in vivo and in vitro experiments were performed to verify the promoting effects of IL-17a administration, IL-17a overexpression, and FAP upregulation in HSCs on liver fibrosis and liver tumorigenesis. The cleavage under targets & release using nuclease (CUT&RUN) technique was used to verify the binding status of STAT3 to the FAP promoter. The in vitro studies showed that IL-17a activated HSCs and promoted HCC development and progression. FAP and IL-17a overexpression also activated HSCs, promoted HCC cell proliferation and migration, and inhibited HCC cell apoptosis. The in vivo studies suggested that IL-17a and FAP overexpression in HSCs facilitated liver tumor development and progression. The CUT&RUN results indicated that FAP expression was regulated by STAT3, which could bind to the FAP promoter region and regulate its transcription status. We concluded that IL-17a promoted HCC by increasing FAP expression in HSCs via activation of the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Dapeng Sun
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Wen Li
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Dongyang Ding
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Kunjiang Tan
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
| | - Wenbin Ding
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Zongyan Wang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Siyuan Fu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Guojun Hou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Wei-Ping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Fangming Gu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, 225 Changhai Road, Shanghai, 200438, China.
| |
Collapse
|
19
|
Isaac R, Bandyopadhyay G, Rohm TV, Kang S, Wang J, Pokhrel N, Sakane S, Zapata R, Libster AM, Vinik Y, Berhan A, Kisseleva T, Borok Z, Zick Y, Telese F, Webster NJG, Olefsky JM. TM7SF3 controls TEAD1 splicing to prevent MASH-induced liver fibrosis. Cell Metab 2024; 36:1030-1043.e7. [PMID: 38670107 PMCID: PMC11113091 DOI: 10.1016/j.cmet.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The mechanisms of hepatic stellate cell (HSC) activation and the development of liver fibrosis are not fully understood. Here, we show that deletion of a nuclear seven transmembrane protein, TM7SF3, accelerates HSC activation in liver organoids, primary human HSCs, and in vivo in metabolic-dysfunction-associated steatohepatitis (MASH) mice, leading to activation of the fibrogenic program and HSC proliferation. Thus, TM7SF3 knockdown promotes alternative splicing of the Hippo pathway transcription factor, TEAD1, by inhibiting the splicing factor heterogeneous nuclear ribonucleoprotein U (hnRNPU). This results in the exclusion of the inhibitory exon 5, generating a more active form of TEAD1 and triggering HSC activation. Furthermore, inhibiting TEAD1 alternative splicing with a specific antisense oligomer (ASO) deactivates HSCs in vitro and reduces MASH diet-induced liver fibrosis. In conclusion, by inhibiting TEAD1 alternative splicing, TM7SF3 plays a pivotal role in mitigating HSC activation and the progression of MASH-related fibrosis.
Collapse
Affiliation(s)
- Roi Isaac
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa V Rohm
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sion Kang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinyue Wang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Narayan Pokhrel
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sadatsugu Sakane
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Surgery, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rizaldy Zapata
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Avraham M Libster
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asres Berhan
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas J G Webster
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Chu T, Cui J, Sun L, Zhang X, Sun L, Tong J, Li L, Xiao Y, Xu L, Zhang L, Song Y. The disordered extracellular matrix landscape induced endometrial fibrosis of sheep: A multi-omics integrative analysis. Int J Biol Macromol 2024; 265:130845. [PMID: 38503376 DOI: 10.1016/j.ijbiomac.2024.130845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
Endometrial fibrosis leads to the destruction of endometrial function and affects reproductive performance. However, mechanisms underlying the development of endometrial fibrosis in sheep remain unclear. We use transcriptomic, proteomic, and metabolomic studies to reveal the formation mechanisms of endometrial fibrosis. The results showed that the fibrotic endometrial tissue phenotype presented fewer glands, accompanied by collagen deposition. Transcriptomic results indicated alterations in genes associated with the synthesis and degradation of extracellular matrix components, which alter metabolite homeostasis, especially in glycerophospholipid metabolism. Moreover, differentially expressed metabolites may play regulatory roles in key metabolic processes during fibrogenesis, including protein digestion and absorption, and amino acid synthesis. Affected by the aberrant genes, protein levels related to the extracellular matrix components were altered. In addition, based on Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes, metabolites and proteins, amino acid biosynthesis, glutathione, glycerophospholipid, arginine and proline metabolism, and cell adhesion are closely associated with fibrogenesis. Finally, we analyzed the dynamic changes in serum differential metabolites at different time points during fibrosis. Taken together, fibrosis development is related to metabolic obstacles in extracellular matrix synthesis and degradation triggered by disturbed gene and protein levels.
Collapse
Affiliation(s)
- Tingting Chu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lei Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoyu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Le Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiashun Tong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuhang Xiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liang Xu
- Weinan Agricultural Product Quality and Safety Inspection and Testing Center, PR China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
21
|
Zhang Y, Liu T, Zhao Y, Zhao C, Zhao M. Deciphering the enigma between low bioavailability and high anti-hepatic fibrosis efficacy of Yinchen Wuling powder based on drug metabolism and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117538. [PMID: 38056536 DOI: 10.1016/j.jep.2023.117538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yinchen Wuling powder (YCWLP) is a famous traditional Chinese medicine formula with the effect of "removing jaundice and eliminating dampness", which has the potential to prevent and treat hepatic fibrosis (HF). However, the mechanism of the active ingredients of YCWLP in treating HF remains to be clarified. AIM OF THE STUDY This study aims to investigate the in vivo metabolic profile of YCWLP and the mechanism of its gut microbiota-mediated therapeutic effect on HF via network pharmacology. MATERIALS AND METHODS In this comprehensive study, the UHPLC-FT-ICR-MS platform was used for the systematic characterization of the in vivo metabolic profile of YCWLP, and the mediating effect of gut microbiota was elucidated by comparing the differences of metabolites between the normal rats and pseudo germ-free rats administrated with YCWLP. Then, the identified active ingredients of YCWLP metabolized by gut microbiota and their targets associated with HF were used for further network pharmacological analysis, including the construction of PPI network, GO and KEGG enrichment and compound-target-pathway-disease network. RESULTS Overall, 41 prototype compounds and 138 metabolites were identified in the biosamples after YCWLP administration. Among them, 15 drug prototypes are clearly metabolized by gut microbiota, and 91 metabolites showed significant differences between the N-YCWLP group and the PGF-YCWLP group, which might be attributed to the mediation of gut microbiota. Network pharmacology studies on the aforementioned 15 prototype components indicated crucial roles of arginine biosynthesis and complement and coagulation cascades-related genes such as PLG, NOS3, GC and F2 in the treatment of HF by YCWLP mediated by gut microbiota. CONCLUSIONS The therapeutic effects of multiple active ingredients in YCWLP on HF depend on the metabolism of gut microbiota. This study offers novel insights into the relationship between bioactive chemical constituents and the action mechanism of YCWLP against HF.
Collapse
Affiliation(s)
- Yumeng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, 110016, China
| | - Tingting Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, 110016, China
| | - Yanhui Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, 110016, China
| | - Chunjie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, 110016, China.
| | - Min Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
22
|
Xie Z, Li Y, Xiao P, Ke S. GATA3 promotes the autophagy and activation of hepatic stellate cell in hepatic fibrosis via regulating miR-370/HMGB1 pathway. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:219-229. [PMID: 37207965 DOI: 10.1016/j.gastrohep.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/16/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Hepatic fibrosis (HF) is a common result of the repair process of various chronic liver diseases. Hepatic stellate cells (HSCs) activation is the central link in the occurrence of HF. METHODS ELISA and histological analysis were performed to detect the pathological changes of liver tissues. In vitro, HSCs were treated with TGF-β1 as HF cell model. Combination of GATA-binding protein 3 (GATA3) and miR-370 gene promoter was ensured by ChIP and luciferase reporter assay. Autophagy was monitored by observing the GFP-LC3 puncta formation. The interaction between miR-370 and high mobility group box 1 protein (HMGB1) was verified by luciferase reporter assay. RESULTS CCl4-induced HF mice exhibited an increase of ALT and AST, and severe damage and fibrosis of liver tissues. GATA3 and HMGB1 were up-regulated, and miR-370 was down-regulated in CCl4-induced HF mice and activated HSCs. GATA3 enhanced expression of the autophagy-related proteins and activation markers in the activated HSCs. Inhibition of autophagy partly reversed GATA3-induced activation of HSCs and the promotion of GATA3 to hepatic fibrosis. Moreover, GATA3 suppressed miR-370 expression via binding with its promotor, and enhanced HMGB1 expression in HSCs. Increasing of miR-370 inhibited HMGB1 expression by directly targeting its mRNA 3'-UTR. The promotion of GATA3 to TGF-β1-induced HSCs autophagy and activation was abrogated by miR-370 up-regulation or HMGB1 knockdown. CONCLUSIONS This work demonstrates that GATA3 promotes autophagy and activation of HSCs by regulating miR-370/HMGB1 signaling pathway, which contributes to accelerate HF. Thus, this work suggests that GATA3 may be a potential target for prevention and treatment of HF.
Collapse
Affiliation(s)
- Zhengyuan Xie
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Yangyang Li
- Medical College of Nanchang University, Nanchang 330006, China
| | - Peiguang Xiao
- Medical College of Nanchang University, Nanchang 330006, China
| | - Shanmiao Ke
- Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
23
|
Yang M, Zhang CY. Interleukins in liver disease treatment. World J Hepatol 2024; 16:140-145. [PMID: 38495285 PMCID: PMC10941743 DOI: 10.4254/wjh.v16.i2.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play pleiotropic roles in human health and disease by regulating both innate and adaptive immune responses. Interleukins (ILs), a large group of cytokines, can be divided into seven families, including IL-1, IL-2, IL-6, IL-8, IL-10, IL-12, and IL-17 families. Here, we review the functions of ILs in the pathogenesis and resolution of liver diseases, such as liver inflammation (e.g., IL-35), alcohol-related liver disease (e.g., IL-11), non-alcoholic steatohepatitis (e.g., IL-22), liver fibrosis (e.g., Il-17a), and liver cancer (e.g., IL-8). Overall, IL-1 family members are implicated in liver inflammation induced by different etiologies, such as alcohol consumption, high-fat diet, and hepatitis viruses. IL-2 family members mainly regulate T lymphocyte and NK cell proliferation and activation, and the differentiation of T cells. IL-6 family cytokines play important roles in acute phase response in liver infection, liver regeneration, and metabolic regulation, as well as lymphocyte activation. IL-8, also known as CXCL8, is activated in chronic liver diseases, which is associated with the accumulation of neutrophils and macrophages. IL-10 family members contribute key roles to liver immune tolerance and immunosuppression in liver disease. IL-12 family cytokines influence T-cell differentiation and play an essential role in autoimmune liver disease. IL-17 subfamilies contribute to infection defense, liver inflammation, and Th17 cell differentiation. ILs interact with different type I and type II cytokine receptors to regulate intracellular signaling pathways that mediate their functions. However, most clinical studies are only performed to evaluate IL-mediated therapies on alcohol and hepatitis virus infection-induced hepatitis. More pre-clinical and clinical studies are required to evaluate IL-mediated monotherapy and synergistic therapies.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States.
| | - Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
24
|
Chan CW, Chen HW, Wang YW, Lin CI, Chuang YH. IL-21, not IL-17A, exacerbates murine primary biliary cholangitis. Clin Exp Immunol 2024; 215:137-147. [PMID: 37708215 PMCID: PMC10847827 DOI: 10.1093/cei/uxad107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease caused by intrahepatic bile duct injuries, resulting in fibrosis, cirrhosis, and eventually liver failure. T helper (Th) 17 cells are proposed to involve in the pathogenesis of PBC. However, how and which Th17 cell-derived cytokines affect PBC remains unclear. In this study, we investigated the effects of Th17 effector cytokines, including interleukin (IL)-17A, IL-17F, and IL-21 in PBC using a xenobiotic-induced mouse model of autoimmune cholangitis (inducible chemical xenobiotic models of PBC) treated with cytokine-expressing adeno-associated virus. Our results showed that administration of IL-17A, the well-known main cytokine produced by Th17 cells, did not augment liver inflammation or fibrosis. In contrast, we noted IL-17A-treated mice had lower hepatic Th1 cell numbers and higher hepatic CD11b+Ly6G+ polymorphonuclear myeloid-derived suppressor cell numbers. IL-17F did not alter liver inflammation or fibrosis. However, the administration of IL-21 exacerbated liver inflammatory responses and portal cell infiltration. IL-21 markedly increased the numbers of activated CD8+ T cells and liver tissue-resident memory CD8+ T cells. Moreover, IL-21 aggravates liver fibrosis in mice with autoimmune cholangitis. These results emphasized that not IL-17A but IL-21 in Th17 cell-derived cytokines affected the pathogenesis of PBC. IL-21 enhanced liver inflammation and progression to fibrosis by enhancing the numbers and effector activities of CD8+ T cells. Delineation of the effects of different Th17 effector cytokines in PBC offers clues for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Chun-Wen Chan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Wang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-I Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hui Chuang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Viral Liver Disease and Intestinal Gut–Liver Axis. GASTROINTESTINAL DISORDERS 2024; 6:64-93. [DOI: 10.3390/gidisord6010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The intestinal microbiota is closely related to liver diseases via the intestinal barrier and bile secretion to the gut. Impairment of the barrier can translocate microbes or their components to the liver where they can contribute to liver damage and fibrosis. The components of the barrier are discussed in this review along with the other elements of the so-called gut–liver axis. This bidirectional relation has been widely studied in alcoholic and non-alcoholic liver disease. However, the involvement of microbiota in the pathogenesis and treatment of viral liver diseases have not been extensively studied, and controversial data have been published. Therefore, we reviewed data regarding the integrity and function of the intestinal barrier and the changes of the intestinal microbioma that contribute to progression of Hepatitis B (HBV) and Hepatitis C (HCV) infection. Their consequences, such as cirrhosis and hepatic encephalopathy, were also discussed in connection with therapeutic interventions such as the effects of antiviral eradication and the use of probiotics that may influence the outcome of liver disease. Profound alterations of the microbioma with significant reduction in microbial diversity and changes in the abundance of both beneficial and pathogenic bacteria were found.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Ioannis Tsomidis
- Department of Gastroenterology, Medical School, University of Crete, 71500 Heraklion, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| |
Collapse
|
26
|
Wang Y, Tan N, Su R, Liu Z, Hu N, Dong Q. Exploring the Potential Mechanisms of Action of Gentiana Veitchiorum Hemsl. Extract in the Treatment of Cholestasis using UPLC-MS/MS, Systematic Network Pharmacology, and Molecular Docking. Comb Chem High Throughput Screen 2024; 27:1948-1968. [PMID: 38357941 DOI: 10.2174/0113862073275657231210055250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Gentiana veitchiorum Hemsl. (GV) has a long history in Tibetan medicine for treating hepatobiliary disease cholestasis. However, the mechanisms mediating its efficacy in treating cholestasis have yet to be determined. AIM To elucidate the mechanisms of action of GV in the treatment of cholestasis, an integrated approach combining ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis with network pharmacology was established. MATERIALS AND METHODS A comprehensive analysis of the chemical composition of GV was achieved by UPLC-MS/MS. Subsequently, a network pharmacology method that integrated target prediction, a protein-protein interaction (PPI) network, gene set enrichment analysis, and a component- target-pathway network was established, and finally, molecular docking and experiments in vitro were conducted to verify the predicted results. RESULTS Twenty compounds that were extracted from GV were identified by UPLC-MS/MS analysis. Core proteins such as AKT1, TNF, and IL6 were obtained through screening in the Network pharmacology PPI network. The Kyoto Encyclopedia of the Genome (KEGG) pathway predicted that GV could treat cholestasis by acting on signaling pathways such as TNF/IL-17 / PI3K-Akt. Network pharmacology suggested that GV might exert a therapeutic effect on cholestasis by regulating the expression levels of inflammatory mediators, and the results were further confirmed by the subsequent construction of an LPS-induced RAW 264.7 cell model. CONCLUSIONS In this study, UPLC-MS/MS analysis, network pharmacology, and experiment validation were used to explore potential mechanisms of action of GV in the treatment of cholestasis.
Collapse
Affiliation(s)
- Yue Wang
- Medical College of Qinghai University, Xining, 810016, China
| | - Nixia Tan
- Medical College of Qinghai University, Xining, 810016, China
| | - Rong Su
- Medical College of Qinghai University, Xining, 810016, China
| | - Zhenhua Liu
- Medical College of Qinghai University, Xining, 810016, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| |
Collapse
|
27
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
28
|
Pereira ENGDS, de Araujo BP, Rodrigues KL, Silvares RR, Guimarães FV, Martins CSM, Flores EEI, Silva PMRE, Daliry A. Cholesterol Exacerbates the Pathophysiology of Non-Alcoholic Steatohepatitis by Upregulating Hypoxia-Inducible Factor 1 and Modulating Microcirculatory Dysfunction. Nutrients 2023; 15:5034. [PMID: 38140293 PMCID: PMC10745917 DOI: 10.3390/nu15245034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol is a pivotal lipotoxic molecule that contributes to the progression of Non-Alcoholic Steatohepatitis NASH). Additionally, microcirculatory changes are critical components of Non-Alcoholic Fatty Liver Disease (NAFLD) pathogenesis. This study aimed to investigate the role of cholesterol as an insult that modulates microcirculatory damage in NAFLD and the underlying mechanisms. The experimental model was established in male C57BL/6 mice fed a high-fat high-carbohydrate (HFHC) diet for 39 weeks. Between weeks 31-39, 2% cholesterol was added to the HFHC diet in a subgroup of mice. Leukocyte recruitment and hepatic stellate cells (HSC) activation in microcirculation were assessed using intravital microscopy. The hepatic microvascular blood flow (HMBF) was measured using laser speckle flowmetry. High cholesterol levels exacerbated hepatomegaly, hepatic steatosis, inflammation, fibrosis, and leukocyte recruitment compared to the HFHC group. In addition, cholesterol decreased the HMBF-cholesterol-induced activation of HSC and increased HIF1A expression in the liver. Furthermore, cholesterol promoted a pro-inflammatory cytokine profile with a Th1-type immune response (IFN-γ/IL-4). These findings suggest cholesterol exacerbates NAFLD progression through microcirculatory dysfunction and HIF1A upregulation through hypoxia and inflammation. This study highlights the importance of cholesterol-induced lipotoxicity, which causes microcirculatory dysfunction associated with NAFLD pathology, thus reinforcing the potential of lipotoxicity and microcirculation as therapeutic targets for NAFLD.
Collapse
Affiliation(s)
- Evelyn Nunes Goulart da Silva Pereira
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Beatriz Peres de Araujo
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Karine Lino Rodrigues
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Raquel Rangel Silvares
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Fernanda Verdini Guimarães
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Carolina Souza Machado Martins
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | - Edgar Eduardo Ilaquita Flores
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| | | | - Anissa Daliry
- Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil; (E.N.G.d.S.P.)
| |
Collapse
|
29
|
Jiang S, Feng J, Jiang Y, Lu Z, Kong J, Li X, Lian H, Zhang F, Li Y, Li J. Triptolide attenuates CCL 4-induced liver fibrosis by regulating the differentiation of CD 4+ T cells in mice. Int Immunopharmacol 2023; 125:111206. [PMID: 37956491 DOI: 10.1016/j.intimp.2023.111206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/26/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Liver fibrosis is a major global health issue, and immune dysregulation is a main contributor. Triptolide is a natural immunosuppressive agent with demonstrated effectiveness in ameliorating liver fibrosis, but whether it exerts anti-liver fibrotic effects via immunoregulation remains obscure. In this study, first, by employing a CCL4-induced liver fibrosis mouse model, we demonstrated that triptolide could alleviate pathological damage to liver tissue and attenuate liver function damaged by CCL4. In addition, triptolide inhibited the expression of liver fibrotic markers such as hydroxyproline, collagen type IV, hyaluronidase, laminin, and procollagen type III, and the protein expression of α-SMA in CCL4-induced liver fibrosis. Second, with the help of network pharmacology, we predicted that triptolide's anti-liver fibrotic effects might occur through the regulation of Th17, Th1, and Th2 cell differentiation, which indicated that triptolide might mitigate liver fibrosis via immunoregulation. Finally, multiplex immunoassays and flow cytometry were adopted to verify this prediction. The results suggested that triptolide could reverse the aberrant expression of inflammatory cytokines caused by CCL4 and regulate the differentiation of Th1, Th2, Th17, and Treg cells. In conclusion, triptolide could attenuate CCL4-induced liver fibrosis by regulating the differentiation of CD4+ T cells. The results obtained in this study extended the application of triptolide and introduced a new mechanism of triptolide's anti-liver fibrotic effects.
Collapse
Affiliation(s)
- Shiyuan Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jing Feng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yanling Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihao Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingwei Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueming Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hui Lian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fang Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
30
|
Zanin-Zhorov A, Chen W, Moretti J, Nyuydzefe MS, Zhorov I, Munshi R, Ghosh M, Serdjebi C, MacDonald K, Blazar BR, Palmer M, Waksal SD. Selectivity matters: selective ROCK2 inhibitor ameliorates established liver fibrosis via targeting inflammation, fibrosis, and metabolism. Commun Biol 2023; 6:1176. [PMID: 37980369 PMCID: PMC10657369 DOI: 10.1038/s42003-023-05552-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
The pathogenesis of hepatic fibrosis is driven by dysregulated metabolism precipitated by chronic inflammation. Rho-associated coiled-coil-containing protein kinases (ROCKs) have been implicated in these processes, however the ability of selective ROCK2 inhibition to target simultaneously profibrotic, pro-inflammatory and metabolic pathways remains undocumented. Here we show that therapeutic administration of GV101, a selective ROCK2 inhibitor with more than 1000-fold selectivity over ROCK1, attenuates established liver fibrosis induced by thioacetamide (TAA) in combination with high-fat diet in mice. GV101 treatment significantly reduces collagen levels in liver, associated with downregulation of pCofilin, pSTAT3, pAkt, while pSTAT5 and pAMPK levels are increased in tissues of treated mice. In vitro, GV101 inhibits profibrogenic markers expression in fibroblasts, adipogenesis in primary adipocytes and TLR-induced cytokine secretion in innate immune cells via targeting of Akt-mTOR-S6K signaling axis, further uncovering the ROCK2-specific complex mechanism of action and therapeutic potential of highly selective ROCK2 inhibitors in liver fibrosis.
Collapse
Affiliation(s)
| | - Wei Chen
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | - Julien Moretti
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | - Iris Zhorov
- Graviton Bioscience B.V, Amsterdam, 1017 CG, Netherlands
| | | | | | | | - Kelli MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Bruce R Blazar
- Division of Blood & Marrow Transplant & Cellular Therapies, University of MN, Masonic Cancer Center and Department of Pediatrics, Minneapolis, MN, 55455, USA
| | | | | |
Collapse
|
31
|
Sawada K, Chung H, Softic S, Moreno-Fernandez ME, Divanovic S. The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metab 2023; 35:1852-1871. [PMID: 37939656 PMCID: PMC10680147 DOI: 10.1016/j.cmet.2023.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for end-stage liver diseases with no available therapies. Dysregulated immune responses are critical culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive arms of the immune system or their unidirectional interplay are commonly studied in MASLD. However, the bidirectional communication between innate and adaptive immune systems and its impact on MASLD remain insufficiently understood. Given that both innate and adaptive immune cells are indispensable for the development and progression of inflammation in MASLD, elucidating pathogenic contributions stemming from the bidirectional interplay between these two arms holds potential for development of novel therapeutics for MASLD. Here, we review the immune cell types and bidirectional pathways that influence the pathogenesis of MASLD and highlight potential pharmacologic approaches to combat MASLD based on current knowledge of this bidirectional crosstalk.
Collapse
Affiliation(s)
- Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hak Chung
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samir Softic
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
32
|
Borrello MT, Mann D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br J Pharmacol 2023; 180:2880-2897. [PMID: 35393658 DOI: 10.1111/bph.15853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic liver diseases comprise a broad spectrum of burdensome diseases that still lack effective pharmacological therapies. Our research group focuses on fibrosis, which is a major precursor of liver cirrhosis. Fibrosis consists in a progressive disturbance of liver sinusoidal architecture characterised by connective tissue deposition as a reparative response to tissue injury. Multifactorial events and several types of cells participate in fibrosis initiation and progression, and the process still needs to be completely understood. The development of experimental models of liver fibrosis alongside the identification of critical factors progressing fibrosis to cirrhosis will facilitate the development of more effective therapeutic approaches for such condition. This review provides an overlook of the main process leading to hepatic fibrosis and therapeutic approaches that have emerged from a deep knowledge of the molecular regulation of fibrogenesis in the liver. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Maria Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
33
|
El-Mokhtar SA, Afifi NA, Abdel-Malek MO, Hassan WA, Hetta H, El-Badawy O. Aberrant cytokine and VCAM-1 expression in patients with viral and non-viral related liver cirrhosis. Cytokine 2023; 171:156385. [PMID: 37788510 DOI: 10.1016/j.cyto.2023.156385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/26/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
The study aim was to compare the alterations in the expression levels of proinflammatory and chemotactic cytokines as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-17A and IL-8, the down regulatory cytokine IL-10, in addition to the vascular cell adhesion molecule-1 (VCAM-1) gene in different groups of patients with cirrhosis due to various etiologies. This case-control study included 84 patients suffering from cirrhosis of viral and non-viral etiologies and 20 sex and age-matched healthy controls. All patients were subjected to detailed history taking, clinical examination, and liver function assessment. The expression levels of TNF-α, IL-17A, IL-8, IL-10, and VCAM-1 were assessed in peripheral blood mononuclear cells by real-time PCR. Patients with cirrhosis showed marked changes in the tested gene expression levels relative to the control group. Higher expression levels of all genes except IL-10 were seen in patients of the viral than in the non-viral groups. Most of the significant correlations of liver function parameters were observed with TNF-α in both the viral and non-viral groups, followed by IL-17A. Increased TNF-α and IL-17A presented potential risk factors for disease progression to cirrhosis of Child class C.
Collapse
Affiliation(s)
- Sara A El-Mokhtar
- Microbiology & Immunology Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Noha A Afifi
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed O Abdel-Malek
- Tropical Medicine & Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Waleed A Hassan
- Tropical Medicine & Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal Hetta
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Medical Microbiology & Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
34
|
Sikking MA, Stroeks SL, Marelli-Berg F, Heymans SR, Ludewig B, Verdonschot JA. Immunomodulation of Myocardial Fibrosis. JACC Basic Transl Sci 2023; 8:1477-1488. [PMID: 38093747 PMCID: PMC10714184 DOI: 10.1016/j.jacbts.2023.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/27/2024]
Abstract
Immunotherapy is a potential cornerstone in the treatment of myocardial fibrosis. During a myocardial insult or heart failure, danger signals stimulate innate immune cells to produce chemokines and profibrotic cytokines, which initiate self-escalating inflammatory processes by attracting and stimulating adaptive immune cells. Stimulation of fibroblasts by inflammatory processes and the need to replace damaged cardiomyocytes fosters reshaping of the cardiac fibroblast landscape. In this review, we discuss new immunomodulatory strategies that manipulate and direct cardiac fibroblast activation and differentiation. In particular, we highlight immunomodulatory strategies that target fibroblasts such as chimeric antigen receptor T cells, interleukin-11, and invariant natural killer T-cells. Moreover, we discuss the potential of manipulating both innate and adaptive immune system components for the translation into clinical validation. Clearly, multiple pathways should be considered to develop innovative approaches to ameliorate myocardial fibrosis and hence to reduce the risk of heart failure.
Collapse
Affiliation(s)
- Maurits A. Sikking
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Sophie L.V.M. Stroeks
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Federica Marelli-Berg
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Stephane R.B. Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
- Department of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Job A.J. Verdonschot
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| |
Collapse
|
35
|
Song M, Liang J, Wang L, Li W, Jiang S, Xu S, Tang L, Du Q, Liu G, Meng H, Zhai D, Shi S, Yang Y, Zhang L, Zhang B. IL-17A functions and the therapeutic use of IL-17A and IL-17RA targeted antibodies for cancer treatment. Int Immunopharmacol 2023; 123:110757. [PMID: 37579542 DOI: 10.1016/j.intimp.2023.110757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
Interleukin 17A (IL-17A) is a major member of the IL-17 cytokine family and is produced mainly by T helper 17 (Th17) cells. Other cells such as CD8+ T cells, γδ T cells, natural killer T cells and innate lymphoid-like cells can also produce IL-17A. In healthy individuals, IL-17A has a host-protective capacity, but excessive elevation of IL-17A is associated with the development of autoimmune diseases and cancer. Monoclonal antibodies (mAbs) targeting IL-17A (e.g., ixekizumab and secukinumab) or IL-17A receptor (IL-17RA) (e.g., brodalumab) would be investigated as potential treatments for these diseases. Currently, the application of IL-17A-targeted drugs in autoimmune diseases will provide new ideas for the treatment of tumors, and its combined application with immune checkpoint inhibitors has become a research hotspot. This article reviews the mechanism of action of IL-17A and the application of anti-IL-17A antibodies, focusing on the research progress on the mechanism of action and therapeutic blockade of IL-17A in various tumors such as colorectal cancer (CRC), lung cancer, gastric cancer and breast cancer. Moreover, we also include the results of therapeutic blockade in the field of cancer as well as recent advances in the regulation of IL-17A signaling.
Collapse
Affiliation(s)
- Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shuo Xu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Dongchang Zhai
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Shangheng Shi
- Department of Liver Transplantation, School of Clinical Medicine, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Li Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
36
|
Gong X, Han Z, Fan H, Wu Y, He Y, Fu Y, Zhu T, Li H. The interplay of inflammation and remodeling in the pathogenesis of chronic rhinosinusitis: current understanding and future directions. Front Immunol 2023; 14:1238673. [PMID: 37771597 PMCID: PMC10523020 DOI: 10.3389/fimmu.2023.1238673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Chronic rhinosinusitis (CRS), a common clinical condition characterized by persistent mucosal inflammation and tissue remodeling, has a complex pathogenesis that is intricately linked to innate and adaptive immunity. A number of studies have demonstrated that a variety of immune cells and cytokines that play a vital role in mediating inflammation in CRS are also involved in remodeling of the nasal mucosa and the cells as well as different cytokines involved in remodeling in CRS are also able to exert some influence on inflammation, even though the exact relationship between inflammation and remodeling in CRS has not yet been fully elucidated. In this review, the potential role of immune cells and cytokines in regulating inflammation and remodeling of CRS mucosa has been described, starting with the immune cells and cytokines that act together in inflammation and remodeling. The goal is to aid researchers in understanding intimate connection between inflammation and remodeling of CRS and to offer novel ideas for future research.
Collapse
Affiliation(s)
- Xinru Gong
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhoutong Han
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongli Fan
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Wu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuanqiong He
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yijie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Tianmin Zhu
- Health and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| |
Collapse
|
37
|
Huang L, Yang W, Su M. Research into the mechanism of intervention of Wenjing decoction in endometriosis based on network pharmacology and molecular docking technology. Medicine (Baltimore) 2023; 102:e34845. [PMID: 37653805 PMCID: PMC10470684 DOI: 10.1097/md.0000000000034845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Endometriosis (EMs) is a frequent disease in women and is the principal cause of infertility and dysmenorrhea. Due to its high recurrence rate and serious complications, more research on EMs is needed. We used network pharmacology and molecular docking technology to predict the key active components, targets, and signaling pathways of Wen Jing decoction (WJD) in the treatment of EMs. METHODS The components and targets of WJD were collected and identified using the Traditional Chinese Medicine Systems Pharmacology Database and BATMAN-TCM. The EMs targets were obtained from GeneCards, OMIM, TTD, Kyoto encyclopedia of genes and genomes (KEGG) and GAD Databases; the Venny diagram was used to analyze the overlap between the targets of WJD and EMs; use Cytoscape 3.8.2 software to build a drug active ingredient-target protein interaction network; after downloading the data from the String online database, Cytoscape 3.8.2 software was used to draw the intersection target protein-protein interaction network diagram. Finally, microbiotic information mapping was used to analyze gene ontology function enrichment and KEGG pathway enrichment. Molecular docking was used to predict the binding affinity of the components of WJD to the targets of EMs. RESULTS Seventy-eight active ingredients of WJD were screened, corresponding to 108 targets, 2626 EMs-related targets and 124 intersection targets. The results of gene ontology functional enrichment analysis showed that WJD could affect 709 biological processes, 131 molecular functions and 54 cell composition. The enrichment analysis of KEGG pathway yielded 185 pathways. The treatment of EMs by WJD has the characteristics of multiple targets and multiple pathways. Molecular docking with the AutoDock Vina platform found that 5 active ingredients of WJD were successfully docked with 6 common targets. CONCLUSION Based on network pharmacology and molecular docking, WJD was found to act on EMs through multi-targets and related signaling pathways.
Collapse
Affiliation(s)
- Linhui Huang
- Department of Gynecology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Wei Yang
- Preventive Treatment of Disease Center, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Minxue Su
- Department of Physical Examination, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
38
|
Vujovic A, Isakovic AM, Misirlic-Dencic S, Juloski J, Mirkovic M, Cirkovic A, Djelic M, Milošević I. IL-23/IL-17 Axis in Chronic Hepatitis C and Non-Alcoholic Steatohepatitis-New Insight into Immunohepatotoxicity of Different Chronic Liver Diseases. Int J Mol Sci 2023; 24:12483. [PMID: 37569857 PMCID: PMC10419971 DOI: 10.3390/ijms241512483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Considering the relevance of the research of pathogenesis of different liver diseases, we investigated the possible activity of the IL-23/IL-17 axis on the immunohepatotoxicity of two etiologically different chronic liver diseases. A total of 36 chronic hepatitis C (CHC) patients, 16 with (CHC-SF) and 20 without significant fibrosis (CHC-NSF), 19 patients with non-alcoholic steatohepatitis (NASH), and 20 healthy controls (CG) were recruited. Anthropometric, biochemical, and immunological cytokines (IL-6, IL-10, IL-17 and IL-23) tests were performed in accordance with standard procedure. Our analysis revealed that a higher concentration of plasma IL-23 was associated with NASH (p = 0.005), and a higher concentration of plasma IL-17A but a lower concentration of plasma IL-10 was associated with CHC in comparison with CG. A lower concentration of plasma IL-10 was specific for CHC-NSF, while a higher concentration of plasma IL-17A was specific for CHC-SF in comparison with CG. CHC-NSF and CHC-SF groups were distinguished from NASH according to a lower concentration of plasma IL-17A. Liver tissue levels of IL-17A and IL-23 in CHC-NSF were significantly lower in comparison with NASH, regardless of the same stage of the liver fibrosis, whereas only IL-17A tissue levels showed a difference between the CHC-NSF and CHC-SF groups, namely, a lower concentration in CHC-NSF in comparison with CHC-SF. In CHC-SF and NASH liver tissue, IL17-A and IL-23 were significantly higher in comparison with plasma. Diagnostic accuracy analysis showed significance only in the concentration of plasma cytokines. Plasma IL-6, IL-17A and IL-23 could be possible markers that could differentiate CHC patients from controls. Plasma IL-23 could be considered a possible biomarker of CHC-NSF patients in comparison with controls, while plasma IL-6 and IL-17-A could be biomarkers of CHC-SF patients in comparison with controls. The most sophisticated difference was between the CHC-SF and CHC-NSF groups in the plasma levels of IL-10, which could make this cytokine a useful biomarker of liver fibrosis.
Collapse
Affiliation(s)
- Ankica Vujovic
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, 11 000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Andjelka M. Isakovic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.I.); (S.M.-D.)
- Center of Excellence for Redox Medicine, 11 000 Belgrade, Serbia
| | - Sonja Misirlic-Dencic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; (A.M.I.); (S.M.-D.)
- Center of Excellence for Redox Medicine, 11 000 Belgrade, Serbia
| | - Jovan Juloski
- Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia;
- Zvezdara Medical University Center, Surgery Clinic “Nikola Spasic”, 11 000 Belgrade, Serbia
| | - Milan Mirkovic
- Institute for Orthopedic Surgery “Banjica”, 11 000 Belgrade, Serbia;
| | - Andja Cirkovic
- Department of Medical Statistics, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Marina Djelic
- Institute of Medical Physiology, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia
| | - Ivana Milošević
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, 11 000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
39
|
Qi J, Ping D, Sun X, Huang K, Peng Y, Liu C. A herbal product inhibits carbon tetrachloride-induced liver fibrosis by suppressing the epidermal growth factor receptor signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116419. [PMID: 37003405 DOI: 10.1016/j.jep.2023.116419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng Huayu formula (FZHY), composed of Salvia miltiorrhiza Bunge, Cordyceps sinensis, the seed of Prunus persica (L.) Batsch, the pollen of Pinus massoniana Lamb, Gynostemma pentaphyllum (Thunb.) Makino and the fruit of Schisandra chinensis (Turcz.) Baill, is a Chinese herbal compound with demonstrated clinical benefits in liver fibrosis (LF). However, its potential mechanism and molecular targets remain to be elucidated. AIM OF THE STUDY This study was designed to evaluate the anti-fibrotic role of FZHY in hepatic fibrosis and to elucidate the potential mechanisms. MATERIALS AND METHODS Network pharmacology was assayed to identify the interrelationships among compounds of FZHY, potential targets and putative pathways on anti-LF. Then the core pharmaceutical target for FZHY against LF was verified by serum proteomic analysis. Further in vivo and in vitro assays were performed to verify the prediction of the pharmaceutical network. RESULTS The network pharmacology analysis revealed that a total of 175 FZHY-LF crossover proteins were filtered into a protein-protein interaction (PPI) network complex and designated as the potential targets of FZHY against LF, and the Epidermal Growth Factor Receptor (EGFR) signaling pathway was further explored according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Then analytical studies were validated by carbon tetrachloride (CCl4)-induced model in vivo. We found FZHY could attenuate CCl4-induced LF, especially decrease p-EGFR expression in α-Smooth Muscle Actin (α-SMA)-positive hepatic stellate cell (HSC) and inhibit the downstream of the EGFR signaling pathway, especially Extracellular Regulated Protein Kinases (ERK) signaling pathway in liver tissue. We further demonstrate that FZHY could inhibit Epidermal Growth Factor (EGF)-induced HSC activation, as well as the expression of p-EGFR and the key protein of the ERK signaling pathway. CONCLUSIONS FZHY has a good effect against CCl4-induced LF. The action mechanism was associated with the down-regulation of the EGFR signaling pathway in activated HSCs.
Collapse
Affiliation(s)
- Jingshu Qi
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dabing Ping
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Sun
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Kai Huang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chenghai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
40
|
Udomsinprasert W. Interleukin-1 family cytokines in liver cell death: a new therapeutic target for liver diseases. Expert Opin Ther Targets 2023; 27:1125-1143. [PMID: 37975716 DOI: 10.1080/14728222.2023.2285763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Liver cell death represents a basic biological process regulating the progression of liver diseases via distinct mechanisms. Accumulating evidence has uncovered participation of interleukin (IL)-1 family cytokines in liver cell death. Upon activation of cell death induced by hepatotoxic stimuli, IL1 family cytokines released by hepatic dead cells stimulate recruitment of immune cells, which in turn influence inflammation and subsequent liver injury, thus highlighting their potential as therapeutic targets in liver diseases. Enhancing our comprehension of mechanisms underlying IL1 family cytokine signaling in cell death responses could pave the way for novel therapeutic interventions aimed at addressing liver cell death-related liver pathologies. AREAS COVERED This review summarizes the recent findings reported in preclinical and clinical studies on mechanisms of liver cell death, alongside participation of IL1 family members consisting of IL1α, ILβ, IL18, and IL33 in liver cell death and their significant implications in liver diseases. EXPERT OPINION Discovery of new and innovative therapeutic approaches for liver diseases will need close cooperation between fundamental and clinical scientists to better understand the multi-step processes behind IL1 family cytokines' contributions to liver cell death.
Collapse
|
41
|
Li JH, Hepworth MR, O'Sullivan TE. Regulation of systemic metabolism by tissue-resident immune cell circuits. Immunity 2023; 56:1168-1186. [PMID: 37315533 PMCID: PMC10321269 DOI: 10.1016/j.immuni.2023.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/11/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
Recent studies have demonstrated that tissue homeostasis and metabolic function are dependent on distinct tissue-resident immune cells that form functional cell circuits with structural cells. Within these cell circuits, immune cells integrate cues from dietary contents and commensal microbes in addition to endocrine and neuronal signals present in the tissue microenvironment to regulate structural cell metabolism. These tissue-resident immune circuits can become dysregulated during inflammation and dietary overnutrition, contributing to metabolic diseases. Here, we review the evidence describing key cellular networks within and between the liver, gastrointestinal tract, and adipose tissue that control systemic metabolism and how these cell circuits become dysregulated during certain metabolic diseases. We also identify open questions in the field that have the potential to enhance our understanding of metabolic health and disease.
Collapse
Affiliation(s)
- Joey H Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA; Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Matthew R Hepworth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 900953, USA.
| |
Collapse
|
42
|
Niknam B, Baghaei K, Mahmoud Hashemi S, Hatami B, Reza Zali M, Amani D. Human Wharton's jelly mesenchymal stem cells derived-exosomes enriched by miR-124 promote an anti-fibrotic response in an experimental model of liver fibrosis. Int Immunopharmacol 2023; 119:110294. [PMID: 37167639 DOI: 10.1016/j.intimp.2023.110294] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Liver fibrosis is a significant challenge to global health that results in organ failure through inflammation and the release of fibrotic biomarkers. Due to the lack of effective treatments for liver fibrosis, anti-fibrotic and anti-inflammatory therapies are being developed. Since there has been an association between aberrant expression of miR-124 and liver disease progression, we investigated whether delivery of miR-124 through human Wharton's jelly mesenchymal stem cells derived-exosomes (hWJMSC-Exo) can improve liver fibrosis. METHODS We established a 6-week carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis, then we administered hWJMSC-Exo and miR-124-3p-enriched exosomes (ExomiR-124) for three weeks. The extent of fibrosis and inflammation was assessed by histology, biochemistry, Real-time PCR, immunohistochemistry, and Enzyme-linked immunoassays (ELISA). The inflammatory status of the spleen was also investigated using flow cytometry. RESULTS Based on the gene and protein expression measurement of IL-6, IL-17, TGF-β, STAT3, α-SMA, and COL1, In vivo administration of Exo and ExomiR-124 effectively reduce collagen accumulation and inhibition of inflammation. Regarding histopathology findings, the therapeutic effect of ExomiR-124 against liver fibrosis was significantly greater than hWJMSC-Exo. In addition, we found that Exo and ExomiR-124 was capable of phenotype switching of splenic monocytes from inflammatory Ly6Chi to restorative Ly6Clo. CONCLUSIONS MSC-derived exosomes demonstrated anti-inflammatory effect via different aspects. Aside from the therapeutic approach, enrichment of exosomes as a nanocarrier by miR-124 revealed the down-regulation of STAT3, which plays a crucial role in liver fibrosis. The anti-inflammatory and anti-fibrotic properties of ExomiR-124 could be a promising option in liver fibrosis combination therapies.
Collapse
Affiliation(s)
- Bahare Niknam
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Sbierski-Kind J, Cautivo KM, Wagner JC, Dahlgren MW, Nilsson J, Krasilnikov M, Mroz NM, Lizama CO, Gan AL, Matatia PR, Taruselli MT, Chang AA, Caryotakis S, O'Leary CE, Kotas M, Mattis AN, Peng T, Locksley RM, Molofsky AB. Group 2 innate lymphoid cells constrain type 3/17 lymphocytes in shared stromal niches to restrict liver fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.537913. [PMID: 37163060 PMCID: PMC10168323 DOI: 10.1101/2023.04.26.537913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) cooperate with adaptive Th2 cells as key organizers of tissue type 2 immune responses, while a spectrum of innate and adaptive lymphocytes coordinate early type 3/17 immunity. Both type 2 and type 3/17 lymphocyte associated cytokines are linked to tissue fibrosis, but how their dynamic and spatial topographies may direct beneficial or pathologic organ remodelling is unclear. Here we used volumetric imaging in models of liver fibrosis, finding accumulation of periportal and fibrotic tract IL-5 + lymphocytes, predominantly ILC2s, in close proximity to expanded type 3/17 lymphocytes and IL-33 high niche fibroblasts. Ablation of IL-5 + lymphocytes worsened carbon tetrachloride-and bile duct ligation-induced liver fibrosis with increased niche IL-17A + type 3/17 lymphocytes, predominantly γδ T cells. In contrast, concurrent ablation of IL-5 + and IL-17A + lymphocytes reduced this progressive liver fibrosis, suggesting a cross-regulation of type 2 and type 3 lymphocytes at specialized fibroblast niches that tunes hepatic fibrosis.
Collapse
|
44
|
Samarpita S, Li X. Leveraging Exosomes as the Next-Generation Bio-Shuttles: The Next Biggest Approach against Th17 Cell Catastrophe. Int J Mol Sci 2023; 24:ijms24087647. [PMID: 37108809 PMCID: PMC10142210 DOI: 10.3390/ijms24087647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In recent years, the launch of clinical-grade exosomes is rising expeditiously, as they represent a new powerful approach for the delivery of advanced therapies and for diagnostic purposes for various diseases. Exosomes are membrane-bound extracellular vesicles that can act as biological messengers between cells, in the context of health and disease. In comparison to several lab-based drug carriers, exosome exhibits high stability, accommodates diverse cargo loads, elicits low immunogenicity and toxicity, and therefore manifests tremendous perspectives in the development of therapeutics. The efforts made to spur exosomes in drugging the untreatable targets are encouraging. Currently, T helper (Th) 17 cells are considered the most prominent factor in the establishment of autoimmunity and several genetic disorders. Current reports have indicated the importance of targeting the development of Th17 cells and the secretion of its paracrine molecule, interleukin (IL)-17. However, the present-day targeted approaches exhibit drawbacks, such as high cost of production, rapid transformation, poor bioavailability, and importantly, causing opportunistic infections that ultimately hamper their clinical applications. To overcome this hurdle, the potential use of exosomes as vectors seem to be a promising approach for Th17 cell-targeted therapies. With this standpoint, this review discusses this new concept by providing a snapshot of exosome biogenesis, summarizes the current clinical trials of exosomes in several diseases, analyzes the prospect of exosomes as an established drug carrier and delineates the present challenges, with an emphasis on their practical applications in targeting Th17 cells in diseases. We further decode the possible future scope of exosome bioengineering for targeted drug delivery against Th17 cells and its catastrophe.
Collapse
Affiliation(s)
- Snigdha Samarpita
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
45
|
You H, Wang X, Ma L, Zhang F, Zhang H, Wang Y, Pan X, Zheng K, Kong F, Tang R. Insights into the impact of hepatitis B virus on hepatic stellate cell activation. Cell Commun Signal 2023; 21:70. [PMID: 37041599 PMCID: PMC10088164 DOI: 10.1186/s12964-023-01091-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/26/2023] [Indexed: 04/13/2023] Open
Abstract
During chronic hepatitis B virus (HBV) infection, hepatic fibrosis is a serious pathological condition caused by virus-induced liver damage. The activation of hepatic stellate cells (HSCs) is a central event in the occurrence and progression of liver fibrosis. Although accumulating evidence has shown that HBV directly stimulates HSC activation, whether the virus infects and replicates in HSCs remains controversial. Inflammation is one of the obvious characteristics of chronic HBV infection, and it has been demonstrated that persistent inflammation has a predominant role in triggering and maintaining liver fibrosis. In particular, the regulation of HSC activation by HBV-related hepatocytes via various inflammatory modulators, including TGF-β and CTGF, in a paracrine manner has been reported. In addition to these inflammation-related molecules, several inflammatory cells are essential for the progression of HBV-associated liver fibrosis. Monocytes, macrophages, Th17 cells, NK cells, as well as NKT cells, participate in the modulation of HBV-related liver fibrosis by interacting with HSCs. This review summarizes current findings on the effects of HBV and the relevant molecular mechanisms involved in HSC activation. Because HSC activation is essential for liver fibrosis, targeting HSCs is an attractive therapeutic strategy to prevent and reverse hepatic fibrosis induced by HBV infection. Video abstract.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lihong Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Huanyang Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuxin Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
46
|
Aseem SO, Hylemon PB, Zhou H. Bile Acids and Biliary Fibrosis. Cells 2023; 12:cells12050792. [PMID: 36899928 PMCID: PMC10001305 DOI: 10.3390/cells12050792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Biliary fibrosis is the driving pathological process in cholangiopathies such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). Cholangiopathies are also associated with cholestasis, which is the retention of biliary components, including bile acids, in the liver and blood. Cholestasis may worsen with biliary fibrosis. Furthermore, bile acid levels, composition and homeostasis are dysregulated in PBC and PSC. In fact, mounting data from animal models and human cholangiopathies suggest that bile acids play a crucial role in the pathogenesis and progression of biliary fibrosis. The identification of bile acid receptors has advanced our understanding of various signaling pathways involved in regulating cholangiocyte functions and the potential impact on biliary fibrosis. We will also briefly review recent findings linking these receptors with epigenetic regulatory mechanisms. Further detailed understanding of bile acid signaling in the pathogenesis of biliary fibrosis will uncover additional therapeutic avenues for cholangiopathies.
Collapse
Affiliation(s)
- Sayed Obaidullah Aseem
- Stravitz-Sanyal Institute for Liver Disease & Metabolic Health, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence:
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
- Central Virginia Veterans Healthcare System, Richmond, VA 23249, USA
| |
Collapse
|
47
|
Regulatory T cells (Tregs) in liver fibrosis. Cell Death Discov 2023; 9:53. [PMID: 36759593 PMCID: PMC9911787 DOI: 10.1038/s41420-023-01347-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
The ability of the human liver to both synthesize extracellular matrix(ECM), as well as regulate fibrogenesis, are integral functions to maintaining homoeostasis. Chronic liver injury stimulates fibrogenesis in response to the imbalance between ECM accumulation and fibrosis resolution. Liver disease that induces fibrogenesis is associated with multiple risk factors like hepatitis infection, schistosomiasis, alcohol, certain drugs, toxicants and emerging aetiology like diabetes and obesity. The activation of hepatic stellate cells (HSCs), whose function is to generate and accumulate ECM, is a pivotal event in liver fibrosis. Simultaneously, HSCs selectively promote regulatory T-cells (Tregs) in an interleukin-2-dependent pattern that displays a dual relationship. On the one hand, Tregs can protect HSCs from NK cell attack, while on the other hand, they demonstrate an inhibitory effect on HSCs. This paper reviews the dual role of Tregs in liver fibrogenesis which includes its promotion of immunosuppression, as well as its activation of fibrosis. In particular, the balance between Tregs and the Th17 cell population, which produce interleukin (IL)-17 and IL-22, is explored to demonstrate their key role in maintaining homoeostasis and immunoregulation. The contradictory roles of Tregs in liver fibrosis in different immune microenvironments and molecular pathways need to be better understood if they are to be deployed to manage this disease.
Collapse
|
48
|
Parlar YE, Ayar SN, Cagdas D, Balaban YH. Liver immunity, autoimmunity, and inborn errors of immunity. World J Hepatol 2023; 15:52-67. [PMID: 36744162 PMCID: PMC9896502 DOI: 10.4254/wjh.v15.i1.52] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 12/23/2022] [Indexed: 01/16/2023] Open
Abstract
The liver is the front line organ of the immune system. The liver contains the largest collection of phagocytic cells in the body that detect both pathogens that enter through the gut and endogenously produced antigens. This is possible by the highly developed differentiation capacity of the liver immune system between self-antigens or non-self-antigens, such as food antigens or pathogens. As an immune active organ, the liver functions as a gatekeeping barrier from the outside world, and it can create a rapid and strong immune response, under unfavorable conditions. However, the liver's assumed immune status is anti-inflammatory or immuno-tolerant. Dynamic interactions between the numerous populations of immune cells in the liver are key for maintaining the delicate balance between immune screening and immune tolerance. The anatomical structure of the liver can facilitate the preparation of lymphocytes, modulate the immune response against hepatotropic pathogens, and contribute to some of its unique immunological properties, particularly its capacity to induce antigen-specific tolerance. Since liver sinusoidal endothelial cell is fenestrated and lacks a basement membrane, circulating lymphocytes can closely contact with antigens, displayed by endothelial cells, Kupffer cells, and dendritic cells while passing through the sinusoids. Loss of immune tolerance, leading to an autoaggressive immune response in the liver, if not controlled, can lead to the induction of autoimmune or autoinflammatory diseases. This review mentions the unique features of liver immunity, and dysregulated immune responses in patients with autoimmune liver diseases who have a close association with inborn errors of immunity have also been the emphases.
Collapse
Affiliation(s)
- Yavuz Emre Parlar
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Sefika Nur Ayar
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Ihsan Dogramaci Children's Hospital, Ankara 06100, Turkey
| | - Yasemin H Balaban
- Department of Gastroenterology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| |
Collapse
|
49
|
Amajala KC, Gudivada IP, Malla RR. Gamma Delta T Cells: Role in Immunotherapy of Hepatocellular Carcinoma. Crit Rev Oncog 2023; 28:41-50. [PMID: 38050980 DOI: 10.1615/critrevoncog.2023049893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The most typical type of liver cancer or hepatocellular carcinoma (HCC) develops from hepatocyte loss. Non-alcoholic fatty liver disease (NAFLD), viral hepatitis C and cirrhosis are the leading causes of HCC. With the Hepatitis B vaccine and medicines, there are several treatments for HCC, including liver resection, ablation, transplantation, immunotherapy, gene therapy, radiation embolization, and targeted therapy. Currently, a wide range of studies are carried out on gene therapy to identify biomarkers and pathways, which help us identify the exact stage of the disorder and reduce its effects. γδT cells have recently received much interest as a potential cancer treatment method in adaptive immunotherapy. γδT cells can quickly form connections between receptor and ligand activation. They can clonally expand and are a significant source of cytokines and chemokines. The present review provides a comprehensive understanding on the function of γδT cells in immunotherapies and how they are used to treat HCC.
Collapse
Affiliation(s)
- Krishna Chaitanya Amajala
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Indu Priya Gudivada
- Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM Deemed to be University, Visakhapatnam 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
50
|
Gabbia D, Carpi S, Sarcognato S, Zanotto I, Sayaf K, Colognesi M, Polini B, Digiacomo M, Macchia M, Nieri P, Carrara M, Cazzagon N, Russo FP, Guido M, De Martin S. The phenolic compounds tyrosol and hydroxytyrosol counteract liver fibrogenesis via the transcriptional modulation of NADPH oxidases and oxidative stress-related miRNAs. Biomed Pharmacother 2023; 157:114014. [PMID: 36379119 DOI: 10.1016/j.biopha.2022.114014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is the result of a chronic pathological condition caused by the activation of hepatic stellate cells (HSCs), which induces the excessive deposition of extracellular matrix. Fibrogenesis is sustained by an exaggerated production of reactive oxidative species (ROS) by NADPH oxidases (NOXs), which are overactivated in hepatic inflammation. In this study, we investigated the antifibrotic properties of two phenolic compounds of natural origin, tyrosol (Tyr) and hydroxytyrosol (HTyr), known for their antioxidant and anti-inflammatory effects. We assessed Tyr and HTyr antifibrotic and antioxidant activity both in vitro, by a co-culture of LX2, HepG2 and THP1-derived Mϕ macrophages, set up to simulate the hepatic microenvironment, and in vivo, in a mouse model of liver fibrosis obtained by carbon tetrachloride treatment. We evaluated the mRNA and protein expression of profibrotic and oxidative markers (α-SMA, COL1A1, NOX1/4) by qPCR and/or immunocytochemistry or immunohistochemistry. The expression of selected miRNAs in mouse livers were measured by qPCR. Tyr and HTyr reduces fibrogenesis in vitro and in vivo, by downregulating all fibrotic markers. Notably, they also modulated oxidative stress by restoring the physiological levels of NOX1 and NOX4. In vivo, this effect was accompanied by a transcriptional regulation of inflammatory genes and of 2 miRNAs involved in the control of oxidative stress damage (miR-181-5p and miR-29b-3p). In conclusion, Tyr and HTyr exert antifibrotic and anti-inflammatory effects in preclinical in vitro and in vivo models of liver fibrosis, by modulating hepatic oxidative stress, representing promising candidates for further development.
Collapse
Affiliation(s)
- Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Sara Carpi
- Department of Pharmacy, University of Pisa, Pisa, Italy; NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy.
| | | | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| | - Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, Pisa, Italy; Department of Pathology, University of Pisa, 56100 Pisa, Italy.
| | | | - Marco Macchia
- Department of Pharmacy, University of Pisa, Pisa, Italy.
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, Pisa, Italy.
| | - Maria Carrara
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Nora Cazzagon
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.
| | - Maria Guido
- Department of Pathology, Azienda ULSS2 Marca Trevigiana, Treviso, Italy; Department of Medicine, University of Padova, Padova, Italy.
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|