1
|
Li HM, Liu Y, Hao MD, Liang XQ, Yuan DJ, Huang WB, Li WJ, Ding L. Research status and hotspots of tight junctions and colorectal cancer: A bibliometric and visualization analysis. World J Gastrointest Oncol 2024; 16:3705-3715. [PMID: 39171170 PMCID: PMC11334041 DOI: 10.4251/wjgo.v16.i8.3705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related death. Over the past two decades, numerous researchers have provided important evidence regarding the role of tight junction (TJ) proteins in the occurrence and progression of CRC. The causal relationship between the presence of specific TJ proteins and the development of CRC has also been confirmed. Despite the large number of publications in this field, a bibliometric study to review the current state of research and highlight the research trends and hotspots in this field has not yet been performed. AIM To analyze research on TJs and CRC, summarize the field's history and current status, and predict future research directions. METHODS We searched the Science Citation Index Expanded database for all literature on CRC and TJs from 2001-2023. We used bibliometrics to analyze the data of these papers, such as the authors, countries, institutions, and references. Co-authorship, co-citation, and co-occurrence analyses were the main methods of analysis. CiteSpace and VOSviewer were used to visualize the results. RESULTS A total of 205 studies were ultimately identified. The number of publications on this topic has steadily increased since 2007. China and the United States have made the largest contributions to this field. Anticancer Research was the most prolific journal, publishing 8 articles, while the journal Oncogene had the highest average citation rate (68.33). Professor Dhawan P was the most prolific and cited author in this field. Co-occurrence analysis of keywords revealed that "tight junction protein expression", "colorectal cancer", "intestinal microbiota", and "inflammatory bowel disease" had the highest frequency of occurrence, revealing the research hotspots and trends in this field. CONCLUSION This bibliometric analysis evaluated the scope and trends of TJ proteins in CRC, providing valuable research perspectives and future directions for studying the connection between the two. It is recommended to focus on emerging research hotspots, such as the correlations among intestinal microbiota, inflammatory bowel disease, TJ protein expression, and CRC.
Collapse
Affiliation(s)
- Hui-Min Li
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yin Liu
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Meng-Di Hao
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiao-Qing Liang
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Da-Jin Yuan
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Wen-Bin Huang
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Wen-Jie Li
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lei Ding
- Department of Gastrointestinal Oncology Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
2
|
Alghamdi RA, Al-Zahrani MH. Identification of key claudin genes associated with survival prognosis and diagnosis in colon cancer through integrated bioinformatic analysis. Front Genet 2023; 14:1221815. [PMID: 37799140 PMCID: PMC10550083 DOI: 10.3389/fgene.2023.1221815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
The claudin multigene family is associated with various aberrant physiological and cellular signaling pathways. However, the association of claudins with survival prognosis, signaling pathways, and diagnostic efficacy in colon cancer remains poorly understood. Methods: Through the effective utilization of various bioinformatics methods, including differential gene expression analysis, gene set enrichment analysis protein-protein interaction (PPI) network analysis, survival analysis, single sample gene set enrichment analysis (ssGSEA), mutational variance analysis, and identifying receiver operating characteristic curve of claudins in The Cancer Genome Atlas colon adenocarcinoma (COAD). Results: We found that: CLDN2, CLDN1, CLDN14, CLDN16, CLDN18, CLDN9, CLDN12, and CLDN6 are elevated in COAD. In contrast, the CLDN8, CLDN23, CLDN5, CLDN11, CLDN7, and CLDN15 are downregulated in COAD. By analyzing the public datasets GSE15781 and GSE50760 from NCBI-GEO (https://www.ncbi.nlm.nih.gov/geo/), we have confirmed that CLDN1, CLDN2, and CLDN14 are significantly upregulated and CLDN8 and CLDN23 are significantly downregulated in normal colon, colon adenocarcinoma tumor, and liver metastasis of colon adenocarcinoma tissues from human samples. Various claudins are mutated and found to be associated with diagnostic efficacy in COAD. Conclusion: The claudin gene family is associated with prognosis, immune regulation, signaling pathway regulations, and diagnosis of COAD. These findings may provide new molecular insight into claudins in the treatment of colon cancer.
Collapse
Affiliation(s)
- Rana A. Alghamdi
- Department of Chemistry, Science and Arts College, King Abdulaziz University, Rabigh, Saudi Arabia
- Regenerative Medicine Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Yang L, Zhang W, Li M, Dam J, Huang K, Wang Y, Qiu Z, Sun T, Chen P, Zhang Z, Zhang W. Evaluation of the Prognostic Relevance of Differential Claudin Gene Expression Highlights Claudin-4 as Being Suppressed by TGFβ1 Inhibitor in Colorectal Cancer. Front Genet 2022; 13:783016. [PMID: 35281827 PMCID: PMC8907593 DOI: 10.3389/fgene.2022.783016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Claudins (CLDNs) are a family of closely related transmembrane proteins that have been linked to oncogenic transformation and metastasis across a range of cancers, suggesting that they may be valuable diagnostic and/or prognostic biomarkers that can be used to evaluate patient outcomes. However, CLDN expression patterns associated with colorectal cancer (CRC) remain to be defined.Methods: The mRNA levels of 21 different CLDN family genes were assessed across 20 tumor types using the Oncomine database. Correlations between these genes and patient clinical outcomes, immune cell infiltration, clinicopathological staging, lymph node metastasis, and mutational status were analyzed using the GEPIA, UALCAN, Human Protein Atlas, Tumor Immune Estimation Resource, STRING, Genenetwork, cBioportal, and DAVID databases in an effort to clarify the potential functional roles of different CLDN protein in CRC. Molecular docking analyses were used to probe potential interactions between CLDN4 and TGFβ1. Levels of CLDN4 and CLDN11 mRNA expression in clinical CRC patient samples and in the HT29 and HCT116 cell lines were assessed via qPCR. CLDN4 expression levels in these 2 cell lines were additionally assessed following TGFβ1 inhibitor treatment.Results: These analyses revealed that COAD and READ tissues exhibited the upregulation of CLDN1, CLDN2, CLDN3, CLDN4, CLDN7, and CLDN12 as well as the downregulation of CLDN5 and CLDN11 relative to control tissues. Higher CLDN11 and CLDN14 expression as well as lower CLDN23 mRNA levels were associated with poorer overall survival (OS) outcomes. Moreover, CLDN2 and CLDN3 or CLDN11 mRNA levels were significantly associated with lymph node metastatic progression in COAD or READ lower in COAD and READ tissues. A positive correlation between the expression of CLDN11 and predicted macrophage, dendritic cell, and CD4+ T cell infiltration was identified in CRC, with CLDN12 expression further being positively correlated with CD4+ T cell infiltration whereas a negative correlation was observed between such infiltration and the expression of CLDN3 and CLDN15. A positive correlation between CLDN1, CLDN16, and neutrophil infiltration was additionally detected, whereas neutrophil levels were negatively correlated with the expression of CLDN3 and CLDN15. Molecular docking suggested that CLDN4 was able to directly bind via hydrogen bond with TGFβ1. Relative to paracancerous tissues, clinical CRC tumor tissue samples exhibited CLDN4 and CLDN11 upregulation and downregulation, respectively. LY364947 was able to suppress the expression of CLDN4 in both the HT29 and HCT116 cell lines.Conclusion: Together, these results suggest that the expression of different CLDN family genes is closely associated with CRC tumor clinicopathological staging and immune cell infiltration. Moreover, CLDN4 expression is closely associated with TGFβ1 in CRC, suggesting that it and other CLDN family members may represent viable targets for antitumor therapeutic intervention.
Collapse
Affiliation(s)
- Linqi Yang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wenqi Zhang
- Department of Hematology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jinxi Dam
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kai Huang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yihan Wang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhicong Qiu
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Tao Sun
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| | - Zhenduo Zhang
- Shijiazhuang People’s Hospital, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| | - Wei Zhang
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Wei Zhang, ; Pingping Chen, ; Zhenduo Zhang,
| |
Collapse
|
4
|
Carvalho RF, do Canto LM, Cury SS, Frøstrup Hansen T, Jensen LH, Rogatto SR. Drug Repositioning Based on the Reversal of Gene Expression Signatures Identifies TOP2A as a Therapeutic Target for Rectal Cancer. Cancers (Basel) 2021; 13:5492. [PMID: 34771654 PMCID: PMC8583090 DOI: 10.3390/cancers13215492] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Rectal cancer is a common disease with high mortality rates and limited therapeutic options. Here we combined the gene expression signatures of rectal cancer patients with the reverse drug-induced gene-expression profiles to identify drug repositioning candidates for cancer therapy. Among the predicted repurposable drugs, topoisomerase II inhibitors (doxorubicin, teniposide, idarubicin, mitoxantrone, and epirubicin) presented a high potential to reverse rectal cancer gene expression signatures. We showed that these drugs effectively reduced the growth of colorectal cancer cell lines closely representing rectal cancer signatures. We also found a clear correlation between topoisomerase 2A (TOP2A) gene copy number or expression levels with the sensitivity to topoisomerase II inhibitors. Furthermore, CRISPR-Cas9 and shRNA screenings confirmed that loss-of-function of the TOP2A has the highest efficacy in reducing cellular proliferation. Finally, we observed significant TOP2A copy number gains and increased expression in independent cohorts of rectal cancer patients. These findings can be translated into clinical practice to evaluate TOP2A status for targeted and personalized therapies based on topoisomerase II inhibitors in rectal cancer patients.
Collapse
Affiliation(s)
- Robson Francisco Carvalho
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
- Department of Functional and Structural Biology—Institute of Bioscience, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Luisa Matos do Canto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Sarah Santiloni Cury
- Department of Functional and Structural Biology—Institute of Bioscience, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Torben Frøstrup Hansen
- Department of Oncology, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (T.F.H.); (L.H.J.)
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| | - Lars Henrik Jensen
- Department of Oncology, University Hospital of Southern Denmark, 7100 Vejle, Denmark; (T.F.H.); (L.H.J.)
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| | - Silvia Regina Rogatto
- Department of Clinical Genetics, University Hospital of Southern Denmark, 7100 Vejle, Denmark;
- Institute of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
- Danish Colorectal Cancer Center South, 7100 Vejle, Denmark
| |
Collapse
|
5
|
Long non-coding RNA VPS9D1-AS1 promotes growth of colon adenocarcinoma by sponging miR-1301-3p and CLDN1. Hum Cell 2021; 34:1775-1787. [PMID: 34519940 DOI: 10.1007/s13577-021-00604-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023]
Abstract
Colon adenocarcinoma is a frequent malignancy among all colon cancer types. Long non-coding RNAs (lncRNAs) are involved in the progression of colon adenocarcinoma. This study aimed to uncover the molecular mechanism of VPS9D1-AS1 in regulating colon adenocarcinoma development. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) revealed that VPS9D1-AS1 expression was markedly upregulated in colon adenocarcinoma tissues and cell lines. Cell functional experiments showed that knockdown of VPS9D1-AS1 repressed the growth and invasion of colon adenocarcinoma cells but upregulated cell apoptosis. In addition, we confirmed the interaction of VPS9D1-AS1-miR-1301-3p-CLDN1 using a luciferase assay. Downregulation of miR-1301-3p promoted the progression of colon adenocarcinoma cells. In conclusion, VPS9D1-AS1 facilitated cell growth and suppressed apoptosis of colon adenocarcinoma cells by sponging miR-1301-3p and upregulating CLDN1, which may be effective therapeutic strategies for patients with colon adenocarcinoma.
Collapse
|
6
|
Hases L, Ibrahim A, Chen X, Liu Y, Hartman J, Williams C. The Importance of Sex in the Discovery of Colorectal Cancer Prognostic Biomarkers. Int J Mol Sci 2021; 22:ijms22031354. [PMID: 33572952 PMCID: PMC7866425 DOI: 10.3390/ijms22031354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer deaths. Advances within bioinformatics, such as machine learning, can improve biomarker discovery and ultimately improve CRC survival rates. There are clear sex differences in CRC characteristics, but the impact of sex has not been considered with regards to CRC biomarkers. Our aim here was to investigate sex differences in the transcriptome of a normal colon and CRC, and between paired normal and tumor tissue. Next, we attempted to identify CRC diagnostic and prognostic biomarkers and investigate if they are sex-specific. We collected paired normal and tumor tissue, performed RNA-seq, and applied feature selection in combination with machine learning to identify the top CRC diagnostic biomarkers. We used The Cancer Genome Atlas (TCGA) data to identify sex-specific CRC diagnostic biomarkers and performed an overall survival analysis to identify sex-specific prognostic biomarkers. We found transcriptomic sex differences in both the normal colon tissue and in CRC. Forty-four of the top-ranked biomarkers were sex-specific and 20 biomarkers showed a sex-specific prognostic value. Our data show the importance of sex in the discovery of CRC biomarkers. We propose 20 sex-specific CRC prognostic biomarkers, including ESM1, GUCA2A, and VWA2 for males and CLDN1 and FUT1 for females.
Collapse
Affiliation(s)
- Linnea Hases
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden; (L.H.); (A.I.); (Y.L.)
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | - Ahmed Ibrahim
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden; (L.H.); (A.I.); (Y.L.)
| | - Xinsong Chen
- Department of Oncology and Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden; (X.C.); (J.H.)
| | - Yanghong Liu
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden; (L.H.); (A.I.); (Y.L.)
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institutet, 171 76 Stockholm, Sweden; (X.C.); (J.H.)
- Department of Clinical Pathology and Cytology, Karolinska University Laboratory, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Cecilia Williams
- Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, 171 21 Solna, Sweden; (L.H.); (A.I.); (Y.L.)
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
- Correspondence:
| |
Collapse
|
7
|
Guan Q, Zeng Q, Jiang W, Xie J, Cheng J, Yan H, He J, Xu Y, Guan G, Guo Z, Ao L. A Qualitative Transcriptional Signature for the Risk Assessment of Precancerous Colorectal Lesions. Front Genet 2021; 11:573787. [PMID: 33519891 PMCID: PMC7844367 DOI: 10.3389/fgene.2020.573787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
It is meaningful to assess the risk of cancer incidence among patients with precancerous colorectal lesions. Comparing the within-sample relative expression orderings (REOs) of colorectal cancer patients measured by multiple platforms with that of normal colorectal tissues, a qualitative transcriptional signature consisting of 1,840 gene pairs was identified in the training data. Within an evaluation dataset of 16 active and 18 inactive (remissive) ulcerative colitis subjects, the median incidence risk score of colorectal carcinoma was 0.6402 in active ulcerative colitis subjects, significantly higher than that in remissive subjects (0.3114). Evaluation of two other independent datasets yielded similar results. Moreover, we found that the score significantly positively correlated with the degree of dysplasia in the case of colorectal adenomas. In the merged dataset, the median incidence risk score was 0.9027 among high-grade adenoma samples, significantly higher than that among low-grade adenomas (0.8565). In summary, the developed incidence risk score could well predict the incidence risk of precancerous colorectal lesions and has value in clinical application.
Collapse
Affiliation(s)
- Qingzhou Guan
- Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases Co-Constructed by Henan Province & Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China.,Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Qiuhong Zeng
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Weizhong Jiang
- Department of Colorectal Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Jiajing Xie
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jun Cheng
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Haidan Yan
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Jun He
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Yang Xu
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guoxian Guan
- Department of Colorectal Surgery, The Affiliated Union Hospital of Fujian Medical University, Fuzhou, China
| | - Zheng Guo
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Lu Ao
- Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Claudin-1 Is a Valuable Prognostic Biomarker in Colorectal Cancer: A Meta-Analysis. Gastroenterol Res Pract 2020; 2020:4258035. [PMID: 32855635 PMCID: PMC7443231 DOI: 10.1155/2020/4258035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 07/09/2020] [Indexed: 02/08/2023] Open
Abstract
Background Claudin-1 plays an important part in maintaining the mucosal structures and physiological functions. Several studies showed a relationship between claudin-1 and colorectal cancer (CRC), but its prognostic significance is inconsistent. This meta-analysis assessed the prognostic value and clinical significance of claudin-1 in CRC. Materials and Methods We retrieved eligible studies from PubMed, Cochrane Library, Embase, and Web of Science databases before February 10, 2020. The hazard ratio (HR) with 95% confidence interval (CI) was applied to assess the correlation between claudin-1 and prognosis and clinical features. Heterogeneity was assessed by the Cochran Q test and I-square (I2), while publication bias was evaluated by the Begg test and Egger test. Test sequence analysis (TSA) was used to estimate whether the included studies' number is sufficient. The stability of the results was judged by sensitivity analysis. Metaregression was utilized to explore the possible covariance which may impact on heterogeneity among studies. Results Eight studies incorporating 1704 patients met the inclusion criteria. Meta-analysis showed that the high expression of claudin-1 was associated with better overall survival (HR, 0.46; 95% CI, 0.28–0.76; P = 0.002) and disease-free survival (HR, 0.44; 95% CI, 0.29–0.65; P = 0.003) in CRC. In addition, we found that claudin-1 was related to the better tumor type (n = 6; RR, 0.60; 95% CI, 0.49–0.73; P < 0.00001), negative venous invasion (n = 4; RR, 0.81; 95% CI, 0.70–0.95; P = 0.001), and negative lymphatic invasion (n = 4; RR, 0.83; 95% CI, 0.74–0.92; P = 0.0009). Conclusion The increased claudin-1 expression in CRC is associated with better prognosis. In addition, claudin-1 was related to the better tumor type and the less venous invasion and lymphatic invasion.
Collapse
|
9
|
Davidsen J, Jessen SB, Watt SK, Larsen S, Dahlgaard K, Kirkegaard T, Gögenur I, Troelsen JT. CDX2 expression and perioperative patient serum affects the adhesion properties of cultured colon cancer cells. BMC Cancer 2020; 20:426. [PMID: 32408894 PMCID: PMC7227097 DOI: 10.1186/s12885-020-06941-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/10/2020] [Indexed: 02/28/2023] Open
Abstract
Background Colon cancer is one of the most commonly diagnosed types of cancer with surgical resection of the tumor being the primary choice of treatment. However, the surgical stress response induced during treatment may be related to a higher risk of recurrence. The aim of this study was to examine the effect of surgery on adhesion of cultured colon cancer cells with or without expression of the tumour suppressor CDX2. Method We enrolled 30 patients undergoing elective, curatively intended laparoscopic surgery for colon cancer in this study. Blood samples were drawn 1 day prior to surgery and 24 h after surgery. The samples of pre- and postoperative serum was applied to wild type colon cancer LS174T cells and CDX2 inducible LS174T cells and adhesion was measured with Real-Time Cell-Analysis iCELLigence using electrical impedance as a readout to monitor changes in the cellular adhesion. Results Adhesion abilities of wild type LS174T cells seeded in postoperative serum was significantly increased compared to cells seeded in preoperative serum. When seeding the CDX2 inducible LS174T cells without CDX2 expression in pre- and postoperative serum, no significant difference in adhesion was found. However, when inducing CDX2 expression in these cells, the adhesion abilities in pre- and postoperative serum resembled those of the LS174T wild type cell line. Conclusions We found that the adhesion of colon cancer cells was significantly increased in postoperative versus preoperative serum, and that CDX2 expression affected the adhesive ability of cancer cells. The results of this study may help to elucidate the pro-metastatic mechanisms in the perioperative phase and the role of CDX2 in colon cancer metastasis.
Collapse
Affiliation(s)
- Johanne Davidsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Stine Bull Jessen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Sara Kehlet Watt
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Sylvester Larsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Department of Clinical Immunology, Naestved Hospital, Ringstedgade 77B, 4700, Naestved, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Tove Kirkegaard
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Jesper T Troelsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.
| |
Collapse
|
10
|
Crosstalk between DNA methylation and gene expression in colorectal cancer, a potential plasma biomarker for tracing this tumor. Sci Rep 2020; 10:2813. [PMID: 32071364 PMCID: PMC7028731 DOI: 10.1038/s41598-020-59690-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC), the second leading cause of cancer mortality, constitutes a significant global health burden. An accurate, noninvasive detection method for CRC as complement to colonoscopy could improve the effectiveness of treatment. In the present study, SureSelectXT Methyl-Seq was performed on cancerous and normal colon tissues and CLDN1, INHBA and SLC30A10 were found as candidate methylated genes. MethyLight assay was run on formalin-fixed paraffin-embedded (FFPE) and fresh case and control tissues to validate the methylation of the selected gene. The methylation was significantly different (p-values < 2.2e-16) with a sensitivity of 87.17%; at a specificity cut-off of 100% in FFPE tissues. Methylation studies on fresh tissues, indicated a sensitivity of 82.14% and a specificity cut-off of 92% (p-values = 1.163e-07). The biomarker performance was robust since, normal tissues indicated a significant 22.1-fold over-expression of the selected gene as compared to the corresponding CRC tissues (p-value < 2.2e-16) in the FFPE expression assay. In our plasma pilot study, evaluation of the tissue methylation marker in the circulating cell-free DNA, demonstrated that 9 out of 22 CRC samples and 20 out of 20 normal samples were identified correctly. In summary, there is a clinical feasibility that the offered methylated gene could serve as a candidate biomarker for CRC diagnostic purpose, although further exploration of our candidate gene is warranted.
Collapse
|
11
|
Bhat AA, Syed N, Therachiyil L, Nisar S, Hashem S, Macha MA, Yadav SK, Krishnankutty R, Muralitharan S, Al-Naemi H, Bagga P, Reddy R, Dhawan P, Akobeng A, Uddin S, Frenneaux MP, El-Rifai W, Haris M. Claudin-1, A Double-Edged Sword in Cancer. Int J Mol Sci 2020; 21:ijms21020569. [PMID: 31952355 PMCID: PMC7013445 DOI: 10.3390/ijms21020569] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Claudins, a group of membrane proteins involved in the formation of tight junctions, are mainly found in endothelial or epithelial cells. These proteins have attracted much attention in recent years and have been implicated and studied in a multitude of diseases. Claudins not only regulate paracellular transepithelial/transendothelial transport but are also critical for cell growth and differentiation. Not only tissue-specific but the differential expression in malignant tumors is also the focus of claudin-related research. In addition to up- or down-regulation, claudin proteins also undergo delocalization, which plays a vital role in tumor invasion and aggressiveness. Claudin (CLDN)-1 is the most-studied claudin in cancers and to date, its role as either a tumor promoter or suppressor (or both) is not established. In some cancers, lower expression of CLDN-1 is shown to be associated with cancer progression and invasion, while in others, loss of CLDN-1 improves the patient survival. Another topic of discussion regarding the significance of CLDN-1 is its localization (nuclear or cytoplasmic vs perijunctional) in diseased states. This article reviews the evidence regarding CLDN-1 in cancers either as a tumor promoter or suppressor from the literature and we also review the literature regarding the pattern of CLDN-1 distribution in different cancers, focusing on whether this localization is associated with tumor aggressiveness. Furthermore, we utilized expression data from The Cancer Genome Atlas (TCGA) to investigate the association between CLDN-1 expression and overall survival (OS) in different cancer types. We also used TCGA data to compare CLDN-1 expression in normal and tumor tissues. Additionally, a pathway interaction analysis was performed to investigate the interaction of CLDN-1 with other proteins and as a future therapeutic target.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Najeeb Syed
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha 2713, Qatar
| | - Sabah Nisar
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Sheema Hashem
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Muzafar A. Macha
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India;
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Santosh K. Yadav
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Hamda Al-Naemi
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
| | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Anthony Akobeng
- Department of Pediatric Gastroenterology, Sidra Medicine, Doha 26999, Qatar;
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (L.T.); (R.K.); (S.U.)
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Mohammad Haris
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar; (A.A.B.); (N.S.); (S.N.); (S.H.); (S.K.Y.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; (S.M.); (H.A.-N.)
- Correspondence: ; Tel.: +974-4003-7407
| |
Collapse
|
12
|
Yamamoto D, Kayamori K, Sakamoto K, Tsuchiya M, Ikeda T, Harada H, Yoda T, Watabe T, Hara-Yokoyama M. Intracellular claudin-1 at the invasive front of tongue squamous cell carcinoma is associated with lymph node metastasis. Cancer Sci 2019; 111:700-712. [PMID: 31769164 PMCID: PMC7004554 DOI: 10.1111/cas.14249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Claudins are the major component of tight junctions, which form a primary barrier to paracellular diffusion and maintain cell polarity in normal epithelia and endothelia. In cancer cells, claudins play additional roles besides serving as components of the tight junctions, and participate in anoikis or invasion. Among the claudin family proteins, claudin‐1 has the most promising potential, both diagnostically and prognostically, in many types of cancers, including oral, gastric, liver, and colon cancers. However, conflicting results have been reported in relation to the degree of claudin‐1 expression and the prognosis, suggesting that the expression level of claudin‐1 alone is not sufficient to analyze the relationship between claudin‐1 and cancer progression. As endocytic trafficking of claudin‐1 has been reported in several epithelial cell types in vitro, we aimed to determine whether intracellular localization of claudin‐1 is the missing aspect between claudin‐1 and cancer. We investigated the expression of claudin‐1 in 83 tongue squamous cell carcinoma (TSCC) pathological specimens. Although the expression level of claudin‐1 based on immunohistochemistry was not associated with TSCC progression, within the high claudin‐1 expression group, the incidence of intracellular localization of claudin‐1 was correlated with cervical lymph node metastasis. In an in vitro experiment, claudin‐1 was constitutively internalized in TSCC‐derived cells. Motility of TSCC‐derived cells was increased by deficiency of claudin‐1, suggesting that the decrease in cell‐surface claudin‐1 promoted the cell migration. Therefore, intracellular localization of claudin‐1 at the invasion front may represent a promising diagnostic marker of TSCC.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Maiko Tsuchiya
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Miki Hara-Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
13
|
Seker M, Fernández-Rodríguez C, Martínez-Cruz LA, Müller D. Mouse Models of Human Claudin-Associated Disorders: Benefits and Limitations. Int J Mol Sci 2019; 20:ijms20215504. [PMID: 31694170 PMCID: PMC6862546 DOI: 10.3390/ijms20215504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 12/16/2022] Open
Abstract
In higher organisms, epithelia separate compartments in order to guarantee their proper function. Such structures are able to seal but also to allow substances to pass. Within the paracellular pathway, a supramolecular structure, the tight junction transport is largely controlled by the temporospatial regulation of its major protein family called claudins. Besides the fact that the expression of claudins has been identified in different forms of human diseases like cancer, clearly defined mutations in the corresponding claudin genes have been shown to cause distinct human disorders. Such disorders comprise the skin and its adjacent structures, liver, kidney, the inner ear, and the eye. From the phenotype analysis, it has also become clear that different claudins can cause a complex phenotype when expressed in different organs. To gain deeper insights into the physiology and pathophysiology of claudin-associated disorders, several mouse models have been generated. In order to model human disorders in detail, they have been designed either as full knockouts, knock-downs or knock-ins by a variety of techniques. Here, we review human disorders caused by CLDN mutations and their corresponding mouse models that have been generated thus far and assess their usefulness as a model for the corresponding human disorder.
Collapse
Affiliation(s)
- Murat Seker
- Department of Pediatric Gastroenterology, Nephrology and Metabolism, Charité—Universitätsmedizin Berlin, Charité, 13353 Berlin, Germany;
| | | | | | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolism, Charité—Universitätsmedizin Berlin, Charité, 13353 Berlin, Germany;
- Correspondence:
| |
Collapse
|
14
|
Tong H, Li T, Qiu W, Zhu Z. Claudin-1 silencing increases sensitivity of liver cancer HepG2 cells to 5-fluorouracil by inhibiting autophagy. Oncol Lett 2019; 18:5709-5716. [PMID: 31788043 PMCID: PMC6865833 DOI: 10.3892/ol.2019.10967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022] Open
Abstract
Liver cancer is one of the most common cancer types globally. However, the acquisition of drug resistance limits the effectiveness of chemotherapy and commonly results in metastasis. Therefore, an effective therapeutic approach to target chemoresistance-associated cellular molecules is imperative. Claudin-1 (CLDN1) has previously been reported to be associated with the development of drug resistance. The present study investigated the effect of CLDN1 on the sensitivity of 5-fluorouracil (5-FU)-resistant liver cancer cells. Firstly, a 5-FU-resistant HepG2 liver cancer cell line (Hep/5FU) was developed by continuous 5-FU treatment. MTT proliferation, Transwell and Matrigel assays indicated that Hep/5FU cells were significantly resistant to 5-FU, and demonstrated increased migration and invasion abilities, compared with parental HepG2 cells. Furthermore, reverse transcription-quantitative polymerase chain reaction and western blot analysis indicated that mRNA and protein expression levels of CLDN1 were significantly increased in Hep/5FU cells, compared with HepG2 cells. CLDN1 was knocked down by transfection with small interference RNA. MTT and Annexin V-fluorescein isothiocyanate/propidium iodide assays demonstrated that CLDN1 silencing significantly inhibits proliferation and enhances apoptosis induced by 5-FU treatment in Hep/5FU cells, compared with non-silenced Hep/5FU cells. Additionally, CLDN1 silencing attenuated the migration and invasion capabilities of Hep/5FU cells. In addition, it was identified that CLDN1 silencing decreased drug resistance by inhibiting autophagy, which was associated with a decrease in the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II/LC3-I and upregulation of P62. A cell proliferation assay revealed that the addition of autophagy inhibitor 3-methyladenine decreased drug resistance of Hep/5FU cells. By contrast, incubation with the autophagy agonist Rapamycin elevated drug resistance of CLDN1-silenced Hep/5FU cells. In summary, these data indicate that CLDN1 may be a potential target for resensitizing resistant liver cancer HepG2 cells to 5-FU by regulating cell autophagy.
Collapse
Affiliation(s)
- Hui Tong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Tao Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Weihua Qiu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhecheng Zhu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
15
|
Berral-Gonzalez A, Riffo-Campos AL, Ayala G. OMICfpp: a fuzzy approach for paired RNA-Seq counts. BMC Genomics 2019; 20:259. [PMID: 30940089 PMCID: PMC6444640 DOI: 10.1186/s12864-019-5496-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND RNA sequencing is a widely used technology for differential expression analysis. However, the RNA-Seq do not provide accurate absolute measurements and the results can be different for each pipeline used. The major problem in statistical analysis of RNA-Seq and in the omics data in general, is the small sample size with respect to the large number of variables. In addition, experimental design must be taken into account and few tools consider it. RESULTS We propose OMICfpp, a method for the statistical analysis of RNA-Seq paired design data. First, we obtain a p-value for each case-control pair using a binomial test. These p-values are aggregated using an ordered weighted average (OWA) with a given orness previously chosen. The aggregated p-value from the original data is compared with the aggregated p-value obtained using the same method applied to random pairs. These new pairs are generated using between-pairs and complete randomization distributions. This randomization p-value is used as a raw p-value to test the differential expression of each gene. The OMICfpp method is evaluated using public data sets of 68 sample pairs from patients with colorectal cancer. We validate our results through bibliographic search of the reported genes and using simulated data set. Furthermore, we compared our results with those obtained by the methods edgeR and DESeq2 for paired samples. Finally, we propose new target genes to validate these as gene expression signatures in colorectal cancer. OMICfpp is available at http://www.uv.es/ayala/software/OMICfpp_0.2.tar.gz . CONCLUSIONS Our study shows that OMICfpp is an accurate method for differential expression analysis in RNA-Seq data with paired design. In addition, we propose the use of randomized p-values pattern graphic as a powerful and robust method to select the target genes for experimental validation.
Collapse
Affiliation(s)
- Alberto Berral-Gonzalez
- Grupo de Investigación Bioinformática y Genómica Funcional. Laboratorio 19. Centro de Investigación del Cáncer (CiC-IBMCC, Universidad de Salamanca-CSIC, Campus Universitario Miguel de Unamuno s/n, Salamanca, 37007 Spain
| | - Angela L. Riffo-Campos
- Universidad de La Frontera. Centro De Excelencia de Modelación y Computación Científica, C/ Montevideo 740, Temuco, Chile
| | - Guillermo Ayala
- Universidad de Valencia. Departamento de Estadística e Investigación Operativa, Avda. Vicent Andrés Estellés, 1, Burjasot, 46100 Spain
| |
Collapse
|
16
|
Wu X, Xiao J, Zhao C, Zhao C, Han Z, Wang F, Yang Y, Jiang Y, Fang F. Claudin1 promotes the proliferation, invasion and migration of nasopharyngeal carcinoma cells by upregulating the expression and nuclear entry of β-catenin. Exp Ther Med 2018; 16:3445-3451. [PMID: 30233694 PMCID: PMC6143911 DOI: 10.3892/etm.2018.6619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/26/2018] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to measure the expression of Claudin (CLDN) 1 in nasopharyngeal carcinoma (NPC) and to determine its biological function and mechanism of action. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to measure the expression of CLDN1 mRNA and protein, respectively, in the immortalized human nasopharyngeal epithelial cell line NP69 and NPC-TW01 cells. Subsequently, small interfering RNA against CLDN1 and the LV-GFP-PURO-CLDN1 lentivirus were transfected into NPC-TW01 cells. Western blotting was used to determine the effects of CLDN1 down- and upregulation on the expression of the epithelial mesenchymal transition (EMT) markers E-cadherin and vimentin. In addition, the effect of CLDN1 on the expression of β-Catenin was determined. The results demonstrated that levels of CLDN1 mRNA and protein in NPC cells were significantly higher than in NP69 cells. Furthermore, the downregulation of CLDN1 inhibited the proliferation, invasion and migration of NPC-TW01 cells. The results of western blotting demonstrated that the downregulation of CLDN1 resulted in the upregulation of E-cadherin and inhibition of vimentin in NPC-TW01 cells. By contrast, the overexpression of CLDN1 resulted in the downregulation of E-cadherin and upregulation of vimentin in NPC-TW01 cells. The downregulation of β-catenin attenuated the cancer-promoting effect of CLDN1 on NPC-TW01 cells, whereas the upregulation of β-catenin reversed the tumor-suppressing effect of CLDN1 downregulation on NPC-TW01 cells. The results of the present study therefore demonstrate that CLDN1 expression is elevated in NPC cells. As an oncogene, CLDN1 promotes the proliferation, invasion and migration of NPC cells by upregulating the expression and nuclear entry of β-catenin.
Collapse
Affiliation(s)
- Xin Wu
- Department of Head and Neck Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianghong Xiao
- Department of Radiation Physics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chong Zhao
- Department of Radiotherapy, Tumor Hospital of Chengdu, The Seventh People's Hospital of Chengdu, Chengdu, Sichuan 610041, P.R. China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhongcheng Han
- Department of Oncology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang 830001, P.R. China
| | - Feng Wang
- Department of Head and Neck Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuqiong Yang
- Department of Head and Neck Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Jiang
- Department of Head and Neck Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fang Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
17
|
Xing T, Camacho Salazar R, Chen YH. Animal models for studying epithelial barriers in neonatal necrotizing enterocolitis, inflammatory bowel disease and colorectal cancer. Tissue Barriers 2017; 5:e1356901. [PMID: 28795875 DOI: 10.1080/21688370.2017.1356901] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelial cells line the luminal surface of the entire gastrointestinal tract which is crucial for the absorption of nutrients and prevention of pathogens entering from the external environment. The epithelial barrier plays an important role in organ development, disease pathogenesis, and aging. The major component of an epithelial barrier is the single columnar epithelium and tight junctions. Tight junctions are located at the most apical region of the junctional complex and contain many integral membrane proteins, such as occludin, the claudin family, and junctional adhesion molecules (JAMs). The disruption of intestinal epithelial barriers may lead to several pathophysiological conditions causing malabsorption of nutrition and chronic inflammation. In this review, we provide an update on the alterations of epithelial barriers associated with gut diseases using experimental animal models; we appraise the role of tight junctions in neonatal necrotizing enterocolitis (NEC), inflammatory bowel disease (IBD), and colorectal cancer; we also compare some common features as well as differences and similarities in the pathophysiology of intestinal inflammation in neonatal (NEC) and adult (IBD) gut.
Collapse
Affiliation(s)
- Tiaosi Xing
- a Department of Anatomy and Cell Biology , Brody School of Medicine, East Carolina University , Greenville , NC , USA
| | - Rolando Camacho Salazar
- b Department of Pediatrics , Brody School of Medicine, East Carolina University , Greenville , NC , USA
| | - Yan-Hua Chen
- a Department of Anatomy and Cell Biology , Brody School of Medicine, East Carolina University , Greenville , NC , USA.,b Department of Pediatrics , Brody School of Medicine, East Carolina University , Greenville , NC , USA
| |
Collapse
|
18
|
Zhao Z, Li J, Jiang Y, Xu W, Li X, Jing W. CLDN1 Increases Drug Resistance of Non-Small Cell Lung Cancer by Activating Autophagy via Up-Regulation of ULK1 Phosphorylation. Med Sci Monit 2017; 23:2906-2916. [PMID: 28614291 PMCID: PMC5479443 DOI: 10.12659/msm.904177] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the expression of CLDN1 in non-small cell lung cancer (NSCLC) and its mechanism of action in cisplatin resistance. MATERIAL AND METHODS A total of 55 patients with NSCLC admitted to our hospital between October 2013 and October 2015 were included. NSCLC tissues and tumor-adjacent tissues (≥5 cm from tumor edge) were collected. Among the 55 patients, 37 had adenocarcinoma and 18 had squamous cell carcinoma. Quantitative real-time polymerase chain reaction was used to determine mRNA expression, and protein expression was examined using Western blotting. CCK-8 assay was used to determine cell proliferation and Transwell assay was used to detect migration and invasion of the cells. Confocal microscopy was used to observe autophagosomes. RESULTS Increased CLDN1 expression promoted the development and metastasis of NSCLC. CLDN1 expression in A549/CDDP cells was up-regulated at both transcriptional and translational levels. Reduced CLDN1 expression decreased the drug resistance, proliferation, migration, and invasion abilities of A549/CDDP cells. Decreased CLDN1 expression promoted the apoptosis of A549/CDDP cells. CLDN1 enhanced CDDP drug resistance of A549 cells by activating autophagy. CLDN1 promoted the autophagy of A549 cells by up-regulating the phosphorylation level of ULK1. CONCLUSIONS The present study demonstrates that expression of CLDN1 in NSCLC is up-regulated and it is correlated with clinicopathological features. CLDN1 activates autophagy through up-regulation of ULK1 phosphorylation and promotes drug resistance of NSCLC cells to CDDP.
Collapse
Affiliation(s)
- Zhenhuan Zhao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Yan Jiang
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Wen Xu
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Xin Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Weili Jing
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
19
|
Sewda K, Coppola D, Enkemann S, Yue B, Kim J, Lopez AS, Wojtkowiak JW, Stark VE, Morse B, Shibata D, Vignesh S, Morse DL. Cell-surface markers for colon adenoma and adenocarcinoma. Oncotarget 2017; 7:17773-89. [PMID: 26894861 PMCID: PMC4951249 DOI: 10.18632/oncotarget.7402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/24/2016] [Indexed: 12/26/2022] Open
Abstract
Early detection of colorectal cancer (CRC) is crucial for effective treatment. Among CRC screening techniques, optical colonoscopy is widely considered the gold standard. However, it is a costly and invasive procedure with a low rate of compliance. Our long-term goal is to develop molecular imaging agents for the non-invasive detection of CRC by molecular imaging-based colonoscopy using CT, MRI or fluorescence. To achieve this, cell surface targets must be identified and validated. Here, we report the discovery of cell-surface markers that distinguish CRC from surrounding tissues that could be used as molecular imaging targets. Profiling of mRNA expression microarray data from patient tissues including adenoma, adenocarcinoma, and normal gastrointestinal tissues was used to identify potential CRC specific cell-surface markers. Of the identified markers, six were selected for further validation (CLDN1, GPR56, GRM8, LY6G6D/F, SLCO1B3 and TLR4). Protein expression was confirmed by immunohistochemistry of patient tissues. Except for SLCO1B3, diffuse and low expression was observed for each marker in normal colon tissues. The three markers with the greatest protein overexpression were CLDN1, LY6G6D/F and TLR4, where at least one of these markers was overexpressed in 97% of the CRC samples. GPR56, LY6G6D/F and SLCO1B3 protein expression was significantly correlated with the proximal tumor location and with expression of mismatch repair genes. Marker expression was further validated in CRC cell lines. Hence, three cell-surface markers were discovered that distinguish CRC from surrounding normal tissues. These markers can be used to develop imaging or therapeutic agents targeted to the luminal surface of CRC.
Collapse
Affiliation(s)
- Kamini Sewda
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Steven Enkemann
- Department of Molecular Genomics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Binglin Yue
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Alexis S Lopez
- Department of Tissue Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Valerie E Stark
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Brian Morse
- Department of Diagnostic Imaging, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shivakumar Vignesh
- Division of Gastroenterology and Hepatology, SUNY Health Sciences Center at Brooklyn, Brooklyn, NY 11203, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
20
|
Bhat AA, Ahmad R, Uppada SB, Singh AB, Dhawan P. Claudin-1 promotes TNF-α-induced epithelial-mesenchymal transition and migration in colorectal adenocarcinoma cells. Exp Cell Res 2016; 349:119-127. [PMID: 27742576 PMCID: PMC6166648 DOI: 10.1016/j.yexcr.2016.10.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/02/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important mechanism in cancer progression and malignancy including colorectal cancer (CRC). Importantly, inflammatory mediators are critical constituents of the local tumor environment and an intimate link between CRC progression and inflammation is now validated. We and others have reported key role of the deregulated claudin-1 expression in colon carcinogenesis including colitis-associated colon cancer (CAC). However, the causal association between claudin-1 expression and inflammation-induced colon cancer progression remains unclear. Here we demonstrate, TNF-α, a pro-inflammatory cytokine, regulates claudin-1 to modulate epithelial to mesenchymal transition (EMT) and migration in colon adenocarcinoma cells. Importantly, colon cancer cells cultured in the presence of TNF-α (10ng/ml), demonstrated a sharp decrease in E-cadherin expression and an increase in vimentin expression (versus control cells). Interestingly, TNF-α treatment also upregulated (and delocalized) claudin-1 expression in a time-dependent manner accompanied by increase in proliferation and wound healing. Furthermore, similar to our previous observation that claudin-1 overexpression in CRC cells induces ERK1/2 and Src- activation, signaling associated with colon cancer cell survival and transformation, TNF-α-treatment induced upregulation of phospho-ERK1/2 and -Src expression. The shRNA-mediated inhibition of claudin-1 expression largely abrogated the TNF-α-induced changes in EMT, proliferation, migration, p-Erk and p-Src expression. Taken together, our data demonstrate TNF-α mediated regulation of claudin-1 and tumorigenic abilities of colon cancer cells and highlights a key role of deregulated claudin-1 expression in inflammation-induced colorectal cancer growth and progression, through the regulation of the ERK and Src-signaling.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Rizwan Ahmad
- Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022, United States
| | - SrijayaPrakash B Uppada
- Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022, United States
| | - Amar B Singh
- From the Department of Veterans Affairs, University of Nebraska Medical Center, Omaha, NE 68022, United States; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022, United States; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68022, United States
| | - Punita Dhawan
- From the Department of Veterans Affairs, University of Nebraska Medical Center, Omaha, NE 68022, United States; Departments of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68022, United States; Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE 68022, United States.
| |
Collapse
|
21
|
Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines. Int J Mol Sci 2016; 17:ijms17101655. [PMID: 27690019 PMCID: PMC5085688 DOI: 10.3390/ijms17101655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023] Open
Abstract
Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.
Collapse
|
22
|
Nefedova NА, Kharlova ОА, Malkov PG. [Еxpression of claudin-1, 3, and 4 in colorectal cancer and polyps]. Arkh Patol 2016; 78:11-19. [PMID: 27296001 DOI: 10.17116/patol201678311-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
UNLABELLED Claudins are a family of transmembrane tight junctions proteins. It is proven that claudins undergo structural and functional alteration in malignant cells. However, very few researches are pursued on this topic, the data provided by different researchers are controversial. The aim of this study was to evaluate expression of tight junction proteins in cancer and benign polyps of the colon and rectum. MATERIAL AND METHODS Specimens of 32 colorectal adenocarcinomas and biopsy specimens of 86 polypoid lesions of the colon and rectum were selected from diagnostic material. Polyps were divided into 6 groups following the 2010 WHO classification of premalignant lesions of the colon and rectum. Immunohistochemical labeling with claudin-1, claudin-3 and claudin-4 antibodies was performed in all cases. We used G. Sheehan et al. (2007) method to evaluate the expression of claudins in neoplasm as well as in adjacent normal mucosa in each slide. RESULTS Immunohistochemical staining with claudins antibodies had membranous pattern; claudins expression in adjacent normal mucosa was uniformly close to maximum. Serrated lesions showed the lowest level of expression of claudin-1 among other groups (p<0,05). In the group of adenocarcinomas we found moderate negative correlation between claudin-1 expression level and grade of adenocarcinoma. Claudin-3 expression level was significantly higher in adenocarcinomas compared to serrated lesions (p=0,025) and in conventional adenomas compared to serrated lesions (p=0,034). Expression of claudin-4 was strong in most cases, except for tubular adenomas that showed moderate expression in most cases. CONCLUSION We found no statistically significant difference between levels of expression of claudin-1, claudin-3 and claudin-4 expression levels among adenocarcinomas, hyperplastic polyps, sessile serrated adenomas, traditional serrated adenomas, tubular and tubular-villous adenomas. But we detected significant difference after enlargement of the groups. This fact may argue for general development pathway of hyperplastic polyps and sessile serrated adenomas, and of tubular and tubular-villous adenomas. Expression of claudin-1 and claudin-3 revealed difference of serrated lesions from conventional adenomas and adenocarcinomas, that confirms conception of independent «serrated» pathway of cancerogenesis.
Collapse
Affiliation(s)
- N А Nefedova
- Russian Medical Academy of Postgraduate Education Ministry of Health of Russia, Moscow; Lomonosov Moscow State University, Moscow, Russia
| | - О А Kharlova
- Lomonosov Moscow State University, Moscow, Russia
| | - P G Malkov
- Russian Medical Academy of Postgraduate Education Ministry of Health of Russia, Moscow; Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
23
|
Karabulut M, Alis H, Bas K, Karabulut S, Afsar CU, Oguz H, Gunaldi M, Akarsu C, Kones O, Aykan NF. Clinical significance of serum claudin-1 and claudin-7 levels in patients with colorectal cancer. Mol Clin Oncol 2015; 3:1255-1267. [PMID: 26807230 PMCID: PMC4665381 DOI: 10.3892/mco.2015.626] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/18/2015] [Indexed: 12/25/2022] Open
Abstract
The present study aimed to investigate the serum levels and clinical relevance of claudin (CLDN) 1 and CLDN7 in patients with colorectal cancer (CRC). A total of 140 patients with a pathologically confirmed diagnosis of CRC were enrolled in this study. The serum levels of CLDN1 and CLDN7 were determined using the solid-phase sandwich ELISA method. A total of 40 healthy age- and gender-matched controls were included in the analysis. The median age of the patients was 60 years (range, 24-84 years). The localization of the tumor in the majority of the patients was the colon (n=81, 58%). Of the 55 metastatic patients who received palliative chemotheraphy, 31% were chemotherapy-responsive. The baseline median serum CLDN1 and CLDN7 levels were significantly lower in non-metastatic and metastatic patients compared with those in healthy controls (CLND1, P=0.008 and 0.002; and CLND7, P=0.002 and 0.002, respectively). Moreover, known clinical variables, including poor performance status and high carcinoembryonic antigen (CEA) levels were found to be associated with lower serum CLDN1 concentrations for all patients (P=0.03 and P=0.03, respectively). High T stage and high CEA levels were found to be correlated with lower serum CLDN7 concentrations for all patients (P=0.04 and 0.03, respectively). A correlation was identified between CLDN1 and CLDN7 levels in non-metastatic and metastatic CRC patients (both P-values <0.001). Our study results did not reveal any statistical significance for serum CLDN1 or CLND7 concentrations regarding progression-free and overall survival rate. Therefore, reduced serum levels of CLDN1 and CLND7 may be useful markers in the differential diagnosis of CRC.
Collapse
Affiliation(s)
- Mehmet Karabulut
- Clinic of General Surgery, Istanbul Bakırköy Dr Sadi Konuk Education and Research Hospital, 34156 Istanbul, Turkey
| | - Halil Alis
- Clinic of General Surgery, Istanbul Bakırköy Dr Sadi Konuk Education and Research Hospital, 34156 Istanbul, Turkey
| | - Koray Bas
- Clinic of General Surgery, Istanbul Bakırköy Dr Sadi Konuk Education and Research Hospital, 34156 Istanbul, Turkey
| | - Senem Karabulut
- Department of Medical Oncology, Institute of Oncology, Istanbul University, 34093 Istanbul, Turkey
| | - Cigdem Usul Afsar
- Department of Medical Oncology, Istanbul Education and Research Hospital, 34098 Istanbul, Turkey
| | - Hilal Oguz
- Department of Basic Oncology, Institute of Oncology, Istanbul University, 34390 Istanbul, Turkey
| | - Meral Gunaldi
- Clinic of Medical Oncology, Istanbul Bakirköy Dr Sadi Konuk Education and Research Hospital, 34156 Istanbul, Turkey
| | - Cevher Akarsu
- Clinic of General Surgery, Istanbul Bakırköy Dr Sadi Konuk Education and Research Hospital, 34156 Istanbul, Turkey
| | - Osman Kones
- Clinic of General Surgery, Istanbul Bakırköy Dr Sadi Konuk Education and Research Hospital, 34156 Istanbul, Turkey
| | - Nuri Faruk Aykan
- Department of Medical Oncology, Institute of Oncology, Istanbul University, 34093 Istanbul, Turkey
| |
Collapse
|
24
|
Zhao X, Zou Y, Gu Q, Zhao G, Gray H, Pfeffer LM, Yue J. Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells. Viruses 2015; 7:2965-79. [PMID: 26067567 PMCID: PMC4488722 DOI: 10.3390/v7062755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/31/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022] Open
Abstract
Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1) is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7) cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA) construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT) by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA) and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.
Collapse
Affiliation(s)
- Xianqi Zhao
- Department of Medicine, Harbin Medical University, Harbin 150086, China.
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Yanan Zou
- Department of Medicine, Harbin Medical University, Harbin 150086, China.
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Qingqing Gu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Guannan Zhao
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Horace Gray
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Rm. 266, Memphis, TN 38163, USA.
| |
Collapse
|
25
|
Süren D, Yıldırım M, Kaya V, Alikanoğlu AS, Bülbüller N, Yıldız M, Sezer C. Loss of tight junction proteins (Claudin 1, 4, and 7) correlates with aggressive behavior in colorectal carcinoma. Med Sci Monit 2014; 20:1255-62. [PMID: 25038829 PMCID: PMC4113573 DOI: 10.12659/msm.890598] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/04/2014] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Tight junction proteins in the cell organize paracellular permeability and they play a critical role in apical cell-to-cell adhesion and epithelial polarity. Claudins are major integral membrane proteins of tight junctions, especially Claudin 1, 4, and 7, which are known as the impermeability Claudins. In this study, we investigated the importance of loss of Claudin 1, 4, and 7 expression, and their relation to tumor progression in colorectal cancer patients. MATERIAL/METHODS Loss of Claudin 1, 4, and 7 expression was examined by immunohistochemical method in 70 patients diagnosed with colorectal cancer. Cases with loss of Claudin expression in <1/3 of tumor cells were classified as mild loss, whereas cases with loss of Claudin expression ³1/3 of tumor cells were classified as moderate-to-marked loss in order to evaluate the relation between loss of Claudin 1, 4, and 7 expression and clinicopathologic data. RESULTS The severe suppression of Claudin 1, 4, and 7 expression was found to be significantly related to the depth of tumor invasion, positive regional lymph nodes, histological grade, lymphovascular invasion, perineural invasion, and lymphocytic response. Additionally, severity of loss in Claudin 4 expression was found to have a relation with distant metastasis. CONCLUSIONS Claudin 1, 4, and 7 are important building blocks of paracellular adhesion molecules. Their decreased expression in colorectal cancer seems to have critical effects on cell proliferation, motility, invasion, and immune response against the tumor.
Collapse
Affiliation(s)
- Dinç Süren
- Department of Pathology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Mustafa Yıldırım
- Department of Medical Oncology, Ministry of Health Batman Regional Government Hospital, Batman, Turkey
| | - Vildan Kaya
- Department of Radiation Oncology, Süleyman Demirel University, Isparta, Turkey
| | | | - Nurullah Bülbüller
- Department of General Surgery, Antalya Education and Research Hospital, Antalya, Turkey
| | - Mustafa Yıldız
- Department of Medical Oncology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Cem Sezer
- Department of Pathology, Antalya Education and Research Hospital, Antalya, Turkey
| |
Collapse
|
26
|
Claudin-1 Expression Is Elevated in Colorectal Cancer Precursor Lesions Harboring the BRAF V600E Mutation. Transl Oncol 2014; 7:456-63. [PMID: 24954356 PMCID: PMC4202803 DOI: 10.1016/j.tranon.2014.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND: Sessile serrated adenomas/polyps (SSA/P) are now recognised precursors of colorectal cancer (CRC) including cancers harbouring somatic BRAF (V600E) mutations. While the morphological diagnostic criteria of SSA/P have been established, distinguishing between small/early SSA/P and microvesicular hyperplastic polyps (MVHP) is challenging and may not be possible in routine practice. METHODS: Gene expression profiling of MVHP (n=5, all BRAF V600E wild-type) and SSA/P (n=5, all BRAF V600E mutant) samples was performed. Quantitative reverse transcription–polymerase chain reaction (qRT-PCR) and immunohistochemical analysis was performed to verify the expression of claudin 1 (CLDN1) in MVHP and SSA/P. RESULTS: Gene expression profiling studies conducted between MVHP and SSA/P identified CLDN1 as the most statistically significant differentially expressed gene (p<0.05). Validation with qRT-PCR confirmed an up-regulation of CLDN1 in BRAF V600E mutant polyps regardless of polyp type (p<0.0005). Immunohistochemical analysis of CLDN1 expression in BRAF V600E mutant SSA/Ps (n=53) and MVHPs (n=111) and BRAF wild-type MVHPs (n=58), demonstrated a strong correlation between CLDN1 expression and the BRAF V600E mutation in both SSA/P and MVHP samples when compared to wild-type polyps (p<0.0001). CONCLUSION: This study demonstrates an up regulation of CLDN1 protein in serrated colorectal polyps including MVHP harbouring the BRAF V600E mutation. Our results demonstrated an apparent heterogeneity on the molecular level within the MVHP group and suggest that MVHP with somatic BRAF V600E mutation and up-regulated expression of CLDN1 are closely related to SSA/P and may in fact represent a continuous spectrum of the same neoplastic process within the serrated pathway of colorectal carcinogenesis.
Collapse
|
27
|
Balik V, Trojanec R, Holzerova M, Tuckova L, Sulla I, Megova M, Vaverka M, Hrabalek L, Ehrmann J. An adult multifocal medulloblastoma with diffuse acute postoperative cerebellar swelling: immunohistochemical and molecular genetics analysis. Neurosurg Rev 2014; 38:1-10; discussion 10. [PMID: 24913771 DOI: 10.1007/s10143-014-0556-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 03/25/2014] [Accepted: 04/13/2014] [Indexed: 11/30/2022]
Abstract
Medulloblastoma (MB), the most common malignant tumor typically affecting children, occurs only exceptionally in adults. Multifocal presentation of this malignancy in adulthood is even much rarer—only four cases with favorable postoperative course have been reported, so far. The study illustrates a very rare rapid postoperative clinical deterioration due to diffuse cerebellar swelling (DCS) in an adult multifocal MB (MMB). To the best of their knowledge, authors for the first time performed genetic analysis of MMB and demonstrated expression patterns of selected markers that put the patient within the sonic hedgehog (SHH) molecular subgroup and at least partially explain her unsatisfactory clinical course. Herein, authors summarized the relevant literature concerning this issue with the aim to determine features that would facilitate diagnosis and therapy of such a scarce clinical entity.
Collapse
Affiliation(s)
- Vladimir Balik
- Department of Neurosurgery, University Hospital Olomouc and Faculty of Medicine and Dentistry, University Hospital Olomouc and Palacky University, Olomouc, Czech Republic,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Eftang LL, Esbensen Y, Tannæs TM, Blom GP, Bukholm IRK, Bukholm G. Up-regulation of CLDN1 in gastric cancer is correlated with reduced survival. BMC Cancer 2013; 13:586. [PMID: 24321518 PMCID: PMC4029627 DOI: 10.1186/1471-2407-13-586] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 11/21/2013] [Indexed: 12/13/2022] Open
Abstract
Background The genetic changes in gastric adenocarcinoma are extremely complex and reliable tumor markers have not yet been identified. There are also remarkable geographical differences in the distribution of this disease. Our aim was to identify the most differentially regulated genes in 20 gastric adenocarcinomas from a Norwegian selection, compared to matched normal mucosa, and we have related our findings to prognosis, survival and chronic Helicobacter pylori infection. Methods Biopsies from gastric adenocarcinomas and adjacent normal gastric mucosa were obtained from 20 patients immediately following surgical resection of the tumor. Whole genome, cDNA microarray analysis was performed on the RNA isolated from the sample pairs to compare the gene expression profiles between the tumor against matched mucosa. The samples were microscopically examined to classify gastritis. The presence of H. pylori was examined using microscopy and immunohistochemistry. Results 130 genes showed differential regulation above a predefined cut-off level. Interleukin-8 (IL-8) and Claudin-1 (CLDN1) were the most consistently up-regulated genes in the tumors. Very high CLDN1 expression in the tumor was identified as an independent and significant predictor gene of reduced post-operative survival. There were distinctly different expression profiles between the tumor group and the control mucosa group, and the histological subsets of mixed type, diffuse type and intestinal type cancer demonstrated further sub-clustering. Up-regulated genes were mapped to cell-adhesion, collagen-related processes and angiogenesis, whereas normal intestinal functions such as digestion and excretion were associated with down-regulated genes. We relate the current findings to our previous study on the gene response of gastric epithelial cells to H. pylori infection. Conclusions CLDN1 was highly up-regulated in gastric cancer, and CLDN1 expression was independently associated with a poor post-operative prognosis, and may have important prognostic value. IL-8 and CLDN1 may represent central links between the gene response seen in acute H. pylori infection of gastric epithelial cells, and ultimately gastric cancer.
Collapse
Affiliation(s)
- Lars L Eftang
- Department of Clinical Molecular Biology and Laboratory Sciences (EpiGen), Division of Medicine, Akershus University Hospital and University of Oslo, N-1478 Nordbyhagen, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
29
|
Sharma A, Bhat AA, Krishnan M, Singh AB, Dhawan P. Trichostatin-A modulates claudin-1 mRNA stability through the modulation of Hu antigen R and tristetraprolin in colon cancer cells. Carcinogenesis 2013; 34:2610-21. [PMID: 23880304 PMCID: PMC3810835 DOI: 10.1093/carcin/bgt207] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/26/2013] [Accepted: 05/18/2013] [Indexed: 02/06/2023] Open
Abstract
Expression of claudin-1, a tight junction protein, is highly upregulated in colon cancer. We have reported that claudin-1 expression in colon cancer cells is epigenetically regulated as histone deacetylase (HDAC) inhibitors decrease claudin-1 messenger RNA (mRNA) stability and thus expression. In this regard, our data suggested a role of the 3'-untranslated region (UTR) in the regulation of HDAC-dependent regulation of claudin-1 mRNA stability. In the current study, we demonstrate, based on our continued investigation, that the ELAV-like RNA-binding proteins (RBPs), human antigen R (HuR) and tristetraprolin (TTP) associate with the 3'-UTR of claudin-1 mRNA to modulate the latter's stability. Ribonomic and site-directed mutagenesis approaches were used to confirm the binding of HuR and TTP to the 3'-UTR of claudin-1. We further confirmed their roles in the stabilization of claudin-1 mRNA, under conditions of HDAC inhibition. In summary, we report that HuR and TTP are the critical regulators of the posttranscriptional regulation of claudin-1 expression in colon cancer cells. We also demonstrate that inhibition of HDACs by trichostatin treatment decreased the binding of HuR while increasing the binding of TTP to the 3'-UTR of claudin-1. Additionally, we provide data showing transcriptional regulation of claudin-1 expression, through the regulation of transcription factor Sp1. Taken together, we demonstrate epigenetic regulation of claudin-1 expression in colon cancer cells at the transcriptional and posttranscriptional levels.
Collapse
Affiliation(s)
- Ashok Sharma
- Department of Surgery, Vanderbilt University Medical Center, MCN, B-2211, Nashville, TN 37232, USA
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ajaz A. Bhat
- Department of Surgery, Vanderbilt University Medical Center, MCN, B-2211, Nashville, TN 37232, USA
| | - Moorthy Krishnan
- Department of Surgery, Vanderbilt University Medical Center, MCN, B-2211, Nashville, TN 37232, USA
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside CA 92521, USA
| | - Amar B. Singh
- Department of Surgery, Vanderbilt University Medical Center, MCN, B-2211, Nashville, TN 37232, USA
- Department of Medicine and
| | - Punita Dhawan
- Department of Surgery, Vanderbilt University Medical Center, MCN, B-2211, Nashville, TN 37232, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, MCN, B-2211, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Regulation of Tight Junctions for Therapeutic Advantages. CANCER METASTASIS - BIOLOGY AND TREATMENT 2013. [DOI: 10.1007/978-94-007-6028-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|