1
|
Feng H, Zhou K, Yuan Q, Liu Z, Zhang T, Chen H, Xu B, Sun Z, Han Z, Liu H, Yu S, Chen T, Li G, Zhou W, Yu J, Huang W, Jiang Y. Noninvasive Assessment of Vascular Endothelial Growth Factor and Prognosis in Gastric Cancer Through Radiomic Features. Clin Transl Gastroenterol 2025; 16:e00802. [PMID: 39787380 PMCID: PMC11932601 DOI: 10.14309/ctg.0000000000000802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
INTRODUCTION Gastric cancer (GC) is a leading cause of cancer-related deaths worldwide, with delayed diagnosis often limiting effective treatment options. This study introduces a novel, noninvasive radiomics-based approach using [18F] FDG PET/CT (fluorodeoxyglucose positron emission tomography/computed tomography) to predict vascular endothelial growth factor (VEGF) status and survival in patients with GC. The ability to noninvasively assess these parameters can significantly influence therapeutic decisions and outcomes. METHODS We conducted a retrospective study involving patients diagnosed with GC, stratified into training, validation, and test groups. Each patient underwent a [18F] FDG PET/CT scan, and radiomic features were extracted using dedicated software. A Radiomics Score (RS) was calculated, serving as a predictor for VEGF status. Statistical analyses included logistic regression and Cox proportional hazards models to evaluate the predictive power of RS on survival outcomes. RESULTS The developed radiomics model demonstrated high predictive accuracy, with the RS formula achieving an area under the receiver operating characteristic curve of 0.861 in the training cohort and 0.857 in the validation cohort for predicting VEGF status. The model also identified RS as an independent prognostic factor for survival, where higher RS values correlated with poorer survival rates. DISCUSSION The findings underscore the potential of [18F] FDG PET/CT radiomics in transforming the management of GC by providing a noninvasive means to assess tumor aggressiveness and prognosis through VEGF status. This model could facilitate earlier and more tailored therapeutic interventions, potentially improving survival outcomes in a disease marked by typically late diagnosis and limited treatment success.
Collapse
Affiliation(s)
- Hao Feng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangneng Zhou
- College of Computer Science, Nankai University, Tianjin, China
| | - Qingyu Yuan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Liu
- Department of PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Taojun Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Benjamin Xu
- Lynbrook High School, San Jose, California, USA
| | - Zepang Sun
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Han
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Liu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shitong Yu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Chen
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wenlan Zhou
- Department of PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weicai Huang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuming Jiang
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
2
|
Qin C, Fu Y, Zhang X, Li M, Ruan W, Gai Y, Lan X. Prognostic value of [ 68Ga]Ga-FAPI-04 PET in patients with newly diagnosed gastric carcinoma. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07164-8. [PMID: 40016528 DOI: 10.1007/s00259-025-07164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
PURPOSE Gallium-68-labeled fibroblast activation protein inhibitor ([68Ga]Ga-FAPI) positron emission tomography (PET) has demonstrated excellent diagnostic performance in various malignancies, including gastric carcinoma. However, its prognostic utility is unclear. This study evaluates the prognostic value of [68Ga]Ga-FAPI-04 PET/MRI(CT) in gastric carcinoma. METHODS We retrospectively analyzed patients with gastric cancer who underwent [68Ga]Ga-FAPI-04 PET/MRI(CT) between June 2020 and June 2023. Semi-quantitative parameters, including maximum and mean standard uptake value (SUVmax, SUVmean), FAPI-avid tumor volume (FTV), total lesion FAP expression (TLF), tumor to background ratio (TBR), heterogeneity factor (HF) and coefficient of variation (CV) of the primary tumor were measured or calculated. Overall survival (OS) and progression-free survival (PFS) were obtained through follow-up. The relationships between disease prognosis and potential predictors were analyzed, and predictive models were established. RESULTS Eighty-six patients (median age 59 years) were included. Thirty-five patients experienced disease progression, and 26 of them died. Univariable analysis revealed SUVmax, FTV, TLF, TBR, HF and CV were significant prognostic factors for both OS and PFS. In multivariate Cox regression analysis, a nomogram model for OS was established, incorporating body mass index (BMI) and CV as independent predictors. The time-dependent C-index of the nomogram model > 0.75 indicates good predictive performance. When predicting PFS, a stratified analysis was performed based on distant metastasis, FTV was an independent prognostic factor among patients without distant metastasis. CONCLUSION CV and FTV, derived from [68Ga]Ga-FAPI-04 PET imaging, could serve as independent prognostic factor for OS and PFS in patients with gastric cancer, respectively.
Collapse
Affiliation(s)
- Chunxia Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Yiru Fu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Yongkang Gai
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, China.
- Key Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, Hubei Province, China.
| |
Collapse
|
3
|
Zhi H, Xiang Y, Chen C, Zhang W, Lin J, Gao Z, Shen Q, Shao J, Yang X, Yang Y, Chen X, Zheng J, Lu M, Pan B, Dong Q, Shen X, Ma C. Development and validation of a machine learning-based 18F-fluorodeoxyglucose PET/CT radiomics signature for predicting gastric cancer survival. Cancer Imaging 2024; 24:99. [PMID: 39080806 PMCID: PMC11290137 DOI: 10.1186/s40644-024-00741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Survival prognosis of patients with gastric cancer (GC) often influences physicians' choice of their follow-up treatment. This study aimed to develop a positron emission tomography (PET)-based radiomics model combined with clinical tumor-node-metastasis (TNM) staging to predict overall survival (OS) in patients with GC. METHODS We reviewed the clinical information of a total of 327 patients with pathological confirmation of GC undergoing 18 F-fluorodeoxyglucose (18 F-FDG) PET scans. The patients were randomly classified into training (n = 229) and validation (n = 98) cohorts. We extracted 171 PET radiomics features from the PET images and determined the PET radiomics scores (RS) using the least absolute shrinkage and selection operator (LASSO) and random survival forest (RSF). A radiomics model, including PET RS and clinical TNM staging, was constructed to predict the OS of patients with GC. This model was evaluated for discrimination, calibration, and clinical usefulness. RESULTS On multivariate COX regression analysis, the difference between age, carcinoembryonic antigen (CEA), clinical TNM, and PET RS in GC patients was statistically significant (p < 0.05). A radiomics model was developed based on the results of COX regression. The model had the Harrell's concordance index (C-index) of 0.817 in the training cohort and 0.707 in the validation cohort and performed better than a single clinical model and a model with clinical features combined with clinical TNM staging. Further analyses showed higher PET RS in patients who were older (p < 0.001) and those who had elevated CEA (p < 0.001) and higher clinical TNM (p < 0.001). At different clinical TNM stages, a higher PET RS was associated with a worse survival prognosis. CONCLUSIONS Radiomics models based on PET RS, clinical TNM, and clinical features may provide new tools for predicting OS in patients with GC.
Collapse
Affiliation(s)
- Huaiqing Zhi
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yilan Xiang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenbin Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weiteng Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jie Lin
- Department of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zekan Gao
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingzheng Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiancan Shao
- Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinxin Yang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yunjun Yang
- Department of PET/CT, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaodong Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jingwei Zheng
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mingdong Lu
- Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Bujian Pan
- Department of General Surgery, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiantong Dong
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Chunxue Ma
- Department of Gastrointestinal Surgery Nursing Unit, Ward 443, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Hu H, Huang Y, Sun H, Zhou K, Jiang L, Zhong J, Chen L, Wang L, Han Y, Wu H. A proper protocol for routine 18F-FDG uEXPLORER total-body PET/CT scans. EJNMMI Phys 2023; 10:51. [PMID: 37695324 PMCID: PMC10495295 DOI: 10.1186/s40658-023-00573-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Conventional clinical PET scanners typically have an axial field of view (AFOV) of 15-30 cm, resulting in limited coverage and relatively low photon detection efficiency. Taking advantage of the development of long-axial PET/CT, the uEXPLORER PET/CT scanner with an axial coverage of 194 cm increases the effective count rate by approximately 40 times compared to that of conventional PET scanners. Ordered subset expectation maximization (OSEM) is the most widely used iterative algorithm in PET. The major drawback of OSEM is that the iteration process must be stopped before convergence to avoid image degradation due to excessive noise. A new Bayesian penalized-likelihood iterative PET reconstruction, named HYPER iterative, was developed and is now available on the uEXPLORER total-body PET/CT, which incorporates a noise control component by using a penalty function in each iteration and finds the maximum likelihood solution through repeated iterations. To date, its impact on lesion visibility in patients with a full injected dose or half injected dose is unclear. The goal of this study was to determine a proper protocol for routine 18F-FDG uEXPLORER total-body PET/CT scans. RESULTS The uEXPLORER total-body PET/CT images reconstructed using both OSEM and HYPER iterative algorithms of 20 tumour patients were retrospectively reviewed. The quality of the 5 min PET image was excellent (score 5) for all of the dose and reconstruction methods. Using the HYPER iterative method, the PET images reached excellent quality at 1 min with full-dose PET and at 2 min with half-dose PET. The PET image reached a similar excellent quality at 2 min with a full dose and at 3 min with a half dose using OSEM. The noise in the OSEM reconstruction was higher than that in the HYPER iterative. Compared to OSEM, the HYPER iterative had a slightly higher SUVmax and TBR of the lesions for large positive lesions (≥ 2 cm) (SUVmax: up to 9.03% higher in full dose and up to 12.52% higher in half dose; TBR: up to 8.69% higher in full dose and up to 23.39% higher in half dose). For small positive lesions (≤ 10 mm), the HYPER iterative had an obviously higher SUVmax and TBR of the lesions (SUVmax: up to 45.21% higher in full dose and up to 74.96% higher in half dose; TBR: up to 44.91% higher in full dose and up to 93.73% higher in half dose). CONCLUSIONS A 1 min scan with a full dose and a 2 min scan with a half dose are optimal for clinical diagnosis using the HYPER iterative and 2 min and 3 min for OSEM. For quantification of the small lesions, HYPER iterative reconstruction is preferred.
Collapse
Affiliation(s)
- Huiran Hu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yanchao Huang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Hongyan Sun
- United Imaging Healthcare, Shanghai, People's Republic of China
| | - Kemin Zhou
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Li Jiang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Jinmei Zhong
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Li Chen
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Lijuan Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China
| | - Yanjiang Han
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, Guangdong Province, People's Republic of China.
| |
Collapse
|
5
|
Li J, Zhang C, Guo H, Li S, You Y, Zheng P, Zhang H, Wang H, Bai J. Non-invasive measurement of tumor immune microenvironment and prediction of survival and chemotherapeutic benefits from 18F fluorodeoxyglucose PET/CT images in gastric cancer. Front Immunol 2022; 13:1019386. [PMID: 36311742 PMCID: PMC9606753 DOI: 10.3389/fimmu.2022.1019386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 02/11/2024] Open
Abstract
BACKGROUND The tumor immune microenvironment could provide prognostic and predictive information. It is necessary to develop a noninvasive radiomics-based biomarker of a previously validated tumor immune microenvironment signature of gastric cancer (GC) with immunohistochemistry staining. METHODS A total of 230 patients (training (n = 153) or validation (n = 77) cohort) with gastric cancer were subjected to (Positron Emission Tomography-Computed Tomography) radiomics feature extraction (80 features). A radiomics tumor immune microenvironment score (RTIMS) was developed to predict the tumor immune microenvironment signature with LASSO logistic regression. Furthermore, we evaluated its relation with prognosis and chemotherapy benefits. RESULTS A 8-feature radiomics signature was established and validated (area under the curve=0.692 and 0.713). The RTIMS signature was significantly associated with disease-free survival and overall survival both in the training and validation cohort (all P<0.001). RTIMS was an independent prognostic factor in the Multivariate analysis. Further analysis revealed that high RTIMS patients benefitted from adjuvant chemotherapy (for DFS, stage II: HR 0.208(95% CI 0.061-0.711), p=0.012; stage III: HR 0.321(0.180-0.570), p<0.001, respectively); while there were no benefits from chemotherapy in a low RTIMS patients. CONCLUSION This PET/CT radiomics model provided a promising way to assess the tumor immune microenvironment and to predict clinical outcomes and chemotherapy response. The RTIMS signature could be useful in estimating tumor immune microenvironment and predicting survival and chemotherapy benefit for patients with gastric cancer, when validated by further prospective randomized trials.
Collapse
Affiliation(s)
- Junmeng Li
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Chao Zhang
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Huihui Guo
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Shuang Li
- Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Yang You
- Department of Nuclear Medicine, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China
| | - Peiming Zheng
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Hongquan Zhang
- Department of Thoracic Surgery, The First Hospital Affiliated of Xinxiang Medical University, Xinxiang, China
| | - Huanan Wang
- Department of Gastrointestinal Surgery, The First Hospital Affiliated of Zhengzhou University, Zhengzhou, China
| | - Junwei Bai
- Department of Gastrointestinal Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Huang R, Pu Y, Huang S, Yang C, Yang F, Pu Y, Li J, Chen L, Huang Y. FAPI-PET/CT in Cancer Imaging: A Potential Novel Molecule of the Century. Front Oncol 2022; 12:854658. [PMID: 35692767 PMCID: PMC9174525 DOI: 10.3389/fonc.2022.854658] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblast activation protein (FAP), a type II transmembrane serine protease, is highly expressed in more than 90% of epithelial tumors and is closely associated with various tumor invasion, metastasis, and prognosis. Using FAP as a target, various FAP inhibitors (FAPIs) have been developed, most of which have nanomolar levels of FAP affinity and high selectivity and are used for positron emission tomography (PET) imaging of different tumors. We have conducted a systematic review of the available data; summarized the biological principles of FAPIs for PET imaging, the synthesis model, and metabolic characteristics of the radiotracer; and compared the respective values of FAPIs and the current mainstream tracer 18F-Fludeoxyglucose (18F-FDG) in the clinical management of tumor and non-tumor lesions. Available research evidence indicates that FAPIs are a molecular imaging tool complementary to 18F-FDG and are expected to be the new molecule of the century with better imaging effects than 18F-FDG in a variety of cancers, including gastrointestinal tumors, liver tumors, breast tumors, and nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Rong Huang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Shun Huang
- Department of Nuclear medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Fake Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China.,Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong, China
| | - Yunchao Huang
- Department of Thoracic Surgery I, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
7
|
Peng D, He J, Liu H, Cao J, Wang Y, Chen Y. FAPI PET/CT research progress in digestive system tumours. Dig Liver Dis 2022; 54:164-169. [PMID: 34364808 DOI: 10.1016/j.dld.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
18F-fluorodeoxyglucose positron emission tomography/computed tomography has been used in clinical practice for many years. This modality is of great value for tumour diagnosis, staging, and efficacy evaluations, but it has many limitations in the diagnosis and treatment of digestive system tumours. Fibroblast activation protein is highly expressed in gastrointestinal tumours. Various isotope-labelled fibroblast activation protein inhibitors are widely used in clinical research. These inhibitors have low background uptake in the brain, liver and oral/pharyngeal mucosa and show good contrast between the tumour and background, which makes up for the lack of fluorodeoxyglucose in the diagnosis of digestive system tumours. It better displays the primary tumours, metastases and regional lymph nodes of digestive system tumours, such as oesophageal cancer, gastric cancer and liver cancer, and also provides a new method for treating these tumours. Based on this background, this article introduces the current research status of fibroblast activation protein inhibitor positron emission tomography/computed tomography in various types of digestive system malignant tumours to provide more valuable information for diagnosing and treating digestive system tumours.
Collapse
Affiliation(s)
- Dengsai Peng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China; Academician (Expert) Workstation of Sichuan Province, 646000, PR China
| | - Jing He
- Department of Ultrasonography, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Hanxiang Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China; Academician (Expert) Workstation of Sichuan Province, 646000, PR China
| | - Jianpeng Cao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China; Academician (Expert) Workstation of Sichuan Province, 646000, PR China
| | - Yingwei Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China; Academician (Expert) Workstation of Sichuan Province, 646000, PR China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No 25 TaiPing St, Jiangyang District, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China; Academician (Expert) Workstation of Sichuan Province, 646000, PR China.
| |
Collapse
|
8
|
PET imaging of gastric cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Abstract
Gastrointestinal malignancies encompass a variety of primary tumor sites, each with different staging criteria and treatment approaches. In this review we discuss technical aspects of 18F-FDG-PET/CT scanning to optimize information from both the PET and computed tomography components. Specific applications for 18F-FDG-PET/CT are summarized for initial staging and follow-up of the major disease sites, including esophagus, stomach, hepatobiliary system, pancreas, colon, rectum, and anus.
Collapse
Affiliation(s)
- Brandon A Howard
- Division of Nuclear Medicine and Radiotheranostics, Department of Radiology, Duke University Medical Center, DUMC Box 3949, 2301 Erwin Road, Durham, NC 27710, USA.
| | - Terence Z Wong
- Division of Nuclear Medicine and Radiotheranostics, Department of Radiology, Duke University Medical Center, DUMC Box 3949, 2301 Erwin Road, Durham, NC 27710, USA
| |
Collapse
|
10
|
Prospective evaluation of metabolic intratumoral heterogeneity in patients with advanced gastric cancer receiving palliative chemotherapy. Sci Rep 2021; 11:296. [PMID: 33436659 PMCID: PMC7804009 DOI: 10.1038/s41598-020-78963-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/01/2020] [Indexed: 12/23/2022] Open
Abstract
Although metabolic intratumoral heterogeneity (ITH) gives important value on treatment responses and prognoses, its association with treatment outcomes have not been reported in gastric cancer (GC). We aimed to evaluate temporal changes in metabolic ITH and the associations with treatment responses, progression-free survival (PFS), and overall survival (OS) in advanced GC patients. Eighty-five patients with unresectable, locally advanced, or metastatic GC were prospectively enrolled before the first-line palliative chemotherapy and underwent [18F]FDG PET at baseline (TP1) and the first response follow-up evaluation (TP2). Standardized uptake values (SUVs), volumetric parameters, and textural features were evaluated in primary gastric tumor at TP1 and TP2. Of 85 patients, 44 had partial response, 33 had stable disease, and 8 progressed. From TP1 to TP2, metabolic ITH was significantly reduced (P < 0.01), and the degree of the decrease was greater in responders than in non-responders (P < 0.01). Using multiple Cox regression analyses, a low SUVmax at TP2, a high kurtosis at TP2 and larger decreases in the coefficient of variance were associated with better PFS. A low SUVmax at TP2, larger decreases in the metabolic tumor volume and larger decreased in the energy were associated with better OS. Age older than 60 years and responders also showed better OS. An early reduction in metabolic ITH is useful to predict treatment outcomes in advanced GC patients.
Collapse
|
11
|
Song BI. Nomogram using F-18 fluorodeoxyglucose positron emission tomography/computed tomography for preoperative prediction of lymph node metastasis in gastric cancer. World J Gastrointest Oncol 2020; 12:447-456. [PMID: 32368322 PMCID: PMC7191335 DOI: 10.4251/wjgo.v12.i4.447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lymph node (LN) metastasis is an important prognostic factor in patients with gastric cancer (GC). However, the evaluation of LN metastasis status in the preoperative setting is not accurate. Therefore, precise preoperative prediction of LN metastasis status is crucial for optimal treatment in patients with GC.
AIM To develop a preoperative nomogram for LN metastasis using F-18 fluorodeoxyglucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT) and preoperative laboratory test findings in GC.
METHODS In this study, the data of 566 GC patients who underwent preoperative F-18 FDG PET/CT and subsequent surgical resection were analyzed. The LN metastasis prediction model was developed in the training cohort and validated in the internal validation cohort. Routine preoperative laboratory tests, including albumin and carbohydrate antigen (CA) 19-9 were performed in all patients. Univariate and multivariable logistic regression was performed to validate the preoperative predictive indicators for LN metastasis.
RESULTS Of the 566 patients, 232 (41%) had confirmed histopathologic LN metastasis. Univariate logistic regression revealed that the tumor location, blood hemoglobin, serum albumin levels, neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, CA 19-9, maximum standardized uptake value (SUVmax) of the primary tumor (T_SUVmax), and SUVmax of LN (N_SUVmax) were significantly associated with LN metastasis. In multivariate analysis, T_SUVmax (OR = 1.08; 95%CI: 1.02–1.15; P = 0.011) and N_SUVmax (OR = 1.49; 95%CI: 1.19–1.97; P = 0.002) were found to be significant predictive factors for LN metastasis. The LN metastasis prediction model using T_SUVmax, N_SUVmax, serum albumin, and CA 19-9 yielded an area under the curve (AUC) of 0.733 (95%CI: 0.683–0.784, P = 0.025) in the training cohort and AUC of 0.756 (95%CI: 0.678–0.833, P < 0.001) in the test cohort.
CONCLUSION T_SUVmax and N_SUVmax measured by preoperative F-18 FDG PET/CT are independent predictive factors for LN metastasis in GC.
Collapse
Affiliation(s)
- Bong-Il Song
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, South Korea
| |
Collapse
|
12
|
Abstract
The use of 18F-fluorodeoxyglucose (FDG) positron emission tomography combined with computed tomography (PET/CT) is well established in the evaluation of alimentary tract malignancies. This review of the literature and demonstration of correlative images focuses on the current role of PET/CT in the diagnosis (including pathologic/clinical staging) and post-therapy follow-up of esophageal, gastric, and colorectal cancers. PET/CT provides utility in the management of esophageal cancer, including detection of distant disease prior to resection. In gastric cancer, PET/CT is useful in detecting solid organ metastases and in characterizing responders vs. non-responders after neoadjuvant chemotherapy, the latter of which have poorer overall survival. In patients with GIST tumors, PET/CT also determines response to imatinib therapy with greater expedience as compared to CECT. For colorectal cancer, PET/CT has proven helpful in detecting hepatic and other distant metastases, treatment response, and differentiating post-radiation changes from tumor recurrence. Our review also highlights several pitfalls in PET/CT interpretation of alimentary tract lesions.
Collapse
|
13
|
Jiang Y, Yuan Q, Lv W, Xi S, Huang W, Sun Z, Chen H, Zhao L, Liu W, Hu Y, Lu L, Ma J, Li T, Yu J, Wang Q, Li G. Radiomic signature of 18F fluorodeoxyglucose PET/CT for prediction of gastric cancer survival and chemotherapeutic benefits. Theranostics 2018; 8:5915-5928. [PMID: 30613271 PMCID: PMC6299427 DOI: 10.7150/thno.28018] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
We aimed to evaluate whether radiomic feature-based fluorine 18 (18F) fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging signatures allow prediction of gastric cancer (GC) survival and chemotherapy benefits. Methods: A total of 214 GC patients (training (n = 132) or validation (n = 82) cohort) were subjected to radiomic feature extraction (80 features). Radiomic features of patients in the training cohort were subjected to a LASSO cox analysis to predict disease-free survival (DFS) and overall survival (OS) and were validated in the validation cohort. A radiomics nomogram with the radiomic signature incorporated was constructed to demonstrate the incremental value of the radiomic signature to the TNM staging system for individualized survival estimation, which was then assessed with respect to calibration, discrimination, and clinical usefulness. The performance was assessed with concordance index (C-index) and integrated Brier scores. Results: Significant differences were found between the high- and low-radiomic score (Rad-score) patients in 5-year DFS and OS in training and validation cohorts. Multivariate analysis revealed that the Rad-score was an independent prognostic factor. Incorporating the Rad-score into the radiomics-based nomogram resulted in better performance (C-index: DFS, 0.800; OS, 0.786; in the training cohort) than TNM staging system and clinicopathologic nomogram. Further analysis revealed that patients with higher Rad-scores were prone to benefit from chemotherapy. Conclusion: The newly developed radiomic signature was a powerful predictor of OS and DFS. Moreover, the radiomic signature could predict which patients could benefit from chemotherapy.
Collapse
Affiliation(s)
- Yuming Jiang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Qingyu Yuan
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenbing Lv
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Sujuan Xi
- Guangdong Key Laboratory of Liver Disease Research, the 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Department of Infectious Disease, the 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weicai Huang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Zepang Sun
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Hao Chen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Liying Zhao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Wei Liu
- Guangdong Key Laboratory of Liver Disease Research, the 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Lijun Lu
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jianhua Ma
- School of Biomedical Engineering and Guangdong Provincal Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Tuanjie Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| | - Quanshi Wang
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, China
| |
Collapse
|