1
|
Sun A, Tian X, Chen Y, Yang W, Lin Q. Emerging roles of the HECT E3 ubiquitin ligases in gastric cancer. Pathol Oncol Res 2023; 29:1610931. [PMID: 36825281 PMCID: PMC9941164 DOI: 10.3389/pore.2023.1610931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
Gastric cancer (GC) is one of the most pernicious gastrointestinal tumors with extraordinarily high incidence and mortality. Ubiquitination modification of cellular signaling proteins has been shown to play important roles in GC tumorigenesis, progression, and prognosis. The E3 ubiquitin ligase is the crucial enzyme in the ubiquitination reaction and determines the specificity of ubiquitination substrates, and thus, the cellular effects. The HECT E3 ligases are the second largest E3 ubiquitin ligase family characterized by containing a HECT domain that has E3 ubiquitin ligase activity. The HECT E3 ubiquitin ligases have been found to engage in GC progression. However, whether HECT E3 ligases function as tumor promoters or tumor suppressors in GC remains controversial. In this review, we will focus on recent discoveries about the role of the HECT E3 ubiquitin ligases, especially members of the NEDD4 and other HECT E3 ligase subfamilies, in GC.
Collapse
Affiliation(s)
- Aiqin Sun
- School of Medicine, Jiangsu University, Zhenjiang, China,Department of laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China,*Correspondence: Aiqin Sun, ; Qiong Lin,
| | - Xianyan Tian
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yifei Chen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wannian Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qiong Lin
- School of Medicine, Jiangsu University, Zhenjiang, China,*Correspondence: Aiqin Sun, ; Qiong Lin,
| |
Collapse
|
2
|
Zhong H, Luo X. Serum Dihydropyrimidinase-Like 3 Concentration in Patients with Gastric Cancer and Its Diagnostic Value. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1789-1795. [PMID: 34722374 PMCID: PMC8542824 DOI: 10.18502/ijph.v50i9.7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 11/24/2022]
Abstract
Background: We aimed to investigate the serum concentration of dihydropyrimidinase-like 3 (DPYSL3) in patients with gastric cancer and its clinical significance. Methods: Seventy four patients with gastric cancer from Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, China from October 2018 to April 2019 were selected as the case group. Sixty patients with normal gastric mucosa or mild non-atrophic gastritis were selected as the control group. Serum DPYSL3, CA72-4 and CEA concentrations were measured in both groups. Results: The serum DPYSL3 concentration in the case group was significantly higher than that in the healthy control group (22.04±9.22 vs. 8.36±4.19 μg/L, P<0.001). The serum DPYSL3 concentration in patients with advanced gastric cancer was significantly higher than that in early gastric cancer (27.09±9.12 vs. 13.04±8.22 μg/L, P<0.01); serum DPYSL3 concentration was significantly correlated with tumor size, TNM stage and differentiation (P<0.05). When the cutoff value was 20.98 μg/L, the serum DPYSL3 concentration could differentiate the gastric cancer with ROCAUC 0.882 (95% CI: 0.828–0.937) with sensitivity and specificity of 75% and 94%, respectively. Serum CA72-4 concentration could differentiate the gastric cancer from health controls with ROCAUC 0.812 (95% CI: 0.734–0.834), serum CEA concentration could differentiate gastric cancer with ROCAUC 0.612 (95% CI: 0.534 ∼ 0.634). The serum concentrations of DPYSL3, CA72-4 and CEA in gastric cancer patients were increased compared to health controls. Conclusion: Three serological markers have complementary diagnostic value for gastric cancer. Serum DPYSL3 is a new potential molecular marker for gastric cancer.
Collapse
Affiliation(s)
- Huiqiu Zhong
- Department of Otorhinolaryngology Head and Neck Surgery, Jiangxi Provincial People's Hospital, Nanchang 330006, P.R. China
| | - Xiaojiang Luo
- Department of Gastrointestinal Surgery, Jiangxi Provincial People's Hospital, Nanchang 330006, P.R. China
| |
Collapse
|
3
|
G-protein subunit gamma-4 expression has potential for detection, prediction and therapeutic targeting in liver metastasis of gastric cancer. Br J Cancer 2021; 125:220-228. [PMID: 33854208 DOI: 10.1038/s41416-021-01366-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The liver is the most common site for haematogenous metastasis of gastric cancer, and liver metastasis is fatal. METHODS We conducted a transcriptomic analysis between metastatic foci in the liver, primary tumour and adjacent tissues from gastric cancer patients with metastasis limited to the liver. We determined mRNA expression levels in tumour tissues of 300 patients with gastric cancer via quantitative RT-PCR. The oncogenic phenotypes of GNG4 were determined with knockdown, knockout and forced expression experiments. We established and compared subcutaneous and liver metastatic mouse xenograft models of gastric cancer to reveal the roles of GNG4 in tumorigenesis in the liver. RESULTS GNG4 was upregulated substantially in primary gastric cancer tissues as well as liver metastatic lesions. High levels of GNG4 in primary cancer tissues were associated with short overall survival and the likelihood of liver recurrence. Functional assays revealed that GNG4 promoted cancer cell proliferation, the cell cycle and adhesiveness. Tumour formation by GNG4-knockout cells was moderately reduced in the subcutaneous mouse model and strikingly attenuated in the liver metastasis mouse model. CONCLUSIONS GNG4 expression may provide better disease monitoring for liver metastasis, and GNG4 may be a novel candidate therapeutic target for liver metastasis.
Collapse
|
4
|
Wu P, Wang J, Mao X, Xu H, Zhu Z. PDCD4 regulates apoptosis in human peritoneal mesothelial cells and promotes gastric cancer peritoneal metastasis. Histol Histopathol 2021; 36:447-457. [PMID: 33442866 DOI: 10.14670/hh-18-305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Programmed cell death 4 (PDCD4) is a tumor suppressor gene, however, the function and regulatory mechanism remain to be discovered. The connection between tumorigenesis and apoptosis is one of the most important foci of cancer research. Our study aimed to explore the connections between PDCD4-mediated apoptosis of human peritoneal mesothelial cells (HPMC) and peritoneal metastasis in gastric cancer. METHODS The PDCD4 expression in 31 pairs of HPMC and tumor tissues was assessed by immunohistochemistry and RT-PCR. In cell experiments, we monitored gastric cancer cell migration with a Transwell chamber assay when PDCD4 was silenced in HPMC. Subsequently, apoptosis of HPMC was detected by a flow cytometric assay and western blotting. After analyzing cytokines in culture supernatants from gastric cancer with enzyme-linked immunosorbent assays (ELISAs), transforming growth factor-beta 1 (TGF-β1) was abundant in the culture supernatants of gastric cancer. Then, PDCD4 expression in HMrSV5 cells was analyzed by western blotting after retreatment with different concentrations of TGF-β1. Moreover, apoptosis of peritoneal mesothelial cells treated with TGF-β1 was detected according to the above methods. RESULTS In human metastatic peritoneal tissues, the expression of PDCD4 was significantly lower than that in normal tissues. At the same time, decreased expression of PDCD4 in HPMC was associated with increased migration capacity of gastric cancer cells. Moreover, suppressing the expression of PDCD4 promoted apoptosis in mesothelial cells which may be regulated by TGF-β secreted from gastric cancer cells. CONCLUSIONS These data suggested that decreased expression of PDCD4 significantly promoted apoptosis in human peritoneal mesothelial cells, thus inducing peritoneal metastasis, and that TGF-β1 secreted from gastric cancer cells may have played a crucial role.
Collapse
Affiliation(s)
- Pei Wu
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jinou Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Senyang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huimian Xu
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zhi Zhu
- Department of Surgical Oncology, Department of General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Tang T, Wang S, Cai T, Cheng Z, Meng Y, Qi S, Zhang Y, Qi Z. High mobility group box 1 regulates gastric cancer cell proliferation and migration via RAGE-mTOR/ERK feedback loop. J Cancer 2021; 12:518-529. [PMID: 33391448 PMCID: PMC7739007 DOI: 10.7150/jca.51049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is a common malignancy tumour in China. Despite various therapeutic approaches to improve the survival rate of GC patients, the effectiveness of currently available treatments remains unsatisfactory. High mobility group box 1 (HMGB1) is reported to play a role in tumour development. However, the molecular mechanisms involved in HMGB1-mediated regulation of proliferation and migration of GC cells remain unclear. In the present study, we demonstrated that HMGB1 is highly expressed in GC cells and tissue. In HGC-27 GC cells, HMGB1 overexpression or HMGB1 RNA interference both demonstrated that HMGB1 could promote GC cell proliferation and migration. Investigation of the underlying molecular mechanisms revealed that HMGB1 enhanced cyclins expression, induced epithelial-to-mesenchymal transition and matrix metalloproteinase (MMPs) expression and promoted RAGE expression as well as RAGE-mediated activation of Akt/mTOR/P70S6K and ERK/P90RSK/CREB signalling pathways. We also found that inhibition of ERK and mTOR using specific inhibitors reduced recombinant human HMGB1-induced RAGE expression, suggesting that the RAGE-mTOR/ERK positive feedback loop is involved in HMGB1-induced GC cell proliferation and migration. Our study highlights a novel mechanism by which HMGB1 promotes GC cell proliferation and migration via RAGE-mediated Akt-mTOR and ERK-CREB signalling pathways which also involves the RAGE-mTOR/ERK feedback loop. These findings indicate that HMGB1 is a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Tuo Tang
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| | - Tianyu Cai
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Zhenyu Cheng
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yu Meng
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| | - Shimei Qi
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| | - Yao Zhang
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| |
Collapse
|
6
|
Pan Y, Fang Y, Xie M, Liu Y, Yu T, Wu X, Xu T, Ma P, Shu Y. LINC00675 Suppresses Cell Proliferation and Migration via Downregulating the H3K4me2 Level at the SPRY4 Promoter in Gastric Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:766-778. [PMID: 33230474 PMCID: PMC7595884 DOI: 10.1016/j.omtn.2020.09.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that long noncoding RNAs (lncRNAs) are dysregulated in diverse tumors and take a pivotal role in modulating biological processes. In our study, a decreased expression level of LINC00675 in gastric cancer (GC) was first determined by data from The Cancer Genome Atlas (TCGA) and was identified using specimens from GC patients. Then, in vitro and in vivo functional experiments elaborated that LINC00675 could suppress cell proliferation and migration in GC. Multiple differentially expressed genes (DEGs) in LINC00675-overexpressing cells were identified through RNA sequencing analysis. An RNA-binding protein immunoprecipitation (RIP) assay was conducted to reveal that LINC00675 competitively bound with lysine-specific demethylase 1 (LSD1). A coimmunoprecipitation (coIP) assay indicated that LINC00675 overexpression may strengthen the binding of LSD1 and H3K4me2, whereas the chromatin immunoprecipitation (ChIP) assay results verified lower expression of H3K4me2 at the sprouty homolog 4 (SPRY4) promoter region. Together, our research identified that LINC00675 was remarkably downregulated in GC tissues and cells relative to nontumor tissues and cells. LINC00675 could repress GC tumorigenesis and metastasis via competitively binding with LSD1 and intensifying the binding of LSD1 and its target H3K4me2. Importantly, this contributed to attenuated binding of H3K4me2 at the promoter region of oncogene SPRY4 and suppressed SPRY4 transcription, thus suppressing GC cell proliferation and migration.
Collapse
Affiliation(s)
- Yutian Pan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuan Fang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Mengyan Xie
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yu Liu
- Department of the Orthopaedics, RWTH Aachen University Clinic, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xi Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Pei Ma
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China.,Department of Oncology, Affiliated Sir Run Hospital of Nanjing Medical University, Nanjing 211166, People's Republic of China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, People's Republic of China
| |
Collapse
|
7
|
Ma P, Li L, Liu F, Zhao Q. HNF1A-Induced lncRNA HCG18 Facilitates Gastric Cancer Progression by Upregulating DNAJB12 via miR-152-3p. Onco Targets Ther 2020; 13:7641-7652. [PMID: 32801777 PMCID: PMC7413704 DOI: 10.2147/ott.s253391] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Background The aberrant expression of long non-coding RNAs (lncRNAs) plays a pivotal role in the development and progression of multiple cancers, including gastric cancer (GC). However, the underlying molecular mechanisms of lncRNA HCG18 in GC remain unknown. Materials and Methods The expression levels of HCG18, HNF1A, microRNA-152-3p (miR-152-3p), and DNAJB12 were determined by RT-qPCR. Cell viability, migration, and invasion were assessed by CCK-8, wound healing, and transwell assays, respectively. The interaction between miR-152-3p and HCG18 or DNAJB12 was predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. The correlation between the gene expression levels was analyzed using Pearson’s correlation coefficient. Western blot was used to measure the levels of HNF1A, DNAJB12, epithelial-mesenchymal transition (EMT) proteins (E-cadherin and Vimentin), and proliferation-related protein (PCNA). Results It was found that HCG18 was upregulated in GC tissues and cell lines, and knockdown of HCG18 inhibited the proliferation, migration, and invasion of GC cells. Patients with high HCG18 expression had a shorter overall survival time compared with those with low HCG18 expression. In addition, transcription factor HNF1A could bind to the HCG18 promoter to facilitate its transcription. The upregulation of HCG18 could abolish the inhibitory effect of miR-152-3p overexpression on GC cell progression. Furthermore, DNAJB12 was demonstrated to be a target gene of miR-152-3p in GC cells, and HCG18 enhanced DNAJB12 expression by competitively binding with miR-152-3p. Finally, rescue assays proved that overexpression of DNAJB12 partially restored HCG18 knockdown-attenuated progression of GC cells. Conclusion Our results demonstrated that HNF1A-induced HCG18 overexpression promoted GC progression by competitively binding with miR-152-3p and upregulating DNAJB12 expression. These findings might provide potential treatment strategies for patients with GC.
Collapse
Affiliation(s)
- Pei Ma
- Department of General Surgery, Nanyang First People's Hospital, Nanyang City, Henan Province, People's Republic of China
| | - Lianhai Li
- Department of General Surgery, Nanyang First People's Hospital, Nanyang City, Henan Province, People's Republic of China
| | - Fu Liu
- Department of General Surgery, Nanyang First People's Hospital, Nanyang City, Henan Province, People's Republic of China
| | - Qi Zhao
- Department of Urological Surgery, Nanyang First People's Hospital, Nanyang City, Henan Province, People's Republic of China
| |
Collapse
|
8
|
Sawaki K, Kanda M, Ito S, Mochizuki Y, Teramoto H, Ishigure K, Murai T, Asada T, Ishiyama A, Matsushita H, Tanaka C, Kobayashi D, Fujiwara M, Murotani K, Kodera Y. Survival times are similar among patients with peritoneal, hematogenous, and nodal recurrences after curative resections for gastric cancer. Cancer Med 2020; 9:5392-5399. [PMID: 32515147 PMCID: PMC7402812 DOI: 10.1002/cam4.3208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/25/2020] [Accepted: 05/21/2020] [Indexed: 12/23/2022] Open
Abstract
Background The three dominant recurrence patterns of gastric cancer are peritoneal, hematogenous, and nodal recurrence. Correlation between initial recurrence site and prognosis is poorly understood, particularly after standardization of postoperative S‐1 adjuvant chemotherapy. Methods We analyzed a multi‐institutional database of 3484 patients who underwent gastrectomy for gastric cancer between 2010 and 2014. Patients who experienced recurrences after curative gastrectomy classified into peritoneal, hematogenous, or nodal recurrence groups, according to their initial recurrence sites, and their prognoses were compared. Results We included 313 patients in the analysis, of whom 190 patients (63%) were treated with postoperative adjuvant chemotherapy. Pathological disease states were stage I: n = 20 (6%), stage II: n = 62 (20%), and stage III: n = 231 (74%). Patients were categorized into groups by peritoneal (n = 127), hematogenous (n = 123), and nodal (n = 63) recurrence. The peritoneal recurrence group tended to have longer recurrence‐free survival, but shorter post‐recurrence survival, than the other two groups. Median disease‐specific survival after curative resection by group were peritoneal: 25.8 months, hematogenous: 29.0 months, and nodal: 27.8 months (peritoneal vs hematogenous, P = .152; hematogenous vs nodal, P = .955; peritoneal vs nodal, P = .213). Conclusions Prognoses after curative resection for gastric cancer were similar among patients with peritoneal, hematogenous, or nodal recurrences.
Collapse
Affiliation(s)
- Koichi Sawaki
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Seiji Ito
- Department of Gastroenterological Surgery, Aichi Cancer Center, Nagoya, Japan
| | | | - Hitoshi Teramoto
- Department of Surgery, Yokkaichi Municipal Hospital, Yokkaichi, Japan
| | | | - Toshifumi Murai
- Department of Surgery, Ichinomiya Municipal Hospital, Ichinomiya, Japan
| | - Takahiro Asada
- Department of Surgery, Gifu prefectural Tajimi Hospital, Tajimi, Japan
| | | | | | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenta Murotani
- Biostatistics Center, Graduate School of Medicine, Kurume University, Kurume, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Miwa T, Kanda M, Umeda S, Tanaka H, Shimizu D, Tanaka C, Kobayashi D, Hayashi M, Yamada S, Nakayama G, Koike M, Kodera Y. Establishment of Peritoneal and Hepatic Metastasis Mouse Xenograft Models Using Gastric Cancer Cell Lines. In Vivo 2020; 33:1785-1792. [PMID: 31662503 DOI: 10.21873/invivo.11669] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Establishment of mouse xenograft models is necessary for oncological research and depends on the characteristics of the cell lines and the immune system of the host. In this study, we describe the development of mouse xenograft models using human gastric cancer (GC) cell lines. MATERIALS AND METHODS MKN1 stably-expressing luciferase (MKN1-Luc), N87, KATO III, MKN45 stably-expressing luciferase (MKN45-Luc), NUGC4, and OCUM-1 human GC cell lines were injected intraperitoneally into mice to establish peritoneal metastasis models. MKN45-Luc were injected into subcutaneously implanted spleen, and MKN1-Luc and MKN45-Luc were injected directly into the portal veins of mice for the establishment of hepatic metastasis models. RESULTS Peritoneal metastasis was formed after implantation of MKN1-Luc, N87, KATO III, MKN45-Luc, and NUGC4 in nude mice, but not formed in OCUM-1 even in NOD/SCID mice. After intrasplenic injection of MKN45-Luc, we found no hepatic metastasis formation. We identified hepatic metastasis formation after direct injection of MKN45-Luc and MKN1-Luc into the portal veins of NOD/SCID mice. CONCLUSION Peritoneal and hepatic metastasis mouse xenograft models were successfully established using several human GC cell lines.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Yang J, Lian Y, Yang R, Lian Y, Wu J, Liu J, Wang K, Xu H. Upregulation of lncRNA LINC00460 Facilitates GC Progression through Epigenetically Silencing CCNG2 by EZH2/LSD1 and Indicates Poor Outcomes. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1164-1175. [PMID: 32059342 PMCID: PMC7016164 DOI: 10.1016/j.omtn.2019.12.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/11/2019] [Accepted: 12/29/2019] [Indexed: 01/24/2023]
Abstract
Non-protein-coding functional elements in the human genome in the postgenomic biology field have been drawing great attention in recent years. Thousands of long non-coding RNAs (lncRNAs) have been found to be expressed in various tumors. Yet only a small proportion of these lncRNAs have been well characterized. We have demonstrated that LINC00460 could affect cell proliferation through epigenetic regulation of KLF2 and CUL4A in human colorectal cancer. However, the clinical significance and biological role of LINC00460 in gastric cancer (GC) remain largely unknown. In this research, we discovered that LINC00460 is remarkably upregulated in GC tissues compared to the non-tumor tissues. Additionally, LINC00460 served as an independent prognostic marker in GC. Functionally, proliferation of GC cells could be regulated by LINC00460 both in vitro and in vivo. RNA sequencing (RNA-seq) analysis for the whole transcriptome indicated that LINC00460 may serve as a key regulatory factor in the tumorigenesis of GC. What's more, the biological function of LINC00460 was mediated, to certain extent, by the direct interaction with enhancer of zeste homolog 2 (EZH2) and lysine (K)-specific demethylase 1A (LSD1) proteins. Further analyses indicated that LINC00460 promoted GC proliferation at least partly through the downregulation of tumor suppressor-gene Cyclin G2 (CCNG2), which is mediated by EZH2 and LSD1. In conclusion, our results suggested that LINC00460 acted as an oncogene in GC to inhibit the expression of CCNG2 at least partly by binding with EZH2 and LSD1. Our study could provide additional insights into the development of novel target therapeutic methods for GC.
Collapse
Affiliation(s)
- Jiebin Yang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, P.R. China; Department of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Yikai Lian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P.R. China; School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Renzhi Yang
- School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Yifan Lian
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, P.R. China; School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Jingtong Wu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, P.R. China; School of Medicine, Xiamen University, Xiamen, Fujian, P.R. China
| | - Jingjing Liu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, P.R. China
| | - Keming Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, P.R. China.
| | - Hongzhi Xu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, P.R. China.
| |
Collapse
|
11
|
Wu W, Wei N, Shao G, Jiang C, Zhang S, Wang L. circZNF609 promotes the proliferation and migration of gastric cancer by sponging miR-483-3p and regulating CDK6. Onco Targets Ther 2019; 12:8197-8205. [PMID: 31632070 PMCID: PMC6783112 DOI: 10.2147/ott.s193031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/21/2019] [Indexed: 01/18/2023] Open
Abstract
Objective To explore the regulatory effects of circZNF609 on proliferative and migratory capacities of gastric cancer (GC) and its underlying mechanism. Methods Expression level of circZNF609, CDK6 and miR-483-3p in GC tissues and cells were detected qRT-PCR verification. CCK-8 and transwell assay were conducted the cell viability and migratory capacities of GC cells. Dual luciferase assay was enrolled to confirm the interaction among circZNF609, CDK6 and miR-483-3p. Western blot was used to detect the protein level of CDK6. Results Expression levels of circZNF609 were higher in GC patients by qRT-PCR.GC patients with higher expression of circZNF609 were expected to have a higher TNM stage and lower 5-year survival than those with lower expression. ROC curves showed a well diagnostic value of circZNF609 in GC. Treatment of RNase R in GC cells downregulated the expression of ZNF609, whereas circZNF609 expression did not change. Furthermore, cytoplasmic expression of circZNF609 was higher than those of nuclear expression. Besides, biological experiments indicated that overexpression of circZNF609 promoted the proliferative and migratory capacities of GC cells. To demonstrate the underlying mechanism of circZNF609, we found that circZNF609 bound to miR-483-3p, which presented a lower expression in GC tissues than that of paracancerous tissues. Both circZNF609 and miR-483-3p could bind to Ago2, suggesting that circZNF609 may act as a sponge of miR-483-3p. In addition, the effect of overexpressed circZNF609 on cellular behaviors of GC cells were partly reversed by overexpression of miR-483-3p. Bioinformatics suggested that CDK6 has a potential binding site with miR-483-3p. The expression of CDK6 markedly increased in GC tissues and cells, which was negatively correlated with miR-483-3p expression. Dual-luciferase reporter gene results indicated that miR-483-3p could bind to the 3’-UTR of CDK6. Moreover, miR-483-3p downregulated CDK6 at both mRNA and protein levels. Overexpression of miR-483-3p inhibited proliferative and migratory capacities of GC cells, which were reversed by CDK6 overexpression. Conclusion In summary, the expression of circZNF609 is upregulated in GC. CircZNF609 can be used as the sponge of miR-483-3p to regulate the expression level of CDK6, thus participating in the progression of GC by regulating the proliferative and migratory capacities of GC cells.
Collapse
Affiliation(s)
- Weidong Wu
- Anesthesiology Department, Danyang People's Hospital of Jiangsu Province & Danyang Hospital affiliated to Nantong University, Danyang, Jiangsu 212300, People's Republic of China
| | - Ningxian Wei
- Anesthesiology Department, Danyang People's Hospital of Jiangsu Province & Danyang Hospital affiliated to Nantong University, Danyang, Jiangsu 212300, People's Republic of China
| | - Gang Shao
- Anesthesiology Department, Danyang People's Hospital of Jiangsu Province & Danyang Hospital affiliated to Nantong University, Danyang, Jiangsu 212300, People's Republic of China
| | - Chunnan Jiang
- Anesthesiology Department, Danyang People's Hospital of Jiangsu Province & Danyang Hospital affiliated to Nantong University, Danyang, Jiangsu 212300, People's Republic of China
| | - Shaoru Zhang
- Central Laboratory, Danyang People's Hospital of Jiangsu Province & Danyang Hospital affiliated to Nantong University, Danyang, Jiangsu 212300, People's Republic of China
| | - Lihui Wang
- Central Laboratory, Danyang People's Hospital of Jiangsu Province & Danyang Hospital affiliated to Nantong University, Danyang, Jiangsu 212300, People's Republic of China
| |
Collapse
|
12
|
Kasurinen A, Gramolelli S, Hagström J, Laitinen A, Kokkola A, Miki Y, Lehti K, Yashiro M, Ojala PM, Böckelman C, Haglund C. High tissue MMP14 expression predicts worse survival in gastric cancer, particularly with a low PROX1. Cancer Med 2019; 8:6995-7005. [PMID: 31560170 PMCID: PMC6853825 DOI: 10.1002/cam4.2576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/17/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Matrix metalloproteinase 14 (MMP14), a membrane-associated matrix metalloproteinase, has been shown to influence the invasion and metastasis of several solid tumors. Prospero homeobox protein 1 (PROX1), involved in the development and cell fate determination, is also expressed in malignant diseases functioning either as a tumor-suppressing or oncogenic factor. In certain cancers PROX1 appears to transcriptionally suppress MMP14 expression. This study, therefore, aimed to explore the association between MMP14 and PROX1 and understand their potential as prognostic biomarkers in gastric cancer. The cohort consisted of 313 individuals operated for gastric adenocarcinoma between 2000 and 2009 in the Department of Surgery, Helsinki University Hospital. MMP14 and PROX1 expressions were studied using immunohistochemistry in the patient sample and using immunoblotting and immunofluorescence in gastric cancer cell lines. We generated survival curves using the Kaplan-Meier method, determining significance via the log-rank test. A high MMP14 expression associated with being ≥67 years (P = .041), while a positive nuclear PROX1 expression associated with tumors of a diffuse histological type (P = .041) and a high cytoplasmic PROX1 expression (P < .001). Five-year disease-specific survival among patients with a high MMP14 expression was 35.9% (95% confidence interval [CI] 24.9-46.9), compared to 45.3% (95% CI 38.0-52.6) for patients with a low MMP14 (P = .030). Survival was worse specifically among those with a high MMP14 and absent nuclear PROX1 expression (hazard ratio [HR] 1.65; 95% CI 1.09-2.51; P = .019). Thus, this study confirms that a high MMP14 expression predicts a worse survival in gastric cancer, revealing for the first time that survival is particularly worse when PROX1 is low.
Collapse
Affiliation(s)
- Aaro Kasurinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology and Oral Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alli Laitinen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Yuichiro Miki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.,Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Masakazu Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - Camilla Böckelman
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
13
|
Xia S, Tang Q, Wang X, Zhang L, Jia L, Wu D, Xu P, Zhang X, Tang G, Yang T, Feng Z, Lu L. Overexpression of PSMA7 predicts poor prognosis in patients with gastric cancer. Oncol Lett 2019; 18:5341-5349. [PMID: 31612044 PMCID: PMC6781669 DOI: 10.3892/ol.2019.10879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Gastric cancer (GC) is the fourth most common tumor and the second most common cause of cancer-associated mortality worldwide. Current tumor biomarkers for GC, such as serum carcinoembryonic antigen and carbohydrate antigen 19-9, are not ideal due to their limited role as prognostic indicators for GC. Proteasome subunit α7 (PSMA7) is a multifunctional protein, which has been revealed to be involved in the development and progression of various types of malignancy. However, little is known about the role of PSMA7 in GC. In the present study, PSMA7 was identified to be overexpressed at the mRNA and protein levels in GC tissues, compared with in non-tumor tissues, using reverse transcription-quantitative PCR and immunohistochemistry. Furthermore, PSMA7 expression is associated with tumor invasion, lymph node metastasis, distant metastasis, and Tumor-Node-Metastasis stage. Univariate and multivariate Cox regression analysis identified that PSMA7 expression is an independent prognostic factor for poor survival. Kaplan-Meier survival curves revealed that high PSMA7 expression is associated with a poor prognosis in patients with GC. Overall, the results of the present study suggested that PSMA7 may be a promising biomarker for the prognosis of GC, and may represent a new diagnostic marker and molecular therapeutic target for GC.
Collapse
Affiliation(s)
- Shujing Xia
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Department of Gastroenterology, Affiliated Xinghua People's Hospital of Yangzhou University Medical College, Xinghua, Jiangsu 225700, P.R. China.,Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai 200080, P.R. China
| | - Qi Tang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xudong Wang
- The Clinical Bio-Bank, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226019, P.R. China
| | - Lili Zhang
- Department of Gastroenterology, Affiliated Xinghua People's Hospital of Yangzhou University Medical College, Xinghua, Jiangsu 225700, P.R. China
| | - Lizhou Jia
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Duo Wu
- Department of Gastrointestinal Surgery, Affiliated Xinghua People's Hospital of Yangzhou University Medical College, Xinghua, Jiangsu 225700, P.R. China
| | - Pingxiang Xu
- Department of Gastrointestinal Surgery, Affiliated Xinghua People's Hospital of Yangzhou University Medical College, Xinghua, Jiangsu 225700, P.R. China
| | - Xiumei Zhang
- Department of Pathology, Affiliated Xinghua People's Hospital of Yangzhou University Medical College, Xinghua, Jiangsu 225700, P.R. China
| | - Genxiong Tang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Tingting Yang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China.,Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Cancer Center, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Nanjing Medical University, Shanghai 200080, P.R. China
| |
Collapse
|
14
|
Li D, Cheng P, Wang J, Qiu X, Zhang X, Xu L, Liu Y, Qin S. IRF6 Is Directly Regulated by ZEB1 and ELF3, and Predicts a Favorable Prognosis in Gastric Cancer. Front Oncol 2019; 9:220. [PMID: 31019894 PMCID: PMC6458252 DOI: 10.3389/fonc.2019.00220] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 03/12/2019] [Indexed: 01/09/2023] Open
Abstract
Interferon regulatory factor 6 (IRF6) acts as a tumor suppressor and controls cell differentiation in ectodermal and craniofacial tissues by regulating expression of target genes. However, its function in gastric cancer (GC) remains unknown to date. In this study, we found that the IRF6 expression was significantly downregulated in GC. And the decreased expression of IRF6 was clinically correlated with poor prognosis of GC. Moreover, loss-of-function and gain-of-function studies showed that IRF6 was negatively regulated by ZEB1 but positively regulated by ELF3. Additionally, transcription factor ZEB1 and ELF3 could directly bind on IRF6 promoter, which suggested that transcription factor IRF6 is transcriptionally regulated by ZEB1 and ELF3. Nevertheless, we found that IRF6 expression was negatively related to its promoter methylation in TCGA stomach cancer cohorts. The downregulation of IRF6 in GC might be due to the overexpression of ZEB1 and the DNA methylation of IRF6 promoter.
Collapse
Affiliation(s)
- Dandan Li
- Institute of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Ping Cheng
- Shiyan Hospital of Traditional Chinese Medicine, Shiyan, China
| | - Jingjie Wang
- Institute of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Xuemei Qiu
- Institute of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Xudong Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Li Xu
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Ying Liu
- Institute of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Shanshan Qin
- Institute of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China.,School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, China
| |
Collapse
|
15
|
Li Y, Qin C. MiR-1179 inhibits the proliferation of gastric cancer cells by targeting HMGB1. Hum Cell 2019; 32:352-359. [DOI: 10.1007/s13577-019-00244-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
|
16
|
Hung CY, Yeh TS, Tsai CK, Wu RC, Lai YC, Chiang MH, Lu KY, Lin CN, Cheng ML, Lin G. Glycerophospholipids pathways and chromosomal instability in gastric cancer: Global lipidomics analysis. World J Gastrointest Oncol 2019; 11:181-194. [PMID: 30918592 PMCID: PMC6425327 DOI: 10.4251/wjgo.v11.i3.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Based on the breakthrough of genomics analysis, The Cancer Genome Atlas Research Group recently proposed an integrative genomic analysis, dividing gastric cancer (GC) into four subtypes, characterized by the chromosomal instability (CIN) status. However, the CIN status of GC is still vaguely characterized and lacking the valuable easy-to-use CIN markers to diagnosis in molecular and histological detection. AIM To explore the associations of CIN with downstream lipidomics profiles. METHODS We collected cancerous and noncancerous tissue samples from 18 patients with GC; the samples were divided into CIN and non-CIN types based on the system of The Cancer Genome Atlas Research Group and 409 sequenced oncogenes and tumor suppressor genes. We identified the lipidomics profiles of the GC samples and samples of their adjacent noncancerous tissues by using liquid chromatography-mass spectrometry. Furthermore, we selected leading metabolites based on variable importance in projection scores of > 1.0 and P < 0.05. RESULTS Twelve men and six women participated in this study; the participants had a median age of 67.5 years (range, 52-87 years) and were divided into CIN (n = 9) and non-CIN (n = 9) groups. The GC samples exhibited distinct profiles of lysophosphocholine, phosphocholine, phosphatidylethanolamine, phosphatidylinositol, phosphoserine, sphingomyelin, ceramide, and triglycerides compared with their adjacent noncancerous tissues. The glycerophospholipid levels (phosphocholine, phosphatidylethanolamine, and phosphatidylinositol) were 1.4- to 2.3-times higher in the CIN group compared with the non-CIN group (P < 0.05). Alterations in the glycerolipid and glycerophospholipid pathways indicated progression of GC toward CIN. CONCLUSION The lipidomics profiles of GC samples were distinct from those of their adjacent noncancerous tissues. CIN status of GC is primarily associated with downstream lipidomics in the glycerophospholipid pathway.
Collapse
Affiliation(s)
- Cheng-Yu Hung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Imaging Core Lab, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
| | - Ta-Sen Yeh
- Department of Surgery, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
| | - Cheng-Kun Tsai
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Imaging Core Lab, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
| | - Ren-Chin Wu
- Department of Pathology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
| | - Ying-Chieh Lai
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Imaging Core Lab, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
| | - Meng-Han Chiang
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Imaging Core Lab, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
| | - Kuan-Ying Lu
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Imaging Core Lab, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
| | - Chia-Ni Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Cheng
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Lab, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
- Department of Medical Imaging and Intervention, Imaging Core Lab, Institute for Radiological Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
17
|
Zhi Q, Chen H, Liu F, Han Y, Wan D, Xu Z, Kuang Y, Zhou J. Podocalyxin-like protein promotes gastric cancer progression through interacting with RUN and FYVE domain containing 1 protein. Cancer Sci 2018; 110:118-134. [PMID: 30407695 PMCID: PMC6317940 DOI: 10.1111/cas.13864] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 12/13/2022] Open
Abstract
Podocalyxin‐like protein (PODXL), a transmembrane glycoprotein with anti‐adhesive properties, is associated with an aggressive tumor phenotype and poor prognosis of several cancers. To elucidate the biological significance of PODXL and its molecular mechanism in gastric cancer (GC), we investigated the expression of PODXL in GC samples and assessed its effects on biological behaviors and the related signaling pathways in vitro and in vivo. Moreover, the possible and closely interacted partners of PODXL were identified. Our data showed that the protein or mRNA level of PODXL was significantly upregulated in tissues or serum of GC patients compared with normal‐appearing tissues (NAT) or those of healthy volunteers. Overall survival (OS) curves showed that patients with high PODXL levels in tissues or serum had a worse 5‐year OS. In vitro, restoring PODXL expression promoted tumor progression by increasing cell proliferation, colony formation, wound healing, migration and invasion, as well as suppressing the apoptosis. Furthermore, the PI3K/AKT, NF‐κB and MAPK/ERK signaling pathways were activated. There was a significant positive correlation between PODXL and RUN and FYVE domain containing 1 (RUFY1) expression in tissues or serum. Subsequent mass spectrometry analysis, co‐immunoprecipitation assays and western blot analysis identified PODXL/RUFY1 complexes in GC cells, and silencing RUFY1 expression in GC cells significantly attenuated PODXL‐induced phenotypes and their underlying signaling pathways. Our results suggested that PODXL promoted GC progression via a RUFY1‐dependent signaling mechanism. New GC therapeutic opportunities through PODXL and targeting the PODXL/RUFY1 complex might improve cancer therapy.
Collapse
Affiliation(s)
- Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huo Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Fei Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ye Han
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daiwei Wan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Kasurinen A, Tervahartiala T, Laitinen A, Kokkola A, Sorsa T, Böckelman C, Haglund C. High serum MMP-14 predicts worse survival in gastric cancer. PLoS One 2018; 13:e0208800. [PMID: 30532247 PMCID: PMC6285995 DOI: 10.1371/journal.pone.0208800] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/26/2018] [Indexed: 01/26/2023] Open
Abstract
Matrix metalloproteinases (MMPs), endopeptidases with diverse biochemical functions, can promote cancer cell invasion and metastasis by degrading the extracellular matrix. A high matrix metalloproteinase-14 (MMP-14) expression in gastric cancer tissue has been associated with metastasis and poor prognosis. To further understand this association, we investigated serum MMP-14 as a biomarker in gastric cancer patients. The patient cohort consisted of 240 gastric adenocarcinoma patients who underwent surgery at Helsinki University Hospital, Finland, between 2000 and 2009. We determined the soluble MMP-14 serum levels using an enzyme-linked immunosorbent assay. We then calculated the associations between serum levels and clinicopathologic variables using the Mann-Whitney U-test or the Kruskal-Wallis test. We constructed survival curves using the Kaplan-Meier method and calculating the hazard ratios using the Cox proportional hazard model. We revealed a positive association between a high serum MMP-14 level and stages III–IV (p = 0.029), and between a high serum MMP-14 and distant metastasis (p = 0.022). Patients with a low serum MMP-14 had a 5-year disease-specific survival of 49.2% (95% confidence interval [CI] 45.5–52.9), whereas patients with a high serum MMP-14 had a 5-year survival of 22.1% (95% CI 15.2–29.0; p = 0.001). High serum MMP-14 was a statistically significant prognostic factor among patients with an intestinal type of cancer (hazard ratio [HR] 3.54; 95% CI 1.51–8.33; p = 0.004), but not among patients with a diffuse type. The serum MMP-14 level remained an independent prognostic factor in our multivariate survival analysis (HR 1.55; 95% CI 1.02–2.35; p = 0.040). This study indicates for the first time that high serum soluble MMP-14 levels in gastric cancer serves as a marker for a poor prognosis, possibly indicating the presence of distant metastases.
Collapse
Affiliation(s)
- Aaro Kasurinen
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and Biomedicum Helsinki, Helsinki, Finland
| | - Alli Laitinen
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and Biomedicum Helsinki, Helsinki, Finland
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Camilla Böckelman
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
19
|
Shimizu D, Saito T, Ito S, Masuda T, Kurashige J, Kuroda Y, Eguchi H, Kodera Y, Mimori K. Overexpression of FGFR1 Promotes Peritoneal Dissemination Via Epithelial-to-Mesenchymal Transition in Gastric Cancer. Cancer Genomics Proteomics 2018; 15:313-320. [PMID: 29976636 DOI: 10.21873/cgp.20089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Peritoneal dissemination (PD) is one of the most common causes of cancer-related mortality in gastric cancer (GC). We aimed to identify PD-associated genes and investigate their role in GC. MATERIALS AND METHODS We identified FGFR1 as a putative PD-associated gene using a bioinformatics approach. The biological significance of FGFR1 in epithelial-to-mesenchymal transition (EMT) was evaluated according to the correlation with genes that participated in EMT and FGFR1 knockdown experiments. The associations between FGFR1 expression and the clinicopathological features were examined. RESULTS FGFR1 expression positively correlated with SNAI1, VIM and ZEB1 expression, and negatively correlated with CDH1 expression. Knockdown of FGFR1 suppressed the malignant phenotype of GC cells. High FGFR1 expression significantly correlated with the peritoneal lavage cytology and synchronous PD positivity as well as poor prognosis. CONCLUSION High FGFR1 expression was associated with PD via promotion of EMT and led to a poor prognosis of GC patients.
Collapse
Affiliation(s)
- Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan.,Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Shuhei Ito
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Junji Kurashige
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan.,Department of Surgery, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Yosuke Kuroda
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Tsurumihara, Japan
| |
Collapse
|
20
|
Wang S, Chen X. Identification of potential biomarkers in cervical cancer with combined public mRNA and miRNA expression microarray data analysis. Oncol Lett 2018; 16:5200-5208. [PMID: 30250588 PMCID: PMC6144068 DOI: 10.3892/ol.2018.9323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/23/2018] [Indexed: 12/31/2022] Open
Abstract
Cervical cancer is the fourth most prevalent malignancy in females worldwide. Early diagnosis is key to improving survival rates. Molecular biomarkers are an important method for diagnosing a number of types of cancer, including cervical cancer. The present study utilized public data from three mRNA microarray datasets and one microRNA dataset to analyze the key genes involved in cervical cancer. The mRNA and microRNA expression profile datasets (GSE9750, GSE46857, GSE67522 and GSE30656) were downloaded from the Gene Expression Omnibus database (GEO). Differentially expressed genes (DEGs) and microRNAs (DEMs) were screened using the online tool GEO2R. By using the DEGs consistent across the three mRNA datasets, a functional and pathway enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery. A protein-protein interaction (PPI) network was constructed and module analysis performed using the Search Tool for the Retrieval of Interacting Genes. Validated target genes of the DEMs were identified using the miRecords website. Using the identified target genes of the DEMs, a survival analysis was performed using the OncoLnc online tool. A total of 73 DEGs and 19 DEMs were screened from the microarray expression profile datasets. ‘Integrin-mediated’, ‘proteolysis’ and ‘phosphoinositide 3 kinase-protein kinase 3’ signaling pathways were the most enriched in the DEGs. Three of the DEGs, including Ras homolog family member B (RhoB), stathmin 1 (STMN1) and cyclin D1 (CCNB1) were validated DEM target genes. The OncoLnc survival analysis identified that RhoB was associated with a significantly longer overall survival, whereas STMN1 was associated with a significantly reduced overall survival time in patients with cervical cancer. Finally, data from The Cancer Genome Atlas revealed an association between the mRNA expression levels of RhoB and STMN1, and the overall survival time for patients with cervical cancer. In conclusion, RhoB and STMN1 were identified as key genes that may provide potential targets for cervical cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Sizhe Wang
- Department of Women Health Care, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing 100000, P.R. China
| | - Xiaojin Chen
- Department of Women Health Care, Beijing Chaoyang District Maternal and Child Health Care Hospital, Beijing 100000, P.R. China
| |
Collapse
|
21
|
Shimizu D, Kanda M, Kodera Y. Emerging evidence of the molecular landscape specific for hematogenous metastasis from gastric cancer. World J Gastrointest Oncol 2018; 10:124-136. [PMID: 29988904 PMCID: PMC6033711 DOI: 10.4251/wjgo.v10.i6.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/23/2018] [Accepted: 04/20/2018] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed cancers in the world. Most GC patients are diagnosed when the cancer is in an advanced stage, and consequently, some develop metastatic lesions that generally cause cancer-related death. Metastasis establishment is affected by various conditions, such as tumor location, hemodynamics and organotropism. While digestive cancers may share a primary site, certain cases develop hematogenous metastasis with the absence of peritoneal metastasis, and vice versa. Numerous studies have revealed the clinicopathological risk factors for hematogenous metastasis from GC, such as vascular invasion, advanced age, differentiation, Borrmann type 1 or 2 and expansive growth. Recently, molecular mechanisms that contribute to metastatic site determination have been elucidated by advanced molecular biological techniques. Investigating the molecules that specifically participate in metastasis establishment in distinct secondary organs will lead to the development of novel biomarkers for patient stratification according to their metastatic risk and strategies for preventing and treating distinct metastases. We reviewed articles related to the molecular landscape of hematogenous metastasis from GC.
Collapse
Affiliation(s)
- Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
22
|
Zu LD, Peng XC, Zeng Z, Wang JL, Meng LL, Shen WW, Hu CT, Yang Y, Fu GH. Gastrin inhibits gastric cancer progression through activating the ERK-P65-miR23a/27a/24 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:115. [PMID: 29866191 PMCID: PMC5987590 DOI: 10.1186/s13046-018-0782-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND To test the hypothesis that activated extracellular signal-regulated kinase (ERK) regulates P65-miR23a/27a/24 axis in gastric cancer (GC) and the ERK-P65-miR23a/27a/24 axis plays an important role in the development of GC, and to evaluate the role of gastrin in GC progression and ERK-P65-miR23a/27a/24 axis. METHODS The component levels of the ERK-P65-miR23a/27a/24 axis in four fresh GC tissues, 101 paraffin-embedded GC tissues and four GC cell lines were determined by Western blotting, immunohistochemistry (IHC) or qRT-PCR. The effects of gastrin on GC were first evaluated by measuring gastrin serum levels in 30 healthy and 70 GC patients and performing a correlation analysis between gastrin levels and survival time in 27 GC patients after eight years of follow-up, then evaluated on GC cell lines, GC cell xenograft models, and patient-derived xenografts (PDX) mouse models. The roles of ERK-P65-miR23a/27a/24 axis in GC progression and in the effects of gastrin on GC were examined. RESULTS ERK- P65-miR23a/27a/24 axis was proved to be present in GC cells. The levels of components of ERK-P65-miR23a/27a/24 axis were decreased in GC tissue samples and PGC cells. The decreased levels of components of ERK-P65-miR23a/27a/24 axis were associated with poor prognosis of GC, and ERK-P65-miR23a/27a/24 axis played a suppressive role in GC progression. Low blood gastrin was correlated with poor prognosis of the GC patients and decreased expression of p-ERK and p-P65 in GC tissues. Gastrin inhibited proliferation of poorly-differentiated GC (PGC) cells through activating the ERK-P65-miR23a/27a/24 axis. Gastrin inhibited GC growth and enhanced the suppression of GC by cisplatin in mice or PGC cell culture models through activating the ERK-P65-miR23a/27a/24 axis or its components. CONCLUSIONS ERK-P65-miR23a/27a/24 axis is down-regulated, leading to excess GC growth and poor prognosis of GC. Low gastrin promoted excess GC growth and contributed to the poor prognosis of the GC patients by down-regulating ERK-P65-miR23a/27a/24 axis. Gastrin inhibits gastric cancer growth through activating the ERK-P65-miR23a/27a/24 axis.
Collapse
Affiliation(s)
- Li-Dong Zu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing-Chun Peng
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing-Long Wang
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Li Meng
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Shen
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun-Ting Hu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Yang
- Department of Digestive Medicine, Ningbo No. 2 Hospital, Ningbo, 315010, China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Institutes of Medical Sciences, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, No. 280, South Chong-Qing Road, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
23
|
Li YY, Shao JP, Zhang SP, Xing GQ, Liu HJ. miR-519d-3p Inhibits Cell Proliferation and Invasion of Gastric Cancer by Downregulating B-Cell Lymphoma 6. Cytogenet Genome Res 2018; 154:12-19. [PMID: 29510377 DOI: 10.1159/000487372] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
miR-519d inhibits cell growth, migration, and invasion, but its role in gastric cancer (GC) cells is obscure. We showed that miR-519d-3p was lowly expressed in GC tissues and was associated with the clinical stage and lymph node metastasis of GC tissues. We found that miR-519d-3p repressed cell proliferation and invasion of MGC803 cells and delayed the G1/S phase transition, resulting in decreased cyclin B1 and MMP2 and increased E-cadherin levels. Furthermore, miR-519d-3p targeted and downregulated B-cell lymphoma 6 (BCL6) expression. BCL6 overexpression partially abrogated the suppressive function of miR-519d in MGC803 cells. In conclusion, our study demonstrated that miR-519d-3p functions as a tumor suppressor by targeting and downregulating the expression of BCL6 in GC cells.
Collapse
Affiliation(s)
- Yong-Yuan Li
- Department of General Surgery, The Fifth Central Hospital of Tianjin, Tianjin, PR China
| | | | | | | | | |
Collapse
|
24
|
Sotgia F, Lisanti MP. Mitochondrial biomarkers predict tumor progression and poor overall survival in gastric cancers: Companion diagnostics for personalized medicine. Oncotarget 2017; 8:67117-67128. [PMID: 28978020 PMCID: PMC5620160 DOI: 10.18632/oncotarget.19962] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
Here, we employed a bioinformatics approach to identify novel molecular determinants to predict tumor progression and overall survival in gastric cancer patients. In particular, we directly assessed whether nuclear-derived mRNA species encoding proteins involved in mitochondrial protein translation and OXPHOS are able to successfully predict clinical outcome in gastric cancer. As such, using in silico validation, we have now established the prognostic value of these mitochondrial biomarkers, in a defined population of gastric cancer patients. In this context, we interrogated 5 year follow-up data collected from a group of N = 359 gastric cancer patients. Importantly, in this group of cancer patients, Ki67 and PCNA (conventional markers of cell proliferation) were associated with tumor progression, as might be expected. Using this simplified informatics approach, we identified ∼75 new individual mitochondrial gene probes that effectively predicted tumor progression, with hazard-ratios (HR) of up to 2.22 (p < 2.1e-10). These mitochondrial mRNA transcripts included heat shock proteins/chaperones, membrane proteins, anti-oxidants, enzymes involved in genome maintenance, as well as mitochondrial ribosomal proteins (MRPs) and numerous members of the OXPHOS complexes. In addition, we combined 8 mitochondrial protein transcripts (NDUFS5, VDAC3, ATP5O, IMMT, MRPL28, COX5B, MRPL52, PRKDC), to generate a compact gastric mitochondrial gene signature, associated with a HR of 2.77 (p = 1.4e-14). As a result of this analysis and validation, we strongly suggest that proteins involved in mitochondrial protein translation and OXPHOS should be considered as targets for new drug discovery, for the treatment of gastric cancers. The mitochondrial markers we identified here could also be used as companion diagnostics, to predict clinical outcomes, as well as the patient response to therapy. This should allow a more successful and personalized approach to gastric cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Federica Sotgia
- Translational Medicine, School of Environment & Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Environment & Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|