1
|
Huang Y, Yang S, Cun Y, He J, Xu G, Shi P, Yang J, Wang Q. Diagnostic value of methylated SEPT9 and RNF180 for gastric cancer in high-risk population: a multi-centre retrospective study in Yunnan, Southwest China. Arch Med Sci 2024; 20:2077-2081. [PMID: 39967944 PMCID: PMC11831321 DOI: 10.5114/aoms/196807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/03/2024] [Indexed: 02/20/2025] Open
Affiliation(s)
| | - Shu Yang
- Southern Central Hospital of Yunnan Province, Gejiu, China
| | - Yao Cun
- The First People's Hospital of Xundian Hui and Yi Autonomous County, Kunming, China
| | - Juying He
- Chenggong District People's Hospital, Kunming, China
| | - Guihua Xu
- Kaiyuan People's Hospital, Kaiyuan, China
| | | | - Jinmei Yang
- First Affiliated Hospital of Kunming Medical Kunming, Kunming, China
| | - Qiang Wang
- The Affiliated Hospital of Yunnan University, Kunming, China
| |
Collapse
|
2
|
Emelyanova MA, Ikonnikova AY. Utilization of molecular genetic approaches for colorectal cancer screening. World J Gastroenterol 2024; 30:4950-4957. [PMID: 39679308 PMCID: PMC11612711 DOI: 10.3748/wjg.v30.i46.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/21/2024] Open
Abstract
The feasibility of population screening for colorectal cancer has been demonstrated in several studies. Most of these studies have considered individual characteristics, diagnostic approaches, epidemiological data, and socioeconomic factors. In this article, we comment on an editorial by Metaxas et al published in the recent issue of the journal. The authors emphasized the need to raise public awareness through health education programs and the possibility of using easily accessible non-invasive screening methods. Here, we focus on non-invasive molecular genetic approaches that can aid in colorectal cancer screening. On the one hand, we highlighted the use of tumor DNA/RNA markers directly for screening and, on the other hand, underline the use of polygenic risk assessment and hereditary predisposition to select individuals for more thorough cancer screening.
Collapse
Affiliation(s)
- Marina A Emelyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anna Y Ikonnikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
3
|
Takenaka Y, Watanabe M. Environmental Factor Index (EFI): A Novel Approach to Measure the Strength of Environmental Influence on DNA Methylation in Identical Twins. EPIGENOMES 2024; 8:44. [PMID: 39584967 PMCID: PMC11587003 DOI: 10.3390/epigenomes8040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The dynamic interaction between genomic DNA, epigenetic modifications, and phenotypic traits was examined in identical twins. Environmental perturbations can induce epigenetic changes in DNA methylation, influencing gene expression and phenotypes. Although DNA methylation mediates gene-environment correlations, the quantitative effects of external factors on DNA methylation remain underexplored. This study aimed to quantify these effects using a novel approach. METHODS A cohort study was conducted on healthy monozygotic twins to evaluate the influence of environmental stimuli on DNA methylation. We developed the Environmental Factor Index (EFI) to identify methylation sites showing statistically significant changes in response to environmental stimuli. We analyzed the identified sites for associations with disorders, DNA methylation markers, and CpG islands. RESULTS The EFI identified methylation sites that exhibited significant associations with genes linked to various disorders, particularly cancer. These sites were overrepresented on CpG islands compared to other genomic features, highlighting their regulatory importance. CONCLUSIONS The EFI is a valuable tool for understanding the molecular mechanisms underlying disease pathogenesis. It provides insights into the development of preventive and therapeutic strategies and offers a new perspective on the role of environmental factors in epigenetic regulation.
Collapse
Affiliation(s)
- Yoichi Takenaka
- Faculty of Informatics, Kansai University, Osaka 569-1052, Japan
- Center for Twin Research, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan (M.W.)
| | - Osaka Twin Research Group
- Center for Twin Research, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan (M.W.)
| | - Mikio Watanabe
- Center for Twin Research, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan (M.W.)
- Department of Clinical Laboratory and Biomedical Sciences, Graduate School of Medicine, The University of Osaka, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Stein RA, Gomaa FE, Raparla P, Riber L. Now and then in eukaryotic DNA methylation. Physiol Genomics 2024; 56:741-763. [PMID: 39250426 DOI: 10.1152/physiolgenomics.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024] Open
Abstract
Since the mid-1970s, increasingly innovative methods to detect DNA methylation provided detailed information about its distribution, functions, and dynamics. As a result, new concepts were formulated and older ones were revised, transforming our understanding of the associated biology and catalyzing unprecedented advances in biomedical research, drug development, anthropology, and evolutionary biology. In this review, we discuss a few of the most notable advances, which are intimately intertwined with the study of DNA methylation, with a particular emphasis on the past three decades. Examples of these strides include elucidating the intricacies of 5-methylcytosine (5-mC) oxidation, which are at the core of the reversibility of this epigenetic modification; the three-dimensional structural characterization of eukaryotic DNA methyltransferases, which offered insights into the mechanisms that explain several disease-associated mutations; a more in-depth understanding of DNA methylation in development and disease; the possibility to learn about the biology of extinct species; the development of epigenetic clocks and their use to interrogate aging and disease; and the emergence of epigenetic biomarkers and therapies.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Faris E Gomaa
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Pranaya Raparla
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Leise Riber
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
5
|
Li R, Chen J, Shen X, Lin Y, Tang J, Xiong G, Zhang K, Xiang M, Xie L, Hu F. A study of the clinical significance of mSEPT9 in monitoring recurrence and prognosis in patients with surgically treated colorectal cancer. PLoS One 2024; 19:e0312676. [PMID: 39466813 PMCID: PMC11515984 DOI: 10.1371/journal.pone.0312676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE To explore the medical significance of methylated septin9 (mSEPT9) in monitoring recurrence and prognostic assessment in individuals with surgically treated colorectal cancer (CRC). METHODS To investigate the role of Septin9 in colorectal cancer, we utilized the TIMER2.0 database to analyze its differential expression between tumor tissues and adjacent normal tissues. Colorectal cancer RNA-seq data from the TCGA database was downloaded and curated. The clinical relevance of mSEPT9 in colorectal cancer was explored by examining the correlation between Septin9 methylation levels and clinical characteristics using UALCAN and MethSurv software. Peripheral blood samples were obtained from 130 CRC subjects who underwent surgery for the detection of mSEPT9 and carcinoembryonic antigen (CEA) expression, along with collection of clinicopathological data such as age, gender, tumor site, TNM stage, and tumor differentiation. Patients were followed up for at least 3 years post-surgery until the death or final follow-up dates (31/12/2022). Additionally, peripheral blood samples were collected from 30 colorectal cancer surgery patients for mSEPT9 detection before and 7 days after surgery. RESULTS Through bioinformatic database analysis, we identified higher expression levels of SEPT9 mRNA in most tumor tissues compared to normal tissues. Similarly, both paired and unpaired CRC tissues exhibited elevated expression of Septin9 when compared to normal tissues. Following GO and KEGG analysis of Septin9 target genes, we discovered their significant associations with ncRNA metabolic processes, ribonucleoprotein complex biogenesis, spliceosomes, and viral carcinogenesis. Furthermore, the overexpression of mSeptin9 was observed in CRC tissues, and it demonstrated a correlation with colon cancer staging and histologic classification. In our clinical sample study, The positive rate of mSEPT9 in CRC patients 7 days after surgery was 43.44% lower than that of preoperative. The differences in TNM stage, tumor differentiation degree, and preoperative CEA expression level between the preoperative mSEPT9 positive and negative groups of CRC were statistically significant (P < 0.05). Recurrence free survival (RFS) and overall survival (OS) were shorter in the preoperative mSEPT9-positive group, meaning preoperative mSEPT9 status was a risk factor for CRC recurrence and prognosis (P < 0.05). The sensitivity, specificity, and AUC value of preoperative mSEPT9 and CEA levels for predicting postoperative recurrence in CRC patients were 88% vs. 72%, 56.19% vs. 55.24%, and 0.721 vs. 0.636 respectively, well the AUC value of the combined prediction of postoperative recurrence was 0.758. CONCLUSION The detection of mSEPT9 combined with CEA in preoperative plasma helps predict recurrence in colorectal cancer patients.
Collapse
Affiliation(s)
- Rong Li
- Department of Digestive Neoplasms, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan Province, China
| | - Jiaojiao Chen
- Radiotherapy Department, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
| | - Xin Shen
- Department of Digestive Neoplasms, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan Province, China
| | - Yanping Lin
- Department of Digestive Neoplasms, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan Province, China
| | - Jiadai Tang
- Department of Digestive Neoplasms, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan Province, China
| | - Guangrui Xiong
- Gastroenterology, Lincang People’s Hospital, Lincang, Yunnan Province, China
| | - Ke Zhang
- Department of Oncology, Baoshan People’s Hospital in Yunnan Province, Baoshan, Yunnan Province, China
| | - Mengying Xiang
- Department of Critical Care Medicine, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan Province, China
| | - Lin Xie
- Department of Digestive Neoplasms, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan Province, China
| | - Fengdi Hu
- Department of Digestive Neoplasms, Peking University Cancer Hospital Yunnan, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan Province, China
| |
Collapse
|
6
|
Tian S, Chen M. The mechanisms and drug therapies of colorectal cancer and epigenetics: bibliometrics and visualized analysis. Front Pharmacol 2024; 15:1466156. [PMID: 39268463 PMCID: PMC11391208 DOI: 10.3389/fphar.2024.1466156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Background Numerous studies have demonstrated a link between epigenetics and CRC. However, there has been no systematic analysis or visualization of relevant publications using bibliometrics. Methods 839 publications obtained from the Web of Science Core (WoSCC) were systematically analyzed using CiteSpace and VOSviewer software. Results The results show that the countries, institutions, and authors with the most published articles are the United States, Harvard University, and Ogino and Shuji, respectively. SEPT9 is a blood test for the early detection of colorectal cancer. Vitamin D and gut microbiota mediate colorectal cancer and epigenetics, and probiotics may reduce colorectal cancer-related symptoms. We summarize the specific epigenetic mechanisms of CRC and the current existence and potential epigenetic drugs associated with these mechanisms. It is closely integrated with clinical practice, and the possible research directions and challenges in the future are proposed. Conclusion This study reviews the current research trends and hotspots in CRC and epigenetics, which can promote the development of this field and provide references for researchers in this field.
Collapse
Affiliation(s)
- Siyu Tian
- School of Clinical Medicine, Chengdu University of TCM, Chengdu, China
| | - Min Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Jiang H. Latest Research Progress of Liquid Biopsy in Tumor-A Narrative Review. Cancer Manag Res 2024; 16:1031-1042. [PMID: 39165347 PMCID: PMC11335005 DOI: 10.2147/cmar.s479338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Human life expectancy is significantly impacted by cancer, with liquid biopsy emerging as an advantageous method for cancer detection because of its noninvasive nature, high accuracy, ease of sampling, and cost-effectiveness compared with conventional tissue biopsy techniques. Liquid biopsy shows promise in early cancer detection, real-time monitoring, and personalized treatment for various cancers, including lung, cervical, and prostate cancers, and offers innovative approaches for cancer diagnosis and management. By utilizing circulating tumor DNA, circulating tumor cells, and exosomes as biomarkers, liquid biopsy enables the tracking of cancer progression. Various techniques commonly used in life sciences research, such as polymerase chain reaction (PCR), next-generation sequencing (NGS), and droplet digital PCR, are employed to assess cancer progression on the basis of different indicators. This review examines the latest advancements in liquid biopsy markers-circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and exosomes-for cancer diagnosis over the past three years, with a focus on their detection methodologies and clinical applications. It encapsulates the pivotal aims of liquid biopsy, including early detection, therapy response prediction, treatment monitoring, prognostication, and its relevance in minimal residual disease, while also addressing the challenges facing routine clinical adoption. By combining the latest research advancements and practical clinical experiences, this work focuses on discussing the clinical significance of DNA methylation biomarkers and their applications in tumor screening, auxiliary diagnosis, companion diagnosis, and recurrence monitoring. These discussions may help enhance the application of liquid biopsy throughout the entire process of tumor diagnosis and treatment, thereby providing patients with more precise and effective treatment plans.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Urology, The Fifth Affiliated Hospital of Zunyi Medical University (Zhuhai Sixth People’s Hospital), Zhuhai, People’s Republic of China
| |
Collapse
|
8
|
Maida M, Dahiya DS, Shah YR, Tiwari A, Gopakumar H, Vohra I, Khan A, Jaber F, Ramai D, Facciorusso A. Screening and Surveillance of Colorectal Cancer: A Review of the Literature. Cancers (Basel) 2024; 16:2746. [PMID: 39123473 PMCID: PMC11312202 DOI: 10.3390/cancers16152746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Colorectal cancer (CRC) has the highest mortality rate among men and is the second highest among women under fifty, with incidence and mortality rates rising in younger populations. Studies indicate that up to one-third of patients diagnosed before fifty have a family history or genetic factors, highlighting the need for earlier screening. Contrariwise, diagnosis in healthy subjects through screening strategies enables early-stage detection of the tumor and better clinical outcomes. In recent years, mortality rates of CRC in Western countries have been on a steady decline, which is largely attributed to widespread screening programs and advancements in treatment modalities. Indeed, early detection through screening significantly improves prognosis, with stark differences in survival rates between localized and metastatic disease. This article aims to provide a comprehensive review of the existing literature, delving into the performance and efficacy of various CRC screening strategies. It navigates through available screening tools, evaluating their efficacy and cost-effectiveness. The discussion extends to delineating target populations for screening, emphasizing the importance of tailored approaches for individuals at heightened risk.
Collapse
Affiliation(s)
- Marcello Maida
- Department of Medicine and Surgery, University of Enna ‘Kore’, 94100 Enna, Italy;
| | - Dushyant Singh Dahiya
- Division of Gastroenterology, Hepatology and Motility, The University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Yash R. Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, MI 48341, USA
| | - Angad Tiwari
- Department of Internal Medicine, Maharani Laxmi Bai Medical College, Jhansi 284001, India;
| | - Harishankar Gopakumar
- Division of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (H.G.); (I.V.)
| | - Ishaan Vohra
- Division of Gastroenterology and Hepatology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA; (H.G.); (I.V.)
| | - Aqsa Khan
- Department of Internal Medicine, Parkview Health, Fort Wayne, IN 46805, USA;
| | - Fouad Jaber
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, KS 64110, USA;
| | - Daryl Ramai
- Division of Gastroenterology and Hepatology, The University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Biomedical Science, Foggia University Hospital, 71122 Foggia, Italy
| |
Collapse
|
9
|
Kohaar I, Hodges NA, Srivastava S. Biomarkers in Cancer Screening: Promises and Challenges in Cancer Early Detection. Hematol Oncol Clin North Am 2024; 38:869-888. [PMID: 38782647 PMCID: PMC11222039 DOI: 10.1016/j.hoc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cancer continues to be one the leading causes of death worldwide, primarily due to the late detection of the disease. Cancers detected at early stages may enable more effective intervention of the disease. However, most cancers lack well-established screening procedures except for cancers with an established early asymptomatic phase and clinically validated screening tests. There is a critical need to identify and develop assays/tools in conjunction with imaging approaches for precise screening and detection of the aggressive disease at an early stage. New developments in molecular cancer screening and early detection include germline testing, synthetic biomarkers, and liquid biopsy approaches.
Collapse
Affiliation(s)
- Indu Kohaar
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Nicholas A Hodges
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA.
| |
Collapse
|
10
|
Duong LT, Dao TT, Bui HT, Nguyen UD, Hoang UT, Tran DV, Nguyen BV, Ho TH. Innovative Semi-Nested Realtime PCR Assay with Extendable Blocking Probe for Enhanced Analysis of SEPT9 Methylation in Colorectal Cancer. Biomedicines 2024; 12:1458. [PMID: 39062031 PMCID: PMC11274708 DOI: 10.3390/biomedicines12071458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: The detection of methylated SEPT9 (mSEPT9) in plasma is a promising approach to non-invasive colorectal cancer (CRC) screening. Traditional approaches have limitations in sensitivity and cost-effectiveness, particularly in resource-limited settings. (2) Methods: We developed a semi-nested realtime PCR assay utilizing extendable blocking probes (ExBP) to enhance the detection of low-level mSEPT9 based on DNA melting. This assay allows for the discrimination of mSEPT9 in the presence of high concentrations of non-methylated SEPT9 (up to 100,000 times higher). (3) Results: The assay demonstrated a sensitivity of 73.91% and specificity of 80%, showcasing its ability to detect very low levels of methylated DNA effectively. The innovative use of ExBP without costly modified probes simplifies the assay setup and reduces the overall costs, enhancing its applicability in diverse clinical settings. (4) Conclusions: This novel assay significantly improves the detection of mSEPT9, offering a potential advance in CRC screening and monitoring. Its cost-efficiency and high sensitivity make it particularly suitable for the early detection and management of CRC, especially in settings with limited resources. Future studies are encouraged to validate this assay in larger populations to establish its clinical benefits and practical utility.
Collapse
Affiliation(s)
- Linh Thuy Duong
- Oncology Center, 103 Military Hospital, Vietnam Military Medical University, Hanoi 10000, Vietnam; (L.T.D.); (D.V.T.); (B.V.N.)
| | - Trang Thuy Dao
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi 10000, Vietnam; (T.T.D.); (H.T.B.); (U.D.N.)
| | - Hoai Thi Bui
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi 10000, Vietnam; (T.T.D.); (H.T.B.); (U.D.N.)
| | - Ung Dinh Nguyen
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi 10000, Vietnam; (T.T.D.); (H.T.B.); (U.D.N.)
| | - Ung Tien Hoang
- Department of Rehabilitation, 103 Military Hospital, Vietnam Military Medical University, Hanoi 10000, Vietnam;
| | - Duc Viet Tran
- Oncology Center, 103 Military Hospital, Vietnam Military Medical University, Hanoi 10000, Vietnam; (L.T.D.); (D.V.T.); (B.V.N.)
| | - Ba Van Nguyen
- Oncology Center, 103 Military Hospital, Vietnam Military Medical University, Hanoi 10000, Vietnam; (L.T.D.); (D.V.T.); (B.V.N.)
| | - Tho Huu Ho
- Department of Genomics and Cytogenetics, Institute of Biomedicine and Pharmacy (IBP), Vietnam Military Medical University, Hanoi 10000, Vietnam; (T.T.D.); (H.T.B.); (U.D.N.)
| |
Collapse
|
11
|
Laven-Law G, Kichenadasse G, Young GP, Symonds EL, Winter JM. BCAT1, IKZF1 and SEPT9: methylated DNA biomarkers for detection of pan-gastrointestinal adenocarcinomas. Biomarkers 2024; 29:194-204. [PMID: 38644767 DOI: 10.1080/1354750x.2024.2340663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Methylated circulating tumour DNA (ctDNA) blood tests for BCAT1/IKZF1 (COLVERA) and SEPT9 (Epi proColon) are used to detect colorectal cancer (CRC). However, there are no ctDNA assays approved for other gastrointestinal adenocarcinomas. We aimed to characterize BCAT1, IKZF1 and SEPT9 methylation in different gastrointestinal adenocarcinoma and non-gastrointestinal tumours to determine if these validated CRC biomarkers might be useful for pan-gastrointestinal adenocarcinoma detection. METHODS Tissue DNA methylation data from colorectal (COAD, READ), gastroesophageal (ESCA, STAD), pancreatic (PAAD) and cholangiocarcinoma (CHOL) adenocarcinoma cohorts within The Cancer Genome Atlas were used for differential methylation analyses. Clinicodemographic predictors of BCAT1, IKZF1 and SEPT9 methylation, and the selectivity of hypermethylated BCAT1, IKZF1 and SEPT9 for colorectal adenocarcinomas in comparison to other cancers were each explored with beta regression. RESULTS Hypermethylated BCAT1, IKZF1 and SEPT9 were each differentially methylated in colorectal and gastroesophageal adenocarcinomas. IKZF1 was differentially methylated in pancreatic adenocarcinoma. Hypermethylated DNA biomarkers BCAT1, IKZF1 and SEPT9 were largely stable across different stages of disease and were highly selective for gastrointestinal adenocarcinomas relative to other cancer types. DISCUSSION Existing CRC methylated ctDNA blood tests for BCAT1/IKZF1 and SEPT9 might be usefully repurposed for use in other gastrointestinal adenocarcinomas and warrant further prospective ctDNA studies.
Collapse
Affiliation(s)
- Geraldine Laven-Law
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
| | - Ganessan Kichenadasse
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
- Department of Medical Oncology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, South Australia
| | - Graeme P Young
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
| | - Erin L Symonds
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
- Department of Gastroenterology and Hepatology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, South Australia
| | - Jean M Winter
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
| |
Collapse
|
12
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Oh CK, Cho YS. Pathogenesis and biomarkers of colorectal cancer by epigenetic alteration. Intest Res 2024; 22:131-151. [PMID: 38295766 PMCID: PMC11079515 DOI: 10.5217/ir.2023.00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/16/2023] [Accepted: 12/29/2023] [Indexed: 05/12/2024] Open
Abstract
Colorectal cancer (CRC) ranks third in cancer incidence and stands as the second leading cause of cancer-related deaths globally. CRC tumorigenesis results from a cumulative set of genetic and epigenetic alterations, disrupting cancer-regulatory processes like cell proliferation, metabolism, angiogenesis, cell death, invasion, and metastasis. Key epigenetic modifications observed in cancers encompass abnormal DNA methylation, atypical histone modifications, and irregularities in noncoding RNAs, such as microRNAs and long noncoding RNAs. The advancement in genomic technologies has positioned these genetic and epigenetic shifts as potential clinical biomarkers for CRC patients. This review concisely covers the fundamental principles of CRC-associated epigenetic changes, and examines in detail their emerging role as biomarkers for early detection, prognosis, and treatment response prediction.
Collapse
Affiliation(s)
- Chang Kyo Oh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Seok Cho
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
14
|
Liu S, Liu H, Wang X, Shi L. The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnol J 2024; 19:e2300352. [PMID: 38403433 DOI: 10.1002/biot.202300352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Gene therapy has revolutionized the treatment of genetic diseases. Spearheading this revolution are sophisticated genome editing methods such as TALENs, ZFNs, and CRISPR-Cas, which trace their origins back to prokaryotic immune systems. Prokaryotes have developed various antiviral defense systems to combat viral attacks and the invasion of genetic elements. The comprehension of these defense mechanisms has paved the way for the development of indispensable tools in molecular biology. Among them, restriction endonuclease originates from the innate immune system of bacteria. The CRISPR-Cas system, a widely applied genome editing technology, is derived from the prokaryotic adaptive immune system. Single-base editing is a precise editing tool based on CRISPR-Cas system that involves deamination of target base. It is worth noting that prokaryotes possess deamination enzymes as part of their defense arsenal over foreign genetic material. Furthermore, prokaryotic Argonauts (pAgo) proteins, also function in anti-phage defense, play an important role in complementing the CRISPR-Cas system by addressing certain limitations it may have. Recent studies have also shed light on the significance of Retron, a reverse transcription transposon previously showed potential in genome editing, has also come to light in the realm of prokaryotic immunity. These noteworthy findings highlight the importance of studying prokaryotic immune system for advancing genome editing techniques. Here, both the origin of prokaryotic immunity underlying aforementioned genome editing tools, and potential applications of deaminase, pAgo protein and reverse transcriptase in genome editing among prokaryotes were introduced, thus emphasizing the fundamental mechanism and significance of prokaryotic immunity.
Collapse
Affiliation(s)
- Siyang Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongling Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Ye J, Zhang J, Ding W. DNA methylation modulates epigenetic regulation in colorectal cancer diagnosis, prognosis and precision medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:34-53. [PMID: 38464391 PMCID: PMC10918240 DOI: 10.37349/etat.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by the interplay of genetic and environmental factors. The clinical heterogeneity of CRC cannot be attributed exclusively to genetic diversity and environmental exposures, and epigenetic markers, especially DNA methylation, play a critical role as key molecular markers of cancer. This review compiles a comprehensive body of evidence underscoring the significant involvement of DNA methylation modifications in the pathogenesis of CRC. Moreover, this review explores the potential utility of DNA methylation in cancer diagnosis, prognostics, assessment of disease activity, and prediction of drug responses. Recognizing the impact of DNA methylation will enhance the ability to identify distinct CRC subtypes, paving the way for personalized treatment strategies and advancing precision medicine in the management of CRC.
Collapse
Affiliation(s)
- Jingxin Ye
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, Jiangsu Province, China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
16
|
Li Y, Li B, Jiang R, Liao L, Zheng C, Yuan J, Zeng L, Hu K, Zhang Y, Mei W, Hong Z, Xiao B, Kong L, Han K, Tang J, Jiang W, Pan Z, Zhang S, Ding P. A novel screening method of DNA methylation biomarkers helps to improve the detection of colorectal cancer and precancerous lesions. Cancer Med 2023; 12:20626-20638. [PMID: 37881109 PMCID: PMC10660402 DOI: 10.1002/cam4.6511] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/22/2023] [Accepted: 08/30/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies, and early detection plays a crucial role in enhancing curative outcomes. While colonoscopy is considered the gold standard for CRC diagnosis, noninvasive screening methods of DNA methylation biomarkers can improve the early detection of CRC and precancerous lesions. METHODS Bioinformatics and machine learning methods were used to evaluate CRC-related genes within the TCGA database. By identifying the overlapped genes, potential biomarkers were selected for further validation. Methylation-specific PCR (MSP) was utilized to identify the associated genes as biomarkers. Subsequently, a real-time PCR assay for detecting the presence of neoplasia or cancer of the colon or rectum was established. This screening approach involved the recruitment of 978 participants from five cohorts. RESULTS The genes with the highest specificity and sensitivity were Septin9, AXL4, and SDC2. A total of 940 participants were involved in the establishment of the final PCR system and the subsequent performance evaluation test. A multiplex TaqMan real-time PCR system has been illustrated to greatly enhance the ability to detect precancerous lesions and achieved an accuracy of 87.8% (95% CI 82.9-91.5), a sensitivity of 82.7% (95% CI 71.8-90.1), and a specificity of 90.1% (95% CI 84.3-93.9). Moreover, the detection rate of precancerous lesions of this assay reached 55.0% (95% CI 38.7-70.4). CONCLUSION The combined detection of the methylation status of SEPT9, SDC2, and ALX4 in plasma holds the potential to further enhance the sensitivity of CRC detection.
Collapse
Affiliation(s)
- Yuan Li
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Bin Li
- Beijing BGI‐GBI Biotech Co., LtdBeijingChina
| | - Rou Jiang
- Department of Cancer Prevention CenterSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Leen Liao
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | | | - Jie Yuan
- Department of General SurgeryThe Fifth Affiliated Hospital of Southern Medical UniversityGuangzhouChina
| | | | - Kunling Hu
- Beijing BGI‐GBI Biotech Co., LtdBeijingChina
| | | | - Weijian Mei
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Zhigang Hong
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Binyi Xiao
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Lingheng Kong
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Kai Han
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Jinghua Tang
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wu Jiang
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Zhizhong Pan
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| | | | - Peirong Ding
- Department of Colorectal SurgerySun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer MedicineGuangzhouChina
| |
Collapse
|
17
|
Xie Y, Li P, Sun D, Qi Q, Ma S, Zhao Y, Zhang S, Wang T, Wang J, Li S, Gong T, Xu H, Xiong M, Li G, You C, Luo Z, Li J, Wang C, Du L. DNA Methylation-Based Testing in Peripheral Blood Mononuclear Cells Enables Accurate and Early Detection of Colorectal Cancer. Cancer Res 2023; 83:3636-3649. [PMID: 37602818 PMCID: PMC10618739 DOI: 10.1158/0008-5472.can-22-3402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/15/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
An effective blood-based method for the diagnosis of colorectal cancer has not yet been developed. Molecular alterations of immune cells occur early in tumorigenesis, providing the theoretical underpinning for early cancer diagnosis based on immune cell profiling. Therefore, we aimed to develop an effective detection method based on peripheral blood mononuclear cells (PBMC) to improve the diagnosis of colorectal cancer. Analysis of the genome-wide methylation landscape of PBMCs from patients with colorectal cancer and healthy controls by microarray, pyrosequencing, and targeted bisulfite sequencing revealed five DNA methylation markers for colorectal cancer diagnosis, especially early-stage colorectal cancer. A single-tube multiple methylation-specific quantitative PCR assay (multi-msqPCR) for simultaneous detection of five methylation markers was established, which allowed quantitative analysis of samples with as little as 0.1% PBMC DNA and had better discriminative performance than single-molecule detection. Then, a colorectal cancer diagnostic model (CDM) based on methylation markers and the multi-msqPCR method was constructed that achieved high accuracy for early-stage colorectal cancer (AUC = 0.91; sensitivity = 81.18%; specificity = 89.39%), which was improved compared with CEA (AUC = 0.79). The CDM also enabled a high degree of discrimination for advanced adenoma cases (AUC = 0.85; sensitivity = 63.04%). Follow-up data also demonstrated that the CDM could identify colorectal cancer potential up to 2 years before currently used diagnostic methods. In conclusion, the approach constructed in this study based on PBMC-derived DNA methylation markers and a multi-msqPCR method is a promising and easily implementable diagnostic method for early-stage colorectal cancer. SIGNIFICANCE Development of a diagnostic model for early colorectal cancer based on epigenetic analysis of PBMCs supports the utility of altered DNA methylation in immune cells for cancer diagnosis.
Collapse
Affiliation(s)
- Yan Xie
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Dong Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, P.R. China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, P.R. China
| | - Suhong Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Yinghui Zhao
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Shujun Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Tiantian Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Jing Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Shijun Li
- Department of Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian, P.R. China
| | - Tingting Gong
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, P.R. China
| | - Huiting Xu
- Department of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Jiangsu, P.R. China
- Medical School of Nantong University, Nantong, P.R. China
| | - Mengqiu Xiong
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Guanghua Li
- Department of Clinical Laboratory, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, P.R. China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou, P.R. China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, P.R. China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, P.R. China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, P.R. China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, P.R. China
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Innovation Technology in Laboratory Medicine, Jinan, P.R. China
| |
Collapse
|
18
|
Kumarasamy G, Mohd Salim NH, Mohd Afandi NS, Hazlami Habib MA, Mat Amin ND, Ismail MN, Musa M. Glycoproteomics-based liquid biopsy: translational outlook for colorectal cancer clinical management in Southeast Asia. Future Oncol 2023; 19:2313-2332. [PMID: 37937446 DOI: 10.2217/fon-2023-0704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Colorectal cancer (CRC) signifies a significant healthcare challenge in Southeast Asia. Despite advancements in screening approaches and treatment modalities, significant medical gaps remain, ranging from prevention and early diagnosis to determining targeted therapy and establishing personalized approaches to managing CRC. There is a need to expand more validated biomarkers in clinical practice. An advanced technique incorporating high-throughput mass spectrometry as a liquid biopsy to unravel a repertoire of glycoproteins and glycans would potentially drive the development of clinical tools for CRC screening, diagnosis and monitoring, and it can be further adapted to the existing standard-of-care procedure. Therefore this review offers a perspective on glycoproteomics-driven liquid biopsy and its potential integration into the clinical care of CRC in the southeast Asia region.
Collapse
Affiliation(s)
- Gaayathri Kumarasamy
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
| | - Nurul Hakimah Mohd Salim
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nur Syafiqah Mohd Afandi
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Mohd Afiq Hazlami Habib
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Nor Datiakma Mat Amin
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
- Nature Products Division, Forest Research Institute Malaysia, Kepong, Selangor, 52109, Malaysia
| | - Mohd Nazri Ismail
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Bayan Lepas, Pulau Pinang, 11900, Malaysia
| | - Marahaini Musa
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| |
Collapse
|
19
|
Botezatu IV, Kondratova VN, Stroganova AM, Dranko SL, Lichtenstein AV. Aberrant methylation scanning by quantitative DNA melting analysis with hybridization probes as exemplified by liquid biopsy of SEPT9 and HIST1H4F in colorectal cancer. Clin Chim Acta 2023; 551:117591. [PMID: 37832390 DOI: 10.1016/j.cca.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/05/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
OBJECTIVE The generally accepted method of quantifying hypermethylated DNA by qPCR using methylation-specific primers has the risk of underestimating DNA methylation and requires data normalization. This makes the analysis complicated and less reliable. METHODS The end-point PCR method, called qDMA-HP (for quantitative DNA Melting Analysis with hybridization probes), which excludes the normalization procedure, is multiplexed and quantitative, has been proposed. qDMA-HP is characterized by the following features: (i) asymmetric PCR with methylation-independent primers; (ii) fluorescent dual-labeled, self-quenched probes (commonly known as TaqMan probes) covering several interrogated CpGs; (iii) post-PCR melting analysis of amplicon/probe hybrids; (iv) quantitation of unmethylated and methylated DNA alleles by measuring the areas under the corresponding melt peaks. RESULTS qDMA-HP was tested in liquid biopsy of colorectal cancer by evaluating SEPT9 and HIST1H4F methylations simultaneously in the single-tube reaction. Differences in the methylation levels in healthy donors versus cancer patients were statistically significant (p < 0.0001), AUCROC values were 0.795-0.921 for various marker combinations. CONCLUSIONS This proof-of-concept study shows that qDMA-HP is a simple, normalization-independent, quantitative, multiplex and "closed tube" method easily adapted to clinical settings. It is demonstrated, for the first time, that HIST1H4F is a perspective marker for liquid biopsy of colorectal cancer.
Collapse
Affiliation(s)
- Irina V Botezatu
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Valentina N Kondratova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anna M Stroganova
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Svetlana L Dranko
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia
| | - Anatoly V Lichtenstein
- N.N. Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115478, Russia.
| |
Collapse
|
20
|
Chen Z, Li C, Zhou Y, Yao Y, Liu J, Wu M, Su J. Liquid biopsies for cancer: From bench to clinic. MedComm (Beijing) 2023; 4:e329. [PMID: 37492785 PMCID: PMC10363811 DOI: 10.1002/mco2.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Over the past two decades, liquid biopsy has been increasingly used as a supplement, or even, a replacement to the traditional biopsy in clinical oncological practice, due to its noninvasive and early detectable properties. The detections can be based on a variety of features extracted from tumor‑derived entities, such as quantitative alterations, genetic changes, and epigenetic aberrations, and so on. So far, the clinical applications of cancer liquid biopsy mainly aimed at two aspects, prediction (early diagnosis, prognosis and recurrent evaluation, therapeutic response monitoring, etc.) and intervention. In spite of the rapid development and great contributions achieved, cancer liquid biopsy is still a field under investigation and deserves more clinical practice. To better open up future work, here we systematically reviewed and compared the latest progress of the most widely recognized circulating components, including circulating tumor cells, cell-free circulating DNA, noncoding RNA, and nucleosomes, from their discovery histories to clinical values. According to the features applied, we particularly divided the contents into two parts, beyond epigenetics and epigenetic-based. The latter was considered as the highlight along with a brief overview of the advances in both experimental and bioinformatic approaches, due to its unique advantages and relatively lack of documentation.
Collapse
Affiliation(s)
- Zhenhui Chen
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Chenghao Li
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yue Zhou
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Yinghao Yao
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
| | - Jiaqi Liu
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Min Wu
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Jianzhong Su
- School of Biomedical EngineeringSchool of Ophthalmology & Optometry and Eye HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang LaboratoryZhejiang Lab for Regenerative MedicineVision and Brain HealthWenzhouZhejiangChina
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
21
|
Lima AB, dos Reis MB, Matsushita M, dos Reis MT, de Oliveira MA, Reis RM, Guimarães DP. Combined SEPT9 and BMP3 methylation in plasma for colorectal cancer early detection and screening in a Brazilian population. Cancer Med 2023; 12:15854-15867. [PMID: 37338022 PMCID: PMC10469661 DOI: 10.1002/cam4.6224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) screening can help to reduce its incidence and mortality. Noninvasive strategies, such as plasma analysis of epigenetic alterations, can constitute important biomarkers of CRC detection. OBJECTIVE This study aimed to evaluate the plasma methylation status of SEPT9 and BMP3 promoters as biomarkers for detection of CRC and its precursor lesions in a Brazilian population. METHODS Plasma samples from 262 participants of the CRC screening program of Barretos Cancer Hospital who had a positive fecal occult blood test and underwent colonoscopy and cancer patients were analyzed. Participants were grouped according to the worst lesion detected in the colonoscopy. Cell-free circulating DNA (cfDNA) was bisulfite treated followed by the analysis of SEPT9 and BMP3 methylation status using a droplet digital PCR system (ddPCR). The best methylation cutoff value for group discrimination was calculated by receiver operating characteristic (ROC) curve analysis. RESULTS Among the 262 participants, 38 were diagnosed with CRC, 46 with advanced adenomas 119 with nonadvanced adenomas, three with sessile serrated lesions, and 13 with hyperplastic polyps. In 43 participants, no lesion was detected in the colonoscopy and were used as controls. The CRC group showed the highest cfDNA concentration (10.4 ng/mL). For the SEPT9 gene, a cutoff of 2.5% (AUC = 0.681) that discriminates between CRC and the control group resulted in CRC sensitivity and specificity of 50% and 90%, respectively. Concerning the BMP3 gene, a cutoff of 2.3% (AUC = 0.576) showed 40% and 90% of sensitivity and specificity for CRC detection, respectively. Combining SEPT9, BMP3 status, and age over 60 years resulted in a better performance for detecting CRC (AUC = 0.845) than the individual gene models, yielding 80% and 81% of sensitivity and specificity, respectively. CONCLUSION The present study suggests that a combination of SEPT9 and BMP3 plasma methylation, along with age over 60 years, showed the highest performance in detecting CRC in a Brazilian population. These noninvasive biomarkers can potentially serve as useful tools for CRC screening programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research CenterBarretos Cancer HospitalBarretosBrazil
- Life and Health Sciences Research Institute (ICVS), Medical SchoolUniversity of MinhoBragaPortugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaPortugal
| | - Denise Peixoto Guimarães
- Molecular Oncology Research CenterBarretos Cancer HospitalBarretosBrazil
- Department of EndoscopyBarretos Cancer HospitalBarretosBrazil
| |
Collapse
|
22
|
Yang Q, Lei X, He J, Peng Y, Zhang Y, Ling R, Wu C, Zhang G, Zheng B, Chen X, Zou B, Fu Z, Zhao L, Liu H, Hu Y, Yu J, Li F, Ye G, Li G. N4-Acetylcytidine Drives Glycolysis Addiction in Gastric Cancer via NAT10/SEPT9/HIF-1α Positive Feedback Loop. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300898. [PMID: 37328448 PMCID: PMC10427357 DOI: 10.1002/advs.202300898] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/11/2023] [Indexed: 06/18/2023]
Abstract
Anti-angiogenic therapy has long been considered a promising strategy for solid cancers. Intrinsic resistance to hypoxia is a major cause for the failure of anti-angiogenic therapy, but the underlying mechanism remains unclear. Here, it is revealed that N4-acetylcytidine (ac4C), a newly identified mRNA modification, enhances hypoxia tolerance in gastric cancer (GC) cells by promoting glycolysis addiction. Specifically, acetyltransferase NAT10 transcription is regulated by HIF-1α, a key transcription factor of the cellular response to hypoxia. Further, acRIP-sequencing, Ribosome profiling sequencing, RNA-sequencing, and functional studies confirm that NAT10 in turn activates the HIF-1 pathway and subsequent glucose metabolism reprogramming by mediating SEPT9 mRNA ac4C modification. The formation of the NAT10/SEPT9/HIF-1α positive feedback loop leads to excessive activation of the HIF-1 pathway and induces glycolysis addiction. Combined anti-angiogenesis and ac4C inhibition attenuate hypoxia tolerance and inhibit tumor progression in vivo. This study highlights the critical roles of ac4C in the regulation of glycolysis addiction and proposes a promising strategy to overcome resistance to anti-angiogenic therapy by combining apatinib with ac4C inhibition.
Collapse
Affiliation(s)
- Qingbin Yang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Xuetao Lei
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Jiayong He
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Yanmei Peng
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Yihao Zhang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Ruoyu Ling
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Chaorui Wu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Guofan Zhang
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Boyang Zheng
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Xinhua Chen
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Boya Zou
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Ziyi Fu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Liying Zhao
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Hao Liu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Yanfeng Hu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Jiang Yu
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Fengping Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Gengtai Ye
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| | - Guoxin Li
- Department of General SurgeryNanfang HospitalSouthern Medical UniversityGuangdong Provincial Engineering Technology Research Center of Minimally Invasive SurgeryGuangzhouGuangdong510515P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorGuangzhouGuangdong510515P. R. China
| |
Collapse
|
23
|
Lukacova E, Burjanivova T, Podlesniy P, Grendar M, Turyova E, Kasubova I, Laca L, Mikolajcik P, Kudelova E, Vanochova A, Miklusica J, Mersakova S, Lasabova Z. Hypermethylated GRIA4, a potential biomarker for an early non-invasive detection of metastasis of clinically known colorectal cancer. Front Oncol 2023; 13:1205791. [PMID: 37476382 PMCID: PMC10354553 DOI: 10.3389/fonc.2023.1205791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Colorectal cancer (CRC) can develop through several dysregulated molecular pathways, including the serrated pathway, characterized by CpG island methylator (CIMP) phenotype. Although the tumor tissue is a commonly tested material, sample types such as stool or plasma, bring a new, non-invasive approach. Several cancer-related methylated genes have been identified in CRC patients, including gene GRIA4, showing promising diagnostic potential. The aim of our study was to develop a sensitive droplet digital PCR (ddPCR) assay to examine GRIA4 hypermethylation status in CRC patients and evaluate its diagnostic potential in tissue and liquid biopsy samples. Methods In total, 23 patients participated in this study, 7 patients with primary CRC and 16 patients with liver metastasis of clinically known CRC. We obtained tumor and non-tumor tissues (N=17), blood samples pre- and post-surgery (N=22), and blood of five volunteers without a personal cancer history. We have developed and optimized a ddPCR assay for GRIA4 hypermethylation detection, from tissue and plasma samples. Results We detected significantly increased GRIA4 methylation in tumor tissues compared to their adjacent non-tumor tissue, p<0.0001. Receiver operating characteristic (ROC) analysis defined cutoff values to separate primary tumors and metastases from non-tumor colon/rectum, specifically 36.85% for primary tumors and 34.81% for metastases. All primary tumors were above this threshold. When comparing the methylation levels of metastatic vs. non-tumor tissue, a smaller increase was observed in liver metastasis versus colon tissue (3.6× gain; p=0.001), then in liver metastasis versus adjacent liver tissue (17.4× gain; p<0.0001). On average, GRIA4 hypermethylation in primary tumor plasma was 2.8-fold higher (p=0.39), and in metastatic plasma, 16.4-fold higher (p=0.0011) compared to healthy individuals. Hypermethylation in metastatic plasma was on average 5.9 times higher (p=0.051) than in primary tumor plasma. After tumor removal surgery, average hypermethylation decrease in plasma was 1.6× for primary (p=0.037) and 4.5× for metastatic patients (p=0.023). Discussion Based on our data, it can be inferred that GRIA4 serves as a tissue specific biomarker for the colon/rectum tissue, thus is suitable for cancer classification. This biomarker showed the potential to be an attractive target for early non-invasive detection of metastases of clinically known CRC, although additional analysis has to be performed.
Collapse
Affiliation(s)
- Eva Lukacova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - Tatiana Burjanivova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - Petar Podlesniy
- Centro Investigacion Biomedica en Red Enfermedades Neurodegenerativas (CiberNed), Madrid, Spain
| | - Marian Grendar
- Laboratory of Bioinformatics and Biostatistics, Biomedical Center Martin JFM CU, Commenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - Eva Turyova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - Ivana Kasubova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Ludovit Laca
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Mikolajcik
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Kudelova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Andrea Vanochova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| | - Juraj Miklusica
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Sandra Mersakova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin (JFM CU), Martin, Slovakia
| |
Collapse
|
24
|
Cohen R, Platell CF, McCoy MJ, Meehan K, Fuller K. Circulating tumour DNA in colorectal cancer management. Br J Surg 2023; 110:773-783. [PMID: 37190784 PMCID: PMC10364542 DOI: 10.1093/bjs/znad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
Circulating tumour DNA analysis can be performed using two opposing paradigms: tumour-informed and tumour-agnostic approaches. The first requires sequencing data from the primary tumour sample to identify tumour DNA in circulation, whereas the latter occurs without previous primary tumour genetic profiling.
Several preanalytical and laboratory considerations need to be taken into account before proceeding with in-house circulating tumour DNA analysis.
Detection of circulating tumour DNA after curative resection is associated with a significant risk of recurrence. For those with stage II disease and detectable postoperative circulating tumour DNA, administration of adjuvant chemotherapy results in a reduction in the number of patients receiving chemotherapy while providing non-inferior recurrence-free survival compared with standard histopathological decision-making algorithms.
Monitoring circulating tumour DNA during post-treatment surveillance may provide a significantly earlier diagnosis of recurrence.
Collapse
Affiliation(s)
- Ryan Cohen
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Colorectal Cancer Unit, St John of God Subiaco Hospital, Perth, Western Australia, Australia
| | - Cameron F Platell
- Colorectal Cancer Unit, St John of God Subiaco Hospital, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Melanie J McCoy
- Colorectal Cancer Unit, St John of God Subiaco Hospital, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Katie Meehan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Kathy Fuller
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
25
|
Fujita M, Goto M, Tanaka M, Yoshida W. Detection of CpG methylation level using methyl-CpG-binding domain-fused fluorescent protein. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2294-2299. [PMID: 37010025 DOI: 10.1039/d3ay00227f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Methylation of cytosine to 5-methylcytosine on CpG dinucleotides is the most frequently studied epigenetic modification involved in the regulation of gene expression. In normal tissues, tissue-specific CpG methylation patterns are established during development. In contrast, alterations in methylation patterns have been observed in abnormal cells, such as cancer cells. Cancer type-specific CpG methylation patterns have been identified and used as biomarkers for cancer diagnosis. In this study, we developed a hybridization-based CpG methylation level sensing system using a methyl-CpG-binding domain (MBD)-fused fluorescent protein. In this system, the target DNA is captured by a complementary methylated probe DNA. When the target DNA is methylated, a symmetrically methylated CpG is formed in the double-stranded DNA. MBD specifically recognizes symmetrical methyl-CpG on double-stranded DNA; therefore, the methylation level is quantified by measuring the fluorescence intensity of the bound MBD-fused fluorescent protein. We prepared MBD-fused AcGFP1 and quantified the CpG methylation levels of the target DNA against SEPT9, BRCA1, and long interspersed nuclear element-1 (LINE-1) using MBD-AcGFP1. This detection principle can be applied to the simultaneous and genome-wide modified base detection systems using microarrays coupled with modified base binding proteins fused to fluorescent proteins.
Collapse
Affiliation(s)
- Marika Fujita
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| | - Masanori Goto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| | - Masayoshi Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| |
Collapse
|
26
|
Pecere S, Ciuffini C, Chiappetta MF, Petruzziello L, Papparella LG, Spada C, Gasbarrini A, Barbaro F. Increasing the accuracy of colorectal cancer screening. Expert Rev Anticancer Ther 2023; 23:583-591. [PMID: 37099725 DOI: 10.1080/14737140.2023.2207828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
INTRODUCTION Colorectal cancer (CRC) is a major health issue, being responsible for nearly 10% of all cancer-related deaths. Since CRC is often an asymptomatic or paucisymptomatic disease until it reaches advanced stages, screening is crucial for the diagnosis of preneoplastic lesions or early CRC. AREAS COVERED The aim of this review is to summarize the literature evidence on currently available CRC screening tools, with their pros and cons, focusing on the level of accuracy reached by each test over time. We also provide an overview of novel technologies and scientific advances that are currently being investigated and that in the future may represent real game-changers in the field of CRC screening. EXPERT OPINION We suggest that best screening modalities are annual or biennial FIT and colonoscopy every 10 years. We believe that the introduction of artificial intelligence (AI)-tools in the CRC screening field could lead to a significant improvement of the screening efficacy in reducing CRC incidence and mortality in the future. More resources should be put into implementing CRC programmes and support research project to further increase accuracy of CRC screening tests and strategies.
Collapse
Affiliation(s)
- Silvia Pecere
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
- Università Cattolica Del Sacro Cuore di Roma, Rome
| | - Cristina Ciuffini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
- Università Cattolica Del Sacro Cuore di Roma, Rome
| | - Michele Francesco Chiappetta
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
- Università Cattolica Del Sacro Cuore di Roma, Rome
| | - Lucio Petruzziello
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
- Università Cattolica Del Sacro Cuore di Roma, Rome
| | - Luigi Giovanni Papparella
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
- Università Cattolica Del Sacro Cuore di Roma, Rome
| | - Cristiano Spada
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
- Università Cattolica Del Sacro Cuore di Roma, Rome
| | - Antonio Gasbarrini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
- Università Cattolica Del Sacro Cuore di Roma, Rome
| | - Federico Barbaro
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome
- Università Cattolica Del Sacro Cuore di Roma, Rome
| |
Collapse
|
27
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
28
|
Jayasinghe M, Prathiraja O, Caldera D, Jena R, Coffie-Pierre JA, Silva MS, Siddiqui OS. Colon Cancer Screening Methods: 2023 Update. Cureus 2023; 15:e37509. [PMID: 37193451 PMCID: PMC10182334 DOI: 10.7759/cureus.37509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Colorectal cancer (CRC) is a significant cause of morbidity and mortality worldwide. National screening guidelines have been implemented to identify and remove precancerous polyps before they become cancer. Routine CRC screening is advised for people with average risk starting at age 45 because it is a common and preventable malignancy. Various screening modalities are currently in use, ranging from stool-based tests (fecal occult blood test (FOBT), fecal immunochemical test (FIT), and FIT-DNA test), radiologic tests (computed tomographic colonography (CTC), double contrast barium enema), and visual endoscopic examinations (flexible sigmoidoscopy (FS), colonoscopy, and colon capsule endoscopy (CCE)) with their varying sensitivity and specificity. Biomarkers also play a vital role in assessing the recurrence of CRC. This review offers a summary of the current screening options, including biomarkers available to detect CRC, highlighting the benefits and challenges encompassing each screening modality.
Collapse
Affiliation(s)
| | | | | | - Rahul Jena
- Neurology/Internal Medicine, Bharati Vidyapeeth Medical College/Bharati Hospital, Pune, IND
| | | | | | - Ozair S Siddiqui
- Medicine, GMERS Medical College and Hospital, Dharpur-Patan, Patan, IND
| |
Collapse
|
29
|
Goto A, Yoshida W. Hybridization-based CpG methylation level detection using methyl-CpG-binding domain-fused luciferase. Anal Bioanal Chem 2023; 415:2329-2337. [PMID: 36961575 DOI: 10.1007/s00216-023-04657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Hypermethylation of tumor-suppressor genes and global hypomethylation, which is related to methylation level at the retroelement, have been recognized as features of the cancer genome. In this study, we developed a hybridization-based CpG methylation level detection method using methyl-CpG-binding domain-fused firefly luciferase (MBD-Fluc). In this method, methylated probe oligonucleotides were used to capture target oligonucleotides. Fully methylated and hemimethylated double-stranded DNA (dsDNA) was formed by hybridization of the methylated captured oligonucleotides with methylated or unmethylated target oligonucleotides, respectively. MBD-Fluc specifically binds to fully methylated dsDNA but not to hemimethylated dsDNA; therefore, methylated target oligonucleotides can be detected by measuring the luciferase activity of the bound MBD-Fluc. Using the corresponding methylated probe oligonucleotides, the CpG methylation levels of SEPT9, BRCA1, and long interspersed nuclear element-1 (LINE-1) oligonucleotides were quantified. Moreover, we demonstrated that the emission detection signal was not affected by the methylation state of the overhang region of the target oligonucleotide, which was not hybridized to the probe oligonucleotide, indicating that methylated CpG of the target region could be accurately detected. Unmethylated-CpG-binding domain-fused luciferases and 5-hydroxymethyl-CpG-binding domain-fused luciferases have been constructed, suggesting that other modified bases can be detected by the same platform.
Collapse
Affiliation(s)
- Ayano Goto
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan
| | - Wataru Yoshida
- Graduate School of Bionics, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakuramachi, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
30
|
Liu Z, Georgakopoulos-Soares I, Ahituv N, Wong KC. Risk scoring based on DNA methylation-driven related DEGs for colorectal cancer prognosis with systematic insights. Life Sci 2023; 316:121413. [PMID: 36682524 DOI: 10.1016/j.lfs.2023.121413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Colorectal cancer is a common malignant tumor of the digestive tract. Despite advances in diagnostic techniques and medications. Its prognosis remains challenging. DNA methylation-driven related circulating tumor cells have attracted enormous interest in diagnosing owing to their non-invasive nature and early recognition properties. However, the mechanism through which risk biomarkers act remains elusive. Here, we designed a risk model based on differentially expressed genes, DNA methylation, robust, and survival-related factors in the framework of Cox regression. The model has satisfactory performance and is independently verified by an external and isolated dataset in terms of C-index value, ROC, and tROC. The model was applied to Colorectal cancer patients who were subsequently divided into high- and low-risk groups. Functional annotations, genomic alterations, tumor immune environment, and drug sensitivity were analyzed. We observed that up-regulated genes are associated with epithelial cell differentiation and MAPK signaling pathways. The down-regulated genes are related to IL-7 signaling and apoptosis-induced DNA fragmentation. Interestingly, the immune system was inhibited in high-risk groups. High-frequency mutation genes tend to co-occur. High-risk score patients are related to copy number amplification events. To address the challenges, we suggested eleven and twenty-one drugs that are sensitive to low- and high-risk patients. Finally, an artificial neural network was provided to evaluate the immunotherapeutic efficiency. Taken together, the findings demonstrated that our risk score model is robust and reliable for evaluating the prognosis with novel diagnostic and treatment targets. It also yields benefits for the treatment and provides unique insights into developing therapeutic strategies.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
31
|
Min L, Chen J, Yu M, Liu D. Using Circulating Tumor DNA as a Novel Biomarker to Screen and Diagnose Colorectal Cancer: A Meta-Analysis. J Clin Med 2023; 12:408. [PMID: 36675337 PMCID: PMC9860998 DOI: 10.3390/jcm12020408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: Circulating tumor DNA (ctDNA) has emerged as a promising biomarker for many kinds of tumors. However, whether ctDNA could be an accurate diagnostic biomarker in colorectal cancer (CRC) remains to be clarified. The aim of this study was to evaluate the diagnostic accuracy of ctDNA in CRC. (2) Methods: PubMed, Web of Science, and Cochrane databases were searched to identify studies reporting the use of ctDNA to screen and diagnose CRC, and all relevant studies published until October 2022 were enrolled for our analysis. These studies were divided into three primer subgroups: the subgroup of quantitative or qualitative analysis of ctDNA and the subgroup of septin9 (SEPT9) methylation assay. (3) Results: A total of 79 qualified articles with 25,240 subjects were incorporated into our meta-analysis. For quantitative studies, the combined sensitivity (SEN), specificity (SPE), and diagnostic odds ratio (DOR) were 0.723 (95% CI: 0.623-0.803), 0.920 (95% CI: 0.827-0.966), and 23.305 (95% CI: 9.378-57.906), respectively, yielding an AUC of 0.860. The corresponding values for qualitative studies were 0.610 (95% CI: 0.566-0.651), 0.891 (95% CI: 0.878-0.909), 12.569 (95% CI: 9.969-15.848), and 0.823, respectively. Detection of SEPT9 methylation depicted an AUC of 0.879, with an SEN of 0.679 (95% CI: 0.622-0.732), an SPE of 0.903 (95% CI: 0.878-0.923), and a DOR of 20.121 (95% CI:14.404-28.106), respectively. (4) Conclusion: Blood-based ctDNA assay would be a potential novel biomarker for CRC screening and diagnosis. Specifically, quantitative analysis of ctDNA or qualitative analysis of SEPT9 methylation exhibited satisfying diagnostic efficiency. Larger sample studies are needed to further confirm our conclusions and to make the ctDNA approach more sensitive and specific.
Collapse
Affiliation(s)
- Liang Min
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Research Center of Digestive Disease, Central South University, Changsha 410011, China
| | - Jinghua Chen
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Meihong Yu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Research Center of Digestive Disease, Central South University, Changsha 410011, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Research Center of Digestive Disease, Central South University, Changsha 410011, China
| |
Collapse
|
32
|
Ko B, Hanna M, Yu M, Grady WM. Epigenetic Alterations in Colorectal Cancer. EPIGENETICS AND HUMAN HEALTH 2023:331-361. [DOI: 10.1007/978-3-031-42365-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Okada Y, Peng F, Perea J, Corchete L, Bujanda L, Li W, Goel A. Genome-wide methylation profiling identifies a novel gene signature for patients with synchronous colorectal cancer. Br J Cancer 2023; 128:112-120. [PMID: 36319845 PMCID: PMC9814149 DOI: 10.1038/s41416-022-02033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND There are no robust tools for the diagnosis of synchronous colorectal cancer (SyCRC). Herein, we developed the first methylation signature to identify and characterise patients with SyCRC. METHODS For biomarker discovery, we analysed the genome-wide methylation profiles of 16 SyCRC and 18 solitary colorectal cancer (SoCRC) specimens. We thereafter established a methylation signature risk-scoring model to identify SyCRC in an independent cohort of 38 SyCRC and 42 SoCRC patients. In addition, we evaluated the prognostic value of the identified methylation profile. RESULTS We identified six differentially methylated CpG probes/sites that distinguished SyCRC from SoCRC. In the validation cohort, we developed a methylation panel that identified patients with SyCRC from not only larger tumour (AUC = 0.91) but also the paired remaining tumour (AUC = 0.93). Moreover, high risk scores of our panel were associated with the development of metachronous CRC among patients with SyCRC (AUC = 0.87) and emerged as an independent predictor for relapse-free survival (hazard ratio = 2.72; 95% CI = 1.12-6.61). Furthermore, the risk stratification model which combined with clinical risk factors was a diagnostic predictor of recurrence (AUC = 0.90). CONCLUSIONS Our novel six-gene methylation panel robustly identifies patients with SyCRC, which has the clinical potential to improve the diagnosis and management of patients with CRC.
Collapse
Affiliation(s)
- Yasuyuki Okada
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA
- Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Fuduan Peng
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - José Perea
- Molecular Medicine Unit. Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
- Surgery Department, Vithas Arturo Soria University Hospital and School of Medicine, European University of Madrid, Madrid, Spain
| | - Luis Corchete
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Cancer Research Center (CiC-IBMCC, CSIC/USAL), Center for Biomedical Research in Network of Cancer (CIBERONC), Salamanca, Spain
| | - Luis Bujanda
- Gastroenterology Department, Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - Wei Li
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Monrovia, CA, USA.
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
34
|
A Cautionary Tale of Sexing by Methylation: Hybrid Bisulfite-Conversion Sequencing of Immunoprecipitated Methylated DNA in Chrysemys picta Turtles with Temperature-Dependent Sex Determination Reveals Contrasting Patterns of Somatic and Gonadal Methylation, but No Unobtrusive Sex Diagnostic. Animals (Basel) 2022; 13:ani13010117. [PMID: 36611726 PMCID: PMC9817949 DOI: 10.3390/ani13010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Background: The gonads of Chrysemys picta, a turtle with temperature-dependent sex determination (TSD), exhibit differential DNA methylation between males and females, but whether the same is true in somatic tissues remains unknown. Such differential DNA methylation in the soma would provide a non-lethal sex diagnostic for TSD turtle hatchings who lack visually detectable sexual dimorphism when young. Methods: Here, we tested multiple approaches to study DNA methylation in tail clips of Chrysemys picta hatchlings, to identify differentially methylated candidate regions/sites that could serve as molecular sex markers To detect global differential methylation in the tails we used methylation-sensitive ELISA, and to test for differential local methylation we developed a novel hybrid method by sequencing immunoprecipitated and bisulfite converted DNA (MeDIP-BS-seq) followed by PCR validation of candidate regions/sites after digestion with a methylation-sensitive restriction enzyme. Results: We detected no global differences in methylation between males and females via ELISA. While we detected inter-individual variation in DNA methylation in the tails, this variation was not sexually dimorphic, in contrast with hatchling gonads. Conclusions: Results highlight that differential DNA methylation is tissue-specific and plays a key role in gonadal formation (primary sexual development) and maintenance post-hatching, but not in the somatic tail tissue.
Collapse
|
35
|
Performance of circulating methylated Septin9 gene DNA in diagnosis and recurrence monitoring of colorectal cancer in Western China. Clin Chim Acta 2022; 537:118-126. [DOI: 10.1016/j.cca.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
|
36
|
Nguyen HT, Khoa Huynh LA, Nguyen TV, Tran DH, Thu Tran TT, Khang Le ND, Le NAT, Pham TVN, Le MT, Quynh Pham TM, Nguyen TH, Van Nguyen TC, Nguyen TD, Tran Nguyen BQ, Phan MD, Giang H, Tran LS. Multimodal analysis of ctDNA methylation and fragmentomic profiles enhances detection of nonmetastatic colorectal cancer. Future Oncol 2022; 18:3895-3912. [PMID: 36524960 DOI: 10.2217/fon-2022-1041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aims: Early detection of colorectal cancer (CRC) provides substantially better survival rates. This study aimed to develop a blood-based screening assay named SPOT-MAS ('screen for the presence of tumor by DNA methylation and size') for early CRC detection with high accuracy. Methods: Plasma cell-free DNA samples from 159 patients with nonmetastatic CRC and 158 healthy controls were simultaneously analyzed for fragment length and methylation profiles. We then employed a deep neural network with fragment length and methylation signatures to build a classification model. Results: The model achieved an area under the curve of 0.989 and a sensitivity of 96.8% at 97% specificity in detecting CRC. External validation of our model showed comparable performance, with an area under the curve of 0.96. Conclusion: SPOT-MAS based on integration of cancer-specific methylation and fragmentomic signatures could provide high accuracy for early-stage CRC detection.
Collapse
Affiliation(s)
| | - Le Anh Khoa Huynh
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Department of Biostatistics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | | | - Duc Huy Tran
- University Medical Center, Ho Chi Minh City, Vietnam
| | - Thuy Thi Thu Tran
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Nguyen Duy Khang Le
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | | | | | - Minh-Triet Le
- University Medical Center, Ho Chi Minh City, Vietnam
| | - Thi Mong Quynh Pham
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Trong Hieu Nguyen
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Thien Chi Van Nguyen
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Thanh Dat Nguyen
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Bui Que Tran Nguyen
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Minh-Duy Phan
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| | - Le Son Tran
- Medical Genetics Institute, Ho Chi Minh City, Vietnam.,Gene Solutions, Ho Chi Minh City, Vietnam
| |
Collapse
|
37
|
Johnston AD, Lu J, Korbie D, Trau M. Modelling clinical DNA fragmentation in the development of universal PCR-based assays for bisulfite-converted, formalin-fixed and cell-free DNA sample analysis. Sci Rep 2022; 12:16051. [PMID: 36163372 PMCID: PMC9512909 DOI: 10.1038/s41598-022-18196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
In fragmented DNA, PCR-based methods quantify the number of intact regions at a specific amplicon length. However, the relationship between the population of DNA fragments within a sample and the likelihood they will amplify has not been fully described. To address this, we have derived a mathematical equation that relates the distribution profile of a stochastically fragmented DNA sample to the probability that a DNA fragment within that sample can be amplified by any PCR assay of arbitrary length. Two panels of multiplex PCR assays for quantifying fragmented DNA were then developed: a four-plex panel that can be applied to any human DNA sample and used to estimate the percentage of regions that are intact at any length; and a two-plex panel optimized for quantifying circulating cell-free DNA (cfDNA). For these assays, regions of the human genome least affected by copy number aberration were identified and selected; within these copy-neutral regions, each PCR assay was designed to amplify both genomic and bisulfite-converted DNA; and all assays were validated for use in both conventional qPCR and droplet-digital PCR. Finally, using the cfDNA-optimized assays we find evidence of universally conserved nucleosome positioning among individuals.
Collapse
Affiliation(s)
- Andrew D Johnston
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Molecular Diagnostics Solutions, CSIRO Health and Biosecurity, Westmead, NSW, Australia
| | - Jennifer Lu
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Darren Korbie
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Matt Trau
- Centre for Personalized NanoMedicine, The University of Queensland, St Lucia, QLD, 4072, Australia.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
38
|
Septin 9 methylation analysis of lymph node micrometastases for predicting relapse of colorectal cancer. Ann Diagn Pathol 2022; 60:152021. [PMID: 35939880 DOI: 10.1016/j.anndiagpath.2022.152021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Molecular markers for the detection of lymph node micrometastases of malignant tumors have been extensively investigated. However, epigenetic signatures have rarely been reported for identification of metastatic lymph nodes and disease relapse. Septin 9 is the most frequently reported hypermethylated gene in colorectal cancer (CRC). This study aimed to assess the clinical relevance of Septin 9 methylation in regional lymph nodes in recurrence/metastases of CRC. METHODS We analyzed Septin 9 methylation of DNA from resected lymph nodes in 75 CRC patients with or without tumor recurrence using quantitative methylation-sensitive PCR (qMS-PCR). RESULTS Of the 30 histologically negative lymph node CRC patients without recurrence (group 1), methylated Septin 9 was detected in 3 (10 %) cases. The positivity rate of methylated Septin 9 in group 2 containing 30 histologically node-negative CRC patients with recurrence was 30 % (9/30). For group 3, lymphatic invasion as well as tumor recurrence, 11 (73 %) out of 15 subjects had Septin 9 methylation-positive lymph nodes. Moreover, patients in group 3 had a higher level of methylated Septin 9 compared to subjects in group 1 and group 2 (p < 0.05). In addition, CRC patients with Septin 9 methylation in lymph nodes had significantly reduced survival (Log-rank P < 0.0001). CONCLUSION Our data support the predictive role of Septin 9 methylation analysis of lymph node micrometastases for tumor relapse after surgery.
Collapse
|
39
|
He J, Xi N, Han Z, Luo W, Shen J, Wang S, Li J, Guo Z, Cheng H. The Role of Liquid Biopsy Analytes in Diagnosis, Treatment and Prognosis of Colorectal Cancer. Front Endocrinol (Lausanne) 2022; 13:875442. [PMID: 35846270 PMCID: PMC9279561 DOI: 10.3389/fendo.2022.875442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract worldwide and is a serious threat to human life and health. CRC occurs and develops in a multi-step, multi-stage, and multi-gene process, in which abnormal gene expression plays an important role. CRC is currently diagnosed via endoscopy combined with tissue biopsy. Compared with tissue biopsy, liquid biopsy technology has received increasingly more attention and applications in the field of molecular detection due to its non-invasive, safe, comprehensive, and real-time dynamic nature. This review article discusses the application and limitations of current liquid biopsy analytes in the diagnosis, treatment, and prognosis of CRC, as well as directions for their future development.
Collapse
Affiliation(s)
- JinHua He
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - NaiTe Xi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - ZePing Han
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - WenFeng Luo
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jian Shen
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - ShengBo Wang
- Department of Gastroenterology, Central Hospital of Panyu District, Guangzhou, China
| | - JianHao Li
- Institute of Cardiovascular Medicine, Central Hospital of Panyu District, Guangzhou, China
| | - ZhongHui Guo
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - HanWei Cheng
- Central Laboratory of Panyu Central Hospital, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
40
|
Ma L, Qin G, Gai F, Jiang Y, Huang Z, Yang H, Yao S, Du S, Cao Y. A novel method for early detection of colorectal cancer based on detection of methylation of two fragments of syndecan-2 (SDC2) in stool DNA. BMC Gastroenterol 2022; 22:191. [PMID: 35436855 PMCID: PMC9014784 DOI: 10.1186/s12876-022-02264-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Methylated SDC2 has been proved as a diagnostic marker for human colorectal cancer (CRC), noninvasive stool DNA-based methylation testing also emerges as a novel approach for detecting CRC. The aim of this study was to evaluate the clinical performance of stool DNA-based SDC2 methylation test by a new qPCR detection reagent for early detection of CRC. METHODS A new qPCR detection reagent contained two differentially methylated regions in SDC2 CpG islands for the detection of CRC was used in this study. Performance of the SDC2 methylation detection reagent was evaluated by analyzing limit of detection, precision, and specificity. The effect of interfering substances on assay performance was also tested. 339 subjects (102 CRC patients, 50 patients with advanced adenomas, 39 patients with non-advanced adenomas, 18 colitis patients and 130 normal individuals) from the China-Japan Friendship Hospital were evaluated. Approximately 2.5 g of stool sample was collected from each participant. Stool DNA was extracted and bisulfite-converted, followed by qPCR assay, which contained two pairs of primers for the methylation detection of two fragments of the SDC2 gene (named SDC2-A and SDC2-B). The diagnostic value of this test in CRC was evaluated by calculating receiver operating characteristic (ROC) curve, and value of the area under the curve (AUC). RESULTS The test kit was able to detect methylated SDC2 in stool DNA samples with concentrations as low as 90 copies/μL in 100% of replicates. The sensitivity for detecting CRC by methylated SDC2-A alone was 85.29% (95% CI 77.03-91.00%) with a specificity of 96.15% (95% CI 91.08-98.58%). The sensitivity by methylated SDC2-B alone was 83.33% (95% CI 74.82-89.42%) with a specificity of 97.69% (95% CI 93.14-99.51%). However, when methylated SDC2-A and methylated SDC2-B were combined, the sensitivity for CRC detection improved to 87.25% (95% CI 79.27-92.53%) with a specificity of 94.62% (95% CI 89.11-97.56%). Further, the detection reagent achieved ROC-AUC 0.874 (95% CI 0.822-0.927) for SDC2-A, 0.906 (95% CI 0.859-0.952) for SDC2-B, and 0.939 (95% CI 0.902-0.977) for SDC2-Combine A&B. CONCLUSIONS This study validated the capability of stool DNA-based SDC2 methylation test for early screening of CRC, and combined detection of two fragments of SDC2 gene could improve detection sensitivity.
Collapse
Affiliation(s)
- Liang Ma
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Geng Qin
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Fei Gai
- Medical Business Unit, Amoy Diagnostics Co. Ltd., Xiamen, 361026, China
| | - Yongwei Jiang
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Zhan Huang
- Medical Business Unit, Amoy Diagnostics Co. Ltd., Xiamen, 361026, China
| | - Hui Yang
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shukun Yao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Yongtong Cao
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
41
|
Analysis of Septin 9 Gene Hypermethylation as Follow-Up Biomarker of Colorectal Cancer Patients after Curative Surgery. Diagnostics (Basel) 2022; 12:diagnostics12040993. [PMID: 35454041 PMCID: PMC9024426 DOI: 10.3390/diagnostics12040993] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Background: The Septin 9 test analyzes the methylation status of the SEPT9 gene, which appears to be hypermethylated in patients with colorectal cancer (CRC). This has been validated as a colorectal cancer screening test. Due to the high sensitivity and specificity found, the justification was to use it as a biomarker tool for monitoring minimal residual disease after radical surgery and recurrence. Methods: A prospective study was carried out at the Fundación Jiménez Díaz University Hospital extracting peripheral blood from 28 patients and 4 healthy donors. Free circulating DNA was obtained and subsequently a PCR reaction to quantify the number of methylated genes. Samples were obtained preoperatively and postoperatively at five to seven days, one and three months after surgery. Results: A total of 32 preoperative samples were analyzed. The sensitivity of the test to detect CRC was 55.6% and specificity was 100%. There were 22 postsurgical samples obtained at 5–7 days after surgery, the sensitivity to detect tumor recurrences was 100% and specificity was 75%. There were 21 samples analyzed 1 month after surgery exhibiting a sensitivity and specificity of 100% and 94.7%, respectively. At 3 months, 31 postsurgical samples were analyzed and the sensitivity and specificity were 66.7% and 80%. Conclusions: Detection of methylation of Septin 9 gene in circulating plasma DNA, obtained from a peripheral blood sample, may be a useful, non-invasive and effective method for detecting minimal residual disease and could therefore predict CRC tumor recurrences. The optimal time in our series to obtain the best prediction results based on Septin 9 methylation levels was one month after surgery. Despite these considerable findings, a study with more patients is necessary to obtain more robust conclusions.
Collapse
|
42
|
Müller D, Győrffy B. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188722. [PMID: 35307512 DOI: 10.1016/j.bbcan.2022.188722] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 12/12/2022]
Abstract
DNA methylation is an epigenetic mechanism regulating gene expression. Changes in DNA methylation were suggested to be useful biomarkers for diagnosis, and for the determination of prognosis and treatment response. Here, we provide an overview of methylation-based biomarkers in colorectal cancer. First, we start with the two methylation-based diagnostic biomarkers already approved for colorectal cancer, SEPT9 and the combination of NDRG4 and BMP3. Then, we provide a list-based overview of new biomarker candidates depending on the sample source including plasma, stool, urine, and surgically removed tumor tissues. The most often identified markers like SDC2, VIM, APC, MGMT, SFRP1, SFRP2, and NDRG4 have distinct functions previously linked to tumor progression. Although numerous studies have identified tumor-specific methylation changes, most of these alterations were observed in a single study only. The lack of validation in independent samples means low reproducibility and is a major limitation. The genome-wide determination of methylation status (methylome) can provide data to solve these issues. In the third section of the review, methylome studies focusing on different aspects related to CRC, including precancerous lesions, CRC-specific changes, molecular subtypes, aging, and chemotherapy response are summarized. Notably, techniques simultaneously analyzing a large set of regions can also uncover epigenetic regulation of genes which have not yet been associated with tumorigenesis previously. A remaining constraint of studies published to date is the low patient number utilized in these preventing the identification of clinically valuable biomarker candidates. Either future large-scale studies or the integration of already available methylome-level data will be necessary to uncover biomarkers sufficiently robust for clinical application.
Collapse
Affiliation(s)
- Dalma Müller
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary
| | - Balázs Győrffy
- Dept. of Bioinformatics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, RCNS, Budapest, Hungary.
| |
Collapse
|
43
|
Novel Diagnostic Biomarkers in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23020852. [PMID: 35055034 PMCID: PMC8776048 DOI: 10.3390/ijms23020852] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is still a leading cause of cancer death worldwide. Less than half of cases are diagnosed when the cancer is locally advanced. CRC is a heterogenous disease associated with a number of genetic or somatic mutations. Diagnostic markers are used for risk stratification and early detection, which might prolong overall survival. Nowadays, the widespread use of semi-invasive endoscopic methods and feacal blood tests characterised by suboptimal accuracy of diagnostic results has led to the detection of cases at later stages. New molecular noninvasive tests based on the detection of CRC alterations seem to be more sensitive and specific then the current methods. Therefore, research aiming at identifying molecular markers, such as DNA, RNA and proteins, would improve survival rates and contribute to the development of personalized medicine. The identification of “ideal” diagnostic biomarkers, having high sensitivity and specificity, being safe, cheap and easy to measure, remains a challenge. The purpose of this review is to discuss recent advances in novel diagnostic biomarkers for tumor tissue, blood and stool samples in CRC patients.
Collapse
|
44
|
Beltrán-García J, Osca-Verdegal R, Mena-Mollá S, Seco-Cervera M, Peiró-Chova L, García-Giménez JL, Laurent-Puig P, Cervantes A. Translational epigenetics in precision medicine of colorectal cancer. EPIGENETICS IN PRECISION MEDICINE 2022:19-41. [DOI: 10.1016/b978-0-12-823008-4.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Hitchins MP. Methylated circulating tumor DNA biomarkers for the blood-based detection of cancer signals. EPIGENETICS IN PRECISION MEDICINE 2022:471-512. [DOI: 10.1016/b978-0-12-823008-4.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Dong D, Zhang R, Shao J, Zhang A, Wang Y, Zhou Y, Li Y. Promoter methylation-mediated repression of UNC5 receptors and the associated clinical significance in human colorectal cancer. Clin Epigenetics 2021; 13:225. [PMID: 34922605 PMCID: PMC8684698 DOI: 10.1186/s13148-021-01211-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background Deregulated methylation of tumor suppressor genes is a hallmark event in colorectal cancer (CRC) carcinogenesis. UNC5 receptors, down-regulated in various human malignancies due to epigenetic alterations, have been proposed as putative tumor suppressor genes. In this study, we focused on the methylation-mediated inhibition of UNC5 receptors and the associated clinical significance in CRC. Methods Methylation and expression analysis was performed in TCGA datasets. And the results were confirmed in vitro in CRC cell lines treated with 5-aza-deoxycytidine. Then, the expression and epigenetic alterations of UNC5 receptors were evaluated in clinical specimens. Moreover, the diagnostic and prognostic values of the methylation alterations were also analyzed. Results Methylation-mediated repression was observed in UNC5C and UNC5D, but not in UNC5A and UNC5B, which was confirmed in CRC cell lines. Except for UNC5B, significantly elevated methylation was observed in UNC5A, UNC5C, and UNC5D in CRC. The discrimination efficiency of the three receptors was comparable with that of SEPT9. Kaplan–Meier curve survival analysis showed that hypermethylation of UNC5A, UNC5C and UNC5D was associated with poor progression-free and overall survival. Moreover, methylation levels of UNC5C and UNC5D were independent predictors of CRC progression-free (P = 0.001, P = 0.003, respectively) and overall survival (P = 0.008, P = 0.004, respectively). Conclusions Hypermethylation of UNC5C and UNC5D mediates the repression and has promising diagnostic and prognostic values in CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01211-5.
Collapse
Affiliation(s)
- Dong Dong
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Runshi Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.,Department of Clinical Laboratory, Xi'an No. 1 Hospital, Xi'an, 710002, Shaanxi, People's Republic of China
| | - Jie Shao
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Aimin Zhang
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, 318000, Zhejiang Province, People's Republic of China.
| | - Yunli Zhou
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| | - Yueguo Li
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, 300060, People's Republic of China.
| |
Collapse
|
47
|
Alizadeh-Sedigh M, Fazeli MS, Mahmoodzadeh H, Sharif SB, Teimoori-Toolabi L. Methylation of FBN1, SPG20, ITF2, RUNX3, SNCA, MLH1, and SEPT9 genes in circulating cell-free DNA as biomarkers of colorectal cancer. Cancer Biomark 2021; 34:221-250. [PMID: 34957998 DOI: 10.3233/cbm-210315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Investigating aberrant tumor-specific methylation in plasma cell-free DNA provides a promising and noninvasive biomarker for cancer detection. OBJECTIVE We aimed to investigate methylation status of some promoter regions in the plasma and tumor tissues to find biomarkers for early detection of colorectal cancer. METHODS This case-control study on seventy colorectal cancer patients and fifty matched healthy controls used Methylation-Specific High-Resolution Melting Curve analysis to evaluate the methylation of the selected promoter regions in converted genomic tissue DNA and plasma cfDNA. RESULTS The methylation levels in selected regions of SPG20 (+24375 to +24680, +24209 to +24399, and +23625 to +23883), SNCA (+807 to +1013, +7 to +162, and -180 to +7), FBN1 (+223 to +429, +1 to +245, and -18 to -175), ITF2 (+296 to +436 and -180 to +55), SEPT9 (-914412 to -91590 and -99083 to -92264), and MLH1 (-13 to +22) were significantly higher in tumor tissues compared with normal adjacent tissues. The methylation levels of FBN1, ITF2, SNCA, and SPG20 promoters were significantly higher in the patient's plasma compared to patient's normal tissue and plasma of healthy control subjects. FBN1, SPG20, and SEPT9 promoter methylation had a good diagnostic performance for discriminating CRC tissues from normal adjacent tissues (AUC > 0.8). A panel of SPG20, FBN1, and SEPT9 methylation had a higher diagnostic value than that of any single biomarker and other panels in tissue-based assay (AUC > 0.9). The methylation of FBN1(a) and SPG20(a) regions, as the closest region to the first coding sequence (CDS), had a good diagnostic performance in plasma cfDNA (AUC > 0.8) while a panel consisted of FBN1(a) and SPG20(a) regions showed excellent diagnostic performance for CRC detection in plasma cfDNA (AUC > 0.9). CONCLUSION Methylation of FBN1(a) and SPG20(a) promoter regions in the plasma cfDNA can be an excellent simple, non-invasive blood-based test for early detection of CRC.
Collapse
Affiliation(s)
- Maryam Alizadeh-Sedigh
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Sadegh Fazeli
- Department of Surgery, Division of Colorectal Surgery, Imam Khomeini Medical Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Cancer Institute of Iran, Imam Khomeini Medical Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Behrouz Sharif
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
48
|
Singh A, Gupta S, Sachan M. Evaluation of the Diagnostic Potential of Candidate Hypermethylated Genes in Epithelial Ovarian Cancer in North Indian Population. Front Mol Biosci 2021; 8:719056. [PMID: 34778370 PMCID: PMC8581490 DOI: 10.3389/fmolb.2021.719056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/12/2021] [Indexed: 01/22/2023] Open
Abstract
Most ovarian cancers, despite improvement in management of cancer, are still diagnosed at an advanced stage. Early detection plays an essential role in reducing ovarian cancer mortality and, therefore, is critically needed. Liquid biopsies-based approaches hold significant promise for cancer detection. The present study investigates a panel of epigenetic biomarkers for the detection of epithelial ovarian cancer. A qPCR assay has been developed based on the assessment of DNA methylation markers in circulating cell-free DNA as a minimally invasive tool. Herein, the promoter methylation of seven ovarian cancer-specific genes (RASSF1A, DAPK1, SOX1, HOXA9, HIC1, SPARC, and SFRP1) was analyzed quantitatively in 120 tissue samples by MethyLight assay. The best-performing genes were further evaluated for their methylation status in 70 matched serum cell-free DNA of cancerous and non-cancerous samples. Additionally, DNA methylation patterns of these best-performing genes were validated by clonal bisulfite sequencing. The ROC (Receiver-operator characteristic) curves were constructed to evaluate the diagnostic performances of both individual and combined gene panels. The seven candidate genes displayed a methylation frequency of 61.0-88.0% in tissue samples. The promoter methylation frequencies for all the seven candidate genes were significantly higher in cancer samples than in normal matched controls. In tissue samples, the multiplex MethyLight assay for HOXA9, HIC1, and SOX1 were the best performing gene panels in terms of sensitivity and specificity. The three best-performing genes exhibited individual frequencies of 53.0-71.0% in serum CFDNA, and the multiplex assay for these genes were identified to discriminate serum from cancer patients and healthy individuals (area under the curve: HOXA9+HIC1 = 0.95, HIC1+SOX1 = 0.93 and HOXA9+SOX1 = 0.85). The results of MethyLight showed high concordance with clonal bisulfite sequencing results. Individual genes and combined panel exhibited better discriminatory efficiencies to identify ovarian cancer at various stages of disease when analyzed in tissue and serum cell-free DNA. We report a qPCR-based non-invasive epigenetic biomarker assay with high sensitivity and specificity for OC screening. Our findings also reveal the potential utility of methylation-based detection of circulating cell-free tumor DNA in the clinical management of ovarian cancer.
Collapse
Affiliation(s)
- Alka Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
49
|
Xu J, Song J, Wang T, Zhu W, Zuo L, Wu J, Guo J, Yang X. A combination of methylation and protein markers is capable of detecting gastric cancer detection by combined markers. Epigenomics 2021; 13:1557-1570. [PMID: 34632818 DOI: 10.2217/epi-2021-0080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This study aimed to validate a combination of mSEPT9, mRNF180 and CA724 for gastric cancer (GC) detection. Patients & methods: The performance of mSEPT9, mRNF180 and CA724 was examined in a prospective cohort study with 518 participants (151 with GC, 56 with atrophic gastritis, 87 with other gastrointestinal diseases and 224 with no evidence of disease). Results: mSEPT9, mRNF180 or CA724 alone detected 48.3, 37.1 and 43.1% of GC, respectively. The combination of mSEPT9 and mRNF180 detected 60.3% of GC, and the combination of all three markers detected 68.6% of GC. The detection sensitivity of mSEPT9 and mRNF180 was significantly higher for gastric body and in elder subjects. mSEPT9 was correlated with poorer GC survival. Conclusion: The combination of mSEPT9, mRNF180 and CA724 was adequately sensitive for GC detection. The blood mSEPT9 was predictive for GC prognosis.
Collapse
Affiliation(s)
- Jianbiao Xu
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Jianlin Song
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Tongmin Wang
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Wenchuan Zhu
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Liangyu Zuo
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Jinzhi Wu
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Jianhui Guo
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Xiaochun Yang
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| |
Collapse
|
50
|
Sun Q, Pastor L, Du J, Powell MJ, Zhang A, Bodmer W, Wu J, Zheng S, Sha MY. A novel xenonucleic acid-mediated molecular clamping technology for early colorectal cancer screening. PLoS One 2021; 16:e0244332. [PMID: 34610014 PMCID: PMC8491914 DOI: 10.1371/journal.pone.0244332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/03/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of cancer-related death. Early detection is critical to reduce CRC morbidity and mortality. In order to meet this need, we developed a molecular clamping assay called the ColoScape TM assay for early colorectal cancer diagnostics. METHODS Nineteen mutations in four genes (APC, KRAS, BRAF and CTNNB1) associated with early events in CRC pathogenesis are targeted in the ColoScapeTM assay. Xenonucleic Acid (XNA)-mediated qPCR clamping technology was applied to minimize the wild-type background amplification in order to improve assay sensitivity of CRC mutation detection. The assay analytical performance was verified and validated, cfDNA and FFPE CRC patient samples were evaluated, and an ROC curve was applied to evaluate its performance. RESULTS The data showed that the assay analytical sensitivity was 0.5% Variant Allele Frequency, corresponding to ~7-8 copies of mutant DNA with 5 ng total DNA input per test. This assay is highly reproducible with intra-assay CV of <3% and inter-assay CV of <5%. We have investigated 380 clinical samples including plasma cfDNA and FFPE samples from patients with precancerous and different stages of CRC. The preliminary assay clinical specificity and sensitivity for CRC cfDNA were: 100% (95% CI, 80.3-97.5%) and 92.2% (95% CI, 94.7-100%), respectively, with AUC of 0.96; 96% specificity (95% CI, 77.6-99.7%) and 92% sensitivity (95% CI, 86.1-95.6%) with AUC of 0.94 for CRC FFPE; 95% specificity (95% CI, 82.5%-99.1%) and 62.5% sensitivity (95% CI, 35.8%-83.7%) with AUC of 0.79 for precancerous lesions cfDNA. CONCLUSIONS The XNA-mediated molecular clamping assay is a rapid, precise, and sensitive assay for the detection of precancerous lesions cfDNA and CRC cfDNA or FFPE samples.
Collapse
Affiliation(s)
- Qing Sun
- DiaCarta, Inc., Richmond, California, United States of America
| | - Larry Pastor
- DiaCarta, Inc., Richmond, California, United States of America
| | - Jinwei Du
- DiaCarta, Inc., Richmond, California, United States of America
| | | | - Aiguo Zhang
- DiaCarta, Inc., Richmond, California, United States of America
| | - Walter Bodmer
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jianzhong Wu
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Shu Zheng
- The Second Affiliated Hospital Zhejiang University, Hangzhou, China
| | - Michael Y. Sha
- DiaCarta, Inc., Richmond, California, United States of America
| |
Collapse
|