1
|
Zhang Y, Yue NN, Chen LY, Tian CM, Yao J, Wang LS, Liang YJ, Wei DR, Ma HL, Li DF. Exosomal biomarkers: A novel frontier in the diagnosis of gastrointestinal cancers. World J Gastrointest Oncol 2025; 17:103591. [DOI: 10.4251/wjgo.v17.i4.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Gastrointestinal (GI) cancers, which predominantly manifest in the stomach, colorectum, liver, esophagus, and pancreas, accounting for approximately 35% of global cancer-related mortality. The advent of liquid biopsy has introduced a pivotal diagnostic modality for the early identification of premalignant GI lesions and incipient cancers. This non-invasive technique not only facilitates prompt therapeutic intervention, but also serves as a critical adjunct in prognosticating the likelihood of tumor recurrence. The wealth of circulating exosomes present in body fluids is often enriched with proteins, lipids, microRNAs, and other RNAs derived from tumor cells. These specific cargo components are reflective of processes involved in GI tumorigenesis, tumor progression, and response to treatment. As such, they represent a group of promising biomarkers for aiding in the diagnosis of GI cancer. In this review, we delivered an exhaustive overview of the composition of exosomes and the pathways for cargo sorting within these vesicles. We laid out some of the clinical evidence that supported the utilization of exosomes as diagnostic biomarkers for GI cancers and discussed their potential for clinical application. Furthermore, we addressed the challenges encountered when harnessing exosomes as diagnostic and predictive instruments in the realm of GI cancers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
- Department of Medical Administration, Huizhou Institute for Occupational Health, Huizhou 516000, Guangdong Province, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen 518000, Guangdong Province, China
| | - Li-Yu Chen
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (Jinan University of Second Clinical Medical Sciences), Shenzhen 518000, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, Guangdong Province, China
| | - Dao-Ru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Hua-Lin Ma
- Department of Nephrology, The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
2
|
Lv C, Chen J, Wang Y, Lin Y. Immunoregulatory role of exosomal circRNAs in the tumor microenvironment. Front Oncol 2025; 15:1453786. [PMID: 40034598 PMCID: PMC11872884 DOI: 10.3389/fonc.2025.1453786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/02/2025] [Indexed: 03/05/2025] Open
Abstract
As cancer incidence and mortality rates rise, there is an urgent need to develop effective immunotherapy strategies. Circular RNA (circRNA), a newly identified type of non-coding RNA, is abundant within cells and can be released via exosomes, facilitating communication between cells. Studies have demonstrated that exosomal circRNAs can alter the tumor microenvironment and modulate immune responses by influencing the functions of T cells, natural killer (NK) cells, and macrophages, thereby enabling tumors to evade the immune system. Moreover, exosomal circRNAs show potential as diagnostic biomarkers and therapeutic targets for cancer. This review summarizes the regulatory roles of exosomal circRNAs in immune cells and their potential applications in cancer progression and treatment, highlighting their promise in improving cancer immunotherapy. Future research should concentrate on understanding the mechanisms of key exosomal circRNAs and developing targeted immunotherapy methods.
Collapse
Affiliation(s)
- Cunming Lv
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jinhao Chen
- College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yuxiang Wang
- College of Electrical Engineering and New Energy, China Three Gorges University, Yichang, China
| | - Yichen Lin
- Department of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Li X, Liu H, Xing P, Li T, Fang Y, Chen S, Dong S. Exosomal circRNAs: Deciphering the novel drug resistance roles in cancer therapy. J Pharm Anal 2025; 15:101067. [PMID: 39957900 PMCID: PMC11830318 DOI: 10.1016/j.jpha.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/13/2024] [Accepted: 08/03/2024] [Indexed: 02/18/2025] Open
Abstract
Exosomal circular RNA (circRNAs) are pivotal in cancer biology, and tumor pathophysiology. These stable, non-coding RNAs encapsulated in exosomes participated in cancer progression, tumor growth, metastasis, drug sensitivity and the tumor microenvironment (TME). Their presence in bodily fluids positions them as potential non-invasive biomarkers, revealing the molecular dynamics of cancers. Research in exosomal circRNAs is reshaping our understanding of neoplastic intercellular communication. Exploiting the natural properties of exosomes for targeted drug delivery and disrupting circRNA-mediated pro-tumorigenic signaling can develop new treatment modalities. Therefore, ongoing exploration of exosomal circRNAs in cancer research is poised to revolutionize clinical management of cancer. This emerging field offers hope for significant breakthroughs in cancer care. This review underscores the critical role of exosomal circRNAs in cancer biology and drug resistance, highlighting their potential as non-invasive biomarkers and therapeutic targets that could transform the clinical management of cancer.
Collapse
Affiliation(s)
- Xi Li
- Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hanzhe Liu
- Department of Critical Care Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China
| | - Peiyu Xing
- Department of Ophthalmology, China Medical University the Fourth People's Hospital of Shenyang, Shenyang, 110031, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Fang
- Department of Ultrasound, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shuang Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Siyuan Dong
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
4
|
Lv H, Zhou J, Qiu L, Tang X, Huang C. AURKB and circAURKB_288aa enhance Esophageal cancer drug resistance through inducing abnormal centrosome separation. Biochem Pharmacol 2025; 232:116691. [PMID: 39638069 DOI: 10.1016/j.bcp.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Esophageal cancer (EC) is one of the most fatal malignancies worldwide, with a dramatic increase in incidence in the western world occurring over the past few decades. Chromosome instability (CIN) is a major contributor to EC progression, drug resistance, relapse, and the development of intratumoral heterogeneity. This study revealed a striking elevation of AURKB expression in EC patients, with a strong correlation to poor clinical outcomes. AURKB overexpression promoted cellular proliferation and induced drug resistance in both cell culture and animal models. Conversely, genetic targeting of AURKB abrogated these effects. Mechanistically, enforced AURKB expression triggered CIN, a key driver of poor EC outcomes, primarily through CEP250 phosphorylation. Interestingly, we identified a novel circular form of AURKB (circAURKB_288aa) harboring the AURKB kinase domain and encoding a 288-amino acid protein. Elevated levels of circAURKB_288aa in EC peripheral blood samples mirrored poor patient outcomes and synergistically enhanced CIN alongside AURKB. Furthermore, EC cells were capable of secreting circAURKB_288aa, influencing tumor microenvironmental cells similarly to full-length AURKB protein. Notably, AURKB siRNA targeting the shared kinase domain of both AURKB and circAURKB_288aa significantly inhibited EC malignancy. Collectively, these findings establish AURKB and circAURKB_288aa as promising targets for EC prognosis and therapy.
Collapse
Affiliation(s)
- Hongzhen Lv
- School of Basic Medical Sciences, Jiangsu Medical College, Yancheng, China
| | - Jing Zhou
- General Medicine Department, Yancheng Third People's Hospital, Yancheng, China
| | - Limin Qiu
- Thoracic Surgery Department, Yancheng NO.1 People's Hospital, Yancheng, China
| | - Xiaozhu Tang
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Cheng Huang
- School of Traditional Chinese Medicine, Jiangsu Medical College, Yancheng, China.
| |
Collapse
|
5
|
Nie L, Ma J, Yu Y, Tao Y, Song Z, Li J. Exosomes as carriers to stimulate an anti-cancer immune response in immunotherapy and as predictive markers. Biochem Pharmacol 2025; 232:116699. [PMID: 39647605 DOI: 10.1016/j.bcp.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
During this era of rapid advancements in cancer immunotherapy, the application of cell-released small vesicles that activate the immune system is of considerable interest. Exosomes are cell-derived nanovesicles that show great promise for the immunological treatment of cancer because of their immunogenicity and molecular transfer capacity. Recent technological advancements have enabled the identification of functional functions that exosome cargoes perform in controlling immune responses. Exosomes are originated specifically from immune cells and tumor cells and they show unique composition patterns directly related to the immunotherapy against cancer. Exosomes can also deliver their cargo to particular cells, which can affect the phenotypic and immune-regulatory functions of those cells. Exosomes can influence the course of cancer and have therapeutic benefits by taking part in several cellular processes; as a result, they have the dual properties of activating and restraining cancer. Exosomes have tremendous potential for cancer immunotherapy; they may develop into the most powerful cancer vaccines and carriers of targeted antigens and drugs. Comprehending the potential applications of exosomes in immune therapy is significant for regulating cancer progression. This review offers an analysis of the function of exosomes in immunotherapy, specifically as carriers that function as diagnostic indicators for immunological activation and trigger an anti-cancer immune response. Moreover, it summarizes the fundamental mechanism and possible therapeutic applications of exosome-based immunotherapy for human cancer.
Collapse
Affiliation(s)
- Lili Nie
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun, China
| | - Yang Yu
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhidu Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, China
| | - Jian Li
- Department of Emergency and Critical Care, the Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Li J, Zhou W, Wang H, Huang M, Deng H. Exosomal circular RNAs in tumor microenvironment: An emphasis on signaling pathways and clinical opportunities. MedComm (Beijing) 2024; 5:e70019. [PMID: 39584047 PMCID: PMC11586091 DOI: 10.1002/mco2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
Exosomes can regulate the malignant progression of tumors by carrying a variety of genetic information and transmitting it to target cells. Recent studies indicate that exosomal circular RNAs (circRNAs) regulate multiple biological processes in carcinogenesis, such as tumor growth, metastasis, epithelial-mesenchymal transition, drug resistance, autophagy, metabolism, angiogenesis, and immune escape. In the tumor microenvironment (TME), exosomal circRNAs can be transferred among tumor cells, endothelial cells, cancer-associated fibroblasts, immune cells, and microbiota, affecting tumor initiation and progression. Due to the high stability and widespread presence of exosomal circRNAs, they hold promise as biomarkers for tumor diagnosis and prognosis prediction in blood and urine. In addition, designing nanoparticles targeting exosomal circRNAs and utilizing exosomal circRNAs derived from immune cells or stem cells provide new strategies for cancer therapy. In this review, we examined the crucial role of exosomal circRNAs in regulating tumor-related signaling pathways and summarized the transmission of exosomal circRNAs between various types of cells and their impact on the TME. Finally, our review highlights the potential of exosomal circRNAs as diagnostic and prognostic prediction biomarkers, as well as suggesting new strategies for clinical therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Wencheng Zhou
- Department of Medical AestheticsWest China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Huiling Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
7
|
Malek Mohammadi M, Rismanchi H, Esmailzadeh S, Farahani A, Hedayati N, Alimohammadi M, Mafi A, Farahani N, Hushmandi K. The emerging role of circular RNAs in cisplatin resistance in ovarian cancer: From molecular mechanism to future potential. Noncoding RNA Res 2024; 9:1280-1291. [PMID: 39040815 PMCID: PMC11261309 DOI: 10.1016/j.ncrna.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ovarian cancer (OC) is the most common cause of death in female cancers. The prognosis of OC is very poor due to delayed diagnosis and identification of most patients in advanced stages, metastasis, recurrence, and resistance to chemotherapy. As chemotherapy with platinum-based drugs such as cisplatin (DDP) is the main treatment in most OC cases, resistance to DDP is an important obstacle to achieving satisfactory therapeutic efficacy. Consequently, knowing the different molecular mechanisms involved in resistance to DDP is necessary to achieve new therapeutic approaches. According to numerous recent studies, non-coding RNAs (ncRNAs) could regulate proliferation, differentiation, apoptosis, and chemoresistance in many cancers, including OC. Most of these ncRNAs are released by tumor cells into human fluid, allowing them to be used as tools for diagnosis. CircRNAs are ncRNA family members that have a role in the initiation, progression, and chemoresistance regulation of various cancers. In the current study, we investigated the roles of several circRNAs and their signaling pathways on OC progression and also on DDP resistance during chemotherapy.
Collapse
Affiliation(s)
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Fang L, Zhu Z, Han M, Li S, Kong X, Yang L. Unlocking the potential of extracellular vesicle circRNAs in breast cancer: From molecular mechanisms to therapeutic horizons. Biomed Pharmacother 2024; 180:117480. [PMID: 39357330 DOI: 10.1016/j.biopha.2024.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Breast cancer remains the leading cause of cancer-related morbidity and mortality among women worldwide, underscoring the urgent need for novel diagnostic and therapeutic strategies. This review explores the emerging roles of circular RNAs (circRNAs) within extracellular vesicles (exosomes) in breast cancer. circRNAs, known for their stability and tissue-specific expression, are aberrantly expressed in breast cancer and regulate critical cellular processes such as proliferation, migration, and apoptosis, positioning them as promising biomarkers. Exosomes facilitate intercellular communication by delivering circRNAs, reflecting the physiological and pathological state of their source cells. This review highlights the multifaceted roles of exosomal circRNAs in promoting tumor growth, metastasis, and drug resistance through their modulation of tumor metabolism, the tumor microenvironment, and immune responses. In particular, we emphasize their contributions to chemotherapy resistance and their potential as both diagnostic markers and therapeutic targets. By synthesizing current research, this review provides novel insights into the clinical applications of exosomal circRNAs, offering a foundation for future studies aimed at improving breast cancer management through non-invasive diagnostics and targeted therapies.
Collapse
Affiliation(s)
- Lijuan Fang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Zehua Zhu
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Mingyue Han
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Shaojie Li
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lusen Yang
- Department of Laboratory Medicine, Hangzhou Ninth People's Hospital, Hangzhou, Zhejaing Province 311200, China.
| |
Collapse
|
9
|
Yi Q, Feng J, Lan W, Shi H, Sun W, Sun W. CircRNA and lncRNA-encoded peptide in diseases, an update review. Mol Cancer 2024; 23:214. [PMID: 39343883 PMCID: PMC11441268 DOI: 10.1186/s12943-024-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
Non-coding RNAs (ncRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), are unique RNA molecules widely identified in the eukaryotic genome. Their dysregulation has been discovered and played key roles in the pathogenesis of numerous diseases, including various cancers. Previously considered devoid of protein-coding ability, recent research has revealed that a small number of open reading frames (ORFs) within these ncRNAs endow them with the potential for protein coding. These ncRNAs-derived peptides or proteins have been proven to regulate various physiological and pathological processes through diverse mechanisms. Their emerging roles in disease diagnosis and targeted therapy underscore their potential utility in clinical settings. This comprehensive review aims to provide a systematic overview of proteins or peptides encoded by lncRNAs and circRNAs, elucidate their production and functional mechanisms, and explore their promising applications in cancer diagnosis, disease prediction, and targeted therapy.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646099, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Weiwu Lan
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| | - Weichao Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, 518035, China.
| |
Collapse
|
10
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Grillone K, Caridà G, Luciano F, Cordua A, Di Martino MT, Tagliaferri P, Tassone P. A systematic review of non-coding RNA therapeutics in early clinical trials: a new perspective against cancer. J Transl Med 2024; 22:731. [PMID: 39103911 PMCID: PMC11301835 DOI: 10.1186/s12967-024-05554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
Targeting non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), has recently emerged as a promising strategy for treating malignancies and other diseases. In recent years, the development of ncRNA-based therapeutics for targeting protein-coding and non-coding genes has also gained momentum. This review systematically examines ongoing and completed clinical trials to provide a comprehensive overview of the emerging landscape of ncRNA-based therapeutics. Significant efforts have been made to advance ncRNA therapeutics to early clinical studies. The most advanced trials have been conducted with small interfering RNAs (siRNAs), miRNA replacement using nanovector-entrapped miRNA mimics, or miRNA silencing by antisense oligonucleotides. While siRNA-based therapeutics have already received FDA approval, miRNA mimics, inhibitors, and lncRNA-based therapeutics are still under evaluation in preclinical and early clinical studies. We critically discuss the rationale and methodologies of ncRNA targeting strategies to illustrate this rapidly evolving field.
Collapse
Affiliation(s)
- Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
12
|
Zipponi M, Cacciottola L, Dolmans MM. Overview of crosstalk between stromal and epithelial cells in the pathogenesis of adenomyosis and shared features with deep endometriotic nodules. Hum Reprod 2024; 39:1608-1617. [PMID: 38885960 DOI: 10.1093/humrep/deae116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/20/2024] [Indexed: 06/20/2024] Open
Abstract
Since the first description of adenomyosis more than 150 years ago, multiple hypotheses have attempted to explain its pathogenesis. Indeed, research over recent years has greatly enhanced our knowledge of the underlying causes. This has opened up avenues for the development of strategies for both disease prevention and treatment of its main symptoms, such as pelvic pain, heavy menstrual bleeding, and infertility. However, the current means are still largely ineffective, so it is vital that we shed light on the pathways involved. Dysregulated mechanisms and aberrant protein expression have been identified as contributing factors in interactions between endometrial epithelial and stromal cells, ultimately leading to the growth of adenomyotic lesions. These include collective cell migration, epithelial-to-mesenchymal transition, hormonal influence, and signaling from non-coding RNAs and extracellular vesicles. We provide a concise summary of the latest insights into the crosstalk between glands and stroma in ectopic adenomyotic lesion formation. While there is an abundance of literature on similarities between adenomyosis and deep endometriosis, there are insufficient data on the cytochemical, molecular, and pathogenetic mechanisms of these two disorders. However, various shared features, including alterations of cell adhesion molecules, abnormal hormone regulation, and the presence of cancer-driving mutations and epigenetic modifications, have been identified. Nevertheless, the pathogenic mechanisms that contribute to the cause and development of these enigmatic diseases have not been fully elucidated yet.
Collapse
Affiliation(s)
- Margherita Zipponi
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luciana Cacciottola
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Pôle de Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Gynecology Department, Cliniques Universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
13
|
Wang R, Wang S, Jiang H, Lan Y, Yu S. Prospects for the clinical application of exosomal circular RNA in squamous cell carcinoma. Front Oncol 2024; 14:1430684. [PMID: 38933443 PMCID: PMC11200112 DOI: 10.3389/fonc.2024.1430684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Squamous cell carcinoma (SCC) is a prevalent malignancy affecting multiple organs in the human body, including the oral cavity, esophagus, cervix, and skin. Given its significant incidence and mortality rates, researchers are actively seeking effective diagnostic and therapeutic strategies. In recent years, exosomes and their molecular cargo, particularly circular RNA (circRNA), have emerged as promising areas of investigation in SCC research. Exosomes are small vesicles released into the extracellular environment by cells that contain biomolecules that reflect the physiological state of the cell of origin. CircRNAs, known for their unique covalently closed loop structure and stability, have garnered special attention in oncology and are closely associated with tumorigenesis, progression, metastasis, and drug resistance. Interestingly, exosomal circRNAs have been identified as ideal biomarkers for noninvasive cancer diagnosis and prognosis assessment. This article reviews the progress in research on exosomal circRNAs, focusing on their expression patterns, functions, and potential applications as biomarkers in SCC, aiming to provide new insights and strategies for the diagnosis and treatment of SCC.
Collapse
Affiliation(s)
- Rongzhong Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yingmei Lan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Shaobin Yu
- Division of Nephrology, National Clinical Research Center for Geriatrics, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Mondal D, Shinde S, Sinha V, Dixit V, Paul S, Gupta RK, Thakur S, Vishvakarma NK, Shukla D. Prospects of liquid biopsy in the prognosis and clinical management of gastrointestinal cancers. Front Mol Biosci 2024; 11:1385238. [PMID: 38770216 PMCID: PMC11103528 DOI: 10.3389/fmolb.2024.1385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Gastrointestinal (GI) cancers account for one-fourth of the global cancer incidence and are incriminated to cause one-third of cancer-related deaths. GI cancer includes esophageal, gastric, liver, pancreatic, and colorectal cancers, mostly diagnosed at advanced stages due to a lack of accurate markers for early stages. The invasiveness of diagnostic methods like colonoscopy for solid biopsy reduces patient compliance as it cannot be frequently used to screen patients. Therefore, minimally invasive approaches like liquid biopsy may be explored for screening and early identification of gastrointestinal cancers. Liquid biopsy involves the qualitative and quantitative determination of certain cancer-specific biomarkers in body fluids such as blood, serum, saliva, and urine to predict disease progression, therapeutic tolerance, toxicities, and recurrence by evaluating minimal residual disease and its correlation with other clinical features. In this review, we deliberate upon various tumor-specific cellular and molecular entities such as circulating tumor cells (CTCs), tumor-educated platelets (TEPs), circulating tumor DNA (ctDNA), cell-free DNA (cfDNA), exosomes, and exosome-derived biomolecules and cite recent advances pertaining to their use in predicting disease progression, therapy response, or risk of relapse. We also discuss the technical challenges associated with translating liquid biopsy into clinical settings for various clinical applications in gastrointestinal cancers.
Collapse
Affiliation(s)
- Deepankar Mondal
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Sapnita Shinde
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vibha Sinha
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Vineeta Dixit
- Department of Botany, Sri Sadguru Jagjit Singh Namdhari College, Garhwa, Jharkhand, India
| | - Souvik Paul
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | - Rakesh Kumar Gupta
- Department of Pathology and Lab Medicine, All India Institute of Medical Sciences, Raipur, Chhattisgarh, India
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
15
|
Yin C, Yu J, Liu G, He J, Wu P. Riddle of the Sphinx: Emerging role of circular RNAs in cervical cancer. Pathol Res Pract 2024; 257:155315. [PMID: 38653090 DOI: 10.1016/j.prp.2024.155315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Cervical cancer is a prominent cause of cancer-related mortality among women, with recent attention directed toward exploring the involvement of circular RNAs (circRNAs) in this particular cancer. CircRNAs, characterized by a covalently closed loop structure, belong to a class of single-stranded non-coding RNA (ncRNA) molecules that play crucial roles in cancer development and progression through diverse mechanisms. The abnormal expression of circRNAs in vivo is significantly associated with the development of cervical cancer. Notably, circRNAs actively interact with miRNAs in cervical cancer, leading to the regulation of diverse signaling pathways, and they can contribute to cancer hallmarks such as self-sufficiency in growth signals, insensitivity to antigrowth signals, limitless proliferation, evading apoptosis, tissue invasion and metastasis, and sustained angiogenesis. Moreover, the distinctive biomedical attributes exhibited by circRNAs, including their abundance, conservation, and stability in body fluids, position them as promising biomarkers for various cancers. In this review, we elucidate the tremendous potential of circRNAs as diagnostic markers or therapeutic targets in cervical cancer by expounding upon their biogenesis, characteristics, functions, and databases, highlighting the novel advances in the signaling pathways associated with circRNAs in cervical cancer.
Collapse
Affiliation(s)
- Caiyan Yin
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hengyang Maternal and Child Health Hospital, Hengyang, Hunan 421001, China
| | - Jianwei Yu
- Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Gaohua Liu
- The First Affiliated Hospital, Institute of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Peng Wu
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; Hengyang Maternal and Child Health Hospital, Hengyang, Hunan 421001, China.
| |
Collapse
|
16
|
Yimin E, Lu C, Zhu K, Li W, Sun J, Ji P, Meng M, Liu Z, Yu C. Function and mechanism of exosomes derived from different cells as communication mediators in colorectal cancer metastasis. iScience 2024; 27:109350. [PMID: 38500820 PMCID: PMC10945197 DOI: 10.1016/j.isci.2024.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer-related mortality, with metastasis being the primary determinant of poor prognosis in patients. Investigating the molecular mechanisms underlying CRC metastasis is currently a prominent and challenging area of research. Exosomes, as crucial intercellular communication mediators, facilitate the transfer of metabolic and genetic information from cells of origin to recipient cells. Their roles in mediating information exchange between CRC cells and immune cells, fibroblasts, and other cell types are pivotal in reshaping the tumor microenvironment, regulating key biological processes such as invasion, migration, and formation of pre-metastatic niche. This article comprehensively examines the communication function and mechanism of exosomes derived from different cells in cancer metastasis, while also presenting an outlook on current research advancements and future application prospects. The aim is to offer a distinctive perspective that contributes to accurate diagnosis and rational treatment strategies for CRC.
Collapse
Affiliation(s)
- Yimin E
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Chen Lu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
| | - Kuixuan Zhu
- Department of Radiotherapy, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650100, Yunan, China
| | - Wenyuan Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Jing Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Pengcheng Ji
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
| | - Minjie Meng
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| | - Chunzhao Yu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing 211112, Jiangsu, China
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, 121 Jiang Jia Yuan Road, Nanjing 210011, Jiangsu, China
| |
Collapse
|
17
|
Hussain MS, Moglad E, Afzal M, Bansal P, Kaur H, Deorari M, Ali H, Shahwan M, Hassan Almalki W, Kazmi I, Alzarea SI, Singh SK, Dua K, Gupta G. Circular RNAs in the KRAS pathway: Emerging players in cancer progression. Pathol Res Pract 2024; 256:155259. [PMID: 38503004 DOI: 10.1016/j.prp.2024.155259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Circular RNAs (circRNAs) have been recognized as key components in the intricate regulatory network of the KRAS pathway across various cancers. The KRAS pathway, a central signalling cascade crucial in tumorigenesis, has gained substantial emphasis as a possible therapeutic target. CircRNAs, a subgroup of non-coding RNAs known for their closed circular arrangement, play diverse roles in gene regulation, contributing to the intricate landscape of cancer biology. This review consolidates existing knowledge on circRNAs within the framework of the KRAS pathway, emphasizing their multifaceted functions in cancer progression. Notable circRNAs, such as Circ_GLG1 and circITGA7, have been identified as pivotal regulators in colorectal cancer (CRC), influencing KRAS expression and the Ras signaling pathway. Aside from their significance in gene regulation, circRNAs contribute to immune evasion, apoptosis, and drug tolerance within KRAS-driven cancers, adding complexity to the intricate interplay. While our comprehension of circRNAs in the KRAS pathway is evolving, challenges such as the diverse landscape of KRAS mutant tumors and the necessity for synergistic combination therapies persist. Integrating cutting-edge technologies, including deep learning-based prediction methods, holds the potential for unveiling disease-associated circRNAs and identifying novel therapeutic targets. Sustained research efforts are crucial to comprehensively unravel the molecular mechanisms governing the intricate interplay between circRNAs and the KRAS pathway, offering insights that could potentially revolutionize cancer diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Ultimo, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Ultimo, Sydney, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| |
Collapse
|
18
|
Xu Y, Han J, Zhang X, Zhang X, Song J, Gao Z, Qian H, Jin J, Liang Z. Exosomal circRNAs in gastrointestinal cancer: Role in occurrence, development, diagnosis and clinical application (Review). Oncol Rep 2024; 51:19. [PMID: 38099408 PMCID: PMC10777447 DOI: 10.3892/or.2023.8678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is frequently detected at an advanced stage and has an undesirable prognosis due to the absence of efficient and precise biomarkers and therapeutic targets. Exosomes are small, living‑cell‑derived vesicles that serve a critical role in facilitating intercellular communication by transporting molecules from donor cells to receiver cells. circular RNAs (circRNAs) are mis‑expressed in a variety of diseases, including gastrointestinal cancer, and are promising as diagnostic biomarkers and tumor therapeutic targets for gastrointestinal cancer. The main features of exosomes and circRNAs are discussed in the present review, along with research on the biological function of exosomal circRNAs in the development and progression of gastrointestinal cancer. It also assesses the advantages and disadvantages of implementing these findings in clinical applications.
Collapse
Affiliation(s)
- Yumeng Xu
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiayi Han
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xuan Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xinyi Zhang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiajia Song
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Zihan Gao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jianhua Jin
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
| | - Zhaofeng Liang
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu 213017, P.R. China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
19
|
Lei Y, Cai S, Zhang CD, Li YS. The biological role of extracellular vesicles in gastric cancer metastasis. Front Cell Dev Biol 2024; 12:1323348. [PMID: 38333593 PMCID: PMC10850573 DOI: 10.3389/fcell.2024.1323348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Gastric cancer (GC) is a tumor characterized by high incidence and mortality, with metastasis being the primary cause of poor prognosis. Extracellular vesicles (EVs) are an important intercellular communication medium. They contain bioactive substances such as proteins, nucleic acids, and lipids. EVs play a crucial biological role in the process of GC metastasis. Through mechanisms such as remodeling the tumor microenvironment (TME), immune suppression, promoting angiogenesis, and facilitating epithelial-mesenchymal transition (EMT) and mesothelial-mesenchymal transition (MMT), EVs promote invasion and metastasis in GC. Further exploration of the biological roles of EVs will contribute to our understanding of the mechanisms underlying GC metastasis and may provide novel targets and strategies for the diagnosis and treatment of GC. In this review, we summarize the mechanisms by which EVs influence GC metastasis from four aspects: remodeling the TME, modulating the immune system, influencing angiogenesis, and modulating the processes of EMT and MMT. Finally, we briefly summarized the organotropism of GC metastasis as well as the potential and limitations of EVs in GC.
Collapse
Affiliation(s)
- Yun Lei
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuang Cai
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chun-Dong Zhang
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong-Shuang Li
- Department of Surgical Oncology and 8th General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
20
|
Liu C, Xia C, Xia C. Biology and function of exosomes in tumor immunotherapy. Biomed Pharmacother 2023; 169:115853. [PMID: 37951023 DOI: 10.1016/j.biopha.2023.115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
Exosomes are nano-scale extracellular vesicles that are found widely in various biological fluids. As messengers, exosomes deliver characteristic biological information from donor cells, facilitating their accumulation and subsequent transfer of information to tumor immune cells. Immunotherapy is a cutting-edge strategy for cancer therapy, but it has not yet reached its full potential owing to severe side effects and limited efficacy. Exosomes possess antigens and immunostimulatory molecules and can serve as cell-free vaccines to induce antitumor immunity. In addition, given their stability, low immunogenicity, and targeting ability, exosomes represent ideal drug delivery systems in tumor immunotherapy by delivering cargoes, including non-coding ribonucleic acids (RNAs), membrane proteins, chemotherapeutic agents, and immune cell death inducers. Exosomes can also be engineered to precisely target tumor cells. However, as a rising star in tumor immunotherapy, exosomes are also impeded by some challenges, including the lack of uniform technical standards for their isolation and purification, the need to improve exosomal cargo loading for efficient exosome delivery, and the expansion of clinical trials, which are currently in their infancy. Long-term, multi-center, and large-scale clinical trials are needed to evaluate the performance of exosomes in the future. Nonetheless, exosomes have demonstrated encouraging performance in tumor immunotherapy. In this review, we summarize the potential and challenges of exosomes in tumor immunotherapy, with the aim to shed light on exosomes as new-era tumor immunotherapy tools.
Collapse
Affiliation(s)
- Can Liu
- Foshan Maternity and Chlid Healthcare Hospital, Foshan 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 515150, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Chenglai Xia
- Foshan Maternity and Chlid Healthcare Hospital, Foshan 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 515150, China.
| |
Collapse
|
21
|
Theron D, Hopkins LN, Sutherland HG, Griffiths LR, Fernandez F. Can Genetic Markers Predict the Sporadic Form of Alzheimer's Disease? An Updated Review on Genetic Peripheral Markers. Int J Mol Sci 2023; 24:13480. [PMID: 37686283 PMCID: PMC10488021 DOI: 10.3390/ijms241713480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia that affects millions of individuals worldwide. Although the research over the last decades has provided new insight into AD pathophysiology, there is currently no cure for the disease. AD is often only diagnosed once the symptoms have become prominent, particularly in the late-onset (sporadic) form of AD. Consequently, it is essential to further new avenues for early diagnosis. With recent advances in genomic analysis and a lower cost of use, the exploration of genetic markers alongside RNA molecules can offer a key avenue for early diagnosis. We have here provided a brief overview of potential genetic markers differentially expressed in peripheral tissues in AD cases compared to controls, as well as considering the changes to the dynamics of RNA molecules. By integrating both genotype and RNA changes reported in AD, biomarker profiling can be key for developing reliable AD diagnostic tools.
Collapse
Affiliation(s)
- Danelda Theron
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lloyd N. Hopkins
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Heidi G. Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| | - Francesca Fernandez
- School of Behavioural and Health Sciences, Faculty of Heath Sciences, Australian Catholic University, Banyo, QLD 4014, Australia;
- Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia; (L.N.H.); (H.G.S.); (L.R.G.)
| |
Collapse
|