1
|
Motosugi S, Takahashi N, Mineo S, Sato K, Tsuzuno T, Aoki-Nonaka Y, Nakajima N, Takahashi K, Sato H, Miyazawa H, Taniguchi K, Terai S, Tabeta K. Enrichment of Porphyromonas gingivalis in colonic mucosa-associated microbiota and its enhanced adhesion to epithelium in colorectal carcinogenesis: Insights from in vivo and clinical studies. PLoS One 2025; 20:e0320383. [PMID: 40131980 DOI: 10.1371/journal.pone.0320383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
OBJECTIVES The oral-gut axis is believed to play a role in the pathogenesis of colorectal cancer (CRC). Previous studies have demonstrated the transmission of oral microbiota to the gut, disrupting gut microbial balance and creating a protumorigenic microenvironment conducive to CRC progression. Fusobacterium nucleatum is a putative periodontal pathogen recognized as a specific bacterium that promotes CRC development. However, the possible involvement of other periodontal pathogens in CRC is poorly understood. This study aimed to explore the effects of ingested periodontal pathogens on experimental CRC in mice and elucidate the underlying mechanisms. METHODS In this study, experimental colitis-induced CRC mouse models were used. The mice were orally administered periodontal pathogens (Porphyromonas gingivalis and Prevotella intermedia) three times a week during the experimental period. The CRC severity between the P. gingivalis-treated and P. intermedia-treated groups was compared. Lumen-associated microbiota (LAM) and mucosa-associated microbiota (MAM) were analyzed in both mouse and human samples. In vitro studies were conducted using intestinal epithelial cells to explore the possible mechanisms by which the periodontal pathogens affect the CRC development. RESULTS The P. gingivalis-treated group exhibited significantly increased CRC severity compared to the other groups among azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse models. The LAM and MAM exhibited distinct bacterial compositions, and P. gingivalis was enriched more in MAM than in LAM. In vitro adhesion assays revealed that P. gingivalis had higher adhesive capacity to intestinal epithelial cells than P. intermedia and indicated the possible involvement of gingipains in such a capacity. CONCLUSION P. gingivalis is enriched in MAM, and its subsequent adhesion to intestinal epithelial cells is potentially involved in the progression of CRC.
Collapse
Affiliation(s)
- Shunya Motosugi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Takahashi
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shuhei Mineo
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keisuke Sato
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Tsuzuno
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yukari Aoki-Nonaka
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nao Nakajima
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuya Takahashi
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroki Sato
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Haruna Miyazawa
- Clinical and Translational Research Center, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Koji Taniguchi
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Tabeta
- Division of Periodontology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
2
|
Qin Y, Wang Q, Lin Q, Liu F, Pan X, Wei C, Chen J, Huang T, Fang M, Yang W, Pan L. Multi-omics analysis reveals associations between gut microbiota and host transcriptome in colon cancer patients. mSystems 2025; 10:e0080524. [PMID: 40013792 PMCID: PMC11915798 DOI: 10.1128/msystems.00805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Colon cancer (CC) is one of the most common cancers globally, which is associated with the gut microbiota intimately. In current research, exploring the complex interaction between microbiomes and CC is a hotspot. However, the information on microbiomes in most previous studies is based on fecal, which does not fully display the microbial environment of CC. Herein, we collected mucosal and tissue samples from both the tumor and normal regions of 19 CC patients and clarified the composition of mucosal microbiota by 16S rRNA and metagenomic sequencing. Additionally, RNA-Seq was also conducted to identify the different expression genes between tumor and normal tissue samples. We revealed significantly different microbial community structures and expression profiles to CC. Depending on correlation analysis, we demonstrated that 1,472 genes were significantly correlated with CC tumor microbiota. Our study reveals a significant enrichment of Campylobacter jejuni in the mucosa of CC, which correlates with bile secretion. Additionally, we observe a negative correlation between C. jejuni and immune cells CD4+ Tem and mast cells. Finally, we discovered that metabolic bacterial endosymbiont of Bathymodiolus sp., Bacillus wiedmannii, and Mycobacterium tuberculosis had a significant survival value for CC, which was ignored by previous research. Overall, our study expands the understanding of the complex interplay between microbiota and CC and provides new targets for the treatment of CC. IMPORTANCE This study contributes to our understanding of the interaction between microbiota and colon cancer (CC). By examining mucosal and tissue samples rather than solely relying on fecal samples, we have uncovered previously unknown aspects of CC-associated microbiota. Our findings reveal distinct microbial community structures and gene expression profiles correlated with CC progression. Notably, the enrichment of Campylobacter jejuni in CC mucosa, linked to bile secretion, underscores potential mechanisms in CC pathogenesis. Additionally, observed correlations between microbial taxa and immune cell populations offer new avenues for immunotherapy research in CC. Importantly, this study introduces CC-associated microbiota with survival implications for CC, expanding therapeutic targets beyond conventional strategies. By elucidating these correlations, our study not only contributes to uncovering the potential role of gut microbiota in colon cancer but also establishes a foundation for mechanistic studies of gut microbiota in colon cancer, emphasizing the broader impact of microbiota research on cancer biology.
Collapse
Affiliation(s)
- Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiang Wang
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiumei Lin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fengfei Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Caibiao Wei
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junxian Chen
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Taijun Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Fang
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilong Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Linghui Pan
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Qian W, Xu CY, Hong W, Li ZM, Xu DG. Transmembrane protein 176B promotes epithelial-mesenchymal transition in colorectal cancer through inflammasome inhibition. World J Gastrointest Oncol 2025; 17:97673. [PMID: 40092936 PMCID: PMC11866255 DOI: 10.4251/wjgo.v17.i3.97673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/30/2024] [Accepted: 12/04/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Activation of the epithelial-mesenchymal transition (EMT), a pivotal process in tumor metastasis and evasion, as well as the NLRP3 inflammasome, both promote colorectal cancer (CRC) progression. Recent studies have shown that Transmembrane protein 176B (TMEM176B) regulates NLRP3 and promotes CRC malignant phenotypes. AIM To investigate the role of TMEM176B in modulating NLRP3 inflammasome and its implications on EMT and tumor progression in CRC. METHODS CRC in situ mouse and co-cultured cell models were established using CT26 cells, BALB/c mice, and primary cultured mouse natural killer (NK) cells. Short hairpin RNA knocked down TMEM176B and NLRP3 expression in CT26 cells. Fluorescence imaging, Terminal deoxynucleotidyl transferase dUTP nick end labeling assays, immunohistochemistry staining, flow cytometry, and molecular assays were used to investigate the effects of TMEM176B knockdown on the NLRP3 inflammasome in NK cells to assess tumor metastasis, apoptosis, and EMT indicators. RESULTS Silencing TMEM176B in CRC mice significantly reduced tumor metastasis, proliferation, and EMT, while activating apoptosis, NLRP3 inflammasome, and NK cell activity. Furthermore, silencing TMEM176B in co-cultured cell models inhibited cell migration and invasion, and promoted apoptosis. The interference of NLRP3 reversed these effects by modulating key proteins such as phosphorylated nuclear factor kappa B subunit 1 p65, matrix metallopeptidase 9, and transforming growth factor-β. CONCLUSION This study highlights the critical role of TMEM176B/NLRP3 in CRC progression and provides a basis for targeting this axis as a novel therapeutic approach to manage CRC progression and metastasis.
Collapse
Affiliation(s)
- Wei Qian
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| | - Chong-Yi Xu
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| | - Wei Hong
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| | - Zhe-Ming Li
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang Province, China
| | - Dao-Gun Xu
- Department of Proctology, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
4
|
Zhang X, Chen Y, Xia Y, Lin S, Zhou X, Pang X, Yu J, Sun L. Oral microbiota in colorectal cancer: Unraveling mechanisms and application potential. Life Sci 2025; 365:123462. [PMID: 39947314 DOI: 10.1016/j.lfs.2025.123462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Colorectal cancer (CRC), with a rising prevalence, is the third most commonly diagnosed cancer and the third leading cause of cancer-related death. Studies have shown that a complex interplay between the development of CRC and alterations in the oral microbiome. Recent advancements in genomics and metagenomics have highlighted the significant roles of certain oral microbes, particularly Porphyromonas gingivalis (P. gingivalis) and Fusobacterium nucleatum (F. nucleatum), in the progression of CRC. However, the detailed mechanisms by which the oral microbiota influence CRC development remain unclear. This review aims to elucidate the role of oral microbiota in CRC progression, evaluate their potential as biomarkers, and explore therapeutic strategies targeting these microbes. This review offers insights into the mechanisms underlying the interaction between oral microbiota and CRC, underscoring the potential of oral microbes as diagnostic and prognostic biomarkers, as well as therapeutic targets. Future research should focus on clarifying the exact pathways and developing innovative therapeutic strategies to enhance the diagnosis and treatment.
Collapse
Affiliation(s)
- Xinran Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yixin Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Yuwei Xia
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Shenghao Lin
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Xinlei Zhou
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Pang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Jieru Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China; Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
5
|
Zhang P, Feng S, Liu F, Han S, Fan T, Chen H, Dong X, Wang X, Qin Y, Chen Y, Jiang Y. Cascaded Strand Displacement Amplification and CRISPR/Cas12a Aptasensor Utilizing MoS 2 Nanoflowers for Colorectal Cancer Biomarker Porphyromonas gingivalis Detection. Anal Chem 2025; 97:4932-4944. [PMID: 40016920 DOI: 10.1021/acs.analchem.4c05014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally, both in terms of diagnoses and cancer-related mortality. Increasing evidence suggests that an imbalance in intestinal flora can contribute to the progression of CRC, and fecal microbiota may serve as potential biomarkers for its screening and diagnosis. Notably, Porphyromonas gingivalis has been identified in the malignant tissues and feces of CRC patients, establishing it as a significant biomarker for early screening, diagnosis, and prognostic assessment of CRC. Current methods for detecting P. gingivalis face numerous challenges, including high costs, complex procedures, and lengthy implementation times. Therefore, developing rapid, highly specific, and sensitive detection methods for P. gingivalis is of great importance. In this study, we utilized the whole-bacterium systematic evolution of ligands by exponential enrichment method to identify highly specific and high-affinity aptamers targeting P. gingivalis through 15 selection cycles. Subsequently, we developed an aptasensor driven by MoS2 nanoflowers, which integrates strand displacement amplification and CRISPR/Cas12a double amplification for sensitive detection of P. gingivalis, achieving a limit of detection of 10 CFU/mL. Using this aptasensor, we evaluated the abundance of P. gingivalis in clinical fecal samples and observed significantly higher levels in the feces of CRC patients compared to healthy individuals, corroborating the results obtained from quantitative polymerase chain reaction. In summary, we developed a highly specific and sensitive aptasensor for the first time, representing a promising new approach for the identification of P. gingivalis, with significant potential for CRC screening and diagnosis.
Collapse
Affiliation(s)
- Peiyi Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Shanshan Feng
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Feng Liu
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Sanyang Han
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, P. R. China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Xiangyan Dong
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Xiaopeng Wang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen 518035, P. R. China
| | - Yan Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
6
|
Navarro-Sánchez A, Nieto-Vitoria MÁ, López-López JA, Martínez-Crespo JJ, Navarro-Mateu F. Is the oral pathogen, Porphyromona gingivalis, associated to colorectal cancer?: a systematic review. BMC Cancer 2025; 25:395. [PMID: 40038641 DOI: 10.1186/s12885-025-13770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The association between the oral pathogen Porphyromonas gingivalis (PG) and the gut microbiota in colorectal cancer (CRC) patients has been explored with inconsistent results. This study aims to systematically assess this potential association. MATERIALS AND METHODS A systematic review was conducted across three databases (Pubmed, Embase and Web of Science) from inception up to January 2023 and updated until November 2024. Inclusion criteria were observational studies examining PG in the microbiota of adults with CRC compared to healthy controls. Exclusion criteria were studies without control group of healthy individuals, other designs or without full-text access. Two reviewers independently selected and extracted data following a pre-registered protocol. Disagreements were resolved by consensus or with a third reviewer. Risk of bias (RoB) was assessed using the Newcastle-Ottawa Scale (NOS). Results were summarized with a flow diagram, tables, and narrative descriptions. Meta-analysis was not feasible, so Fisher's method for combining p-values and the sign test were used as alternative integration methods. RESULTS Finally, 18 studies, with 23 analysis units were included, providing a total sample of 4,373 participants (48.0% cases and 52.0%controls), 38.2% men and 61.8% women, with a similar distribution among cases and controls. The mean (SD) age of cases was 63.3 (4.382) years old and 57.0 (7.753) years for controls. Most of the studies analyzed the presence of PG in feces (70.0%) collected before colonoscopy (55.0%) and were classified with good quality (70.0%) in the RoB assessment. Results suggested an effect (Fisher's test, p = .000006) with some evidence towards a positive association of PG in CRC patients compared to healthy controls (Sign test, p = .039). CONCLUSIONS Results of the systematic review suggest that PG is associated with the microbiota of CRC patients. Lack of information to calculate the effect size prevented the performance of a meta-analysis. Future research should aim for standardized protocols and statistical approaches. FUNDING No funding was received for this work. SYSTEMATIC REVIEW REGISTRATION The research protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO) on 2023 (registration number: CRD42023399382).
Collapse
Affiliation(s)
| | | | - José Antonio López-López
- University of Murcia, Murcia, Spain
- Department of Methodology and Basic Psychology, Meta-Analysis Unit, University of Murcia, Murcia, Spain
- Research Institute IMIB-Pascual Parrilla, Murcia, Spain
| | | | - Fernando Navarro-Mateu
- University of Murcia, Murcia, Spain.
- Research Institute IMIB-Pascual Parrilla, Murcia, Spain.
- Mental Health Research and Training Unit, Murcian Health Service, Murcia, Spain.
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
7
|
Bai X, Liu B, Fan D, Lu Y, Zhao X. Modulating the gut microbiota: A novel perspective in colorectal cancer treatment. Cancer Lett 2025; 612:217459. [PMID: 39805389 DOI: 10.1016/j.canlet.2025.217459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Colorectal cancer (CRC), the second leading cause of cancer-related deaths worldwide, is intricately linked to the dysregulation of the gut microbiota. Manipulating the gut microbiota has emerged as a novel strategy for the prevention and treatment of CRC. Natural products, a pivotal source in new drug discovery, have shown promise in recent research as regulators of the gut microbiota, offering potential applications in the prevention and treatment of CRC. In this work, commencing with a focus on the gut microbiota, we first elucidate the latest research on the intricate relationship between the gut microbiota and CRC. Additionally, we explore the impact of the gut microbiota on immunotherapy and chemotherapy treatments for CRC. Subsequently, we review the latest research findings on the regulation of the gut microbiota for CRC prevention through various mechanisms by natural products. These mechanisms include promoting the growth of beneficial bacteria, eradicating harmful bacteria, and enhancing the synthesis of beneficial metabolites. Furthermore, we summarize the advancements in research on natural products that alleviate chemotherapy toxicity and enhance the efficacy of immunotherapy by modulating the gut microbiota. Ultimately, we aspire to leverage advancements in nanomedicine and multiomics technologies to gain a deeper understanding of the mechanisms by which natural products regulate the gut microbiota. This work leverages gut microbiota as a focal point, aiming to offer new perspectives for developing novel natural products for colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Xue Bai
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Boyang Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
8
|
Wang N, Wu S, Huang L, Hu Y, He X, He J, Hu B, Xu Y, Rong Y, Yuan C, Zeng X, Wang F. Intratumoral microbiome: implications for immune modulation and innovative therapeutic strategies in cancer. J Biomed Sci 2025; 32:23. [PMID: 39966840 PMCID: PMC11837407 DOI: 10.1186/s12929-025-01117-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Recent advancements have revealed the presence of a microbiome within tumor tissues, underscoring the crucial role of the tumor microbiome in the tumor ecosystem. This review delves into the characteristics of the intratumoral microbiome, underscoring its dual role in modulating immune responses and its potential to both suppress and promote tumor growth. We examine state-of-the-art techniques for detecting and analyzing intratumoral bacteria, with a particular focus on their interactions with the immune system and the resulting implications for cancer prognosis and treatment. By elucidating the intricate crosstalk between the intratumoral microbiome and the host immune system, we aim to uncover novel therapeutic strategies that enhance the efficacy of cancer treatments. Additionally, this review addresses the existing challenges and future prospects within this burgeoning field, advocating for the integration of microbiome research into comprehensive cancer therapy frameworks.
Collapse
Affiliation(s)
- Na Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Si Wu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Lanxiang Huang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yue Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xin He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jourong He
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ben Hu
- Center for Tumor Precision Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yaqi Xu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuan Rong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Xiantao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
9
|
Huang Z, Hao M, Shi N, Wang X, Yuan L, Yuan H, Wang X. Porphyromonas gingivalis: a potential trigger of neurodegenerative disease. Front Immunol 2025; 16:1482033. [PMID: 40028317 PMCID: PMC11867964 DOI: 10.3389/fimmu.2025.1482033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a gram-negative bacterium and the main causative agent of periodontitis, a disease closely associated with the development of periodontal disease. The progression of periodontitis, a chronic infectious disease, is intricately linked to the inflammatory immune response. Inflammatory cytokines act on periodontal tissues via immunomodulation, resulting in the destruction of the periodontal tissue. Recent studies have established connections between periodontitis and various systemic diseases, including cardiovascular diseases, tumors, and neurodegenerative diseases. Neurodegenerative diseases are neurological disorders caused by immune system dysfunction, including Alzheimer's and Parkinson's diseases. One of the main characteristics of neurodegenerative diseases is an impaired inflammatory response, which mediates neuroinflammation through microglial activation. Some studies have shown an association between periodontitis and neurodegenerative diseases, with P. gingivalis as the primary culprit. P. gingivalis can cross the blood-brain barrier (BBB) or mediate neuroinflammation and injury through a variety of pathways, including the gut-brain axis, thereby affecting neuronal growth and survival and participating in the onset and progression of neurodegenerative diseases. However, comprehensive and systematic summaries of studies on the infectious origin of neurodegenerative diseases are lacking. This article reviews and summarizes the relationship between P. gingivalis and neurodegenerative diseases and its possible regulatory mechanisms. This review offers new perspectives into the understanding of neurodegenerative disease development and highlights innovative approaches for investigating and developing tailored medications for treating neurodegenerative conditions, particularly from the viewpoint of their association with P. gingivalis.
Collapse
Affiliation(s)
- Ziyan Huang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Naixu Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyu Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lin Yuan
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Haotian Yuan
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Liu F, Su D, Shi X, Xu SM, Dong YK, Li Z, Cao B, Ren DL. Cross-population tongue image features and tongue coating microbiome changes in the evolution of colorectal cancer. Front Microbiol 2025; 16:1442732. [PMID: 40012785 PMCID: PMC11863330 DOI: 10.3389/fmicb.2025.1442732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 01/09/2025] [Indexed: 02/28/2025] Open
Abstract
Introduction Tongue diagnosis, a cornerstone of Traditional Chinese Medicine (TCM), relies significantly on the assessment of tongue coating, which is used to evaluate Zang-fu organ functions, qi and blood dynamics, and the influence of pathogenic factors. This diagnostic method is integral to disease diagnosis and treatment in TCM. Recent research suggests a strong correlation between the characteristics of tongue coating and its microbial composition. These microbial variations may influence the formation and changes in tongue coating and are potentially linked to the progression of specific diseases. However, comprehensive research on the association between tongue coating, its microorganisms, and colorectal cancer (CRC) is limited. Notably, the quantitative aspects of tongue diagnosis and the microbial diversity in tongue coatings across different stages of colorectal cancer (from healthy individuals to colorectal adenoma (CRA) and CRC patients) are yet to be fully elucidated. By studying the cross-population characteristics of tongue image and tongue coating microorganisms during the evolution of colorectal cancer, the differences of tongue image characteristics and tongue coating microorganisms among different populations were further evaluated, providing references for early screening, diagnosis and treatment of colorectal cancer. Methods The tongue image features of the subjects were collected by DS01-B tongue surface information collection system, mainly including tongue quality and tongue coating, and the tongue image was quantitatively analyzed by color space Lab value. The microbial characteristics of tongue coating were detected by high-throughput sequencing (16SrRNA amplicon sequencing). All subjects came from the patients in the Sixth Affiliated Hospital of Sun Yat-sen University and recruited volunteers (divided into health group, CRA group and CRC group), and obtained the ethical approval of the Sixth Affiliated Hospital of Sun Yat-sen University (ethical batch number: 2021ZSLYEC-328). Results A total of 377 subjects were recruited in this study, including 56 healthy subjects, 65 colorectal adenomas and 256 colorectal cancer patients. The results showed that: in terms of texture of fur, the "thick fur" was a significant statistical difference (p < 0.05) in the 3 groups. In addition, there was also a statistical difference in "greasy fur" and "peeled fur" among the 3 groups (p < 0.05). Lab quantitative analysis of tongue color and fur color: The results showed that the L value of tongue color in healthy group was significantly different from that in CRA group and CRC group (p < 0.01), but there was no significant difference between CRA group and CRC group (p > 0.05). Tongue coating microorganisms, there was no significant difference in the richness and diversity of the three groups of subjects (p > 0.05). There were 296 species in the three groups, accounting for 44.65%, and the species in colorectal cancer population was the most, reaching 502. From the differences in community composition among the three groups, it was found that there were certain differences in bacterial community composition between healthy people, CRA and CRC, and the differences became more and more obvious with the development of the disease. Conclusion This study revealed the specific cross-population tongue image characteristics and the specificity of tongue coating microorganisms in the evolution of CRC, providing new research ideas for early screening, early diagnosis, mechanism exploration, prevention and treatment of colorectal cancer.
Collapse
Affiliation(s)
- Fang Liu
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Dan Su
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Shi
- The First Clinical Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shu-min Xu
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Yu-kun Dong
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Zhi Li
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Bo Cao
- Department of Coloproctology, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Dong-lin Ren
- Department of Coloproctology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Qin Y, Zhou Y, Xiong J, Lu C, Zhou J, Su X, Han J. Limosilactobacillus reuteri RE225 alleviates gout by modulating the TLR4/MyD88/NF-κB inflammatory pathway and the Nrf2/HO-1 oxidative stress pathway, and by regulating gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1185-1193. [PMID: 39297558 DOI: 10.1002/jsfa.13908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Gout poses a significant health threat. The use of Lactobacillus from the gut microbiota is one potential remedy. However, the intricate molecular mechanisms governing the impact of Lactobacillus on gout remain largely uncharted. In this study, a strain of Limosilactobacillus reuteri RE225 was separated from the gut of mice and colitis was treated with polypeptide intervention. RESULTS Limosilactobacillus reuteri RE225 reduced foot tumefaction markedly in mice with gout and extended the pain threshold time in their feet. It also improved the health of gut microbiota. Intervention with L. reuteri RE225 also suppressed the TLR4/MyD88/NF-κB and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathways in the mice, reduced the levels of pro-inflammatory cytokines - interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) - and increased the level of the anti-inflammatory cytokine interleukin 10 (IL-10), thereby mitigating inflammation. CONCLUSION This study provides a theoretical basis for the comprehensive development of Limosilactobacillus reuteri and new ideas for the non-pharmacological treatment of gout. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Qin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| | - Yucong Zhou
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, China
| | - Jiayi Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| | - Jiaojiao Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Science, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Wang X, Li Z, Zhou H, Liu Q, Zhang X, Hu F. Periodontitis Exacerbates Colorectal Cancer by Altering Gut Microbiota-Derived Metabolomics in Mice. J Periodontal Res 2025. [PMID: 39843386 DOI: 10.1111/jre.13380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/14/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025]
Abstract
AIM The correlation between periodontitis and colorectal cancer (CRC) has drawn widespread attention. However, how periodontitis affects CRC progression remains unclear. METHODS C57BL/6 mice were used to establish experimental periodontitis and CRC model. Histological alterations of periodontium and colon were observed by hematoxylin and eosin staining. Micro-computed tomography (micro-CT) was applied to evaluate alveolar bone loss (ABL). Tumor growth was detected by immunofluorescence. Gut bacteria were analyzed using 16S rRNA sequencing. Gas chromatography-mass spectrometry (GC-MS) was performed to observe the alterations of gut microbial metabolites. The detection of associated pathways was carried out using quantitative real-time PCR (qRT-PCR). RESULTS Experimental periodontitis significantly induced increases in tumor number in mice with CRC. Double immunofluorescence for Ki67 and β-catenin, as well as Cyclin D1 and β-catenin, indicated that experimental periodontitis observably promoted tumor growth. 16S rRNA sequencing and untargeted metabolomics analysis displayed that experimental periodontitis altered gut microbial community and metabolite profiles in CRC mice. Notably, we found that experimental periodontitis dramatically increased the level of three oncometabolites (serotonin, adenosine, and spermine) in mice with CRC. CONCLUSION Alterations of gut microbial community and metabolites might be relevant in experimental periodontitis deteriorating CRC.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Zhichao Li
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Haiquan Zhou
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Qianyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
| | - Xueyang Zhang
- Department of Stomatology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan City, Guangdong Province, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Fei Hu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
13
|
Wang LT, Juang SE, Chang HH, He AC, Chen WA, Huang YW, Van Dyke TE, Ma KSK, Chen YW. Single-cell analysis of peri-implant gingival tissue to assess implant biocompatibility and immune response. J Prosthodont Res 2025; 69:97-109. [PMID: 39231696 DOI: 10.2186/jpr.jpr_d_23_00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
PURPOSE The innate immune response, particularly the reaction of polymorphonuclear neutrophils (PMNs), is crucial in shaping the outcomes of chronic inflammation, fibrosis, or osseointegration following biomaterial implantation. Peri-implantitis or peri-implant mucositis, inflammatory conditions linked to dental implants, pose a significant threat to implant success. We developed a single-cell analysis approach using a murine model to assess the immune response to implant materials, offering a practical screening tool for potential dental implants. METHODS We performed bioinformatics analysis and established a peri-implant inflammation model by inserting two titanium implants into the maxillary region, to examine the immune response. RESULTS Bioinformatics analysis revealed that titanium implants triggered a host immune response, primarily mediated by PMNs. In the in vivo experiments, we observed a rapid PMN-mediated response, with increased infiltration around the implants and on the implant surface by day 3. Remarkably, PMN attachment to the implants persisted for 7 days, resembling the immune profiles seen in human implant-mediated inflammation. CONCLUSIONS Our findings indicate that persistent attachment of the short-living PMNs to titanium implants can serve as an indicator or traits of peri-implant inflammation. Therefore, analyzing gingival tissue at the single-cell level could be a useful tool for evaluating the biocompatibility of candidate dental implants.
Collapse
Affiliation(s)
- Li-Tzu Wang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sin-Ei Juang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Hao Chang
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ai-Chia He
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Wei-An Chen
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Wen Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, USA
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, USA
| | - Kevin Sheng-Kai Ma
- Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Department of Orthodontics and Dentofacial Orthopedics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, USA
| | - Yi-Wen Chen
- Department of Dentistry, National Taiwan University Hospital & Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Deng J, Sun C, Xu G, Wang B, Tzortzopoulou E, Deng D, Giovannetti E. The Oral Microbiome and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:151-170. [PMID: 40111691 DOI: 10.1007/978-3-031-79146-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
There is growing evidence suggesting a strong association between members of the oral microbiota and various types of cancer, including oral cancer, colorectal cancer, esophageal squamous cell carcinoma, and pancreatic cancer. Periodontal diseases closely associated with pathogenic bacteria in the oral cavity have been shown to be correlated with the occurrence and development of cancers. Among the periodontal disease-associated bacteria in the oral cavity, two prominent oral pathogens, Porphyromonas gingivalis and Fusobacterium nucleatum, have been found to promote tumor cell proliferation, invasion, and migration, as well as to inhibit immune cell function, thereby facilitating tumor progression. The presence of other oral pathogenic bacteria, such as Treponema denticola, Tannerella forsythia, Parvimonas micra, and Aggregatibacter actinomycetemcomitans, has also been found to be associated with cancer worsening. Oral commensal bacteria play a crucial role in maintaining the normal oral homeostasis. However, the relationship between oral commensal bacteria and the occurrence and development of cancers remains controversial. Some studies suggest an increase in oral commensal bacteria during tumor development, while others suggest an association of certain commensal bacteria with lower tumor risk. The microbiota can significantly alter responses and toxicity to various forms of cancer treatment through interactions with the human body, thereby influencing disease progression. In this chapter, we provide a concise overview of current understanding of the role of the oral microbiota in cancer.
Collapse
Affiliation(s)
- Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Chen Sun
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Geng Xu
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Eleni Tzortzopoulou
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| |
Collapse
|
15
|
Ma Y, Chen T, Sun T, Dilimulati D, Xiao Y. The oncomicrobiome: New insights into microorganisms in cancer. Microb Pathog 2024; 197:107091. [PMID: 39481695 DOI: 10.1016/j.micpath.2024.107091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The discoveries of the oncomicrobiome (intratumoral microbiome) and oncomicrobiota (intratumoral microbiota) represent significant advances in tumor research and have rapidly become of key interest to the field. Within tumors, microorganisms such as bacteria, fungi, viruses, and archaea form the oncomicrobiota and are primarily found within tumor cells, immunocytes, and the intercellular matrix. The oncomicrobiome exhibits marked heterogeneity and is associated with tumor initiation, progression, metastasis, and treatment response. Interactions between the oncomicrobiome and the immune system can modulate host antitumor immunity, influencing the efficacy of immunotherapies. Oncomicrobiome research also faces numerous challenges, including overcoming methodological issues such as low target abundance, susceptibility to contamination, and biases in sample handling and analysis methods across different studies. Furthermore, studies of the oncomicrobiome may be confounded by baseline differences in microbiomes among populations driven by both environmental and genetic factors. Most studies to date have revealed associations between the oncomicrobiome and tumors, but very few have established mechanistic links between the two. This review introduces the relevant concepts, detection methods, sources, and characteristics of the oncomicrobiome. We then describe the composition of the oncomicrobiome in common tumors and its role in shaping the tumor microenvironment. We also discuss the current problems and challenges to be overcome in this rapidly progressing field.
Collapse
Affiliation(s)
- Yingying Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Sun
- Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
| | - Dilinuer Dilimulati
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Structure and Morphology, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China; Peking Union Medical College & Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
16
|
Wang Q, Chen S, Zhou J, Zhao L. Bidirectional associations between periodontitis and inflammatory bowel disease: A systematic review of longitudinal studies with meta-analysis and trial sequential analysis. J Periodontal Res 2024; 59:1083-1094. [PMID: 38837416 DOI: 10.1111/jre.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
The bidirectional associations between periodontitis and inflammatory bowel disease (IBD) with temporal directionality remain inconclusive. This study aims to evaluate the bidirectional associations between periodontitis and IBD through a systematic review and meta-analysis. Five databases (PubMed, Embase, Web of Science, Scopus and Cochrane Library) were systematically searched from inception to 27 February 2024. Two independent reviewers performed a review of the retrieved studies. Longitudinal studies, including cohort and nested case-control studies, were considered eligible for the study design. The pooled risk ratio (RR) and hazard ratio (HR) derived from the meta-analysis were used to assess whether periodontitis (or IBD) was a risk factor for IBD (or periodontitis). Trial sequential analysis (TSA) was performed to evaluate the reliability of the results. Four studies (n = 10 270 912) on the risk of IBD in patients with periodontitis and two (n = 33 420) on the risk of periodontitis in patients with IBD were included. The result suggested that periodontitis did not increase the risk of IBD (pooled RR = 1.04, 95% confidence interval [CI]: 0.99-1.09; p = .164; I-squared statistic [I2] = 27%). For subtypes of IBD, periodontitis was associated with the occurrence of ulcerative colitis (UC) (pooled RR = 1.12, 95% CI: 1.04-1.21; p = .003; I2 = 38%), but not with Crohn's disease (CD) (pooled RR = 0.98, 95% CI: 0.92-1.04; p = .475; I2 = 0%). Specifically, the risk of UC was higher among men (pooled HR = 1.11, 95% CI: 1.01-1.22; p = .025; I2 = 0%) and smokers (pooled HR = 1.23, 95% CI: 1.07-1.42; p = .004; I2 = 0%) with periodontitis than their counterparts without periodontitis. Patients with IBD may have a higher risk of developing periodontitis (pooled HR = 1.37, 95% CI: 1.26-1.49; p < .001; I2 = 18%); however, whether IBD subtypes increased the occurrence of periodontitis remained uncertain. The TSA results confirmed the reliability of the primary findings. Based on limited longitudinal evidence, patients with periodontitis do not exhibit an increased risk of developing IBD overall, but they are at increased risk of UC (not CD). On the contrary, patients with IBD have a higher risk of developing periodontitis over time. More high-quality longitudinal studies are needed to determine the effect of specific subtypes of IBD on periodontitis.
Collapse
Affiliation(s)
- Qiuhao Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuze Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieyu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z, Wu J. The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications. Front Cell Infect Microbiol 2024; 14:1413266. [PMID: 39639864 PMCID: PMC11617537 DOI: 10.3389/fcimb.2024.1413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
As a complicated and heterogeneous condition, breast cancer (BC) has posed a tremendous public health challenge across the world. Recent studies have uncovered the crucial effect of human microbiota on various perspectives of health and disease, which include cancer. The oral-gut microbiome axis, particularly, have been implicated in the occurrence and development of colorectal cancer through their intricate interactions with host immune system and modulation of systemic inflammation. However, the research concerning the impact of oral-gut microbiome axis on BC remains scarce. This study focused on comprehensively reviewing and summarizing the latest ideas about the potential bidirectional relation of the gut with oral microbiota in BC, emphasizing their potential impact on tumorigenesis, treatment response, and overall patient outcomes. This review can reveal the prospect of tumor microecology and propose a novel viewpoint that the oral-gut microbiome axis can be a breakthrough point in future BC studies.
Collapse
Affiliation(s)
- Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuxiang Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
18
|
Angabo S, Pandi K, David K, Steinmetz O, Makkawi H, Farhat M, Eli-Berchoer L, Darawshi N, Kawasaki H, Nussbaum G. CD47 and thrombospondin-1 contribute to immune evasion by Porphyromonas gingivalis. Proc Natl Acad Sci U S A 2024; 121:e2405534121. [PMID: 39536084 PMCID: PMC11588058 DOI: 10.1073/pnas.2405534121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/25/2024] [Indexed: 11/16/2024] Open
Abstract
Porphyromonas gingivalis is a gram-negative anaerobic bacterium linked to periodontal disease. Remarkably, P. gingivalis thrives in an inflamed environment rich in activated neutrophils. Toll-like receptor 2 (TLR2) recognition is required for P. gingivalis to evade innate immune killing; however, the mechanisms through which P. gingivalis uncouples host inflammation from bactericidal activity are only partially known. Since integrin activation and alternative signaling are implicated in P. gingivalis TLR2-mediated immune escape, we explored the role of CD47, a widely expressed integrin-associated protein known to suppress phagocytosis and implicated as an interacting partner with other innate immune receptors. We found that CD47 associates with TLR2, and blocking CD47 leads to decreased intracellular P. gingivalis survival in macrophages in a manner dependent on the bacterial major fimbria. In vivo, CD47 knock-out mice cleared P. gingivalis more efficiently than wild-type mice. Next, we found increased expression and secretion of the CD47 ligand thrombospondin-1 (TSP-1) following P. gingivalis infection. Secreted TSP-1 broadly protected P. gingivalis and other periodontitis-associated bacterial species from neutrophil bactericidal activity. Therefore, CD47-TLR2 cosignaling in response to P. gingivalis induces TSP-1 that in turn suppresses neutrophil activity, an effect that can explain how species such as P. gingivalis survive in an inflamed environment and cause dysbiosis.
Collapse
Affiliation(s)
- Sarah Angabo
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem91120, Israel
| | - Karthikeyan Pandi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem91120, Israel
| | - Keren David
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem91120, Israel
| | - Orit Steinmetz
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem91120, Israel
| | - Hasnaa Makkawi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem91120, Israel
| | - Maria Farhat
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem91120, Israel
| | - Luba Eli-Berchoer
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem91120, Israel
| | - Nadeem Darawshi
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem91120, Israel
| | - Hiromichi Kawasaki
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem91120, Israel
- Central Research Institute, Wakunaga Pharmaceutical Co. Ltd., Hiroshima739-1195, Japan
| | - Gabriel Nussbaum
- Institute of Biomedical and Oral Research, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem91120, Israel
| |
Collapse
|
19
|
Dadgar-Zankbar L, Elahi Z, Shariati A, Khaledi A, Razavi S, Khoshbayan A. Exploring the role of Fusobacterium nucleatum in colorectal cancer: implications for tumor proliferation and chemoresistance. Cell Commun Signal 2024; 22:547. [PMID: 39548531 PMCID: PMC11566256 DOI: 10.1186/s12964-024-01909-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024] Open
Abstract
Fusobacterium nucleatum (Fn) has been extensively studied for its connection to colorectal cancer (CRC) and its potential role in chemotherapy resistance. Studies indicate that Fn is commonly found in CRC tissues and is associated with unfavorable prognosis and treatment failure. It has been shown that Fn promotes chemoresistance by affecting autophagy, a cellular process that helps cells survive under stressful conditions. Additionally, Fn targets specific signaling pathways that activate particular microRNAs and modulate the response to chemotherapy. Understanding the current molecular mechanisms and investigating the importance of Fn-inducing chemoresistance could provide valuable insights for developing novel therapies. This review surveys the role of Fn in tumor proliferation, metastasis, and chemoresistance in CRC, focusing on its effects on the tumor microenvironment, gene expression, and resistance to conventional chemotherapy drugs. It also discusses the therapeutic implications of targeting Fn in CRC treatment and highlights the need for further research.
Collapse
Affiliation(s)
- Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Aref Shariati
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, P.O. Box: 87155.111, Kashan, 87154, Iran
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Sun J, Wang X, Xiao J, Yang Q, Huang X, Yang Z, Liu H, Liu Y, Wang H, Huang Z, Ma L, Cao Z. Autophagy mediates the impact of Porphyromonas gingivalis on short-chain fatty acids metabolism in periodontitis-induced gut dysbiosis. Sci Rep 2024; 14:26291. [PMID: 39487211 PMCID: PMC11530519 DOI: 10.1038/s41598-024-77909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis), the main pathogen responsible for periodontitis, is linked to systemic disorders via the oral-gut axis. Short-chain fatty acids (SCFAs) are vital for gut health, but their role in P. gingivalis-induced gut disorders remains unclear. This study utilized metabolomics and 16 S rRNA sequencing to explore gut microbiota and SCFAs levels in P. gingivalis-induced periodontitis mouse models. Significant changes were observed in gut, including a reduction in SCFAs-producing bacteria, such as Lactobacillus, Ligilactobacillus, Allobucalum, and a notable decrease in Firmicutes and Actinobacteriota. The intestinal permeability tests and histological analyses revealed that periodontitis led to epithelial inflammation, reduced mucin secretion, and compromised gut barrier integrity. In vitro experiments with Caco-2 cells co-cultured with P. gingivalis showed that the bacterium disrupted cellular junctions by impairing autophagy, specifically through the ATG5-LC3 pathway, leading to decreased expression of tight junction proteins and reduced SCFA absorption. Remarkably, rapamycin treatment both in vitro and in vivo restored gut barrier function by enhancing autophagy, increasing tight junction protein expression, and promoting SCFAs absorption via MCT1 and SMCT1, alongside GPR43/GPR109a pathway activation. These findings reveal autophagy's novel role in regulating SCFAs metabolism in P. gingivalis-induced gut dysbiosis, offering insights for preventing and treating periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Jiahui Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qiudong Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengkun Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuqi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhendong Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
21
|
Bao P, Zhang XZ. Progress of tumor-resident intracellular bacteria for cancer therapy. Adv Drug Deliv Rev 2024; 214:115458. [PMID: 39383997 DOI: 10.1016/j.addr.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Emerging studies have disclosed the pivotal role of cancer-associated microbiota in supporting cancer development, progression and dissemination, with the in-depth comprehending of tumor microenvironment. In particular, certain invasive bacteria that hide in various cells within the tumor tissues can render assistance to tumor growth and invasion through intricate mechanisms implicated in multiple branches of cancer biology. Thus, tumor-resident intracellular microbes are anticipated as next-generation targets for oncotherapy. This review is intended to delve into these internalized bacteria-driven cancer-promoting mechanisms and explore diversified antimicrobial therapeutic strategies to counteract the detrimental impact caused by these intruders, thereby improving therapeutic benefit of antineoplastic therapy.
Collapse
Affiliation(s)
- Peng Bao
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
22
|
Löwenmark T, Köhn L, Kellgren T, Rosenbaum W, Bronnec V, Löfgren-Burström A, Zingmark C, Larsson P, Dahlberg M, Schroeder BO, Wai SN, Ljuslinder I, Edin S, Palmqvist R. Parvimonas micra forms a distinct bacterial network with oral pathobionts in colorectal cancer patients. J Transl Med 2024; 22:947. [PMID: 39420333 PMCID: PMC11487773 DOI: 10.1186/s12967-024-05720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Mounting evidence suggests a significant role of the gut microbiota in the development and progression of colorectal cancer (CRC). In particular, an over-representation of oral pathogens has been linked to CRC. The aim of this study was to further investigate the faecal microbial landscape of CRC patients, with a focus on the oral pathogens Parvimonas micra and Fusobacterium nucleatum. METHODS In this study, 16S rRNA sequencing was conducted using faecal samples from CRC patients (n = 275) and controls without pathological findings (n = 95). RESULTS We discovered a significant difference in microbial composition depending on tumour location and microsatellite instability (MSI) status, with P. micra, F. nucleatum, and Peptostreptococcus stomatis found to be more abundant in patients with MSI tumours. Moreover, P. micra and F. nucleatum were associated with a cluster of CRC-related bacteria including Bacteroides fragilis as well as with other oral pathogens such as P. stomatis and various Porphyromonas species. This cluster was distinctly different in the control group, suggesting its potential linkage with CRC. CONCLUSIONS Our results suggest a similar distribution of several CRC-associated bacteria within CRC patients, underscoring the importance of considering the concomitant presence of bacterial species in studies investigating the mechanisms of CRC development and progression.
Collapse
Affiliation(s)
- Thyra Löwenmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Linda Köhn
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Therese Kellgren
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - William Rosenbaum
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Vicky Bronnec
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | | | - Carl Zingmark
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Pär Larsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Michael Dahlberg
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
| | - Sofia Edin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden.
| |
Collapse
|
23
|
Li Y, Peng J, Meng X. Gut bacteria, host immunity, and colorectal cancer: From pathogenesis to therapy. Eur J Immunol 2024; 54:e2451022. [PMID: 38980275 DOI: 10.1002/eji.202451022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
The emergence of 16S rRNA and metagenomic sequencing has gradually revealed the close relationship between dysbiosis and colorectal cancer (CRC). Recent studies have confirmed that intestinal dysbiosis plays various roles in the occurrence, development, and therapeutic response of CRC. Perturbation of host immunity is one of the key mechanisms involved. The intestinal microbiota, or specific bacteria and their metabolites, can modulate the progression of CRC through pathogen recognition receptor signaling or via the recruitment, polarization, and activation of both innate and adaptive immune cells to reshape the protumor/antitumor microenvironment. Therefore, the administration of gut bacteria to enhance immune homeostasis represents a new strategy for the treatment of CRC. In this review, we cover recent studies that illuminate the role of gut bacteria in the progression and treatment of CRC through orchestrating the immune response, which potentially offers insights for subsequent transformative research.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinjin Peng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, China
- Digestive Disease Research and Clinical Translation Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
25
|
Long J, Wang J, Xiao C, You F, Jiang Y, Li X. Intratumoral microbiota in colorectal cancer: focus on specific distribution and potential mechanisms. Cell Commun Signal 2024; 22:455. [PMID: 39327582 PMCID: PMC11426098 DOI: 10.1186/s12964-024-01831-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal malignant tumors globally, posing significant health risks and societal burdens. Recently, advancements in next-generation sequencing technology have identified CRC intratumoral microbiota, thereby opening up novel avenues for further research. This review synthesizes the current advancements in CRC intratumoral microbiota and their impact on CRC progression and discusses the disparities in the relative abundance and community composition of CRC intratumoral microbiota across various colorectal tumors based on their anatomical location and molecular subtypes, as well as the tumor stages, and spatial tumor distribution. Intratumoral microbiota predominantly influence CRC development by modulating colonic epithelial cells, tumor cells, and the tumor microenvironment. Mechanistically, they can cause DNA damage, apoptosis and epithelial-mesenchymal transition. The effects of different intratumoral microbiota on CRC have been shown to be two-fold. In the future, to address the limitations of existing studies, it is important to develop comprehensive experimental protocols and suitable in vitro models for elucidating more mechanisms of intratumoral microbiota on CRC, which will facilitate the clinical application of microbe-related therapeutic strategies in CRC and potentially other tumors.
Collapse
Affiliation(s)
- Jing Long
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Jiamei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Chong Xiao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
| | - Xueke Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
- Oncology Teaching and Research Department, Chengdu University of Traditional Chinese Medicine, Chengdu, 610036, China.
| |
Collapse
|
26
|
Wang XX, Liu YT, Ren JG, Liu HM, Fu Q, Yang Y, Fu QY, Chen G. Salivary Microbiome Relates to Neoadjuvant Immunotherapy Response in OSCC. J Dent Res 2024; 103:988-998. [PMID: 39101654 DOI: 10.1177/00220345241262759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Most patients diagnosed with oral squamous cell carcinoma (OSCC) present with locally advanced stages, which are typically associated with poor outcomes. Although immunotherapy offers potential improvements in patient survival, its efficacy is hampered by low response rates. The microbiome is widely involved in tumor immunity and may play a role in immunotherapy. This study aimed to investigate the potential association between the oral (salivary) microbiome and immunotherapy response in patients with OSCC. Salivary metagenome sequencing was performed on 47 patients with OSCC undergoing neoadjuvant immunotherapy (NAIT) in a clinical trial (NCT04649476). Patients were divided into responders and nonresponders based on their pathological responses. The results showed that the species richness of the salivary microbiome was lower in the nonresponders before NAIT than in the responders. Differential analysis revealed that nonresponders exhibited a lower relative abundance of 34 bacterial species and a higher relative abundance of 4 bacterial species. Notably, low levels of Eubacterium infirmum, Actinobaculum, and Selenomas (EAS) in the saliva may be associated with the nonresponse of patients with OSCC to NAIT. A nomogram based on EAS was developed and validated to determine the efficacy of NAIT. The area under the curve for the training cohort was 0.81 (95% confidence interval, 0.66 to 0.81). Quantitative polymerase chain reaction confirmed that low levels of salivary EAS effectively identified nonresponders to NAIT. Furthermore, the low abundance of salivary EAS was closely correlated with a low density of intratumoral CD4+, CD14+, CD68+, and FOXP3+ cells. Metabolic functional annotation revealed numerous biosynthetic processes associated with EAS that were more active in responders. In summary, this study provides valuable data resources for the salivary microbiome and reveals that nonresponders have different salivary microbiome profiles than responders do before NAIT. Low salivary EAS levels can serve as potential biomarkers for distinguishing nonresponders from responders.
Collapse
Affiliation(s)
- X X Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y T Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J G Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H M Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q Fu
- GEMEXO BIOTECH (Wuhan) Co., Ltd., Wuhan, China
| | - Y Yang
- SpecAlly Life Technology Co., Ltd., Wuhan, China
| | - Q Y Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - G Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
28
|
Xia R, Jiang Z, Zhou Y, Pan L, Wang Y, Ma Y, Fan L, Yuan L, Cheng X. Oral microbiota and gastric cancer: recent highlights and knowledge gaps. J Oral Microbiol 2024; 16:2391640. [PMID: 39161727 PMCID: PMC11332296 DOI: 10.1080/20002297.2024.2391640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Gastric cancer is one of the most common malignant tumors worldwide and has a high mortality rate. However, tests for the early screening and diagnosis of gastric cancer are limited and invasive. Certain oral microorganisms are over-expressed in gastric cancer, but there is heterogeneity among different studies. Notably, each oral ecological niche harbors specific microorganisms. Among them, tongue coating, saliva, and dental plaque are important and unique ecological niches in the oral cavity. The colonization environment in different oral niches may be a source of heterogeneity. In this paper, we systematically discuss the latest developments in the field of the oral microbiota and gastric cancer and elucidate the enrichment of microorganisms in the oral ecological niches of the tongue coatings, saliva, and dental plaque in gastric cancer patients. The various potential mechanisms by which the oral microbiota induces gastric cancer (activation of an excessive inflammatory response; promotion of proliferation, migration, invasion, and metastasis; and secretion of carcinogens, leading to imbalance in gastric microbial communities) are explored. In this paper, we also highlight the applications of the rapeutics targeting the oral microbiota in gastric cancer and suggests future research directions related to the relationship between the oral microbiota and gastric cancer.
Collapse
Affiliation(s)
- Ruihong Xia
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengchen Jiang
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ying Zhou
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Libin Pan
- Department of Pharmacy, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanan Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yubo Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lili Fan
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Department of Integrated Chinese and Western Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Zhejiang Key Lab of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Zhejiang Cancer Hospital, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
29
|
Tanwar H, Gnanasekaran JM, Allison D, Chuang LS, He X, Aimetti M, Baima G, Costalonga M, Cross RK, Sears C, Mehandru S, Cho J, Colombel JF, Raufman JP, Thumbigere-Math V. Unravelling the Oral-Gut Axis: Interconnection Between Periodontitis and Inflammatory Bowel Disease, Current Challenges, and Future Perspective. J Crohns Colitis 2024; 18:1319-1341. [PMID: 38417137 PMCID: PMC11324343 DOI: 10.1093/ecco-jcc/jjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
As the opposite ends of the orodigestive tract, the oral cavity and the intestine share anatomical, microbial, and immunological ties that have bidirectional health implications. A growing body of evidence suggests an interconnection between oral pathologies and inflammatory bowel disease [IBD], implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an 'oral-gut' axis, marked by a higher prevalence of periodontitis and other oral conditions in IBD patients and vice versa. We present an in-depth examination of the interconnection between oral pathologies and IBD, highlighting the shared microbiological and immunological pathways, and proposing a 'multi-hit' hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.
Collapse
Affiliation(s)
- Himanshi Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Devon Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ling-shiang Chuang
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Raymond K Cross
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
30
|
Liu T, Woodruff PG, Zhou X. Advances in non-type 2 severe asthma: from molecular insights to novel treatment strategies. Eur Respir J 2024; 64:2300826. [PMID: 38697650 PMCID: PMC11325267 DOI: 10.1183/13993003.00826-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 04/18/2024] [Indexed: 05/05/2024]
Abstract
Asthma is a prevalent pulmonary disease that affects more than 300 million people worldwide and imposes a substantial economic burden. While medication can effectively control symptoms in some patients, severe asthma attacks, driven by airway inflammation induced by environmental and infectious exposures, continue to be a major cause of asthma-related mortality. Heterogeneous phenotypes of asthma include type 2 (T2) and non-T2 asthma. Non-T2 asthma is often observed in patients with severe and/or steroid-resistant asthma. This review covers the molecular mechanisms, clinical phenotypes, causes and promising treatments of non-T2 severe asthma. Specifically, we discuss the signalling pathways for non-T2 asthma including the activation of inflammasomes, interferon responses and interleukin-17 pathways, and their contributions to the subtypes, progression and severity of non-T2 asthma. Understanding the molecular mechanisms and genetic determinants underlying non-T2 asthma could form the basis for precision medicine in severe asthma treatment.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, China
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Kyriazi AA, Karaglani M, Agelaki S, Baritaki S. Intratumoral Microbiome: Foe or Friend in Reshaping the Tumor Microenvironment Landscape? Cells 2024; 13:1279. [PMID: 39120310 PMCID: PMC11312414 DOI: 10.3390/cells13151279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The role of the microbiome in cancer and its crosstalk with the tumor microenvironment (TME) has been extensively studied and characterized. An emerging field in the cancer microbiome research is the concept of the intratumoral microbiome, which refers to the microbiome residing within the tumor. This microbiome primarily originates from the local microbiome of the tumor-bearing tissue or from translocating microbiome from distant sites, such as the gut. Despite the increasing number of studies on intratumoral microbiome, it remains unclear whether it is a driver or a bystander of oncogenesis and tumor progression. This review aims to elucidate the intricate role of the intratumoral microbiome in tumor development by exploring its effects on reshaping the multileveled ecosystem in which tumors thrive, the TME. To dissect the complexity and the multitude of layers within the TME, we distinguish six specialized tumor microenvironments, namely, the immune, metabolic, hypoxic, acidic, mechanical and innervated microenvironments. Accordingly, we attempt to decipher the effects of the intratumoral microbiome on each specialized microenvironment and ultimately decode its tumor-promoting or tumor-suppressive impact. Additionally, we portray the intratumoral microbiome as an orchestrator in the tumor milieu, fine-tuning the responses in distinct, specialized microenvironments and remodeling the TME in a multileveled and multifaceted manner.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Makrina Karaglani
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Laboratory of Hygiene and Environmental Protection, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofia Agelaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece;
| |
Collapse
|
32
|
Wei Y, Dang GP, Ren ZY, Wan MC, Wang CY, Li HB, Zhang T, Tay FR, Niu LN. Recent advances in the pathogenesis and prevention strategies of dental calculus. NPJ Biofilms Microbiomes 2024; 10:56. [PMID: 39003275 PMCID: PMC11246453 DOI: 10.1038/s41522-024-00529-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024] Open
Abstract
Dental calculus severely affects the oral health of humans and animal pets. Calculus deposition affects the gingival appearance and causes inflammation. Failure to remove dental calculus from the dentition results in oral diseases such as periodontitis. Apart from adversely affecting oral health, some systemic diseases are closely related to dental calculus deposition. Hence, identifying the mechanisms of dental calculus formation helps protect oral and systemic health. A plethora of biological and physicochemical factors contribute to the physiological equilibrium in the oral cavity. Bacteria are an important part of the equation. Calculus formation commences when the bacterial equilibrium is broken. Bacteria accumulate locally and form biofilms on the tooth surface. The bacteria promote increases in local calcium and phosphorus concentrations, which triggers biomineralization and the development of dental calculus. Current treatments only help to relieve the symptoms caused by calculus deposition. These symptoms are prone to relapse if calculus removal is not under control. There is a need for a treatment regime that combines short-term and long-term goals in addressing calculus formation. The present review introduces the mechanisms of dental calculus formation, influencing factors, and the relationship between dental calculus and several systemic diseases. This is followed by the presentation of a conceptual solution for improving existing treatment strategies and minimizing recurrence.
Collapse
Affiliation(s)
- Yu Wei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gao-Peng Dang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhao-Yang Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Mei-Chen Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chen-Yu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hong-Bo Li
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tong Zhang
- Department of Stomatology, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Li-Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
33
|
Lavilla-Lerma ML, Aibar-Almazán A, Martínez-Amat A, Jiménez-García JD, Hita-Contreras F. Moderate-intensity continuous training and high-intensity interval training modulate the composition of the oral microbiota of elderly adults: Randomized controlled trial. Maturitas 2024; 185:107973. [PMID: 38579579 DOI: 10.1016/j.maturitas.2024.107973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/12/2024] [Accepted: 03/13/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE We investigates the effects of 16-week high-intensity interval training and moderate-intensity continuous training on the composition of the oral microbiota. To the best of our knowledge, at the time of writing this paper no other scholars had described the oral metagenomic changes associated with prescribed exercise in older adults. METHODS Forty-three participants aged 60-74 years were randomized 1:1:1 to a control group, high-intensity interval training or moderate-intensity continuous training twice weekly for 16 weeks. Saliva samples were sequenced at baseline, week 8 and week 16 of intervention. RESULTS High-intensity interval training produced significant differences over time in Richness and a clear trend to decreased Simpson and Shannon diversity indices. In contrast, Simpson and Shannon indices showed an upward trend over time with moderate-intensity continuous training, which also decreased Firmicutes and increased Bacteroidetes levels. Significant differences in the abundance of pathogenic species were also observed after the participants completed the exercise interventions of either type. CONCLUSIONS Both types of exercise promoted subtle changes in the oral microbiota, confirming the modulatory effect of high-intensity interval training and moderate-intensity continuous training on the oral microbiome. Clinical trial registration NCT05220670.
Collapse
Affiliation(s)
| | - Agustín Aibar-Almazán
- Department of Health Sciences, Faculty of Heath Sciences, University of Jaén, 23071 Jaén, Spain.
| | - Antonio Martínez-Amat
- Department of Health Sciences, Faculty of Heath Sciences, University of Jaén, 23071 Jaén, Spain.
| | | | - Fidel Hita-Contreras
- Department of Health Sciences, Faculty of Heath Sciences, University of Jaén, 23071 Jaén, Spain.
| |
Collapse
|
34
|
Chen Q, Lin F, Li W, Gu X, Chen Y, Su H, Zhang L, Zheng W, Zeng X, Lu X, Wang C, Chen W, Zhang B, Zhang H, Gong M. Distinctive Lipid Characteristics of Colorectal Cancer Revealed through Non-targeted Lipidomics Analysis of Tongue Coating. J Proteome Res 2024; 23:2054-2066. [PMID: 38775738 PMCID: PMC11165570 DOI: 10.1021/acs.jproteome.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
The metabolites and microbiota in tongue coating display distinct characteristics in certain digestive disorders, yet their relationship with colorectal cancer (CRC) remains unexplored. Here, we employed liquid chromatography coupled with tandem mass spectrometry to analyze the lipid composition of tongue coating using a nontargeted approach in 30 individuals with colorectal adenomas (CRA), 32 with CRC, and 30 healthy controls (HC). We identified 21 tongue coating lipids that effectively distinguished CRC from HC (AUC = 0.89), and 9 lipids that differentiated CRC from CRA (AUC = 0.9). Furthermore, we observed significant alterations in the tongue coating lipid composition in the CRC group compared to HC/CRA groups. As the adenoma-cancer sequence progressed, there was an increase in long-chain unsaturated triglycerides (TG) levels and a decrease in phosphatidylethanolamine plasmalogen (PE-P) levels. Furthermore, we noted a positive correlation between N-acyl ornithine (NAOrn), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-Cer), potentially produced by members of the Bacteroidetes phylum. The levels of inflammatory lipid metabolite 12-HETE showed a decreasing trend with colorectal tumor progression, indicating the potential involvement of tongue coating microbiota and tumor immune regulation in early CRC development. Our findings highlight the potential utility of tongue coating lipid analysis as a noninvasive tool for CRC diagnosis.
Collapse
Affiliation(s)
- Qubo Chen
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Fengye Lin
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Wanhua Li
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Xiangyu Gu
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Ying Chen
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Hairong Su
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Lu Zhang
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuan Zeng
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Xinyi Lu
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Chuyang Wang
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Weicheng Chen
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Beiping Zhang
- Department
of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Haiyan Zhang
- Department
of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Meng Gong
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
- Institutes
for Systems Genetics, Frontiers Science Center for Disease-related
Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Mohammed AE, Aldahasi RM, Rahman I, Shami A, Alotaibi M, BinShabaib MS, ALHarthi SS, Aabed K. The antimicrobial activity of tea tree oil ( Melaleuca alternifolia) and its metal nanoparticles in oral bacteria. PeerJ 2024; 12:e17241. [PMID: 38854801 PMCID: PMC11162611 DOI: 10.7717/peerj.17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/25/2024] [Indexed: 06/11/2024] Open
Abstract
Tea tree (Melaleuca alternifolia) oil (TTO) is an antimicrobial agent, and hence, its use in fabricating nanoparticles (NP) may be useful in providing more efficacious antimicrobial agents. The current research aimed to test the antimicrobial efficacy of TTO and its TTO-Metal-NPs against oral microbes: Porphyromonas gingivalis, Enterococcus faecalis, and Streptococcus mutans. The antimicrobial activity of TTO and zinc (Zn) and iron (Fe) nanoparticles (NPs) and the combined effects of antimicrobial agents were investigated using agar well diffusion assays. Fourier-transform infrared spectroscopy (FT-IR) was used to identify the phyto-constituents of TTO. Field emission scanning electron microscopy (FE-SEM), dynamic light scatter (DLS), and zeta potential were utilized to analyze the biogenic nanoparticles' morphology, size, and potential. The antimicrobial mode of action was determined by assessing the morphological changes under scanning electron microscopy (SEM). The TTO extracts converted Zn and Fe ions to NPs, having an average size of 97.50 (ZnNPs) and 102.4 nm (FeNPs). All tested agents had significant antibacterial efficacy against the tested oral microbes. However, the TTO extract was more efficacious than the NPs. Combination treatment of TTO with antibiotics resulted in partial additive effects against P. gingivalis and partial antagonistic effects against E. faecalis, S. mutans, and common mouthwashes (Oral B and chlorhexidine). TTO and NP-treated bacteria underwent morphological changes on treatment. M. alternifolia phytochemicals could be useful for further research and development of antimicrobial NPs. The current study highlights the variance in activity observed for different types of bacteria and antagonistic effects seen with common mouthwashes, which represent a threat to therapeutic efficacy and heighten the risk of clinical microbial resistance.
Collapse
Affiliation(s)
- Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham M. Aldahasi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Modhi Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Munerah S. BinShabaib
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Shatha S. ALHarthi
- Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kawther Aabed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
36
|
Hua KF, Lin YB, Chiu HW, Wong WT, Ka SM, Wu CH, Lin WY, Wang CC, Hsu CH, Hsu HT, Ho CL, Li LH. Cinnamaldehyde inhibits the NLRP3 inflammasome by preserving mitochondrial integrity and augmenting autophagy in Shigella sonnei-infected macrophages. J Inflamm (Lond) 2024; 21:18. [PMID: 38840105 PMCID: PMC11151564 DOI: 10.1186/s12950-024-00395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Worldwide, more than 125 million people are infected with Shigella each year and develop shigellosis. In our previous study, we provided evidence that Shigella sonnei infection triggers activation of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome in macrophages. NLRP3 inflammasome is responsible for regulating the release of the proinflammatory cytokines interleukin (IL)-1β and IL-18 through the protease caspase-1. Researchers and biotech companies have shown great interest in developing inhibitors of the NLRP3 inflammasome, recognizing it as a promising therapeutic target for several diseases. The leaves of Cinnamomum osmophloeum kaneh, an indigenous tree species in Taiwan, are rich in cinnamaldehyde (CA), a compound present in significant amounts. Our aim is to investigate how CA affects the activation of the NLRP3 inflammasome in S. sonnei-infected macrophages. METHODS Macrophages were infected with S. sonnei, with or without CA. ELISA and Western blotting were employed to detect protein expression or phosphorylation levels. Flow cytometry was utilized to assess H2O2 production and mitochondrial damage. Fluorescent microscopy was used to detect cathepsin B activity and mitochondrial ROS production. Additionally, colony-forming units were employed to measure macrophage phagocytosis and bactericidal activity. RESULTS CA inhibited the NLRP3 inflammasome in S. sonnei-infected macrophages by suppressing caspase-1 activation and reducing IL-1β and IL-18 expression. CA also inhibited pyroptosis by decreasing caspase-11 and Gasdermin D activation. Mechanistically, CA reduced lysosomal damage and enhanced autophagy, while leaving mitochondrial damage, mitogen-activated protein kinase phosphorylation, and NF-κB activation unaffected. Furthermore, CA significantly boosted phagocytosis and the bactericidal activity of macrophages against S. sonnei, while reducing secretion of IL-6 and tumour necrosis factor following infection. CONCLUSION CA shows promise as a nutraceutical for mitigating S. sonnei infection by diminishing inflammation and enhancing phagocytosis and the bactericidal activity of macrophages against S. sonnei.
Collapse
Affiliation(s)
- Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Bei Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Taiwan Autoantibody Biobank Initiative, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yu Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Chun Wang
- Infectious Disease Division, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Kunming Prevention and Control Center, Taipei City Hospital, Taipei, Taiwan
| | - Chung-Hua Hsu
- Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
37
|
Zhang L, Duan M, Pu X, Zheng H, Ning X, Tu Y, Xu C, Zhang D, Liu C, Xie J. GroEL triggers NLRP3 inflammasome activation through the TLR/NF-κB p-p65 axis in human periodontal ligament stem cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1340-1351. [PMID: 38596842 PMCID: PMC11532219 DOI: 10.3724/abbs.2024050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
The interaction between bacteria and the host plays a vital role in the initiation and progression of systemic diseases, including gastrointestinal and oral diseases, due to the secretion of various virulence factors from these pathogens. GroEL, a potent virulence factor secreted by multiple oral pathogenic bacteria, is implicated in the damage of gingival epithelium, periodontal ligament, alveolar bone and other peripheral tissues. However, the underlying biomechanism is still largely unknown. In the present study, we verify that GroEL can trigger the activation of NLRP3 inflammasome and its downstream effector molecules, IL-1β and IL-18, in human periodontal ligament stem cells (hPDLSCs) and resultantly induce high activation of gelatinases (MMP-2 and MMP-9) to promote the degradation of extracellular matrix (ECM). GroEL-mediated activation of the NLRP3 inflammasome requires the participation of Toll-like receptors (TLR2 and TLR4). High upregulation of TLR2 and TLR4 induces the enhancement of NF-κB (p-p65) signaling and promotes its nuclear accumulation, thus activating the NLRP3 inflammasome. These results are verified in a rat model with direct injection of GroEL. Collectively, this study provides insight into the role of virulence factors in bacteria-induced host immune response and may also provide a new clue for the prevention of periodontitis.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Huiling Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xinjie Ning
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Ying Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Chunming Xu
- School of Basic MedicineGannan Medical UniversityGanzhou341000China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
38
|
Abstract
Colorectal cancer (CRC) is a substantial source of global morbidity and mortality in dire need of improved prevention and treatment strategies. As our understanding of CRC grows, it is becoming increasingly evident that the gut microbiota, consisting of trillions of microorganisms in direct interface with the colon, plays a substantial role in CRC development and progression. Understanding the roles that individual microorganisms and complex microbial communities play in CRC pathogenesis, along with their attendant mechanisms, will help yield novel preventive and therapeutic interventions for CRC. In this Review, we discuss recent evidence concerning global perturbations of the gut microbiota in CRC, associations of specific microorganisms with CRC, the underlying mechanisms by which microorganisms potentially drive CRC development and the roles of complex microbial communities in CRC pathogenesis. While our understanding of the relationship between the microbiota and CRC has improved in recent years, our findings highlight substantial gaps in current research that need to be filled before this knowledge can be used to the benefit of patients.
Collapse
Affiliation(s)
- Maxwell T White
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
39
|
Kaliamoorthy S, Priya Sayeeram S, Gowdhaman N, Jayaraj M, Radhika B, Chellapandi S, Elumalai A, Archana SP, Raju K, Palla S. Association of Periodontal Red Complex Bacteria With the Incidence of Gastrointestinal Cancers: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e59251. [PMID: 38813341 PMCID: PMC11134483 DOI: 10.7759/cureus.59251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Porphyromonas gingivalis is the primary microbe in the "periodontal red complex" bacteria (PRCB) along with Tannerella forsythia and Treponema denticola, which are linked to periodontal disease (PD). These pathogens are also implicated in various systemic disorders, but their association with the incidence of gastrointestinal (GI) cancer is less explored. A systematic review followed by a meta-analysis was conducted as per standard guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) 2022) to find this association between GI cancers and PRCB after a literature search for full-text papers in the English language (between 2010 and 2023) in databases (Cochrane Library, PubMed, and Web of Science) with suitable keywords using the Boolean search strategy. Data extraction involved titles, abstracts, and full texts retrieved and scored by the modified Newcastle-Ottawa Scale. The data were analyzed by the Review Manager (RevMan 5.2, Cochrane Collaboration, Denmark). Standard Cochran Q test and I2 statistics (for heterogeneity) and a random effects model (pooled OR with 95% CI) were applied to report results. P. gingivalis among the PRCB was linked to GI cancers (OR: 2.16; 95% CI: 1.34-3.47). T. forsythia and T. denticola did not show meaningful associations as per existing evidence for GI cancers.
Collapse
Affiliation(s)
- Sriram Kaliamoorthy
- Department of Dentistry, Vinayaka Missions Medical College and Hospital, Vinayaka Missions Research Foundation, Karaikal, IND
| | - Sugantha Priya Sayeeram
- Department of Prosthodontics, Government Dental College and Hospital, The Tamil Nadu Dr. MGR Medical University, Pudukkottai, IND
| | - N Gowdhaman
- Departmentof Physiology, Dhanalakshmi Srinivasan Medical College and Hospital, The Tamil Nadu Dr. MGR Medical University, Perambalur, IND
| | - Merlin Jayaraj
- Department of Oral and Maxillofacial Pathology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - B Radhika
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Sugirtha Chellapandi
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Agila Elumalai
- Department of Periodontics, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Sai P Archana
- Department of Oral Medicine and Radiology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Kanmani Raju
- Department of Oral Medicine and Radiology, Chettinad Dental College and Research Institute, The Tamil Nadu Dr. MGR Medical University, Chennai, IND
| | - Santosh Palla
- Department of Oral Medicine and Radiology, Sun Dental Care, Chennai, IND
| |
Collapse
|
40
|
Kim S, Lee M, Kim NY, Kwon YS, Nam GS, Lee K, Kwon KM, Kim DK, Hwang IH. Oxidative tryptamine dimers from Corynebacterium durum directly target survivin to induce AIF-mediated apoptosis in cancer cells. Biomed Pharmacother 2024; 173:116335. [PMID: 38422661 DOI: 10.1016/j.biopha.2024.116335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Accumulating evidence indicates that microbial communities in the human body crucially affect health through the production of chemical messengers. However, the relationship between human microbiota and cancer has been underexplored. As a result of a biochemical investigation of the commensal oral microbe, Corynebacterium durum, we identified the non-enzymatic transformation of tryptamine into an anticancer compound, durumamide A (1). The structure of 1 was determined using LC-MS and NMR data analysis as bis(indolyl)glyoxylamide, which was confirmed using one-pot synthesis and X-ray crystallographic analysis, suggesting that 1 is an oxidative dimer of tryptamine. Compound 1 displayed cytotoxic activity against various cancer cell lines with IC50 values ranging from 25 to 35 μM. A drug affinity responsive target stability assay revealed that survivin is the direct target protein responsible for the anticancer effect of 1, which subsequently induces apoptosis-inducing factor (AIF)-mediated apoptosis. Inspired by the chemical structure and bioactivity of 1, a new derivative, durumamide B (2), was synthesized using another indole-based neurotransmitter, serotonin. The anticancer properties of 2 were similar to those of 1; however, it was less active. These findings reinforce the notion of human microbiota-host interplay by showing that 1 is naturally produced from the human microbial metabolite, tryptamine, which protects the host against cancer.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 38066, Republic of Korea
| | - Munseon Lee
- Department of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea
| | - Nam-Yi Kim
- Department of Pharmacology, School of Medicine, Dongguk University, Gyeongju, Gyeongsangbuk-do 38066, Republic of Korea
| | - Yun-Suk Kwon
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Jeju-do 63240, Republic of Korea
| | - Gi Suk Nam
- Department of Biomedical Laboratory Science, Honam University, 120, Honamdae-gil, Gwangsan-gu, Gwangju 62399, Republic of Korea
| | - Kyounghoon Lee
- Department of Chemical Education and Research Institute of Natural Sciences, Gyeongsang National University, Gyeongsangnam-do 52828, Republic of Korea
| | - Kang Mu Kwon
- Department of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea
| | - Dae Keun Kim
- Department of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea; Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| | - In Hyun Hwang
- Department of Pharmacy, Woosuk University, Wanju, Jeonbuk 55338, Republic of Korea; Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea.
| |
Collapse
|
41
|
Wang Z, Sun W, Hua R, Wang Y, Li Y, Zhang H. Promising dawn in tumor microenvironment therapy: engineering oral bacteria. Int J Oral Sci 2024; 16:24. [PMID: 38472176 DOI: 10.1038/s41368-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/06/2024] [Accepted: 01/07/2024] [Indexed: 03/14/2024] Open
Abstract
Despite decades of research, cancer continues to be a major global health concern. The human mouth appears to be a multiplicity of local environments communicating with other organs and causing diseases via microbes. Nowadays, the role of oral microbes in the development and progression of cancer has received increasing scrutiny. At the same time, bioengineering technology and nanotechnology is growing rapidly, in which the physiological activities of natural bacteria are modified to improve the therapeutic efficiency of cancers. These engineered bacteria were transformed to achieve directed genetic reprogramming, selective functional reorganization and precise control. In contrast to endotoxins produced by typical genetically modified bacteria, oral flora exhibits favorable biosafety characteristics. To outline the current cognitions upon oral microbes, engineered microbes and human cancers, related literatures were searched and reviewed based on the PubMed database. We focused on a number of oral microbes and related mechanisms associated with the tumor microenvironment, which involve in cancer occurrence and development. Whether engineering oral bacteria can be a possible application of cancer therapy is worth consideration. A deeper understanding of the relationship between engineered oral bacteria and cancer therapy may enhance our knowledge of tumor pathogenesis thus providing new insights and strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Zifei Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Wansu Sun
- Department of Stomatology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixue Hua
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yuanyin Wang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China.
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College & Hospital of Stomatology, Anhui Medical University, Hefei, China.
| |
Collapse
|
42
|
Periferakis A, Periferakis AT, Troumpata L, Dragosloveanu S, Timofticiuc IA, Georgatos-Garcia S, Scheau AE, Periferakis K, Caruntu A, Badarau IA, Scheau C, Caruntu C. Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction. Biomimetics (Basel) 2024; 9:154. [PMID: 38534839 DOI: 10.3390/biomimetics9030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/28/2024] Open
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Serban Dragosloveanu
- Department of Orthopaedics and Traumatology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Orthopaedics, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Iosif-Aliodor Timofticiuc
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Spyrangelos Georgatos-Garcia
- Tilburg Institute for Law, Technology, and Society (TILT), Tilburg University, 5037 DE Tilburg, The Netherlands
- Corvers Greece IKE, 15124 Athens, Greece
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P.), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
43
|
Jin X, You L, Qiao J, Han W, Pan H. Autophagy in colitis-associated colon cancer: exploring its potential role in reducing initiation and preventing IBD-Related CAC development. Autophagy 2024; 20:242-258. [PMID: 37723664 PMCID: PMC10813649 DOI: 10.1080/15548627.2023.2259214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
ABBREVIATIONS A. muciniphila: Akkermansia muciniphila; AIEC: adherent invasive Escherichia coli; AOM/DSS: azoxymethane-dextran sodium sulfate; ATG: autophagy related; BECN1: beclin1, autophagy related; CAC: colitis-associated colon cancer; CCDC50: coiled-coil domain containing 50; CLDN2: claudin 2; CoPEC: colibactin-producing Escherichia coli; CRC: colorectal cancer; DAMPs: danger/damage-associated molecular patterns; DC: dendritic cell; DSS: dextran sulfate sodium; DTP: drug-resistant persistent; ER: endoplasmic reticulum; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IKK: IkappaB kinase; IL: interleukin; IRGM1: immunity-related GTPase family M member 1; ISC: intestinal stem cell; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MDP: muramyl dipeptide; MELK: maternal embryonic leucine zipper kinase; MHC: major histocompatibility complex; miRNA: microRNA; MTOR: mechanistic target of rapamycin kinase; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NRBF2: nuclear receptor binding factor 2; PAMPs: pathogen-associated molecular patterns; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PYCARD/ASC: PYD and CARD domain containing; RALGAPA2/RalGAPα2: Ral GTPase activating protein protein, alpha subunit 2 (catalytic); RIPK2/CARD3: receptor (TNFRSF)-interacting serine-threonine kinase 2; RIPK3: receptor-interacting serine-threonine kinase 3; ROS: reactive oxygen species; sCRC: sporadic colorectal cancer; SMARCA4/BRG1: SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 4; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; TNF/TNFA: tumor necrosis factor; ULK1: unc-51 like autophagy activating kinase 1; UPR: unfolded protein response; WT: wild-type.
Collapse
Affiliation(s)
- Xuanhong Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jincheng Qiao
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Hamada M, Inaba H, Nishiyama K, Yoshida S, Yura Y, Matsumoto‐Nakano M, Uzawa N. Transcriptomic analysis of Porphyromonas gingivalis-infected head and neck cancer cells: Identification of PLAU as a candidate prognostic biomarker. J Cell Mol Med 2024; 28:10.1111/jcmm.18167. [PMID: 38363001 PMCID: PMC10870695 DOI: 10.1111/jcmm.18167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Periodontal disease is a risk factor for head and neck squamous cell carcinoma (HNSCC), and Porphyromonas gingivalis, a major periodontal pathogen, has been identified as a specific and potentially independent microbial factor that increases the risk of cancer mortality. Gene expression in HNSCC due to P. gingivalis infection and how changes in gene expression affect the prognosis of HNSCC patients are not clarified. When P. gingivalis was cultured with HNSCC cells, it efficiently adhered to these cells and enhanced their invasive ability. A transcriptome analysis of P. gingivalis -infected HNSCC cells showed that genes related to migration, including CCL20, CITED2, CTGF, C8orf44-SGK3, DUSP10, EGR3, FUZ, HBEGF, IL1B, IL24, JUN, PLAU, PTGS2, P2RY1, SEMA7A, SGK1 and SIX2, were highly up- or down-regulated. The expression of up-regulated genes was examined using the expression data of HNSCC patients obtained from The Cancer Genome Atlas (TCGA) database, and the expression of 5 genes, including PLAU, was found to be higher in cancer tissue than in solid normal tissue. An analysis of protein-protein interactions revealed that these 5 genes formed a dense network. A Cox regression analysis showed that high PLAU expression levels were associated with a poor prognosis in patients with TCGA-HNSCC. Furthermore, the prognostic impact correlated with tumour size and the presence or absence of lymph node metastasis. Collectively, these results suggest the potential of PLAU as a molecular prognostic marker in HNSCC patients. Further in vivo and in vitro studies are needed to verify the findings of this study.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of Dentistry
| | - Hiroaki Inaba
- Department of Pediatric DentistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kyoko Nishiyama
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of Dentistry
| | - Sho Yoshida
- Department of Pediatric DentistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of Dentistry
| | - Michiyo Matsumoto‐Nakano
- Department of Pediatric DentistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of Dentistry
| |
Collapse
|
45
|
Niu C, Lv W, Zhu X, Dong Z, Yuan K, Jin Q, Zhang P, Li P, Mao M, Dong T, Chen Z, Luo J, Hou L, Zhang C, Hao K, Chen S, Huang Z. Intestinal Translocation of Live Porphyromonas gingivalis Drives Insulin Resistance. J Dent Res 2024; 103:197-207. [PMID: 38185909 DOI: 10.1177/00220345231214195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Periodontitis has been emphasized as a risk factor of insulin resistance-related systemic diseases. Accumulating evidence has suggested a possible "oral-gut axis" linking oral infection and extraoral diseases, but it remains unclear whether periodontal pathogens can survive the barriers of the digestive tract and how they play their pathogenic roles. The present study established a periodontitis mouse model through oral ligature plus Porphyromonas gingivalis inoculation and demonstrated that periodontitis aggravated diet-induced obesity and insulin resistance, while also causing P. gingivalis enrichment in the intestine. Metabolic labeling strategy validated that P. gingivalis could translocate to the gastrointestinal tract in a viable state. Oral administration of living P. gingivalis elicited insulin resistance, while administration of pasteurized P. gingivalis had no such effect. Combination analysis of metagenome sequencing and nontargeted metabolomics suggested that the tryptophan metabolism pathway, specifically indole and its derivatives, was involved in the pathogenesis of insulin resistance caused by oral administration of living P. gingivalis. Moreover, liquid chromatography-high-resolution mass spectrometry analysis confirmed that the aryl hydrocarbon receptor (AhR) ligands, mainly indole acetic acid, tryptamine, and indole-3-aldehyde, were reduced in diet-induced obese mice with periodontitis, leading to inactivation of AhR signaling. Supplementation with Ficz (6-formylindolo (3,2-b) carbazole), an AhR agonist, alleviated periodontitis-associated insulin resistance, in which the restoration of gut barrier function might play an important role. Collectively, these findings reveal that the oral-gut translocation of viable P. gingivalis works as a fuel linking periodontitis and insulin resistance, in which reduction of AhR ligands and inactivation of AhR signaling are involved. This study provides novel insight into the role of the oral-gut axis in the pathogenesis of periodontitis-associated comorbidities.
Collapse
Affiliation(s)
- C Niu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - W Lv
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, P. R. China
| | - X Zhu
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Z Dong
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - K Yuan
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Q Jin
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - P Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - P Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - M Mao
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - T Dong
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - Z Chen
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - J Luo
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| | - L Hou
- Department of Nursing, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - C Zhang
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - K Hao
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - S Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, P. R. China
- Department of Oral Implantology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, P. R. China
| | - Z Huang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, P. R. China
- National Clinical Research Center for Oral Diseases, National Center for Stomatology, Shanghai, P. R. China
- Shanghai Key Laboratory of Stomatology, Shanghai, P. R. China
| |
Collapse
|
46
|
Wang B, Deng J, Donati V, Merali N, Frampton AE, Giovannetti E, Deng D. The Roles and Interactions of Porphyromonas gingivalis and Fusobacterium nucleatum in Oral and Gastrointestinal Carcinogenesis: A Narrative Review. Pathogens 2024; 13:93. [PMID: 38276166 PMCID: PMC10820765 DOI: 10.3390/pathogens13010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Epidemiological studies have spotlighted the intricate relationship between individual oral bacteria and tumor occurrence. Porphyromonas gingivalis and Fusobacteria nucleatum, which are known periodontal pathogens, have emerged as extensively studied participants with potential pathogenic abilities in carcinogenesis. However, the complex dynamics arising from interactions between these two pathogens were less addressed. This narrative review aims to summarize the current knowledge on the prevalence and mechanism implications of P. gingivalis and F. nucleatum in the carcinogenesis of oral squamous cell carcinoma (OSCC), colorectal cancer (CRC), and pancreatic ductal adenocarcinoma (PDAC). In particular, it explores the clinical and experimental evidence on the interplay between P. gingivalis and F. nucleatum in affecting oral and gastrointestinal carcinogenesis. P. gingivalis and F. nucleatum, which are recognized as keystone or bridging bacteria, were identified in multiple clinical studies simultaneously. The prevalence of both bacteria species correlated with cancer development progression, emphasizing the potential impact of the collaboration. Regrettably, there was insufficient experimental evidence to demonstrate the synergistic function. We further propose a hypothesis to elucidate the underlying mechanisms, offering a promising avenue for future research in this dynamic and evolving field.
Collapse
Affiliation(s)
- Bing Wang
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Juan Deng
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
| | - Valentina Donati
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Unit of Pathological Anatomy 2, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| | - Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK; (N.M.); (A.E.F.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, NHS Foundation Trust, Egerton Road, Guildford GU2 7XX, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health Medical Science, University of Surrey, Guilford GU2 7WG, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, Cancer Center Amsterdam, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; (B.W.); (J.D.); (V.D.); (E.G.)
- Fondazione Pisana per la Scienza, 56100 Pisa, Italy
| | - Dongmei Deng
- Department of Prevention Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universitreit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
47
|
Si Y, Liu L, Fan Z. Mechanisms and effects of NLRP3 in digestive cancers. Cell Death Discov 2024; 10:10. [PMID: 38182564 PMCID: PMC10770122 DOI: 10.1038/s41420-023-01783-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Inflammasomes are thought to be important mediators of host defense against microbial pathogens and maintenance of gastrointestinal tract homeostasis. They can modulate caspase-1 to promote IL-18 and IL-1β secretion and promote phagocytosis induced by bacterial pathogens. NLRP3 is an inflammasome comprising a multiprotein complex assembled by pattern recognition receptors in the cell cytoplasm. It is a crucial component of the innate immune system. Dysregulation of NLRP3 may contribute to inflammatory diseases and intestinal cancers. Recent research suggests that NLRP3 plays an essential role in tumor development; therefore, intensive study of its mechanism is warranted as it could play a key role in the treatment of digestive system tumors. In this review, we discuss the mechanism and role of NLRP3 in tumors of the digestive system and response strategies to modulate NLRP3 for potential use in tumor treatment.
Collapse
Affiliation(s)
- Yuxin Si
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lei Liu
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zhe Fan
- Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.
| |
Collapse
|
48
|
Wang P, Yu H, Gao X, Guo Z, Zhang Z, Wang Z. Identification of Crosstalk Genes between Lung Adenocarcinoma and Periodontitis. Curr Med Chem 2024; 31:6542-6553. [PMID: 38173198 DOI: 10.2174/0109298673273414231101082153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) represents a significant global health issue. Smoking contributes to the development of periodontitis and LUAD. The connections between the two are still ambiguous. METHODS Based on RNA expression data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, differentially expressed genes (DEGs) in Periodontitis and LUAD were collected. Protein-protein interaction (PPI) networks were produced by mining genes intersecting with crossover DEGs. Genes in the subnetwork and the top 15 genes of the topology score were defined as the crosstalk gene. Feature selection and diagnostic model construction were conducted based on Recursive Feature Elimination (RFE) and support vector machines (SVM). Additionally, we analyzed the immune cells and signaling pathways influenced by the crosstalk gene. RESULTS A total of 29 crossover DEGs between Periodontitis and LUAD were filtered, with 20 genes interacting with them in the PPI network. Five subnetworks with similar interaction patterns in the PPI network were detected. Based on the network topology analysis, genes ranking in the top 15 were used to take the intersection with those genes in the 5 subnetworks. Twelve intersecting genes were identified. Based on RFE and SVM algorithms, FKBP11 and MMP13 were considered as the Crosstalk genes for both Periodontitis and LUAD. The diagnostic model composed of FKBP11 and MMP13 showed excellent diagnostic potential. In addition, we found that FKBP11 and MMP13 influenced Macrophages, M1, T cells, CD8 activity, immune-related pathways, and cell cycle pathways. CONCLUSION We identified the crosstalk genes (FKBP11 and MMP13) between periodontitis and LUAD. The two genes affected the comorbidity status between the two diseases through immune cell activity.
Collapse
Affiliation(s)
- Pengcheng Wang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100000, China
| | - Hui Yu
- Department of Stomatology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116000, China
| | - Xiaoli Gao
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100000, China
| | - Ziyi Guo
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100000, China
| | - Zheng Zhang
- Department of Periodontology, Tianjin Stomatological Hospital, Nankai University, Tianjin, 300000, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100000, China
| |
Collapse
|
49
|
Díaz-Basabe A, Lattanzi G, Perillo F, Amoroso C, Baeri A, Farini A, Torrente Y, Penna G, Rescigno M, Ghidini M, Cassinotti E, Baldari L, Boni L, Vecchi M, Caprioli F, Facciotti F, Strati F. Porphyromonas gingivalis fuels colorectal cancer through CHI3L1-mediated iNKT cell-driven immune evasion. Gut Microbes 2024; 16:2388801. [PMID: 39132842 PMCID: PMC11321422 DOI: 10.1080/19490976.2024.2388801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
The interaction between the gut microbiota and invariant Natural Killer T (iNKT) cells plays a pivotal role in colorectal cancer (CRC). The pathobiont Fusobacterium nucleatum influences the anti-tumor functions of CRC-infiltrating iNKT cells. However, the impact of other bacteria associated with CRC, like Porphyromonas gingivalis, on their activation status remains unexplored. In this study, we demonstrate that mucosa-associated P. gingivalis induces a protumour phenotype in iNKT cells, subsequently influencing the composition of mononuclear-phagocyte cells within the tumor microenvironment. Mechanistically, in vivo and in vitro experiments showed that P. gingivalis reduces the cytotoxic functions of iNKT cells, hampering the iNKT cell lytic machinery through increased expression of chitinase 3-like-1 protein (CHI3L1). Neutralization of CHI3L1 effectively restores iNKT cell cytotoxic functions suggesting a therapeutic potential to reactivate iNKT cell-mediated antitumour immunity. In conclusion, our data demonstrate how P. gingivalis accelerates CRC progression by inducing the upregulation of CHI3L1 in iNKT cells, thus impairing their cytotoxic functions and promoting host tumor immune evasion.
Collapse
Affiliation(s)
- Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovica Baldari
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Boni
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Strati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
50
|
Gao S, Zhang Z, Sun K, Li MX, Qi YJ. Upper gastrointestinal tract microbiota with oral origin in relation to oesophageal squamous cell carcinoma. Ann Med 2023; 55:2295401. [PMID: 38151037 PMCID: PMC10763922 DOI: 10.1080/07853890.2023.2295401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction: Poor oral hygiene is linked to high risks of many systemic diseases, including cancers. Oral dysbiosis is closely associated with poor oral hygiene, causing tooth loss, gingivitis, and periodontitis. We provide a summary of studies and discuss the risk factors for oesophageal squamous cell carcinoma (ESCC) from a microbial perspective in this review.Methods: A literature search of studies published before December 31, 2022 from PubMed, Web of Science, and The Cochrane Library was performed. The search strategies included the following keywords: (1) oral care, oral health, oral hygiene, dental health, dental hygiene, tooth loss, teeth loss, tooth absence, missing teeth, edentulism, tooth brushing, mouthwash, and tooth cleaning; (2) esophageal, esophagus, oesophagus, and oesophageal; (3) cancer, carcinoma, tumor, and neoplasm.Discussion: Poor oral health, indicated by infrequent tooth brushing, chronic periodontitis, and tooth loss, has been associated with an increased risk of squamous dysplasia and ESCC. Oral microbial diversity and composition are profoundly dysregulated during oesophageal tumorigenesis. Similar to the oral microbiota, the oesophageal microbiota varies distinctly in multiple bacterial taxa in ESCC and gastric cardia adenocarcinoma, both of which have high co-occurrence rates in the "Oesophageal Cancer Belt". In addition, the potential roles of oncogenic viruses in ESCC have also been discussed. We also briefly explore the potential mechanisms underlying the tumor-promoting role of dysregulated microbiota for the development of therapeutic targeting strategies.Conclusion: Poor oral health is an established risk indicator of ESCC. The dysbiosis of microbiota in upper gastrointestinal tract that highly resembles the oral microbial ecosystem but with distinct features at individual sites contributes to the development and progression of ESCC.
Collapse
Affiliation(s)
- Shegan Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Zichao Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Kui Sun
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| | - Meng-Xiang Li
- Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang, China
| | - Yi-Jun Qi
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|