1
|
McGrath CB, Shreves AH, Shanahan MR, Guard HE, Nhliziyo MV, Pernar CH, Penney KL, Lotan TL, Fiorentino M, Mucci LA, Stopsack KH. Etiology of prostate cancer with the TMPRSS2:ERG fusion: A systematic review of risk factors. Int J Cancer 2025; 156:1898-1908. [PMID: 39663641 PMCID: PMC11924303 DOI: 10.1002/ijc.35279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024]
Abstract
The most common somatic alteration in primary prostate cancer is the TMPRSS2:ERG gene fusion, which may be caused or promoted by distinct etiologic factors. The objective of this systematic review was to assess epidemiologic evidence on etiologic factors for prostate cancer by tumor TMPRSS2:ERG fusion status in human populations. Of 3071 publications identified, 19 cohort or case-control studies from six distinct study populations were included in this systematic review. Etiologic factors included germline genetic variants, circulating hormones, and dietary and lifestyle factors. Taller height, higher total and free testosterone levels, and fewer trinucleotide repeats in AR were possibly associated with higher risk of TMPRSS2:ERG-positive prostate cancer. Excess body weight, greater vigorous physical activity, higher lycopene intake, and the use of calcium channel blockers were associated with lower risk of TMPRSS2:ERG-positive prostate cancer. Diabetes and family history of prostate cancer were associated with both TMPRSS2:ERG-positive and TMPRSS2:ERG-negative prostate cancer. Prostate cancer germline variants had suggestive differential associations with TMPRSS2:ERG-positive or TMPRSS2:ERG-negative prostate cancer. However, results were based on few distinct study populations and generally had low precision, underscoring the need for replication. In conclusion, prostate cancer with TMPRSS2:ERG fusion is an etiologically distinct subtype that may be, in part, preventable by addressing modifiable and hormonally acting etiologic factors that align with the established mechanistic role of TMPRSS2:ERG in androgen, insulin, antioxidant, and growth factor pathways.
Collapse
Affiliation(s)
- Colleen B McGrath
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alaina H Shreves
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Megan R Shanahan
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Hannah E Guard
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Manelisi V Nhliziyo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Claire H Pernar
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelangelo Fiorentino
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Discovery Sciences, American Cancer Society, Atlanta, GA, USA
| | - Konrad H Stopsack
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology-BIPS and Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
2
|
M A Basher AR, Hallinan C, Lee K. Heterogeneity-preserving discriminative feature selection for disease-specific subtype discovery. Nat Commun 2025; 16:3593. [PMID: 40234411 PMCID: PMC12000357 DOI: 10.1038/s41467-025-58718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Disease-specific subtype identification can deepen our understanding of disease progression and pave the way for personalized therapies, given the complexity of disease heterogeneity. Large-scale transcriptomic, proteomic, and imaging datasets create opportunities for discovering subtypes but also pose challenges due to their high dimensionality. To mitigate this, many feature selection methods focus on selecting features that distinguish known diseases or cell states, yet often miss features that preserve heterogeneity and reveal new subtypes. To overcome this gap, we develop Preserving Heterogeneity (PHet), a statistical methodology that employs iterative subsampling and differential analysis of interquartile range, in conjunction with Fisher's method, to identify a small set of features that enhance subtype clustering quality. Here, we show that this method can maintain sample heterogeneity while distinguishing known disease/cell states, with a tendency to outperform previous differential expression and outlier-based methods, indicating its potential to advance our understanding of disease mechanisms and cell differentiation.
Collapse
Affiliation(s)
- Abdur Rahman M A Basher
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Caleb Hallinan
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Kwonmoo Lee
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Liu SV, Nagasaka M, Atz J, Solca F, Müllauer L. Oncogenic gene fusions in cancer: from biology to therapy. Signal Transduct Target Ther 2025; 10:111. [PMID: 40223139 PMCID: PMC11994825 DOI: 10.1038/s41392-025-02161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 04/15/2025] Open
Abstract
Oncogenic gene fusions occur across a broad range of cancers and are a defining feature of some cancer types. Cancers driven by gene fusion products tend to respond well to targeted therapies, where available; thus, detection of potentially targetable oncogenic fusions is necessary to select optimal treatment. Detection methods include non-sequencing methods, such as fluorescence in situ hybridization and immunohistochemistry, and sequencing methods, such as DNA- and RNA-based next-generation sequencing (NGS). While NGS is an efficient way to analyze multiple genes of interest at once, economic and technical factors may preclude its use in routine care globally, despite several guideline recommendations. The aim of this review is to present a summary of oncogenic gene fusions, with a focus on fusions that affect tyrosine kinase signaling, and to highlight the importance of testing for oncogenic fusions. We present an overview of the identification of oncogenic gene fusions and therapies approved for the treatment of cancers harboring gene fusions, and summarize data regarding treating fusion-positive cancers with no current targeted therapies and clinical studies of fusion-positive cancers. Although treatment options may be limited for patients with rare alterations, healthcare professionals should identify patients most likely to benefit from oncogenic gene fusion testing and initiate the appropriate targeted therapy to achieve optimal treatment outcomes.
Collapse
Affiliation(s)
- Stephen V Liu
- Division of Hematology and Oncology, Georgetown University, Washington, DC, USA.
| | - Misako Nagasaka
- Division of Hematology Oncology, Department of Medicine, University of California Irvine School of Medicine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Judith Atz
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co.KG, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
4
|
Gabaev I, Rowland A, Jovanovic E, Gawden-Bone CM, Crozier TWM, Teixeira-Silva A, Greenwood EJD, Gerber PP, Wit N, Nathan JA, Matheson NJ, Lehner PJ. CRISPR-Cas9 genetic screens reveal regulation of TMPRSS2 by the Elongin BC-VHL complex. Sci Rep 2025; 15:11907. [PMID: 40195420 PMCID: PMC11976923 DOI: 10.1038/s41598-025-95644-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
The TMPRSS2 cell surface protease is used by a broad range of respiratory viruses to facilitate entry into target cells. Together with ACE2, TMPRSS2 represents a key factor for SARS-CoV-2 infection, as TMPRSS2 mediates cleavage of viral spike protein, enabling direct fusion of the viral envelope with the host cell membrane. Since the start of the COVID-19 pandemic, TMPRSS2 has gained attention as a therapeutic target for protease inhibitors which would inhibit SARS-CoV-2 infection, but little is known about TMPRSS2 regulation, particularly in cell types physiologically relevant for SARS-CoV-2 infection. Here, we performed an unbiased genome-wide CRISPR-Cas9 library screen, together with a library targeted at epigenetic modifiers and transcriptional regulators, to identify cellular factors that modulate cell surface expression of TMPRSS2 in human colon epithelial cells. We find that endogenous TMPRSS2 is regulated by the Elongin BC-VHL complex and HIF transcription factors. Depletion of Elongin B or treatment of cells with PHD inhibitors resulted in downregulation of TMPRSS2 and inhibition of SARS-CoV-2 infection. We show that TMPRSS2 is still utilised by SARS-CoV-2 Omicron variants for entry into colonic epithelial cells. Our study enhances our understanding of the regulation of endogenous surface TMPRSS2 in cells physiologically relevant to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexandra Rowland
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Emilija Jovanovic
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christian M Gawden-Bone
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Thomas W M Crozier
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Ana Teixeira-Silva
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Edward J D Greenwood
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Pehuén Pereyra Gerber
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Niek Wit
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - James A Nathan
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK.
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
| |
Collapse
|
5
|
Yi H, Zhang S, Swinderman J, Wang Y, Kanakaveti V, Hung KL, Wong ITL, Srinivasan S, Curtis EJ, Bhargava-Shah A, Li R, Jones MG, Luebeck J, Zhao Y, Belk JA, Kraft K, Shi Q, Yan X, Pritchard SK, Liang FM, Felsher DW, Gilbert LA, Bafna V, Mischel PS, Chang HY. EcDNA-borne PVT1 fusion stabilizes oncogenic mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646515. [PMID: 40236070 PMCID: PMC11996508 DOI: 10.1101/2025.04.01.646515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Extrachromosomal DNA (ecDNA) amplifications are prevalent drivers of human cancers. We show that ecDNAs exhibit elevated structural variants leading to gene fusions that produce oncogene fusion transcripts. The long noncoding RNA (lncRNA) gene PVT1 is the most recurrent structural variant across cancer genomes, with PVT1-MYC fusions arising most frequently on ecDNA. PVT1 exon 1 is the predominant 5' partner fused to MYC or other oncogenes on the 3' end. Mechanistic studies demonstrate that PVT1 exon 1 confers enhanced RNA stability for fusion transcripts, which requires PVT1 exon 1 interaction with SRSF1 protein. Genetic rescue of MYC-addicted cancer models and isoform-specific single-cell RNA sequencing of tumors reveal that PVT1-MYC better supports MYC dependency and better activates MYC target genes in vivo . Thus, the mutagenic landscape of ecDNA contributes to genome instability and generates chimeric fusions of lncRNA and mRNA genes, selecting PVT1 5' region as a stabilizer of oncogene mRNAs.
Collapse
|
6
|
Heo Y, Kim WJ, Cho YJ, Jung JW, Kim NS, Choi IY. Advances in cancer genomics and precision oncology. Genes Genomics 2025; 47:399-416. [PMID: 39849190 DOI: 10.1007/s13258-024-01614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Next-generation sequencing has revolutionized genome science over the last two decades. Indeed, the wealth of sequence information on our genome has deepened our understanding on cancer. Cancer is a genetic disease caused by genetic or epigenetic alternations that affect the expression of genes that control cell functions, particularly cell growth and division. Utilization of next-generation sequencing in cancer gene panels has enabled the identification of actionable gene alterations in cancer patients to guide personalized precision medicine. OBJECTIVE The aim is to provide information that can identify actionable gene alterations, enabling personalized precision medicine for cancer patients. RESULTS & DISCUSSION Equipped with next-generation sequencing techniques, international collaboration programs on cancer genomics have identified numerous mutations, gene fusions, microsatellite variations, copy number variations, and epigenetics changes that promote the transformation of normal cells into tumors. Cancer classification has traditionally been based on cell type or tissue-of-origin and the morphological characteristics of the cancer. However, interactive genomic analyses have currently reclassified cancers based on systemic molecular-based taxonomy. Although all cancer-causing genes and mechanisms have yet to be completely understood or identified, personalized or precision medicine is now currently possible for some forms of cancer. Unlike the "one-size-fits-all" approach of traditional medicine, precision medicine allows for customized or personalized treatment based on genomic information. CONCLUSION Despite the availability of numerous cancer gene panels, technological innovation in genomics and expansion of knowledge on the cancer genome will allow precision oncology to manage even more types of cancers.
Collapse
Affiliation(s)
- Yonjong Heo
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Woo-Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Won Jung
- Genetic Sciences Group, Thermo Fisher Scientific Solutions Korea Co., Ltd., Seoul, 06349, Republic of Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- NBIT Co., Ltd., Chuncheon, 24341, Republic of Korea.
| | - Ik-Young Choi
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
7
|
Lee J, Park J, Hur Y, Um D, Choi HS, Park J, Kim Y, Lee JS, Choi K, Kim E, Park YB, Choi JM, Kim TK, Lee Y. ETV5 reduces androgen receptor expression and induces neural stem-like properties during neuroendocrine prostate cancer development. Proc Natl Acad Sci U S A 2025; 122:e2420313122. [PMID: 40117308 PMCID: PMC11962414 DOI: 10.1073/pnas.2420313122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Neuroendocrine prostate cancer (NEPC), an aggressive subtype induced by hormone therapy, lacks effective treatments. This study explored the role of E26 transformation-specific variant 5 (ETV5) in NEPC development. Analysis of multiple prostate cancer datasets revealed that NEPC is characterized by significantly elevated ETV5 expression compared to other subtypes. ETV5 expression increased progressively under hormone therapy through epigenetic modifications. ETV5 induced neural stem-like features in prostate cancer cells and facilitated their differentiation into NEPC under hormone treatment conditions, both in vitro and in vivo. Our molecular mechanistic study identified PBX3 and TLL1 as target genes of ETV5 that contribute to ETV5 overexpression-induced castration resistance and stemness. Notably, obeticholic acid, identified as an ETV5 inhibitor in this study, exhibited promising efficacy in suppressing NEPC development. This study highlights ETV5 as a key transcription factor that facilitates NEPC development and underscores its potential as a therapeutic target for this aggressive cancer subtype.
Collapse
Affiliation(s)
- Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jiho Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yunjung Hur
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Hyung-Seok Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Joonyoung Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yewon Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Jeon-Soo Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Kyuha Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Eunjeong Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu41566, Republic of Korea
| | - Young Bin Park
- Calici Co., Ltd., Korea, Daejeon34134, Republic of Korea
| | - Jae-Mun Choi
- Calici Co., Ltd., Korea, Daejeon34134, Republic of Korea
- Department of Bio-Artificial Intelligence Convergence, Chungnam National University, Daejeon34134, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong30019, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul03722, Republic of Korea
| |
Collapse
|
8
|
Al-Obaidy KI, Cheng L. Application of RNA sequencing in urologic malignancies: Advances and challenges. Urol Oncol 2025:S1078-1439(25)00092-4. [PMID: 40121105 DOI: 10.1016/j.urolonc.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025]
Abstract
RNA sequencing became a key tool in identifying the differences between cells and their functions, aiding in the recognition of the functional elements disrupted during the disease process. In urologic malignancies, many studies aiming to provide comprehensive molecular classifications through the assessment of RNA expression or fusion analysis have been published. The distinctive presence of these molecular alterations related to cancer development, growth, and survival and the discoveries of these breakthrough studies provide insight into the development of personalized management and aid in the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Khaleel I Al-Obaidy
- McLaren Pathology Group, McLaren Health Care, Flint, MI; Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, MI.
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Department of Surgery (Urology), Brown University Warren Alpert Medical School, The Legorreta Cancer Center at Brown University, and Brown University Health, Providence, RI.
| |
Collapse
|
9
|
Plas S, Melchior F, Aigner GP, Frantzi M, Pencik J, Kafka M, Heidegger I. The impact of urine biomarkers for prostate cancer detection-A systematic state of the art review. Crit Rev Oncol Hematol 2025; 210:104699. [PMID: 40107435 DOI: 10.1016/j.critrevonc.2025.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) screening primarily relies on Prostate-Specific Antigen (PSA), which has low specificity and therefore leads to unnecessary biopsies. Consequently, there is a growing need for, ideally, non-invasive biomarkers. Liquid biopsy, a diagnostic approach analyzing circulating tumor components in body fluids, has emerged as a promising diagnostic tool for various cancers, including PCa. METHODS To evaluate recent evidence on urine-based biomarkers for the detection of PCa, we conducted a systematic review in accordance with the PRISMA guidelines. Our literature search identified a total of 286 studies, of which 66 met our inclusion criteria (men suspected of PCa with no prior history of PCa). After assessing the risk of bias using the QUADAS-2 tool, studies on five distinct urinary biomarker tests were included for further analysis. RESULTS Tests that do not rely on digital rectal examination (non-DRE), such as Exosome Dx Prostate IntelliScore (EPI) and Protexam Prostate Status Management (PSM)/Prostate Check-Up (PSU), demonstrated strong performance in detecting PCa, particularly clinically significant PCa. Meanwhile, the MyProstateScore test (MPS) showed the highest efficacy among tests utilizing urine samples collected post-DRE. Unfortunately, the performance of the biomarker test with the most available studies, PCA3 ProGensa® Score, was underwhelming with only moderate sensitivity and specificity. CONCLUSIONS Despite promising results from various urine-based biomarker tests, we are currently unable to recommend one specific test for implementation into clinical practice. The broad heterogeneity of the studies conducted hindered the ability to perform a meta-analysis, and prospective randomized trials providing clinical evidence are still lacking.
Collapse
Affiliation(s)
- Stefan Plas
- Medical University of Innsbruck, Department of Urology, Innsbruck, Austria
| | - Felix Melchior
- Medical University of Innsbruck, Department of Urology, Innsbruck, Austria
| | - Gerhard P Aigner
- Medical University of Innsbruck, Department of Urology, Innsbruck, Austria
| | - Maria Frantzi
- Department of Biomarker Research, Mosaiques diagnostics GmbH, Hannover, Germany
| | - Jan Pencik
- Iambic Therapeutics, 5627 Oberlin Drive, San Diego, CA 92121, USA
| | - Mona Kafka
- Medical University of Innsbruck, Department of Urology, Innsbruck, Austria
| | - Isabel Heidegger
- Medical University of Innsbruck, Department of Urology, Innsbruck, Austria.
| |
Collapse
|
10
|
Bugoye FC, Torrorey-Sawe R, Biegon R, Dharsee N, Mafumiko F, Kibona H, Aboud S, Patel K, Mining S. Exploring therapeutic applications of PTEN, TMPRSS2:ERG fusion, and tumour molecular subtypes in prostate cancer management. Front Oncol 2025; 15:1521204. [PMID: 40165885 PMCID: PMC11956161 DOI: 10.3389/fonc.2025.1521204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Background Prostate cancer is defined by the suppression of genes that suppress tumours and the activation of proto-oncogenes. These are the hallmarks of prostate cancer, and they have been linked to numerous genomic variations, which lead to unfavourable treatment outcomes. Prostate cancer can be categorised into various risk groups of tumour molecular subtypes grounded in the idea of genomic structural variations connected to TMPRSS2:ERG fusion and loss of PTEN. Research suggests that certain genomic alterations may be more prevalent or exhibit different patterns in prostate cancer tumours across populations. Studies have reported a higher frequency of PTEN loss and TMPRSS2:ERG fusion in prostate tumours of Black/African American men, which may contribute to the more aggressive nature of the disease in this population. Thus, therapeutically important information can be obtained from these structural variations, including correlations with poor prognosis and disease severity. Methods Peer-reviewed articles from 1998 to 2024 were sourced from PubMed and Google Scholar. During the review process, the following search terms were employed: "Tumour suppressor genes OR variations OR alterations OR oncogenes OR diagnostics OR ethnicity OR biomarkers OR prostate cancer genomics OR prostate cancer structural variations OR tumour and molecular subtypes OR therapeutic implications OR immunotherapy OR immunogenetics." Results There was a total of 13,012 results for our search query: 5,903 publications from Google Scholar with the patent and citation unchecked filer options, and 7127 articles from PubMed with the abstract, free full text, and full-text options selected. Unpublished works were not involved. Except for four articles published between 1998 and 1999, all other selected articles published in 2000 and later were considered. However, papers with irrelevant information or redundant or duplicate content were not chosen for this review. Thus, 134 met the inclusion criteria and were ultimately retained for this review. Conclusion This review extracted 134 relevant articles about genomic structure variations in prostate cancer. Our findings demonstrate the importance of PTEN and TMPRSS2:ERG fusion and tumour molecular subtyping in prostate cancer precision medicine.
Collapse
Affiliation(s)
- Fidelis Charles Bugoye
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Rispah Torrorey-Sawe
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Richard Biegon
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Nazima Dharsee
- Clinical Research, Training and Consultancy Unit, Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Fidelice Mafumiko
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
| | - Herry Kibona
- Department of Urology, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Said Aboud
- Head Office, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Kirtika Patel
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Simeon Mining
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| |
Collapse
|
11
|
Basher ARMA, Hallinan C, Lee K. Heterogeneity-Preserving Discriminative Feature Selection for Disease-Specific Subtype Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.14.540686. [PMID: 38187596 PMCID: PMC10769187 DOI: 10.1101/2023.05.14.540686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The identification of disease-specific subtypes can provide valuable insights into disease progression and potential individualized therapies, important aspects of precision medicine given the complex nature of disease heterogeneity. The advent of high-throughput technologies has enabled the generation and analysis of various molecular data types, such as single-cell RNA-seq, proteomic, and imaging datasets, on a large scale. While these datasets offer opportunities for subtype discovery, they also pose challenges in finding subtype signatures due to their high dimensionality. Feature selection, a key step in the machine learning pipeline, involves selecting signatures that reduce feature size for more efficient downstream computational analysis. Although many existing methods focus on selecting features that differentiate known diseases or cell states, they often struggle to identify features that both preserve heterogeneity and reveal subtypes. To address this, we utilized deep metric learning-based feature embedding to explore the statistical properties of features crucial for preserving heterogeneity. Our analysis indicated that features with a notable difference in interquartile range (IQR) between classes hold important subtype information. Guided by this insight, we developed a statistical method called PHet (Preserving Heterogeneity), which employs iterative subsampling and differential analysis of IQR combined with Fisher's method to identify a small set of features that preserve heterogeneity and enhance subtype clustering quality. Validation on public single-cell RNA-seq and microarray datasets demonstrated PHet's ability to maintain sample heterogeneity while distinguishing known disease/cell states, with a tendency to outperform previous differential expression and outlier-based methods. Furthermore, an analysis of a single-cell RNA-seq dataset from mouse tracheal epithelial cells identified two distinct basal cell subtypes differentiating towards a luminal secretory phenotype using PHet-based features, demonstrating promising results in a real-data application. These results highlight PHet's potential to enhance our understanding of disease mechanisms and cell differentiation, contributing significantly to the field of personalized medicine.
Collapse
Affiliation(s)
- Abdur Rahman M. A. Basher
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Caleb Hallinan
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kwonmoo Lee
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Li S, Fang H, Wan L, Zhang X. Unraveling the Dual Role of circ-CBLB and ETS-1 in Rheumatoid Arthritis: Biomarkers and Therapeutic Targets. Int J Rheum Dis 2025; 28:e70167. [PMID: 40095292 DOI: 10.1111/1756-185x.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE To investigate the effects of circ-CBLB and ETS-1 on the proliferation, apoptosis, and inflammatory cytokine expression in the fibroblast-like synoviocytes (FLSs) from patients with rheumatoid arthritis (RA). METHODS Peripheral blood was collected from 15 pairs of healthy controls (HCs) and patients with RA to isolate peripheral blood mononuclear cells (PBMCs). mRNA expression of circ-CBLB and ETS-1 was determined using qRT-PCR. Levels of the inflammatory markers (ESR, CRP, CCP, and RF) were determined, and the 28-joint Disease Activity Score (DAS28) was calculated. For in vitro experiments, human FLS and RA-FLS were cultured, and constructs (pcDNA3.1/siRNA-circ-CBLB, pcDNA3.1/siRNA-ETS-1) were transfected into RA-FLS. Cotransfection of pcDNA3.1-circ-CBLB and siRNA-ETS-1 was undertaken to explore their combined effects. Levels of the key inflammatory cytokines (interleukin [IL]-4, IL-23, IL-13, and tumor necrosis factor [TNF]-α) were evaluated using qRT-PCR and enzyme-linked immunosorbent assays. Functional assays (CCK-8) were used to assess cell viability, apoptosis (flow cytometry), and migration. Western blotting was used to determine protein expression. RESULTS In vivo analysis showed significant downregulation of circ-CBLB and ETS-1 in PBMCs from patients with RA compared with the HCs, as confirmed using qRT-PCR. Correlation analysis indicated a positive association among circ-CBLB, ETS-1, and IL-4, while circ-CBLB and ETS-1 were negatively correlated with inflammatory markers (ESR, CRP, RF, CCP, DAS28, IL-23, and TNF-α). Receiver operating characteristic curve analysis suggested circ-CBLB and ETS-1 as potential biomarkers for high disease activity in RA. In vitro, circ-CBLB overexpression increased IL-4 levels while decreasing IL-23, IL-13, and TNF-α levels. Additionally, circ-CBLB inhibited the apoptosis of RA-FLS, prolonged the cell cycle, and reduced cell migration. ETS-1 negatively regulated circ-CBLB, indicating a feedback loop. CONCLUSION circ-CBLB and ETS-1 are downregulated in RA and correlate with inflammation and disease activity. They regulate each other bidirectionally. circ-CBLB reduces RA-FLS viability, promotes apoptosis, and inhibits migration by modulating cytokines. ETS-1 has similar effects, and interfering with its expression reverses the impact of circ-CBLB.
Collapse
Affiliation(s)
- Shu Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | | | - Lei Wan
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | | |
Collapse
|
13
|
Németh K, Báthory-Fülöp L, Kohánka A, Simon A, Tóth E, Melegh Z. TMPRSS2::ETS translocation in nonprostatic malignancies: an unexpected finding in thymic carcinoma and pulmonary adenocarcinoma. Virchows Arch 2025; 486:627-631. [PMID: 39283524 DOI: 10.1007/s00428-024-03927-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 12/11/2024]
Abstract
TMPRSS2::ETS fusions occur in about half of the prostate adenocarcinomas and are generally considered characteristic and even diagnostic of this tumour. Despite this fact, the frequency of this fusion is not well established in other tumour types. Incidental identification of a TMPRSS2::ETV1 fusion in a thymic squamous cell carcinoma prompted us to assess 1758 solid tumours by next-generation sequencing panel for TMPRSS2::ETS fusions, including 1690 non-prostatic malignancies. In addition to 28 of the 68 prostatic adenocarcinomas, we identified TMPRRS2::ETS fusion in two non-prostatic tumours, where a prostatic adenocarcinoma could be confidently excluded. Besides the TMPRSS2::ETV1 fusion identified in the thymic carcinoma, we also observed TMPRSS2::ERG fusion in pulmonary adenocarcinoma. Both patients were male, which would support an androgen-driven background. Our findings suggest that although at a low frequency, TMPRSS2::ETS fusion may occur in non-prostatic tumours, and sole reliance on its identification can potentially result in erroneous diagnostic conclusions.
Collapse
Affiliation(s)
- Kamilla Németh
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - László Báthory-Fülöp
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
- National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Andrea Kohánka
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Andrea Simon
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
| | - Erika Tóth
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary
- National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Zsombor Melegh
- Department of Surgical and Molecular Pathology, National Institute of Oncology, Budapest, Hungary.
- National Tumour Biology Laboratory, National Institute of Oncology, Budapest, Hungary.
| |
Collapse
|
14
|
Ding CKC, Greenland NY, Sirohi D, Lotan TL. Molecular Landscape of Aggressive Histologic Subtypes of Localized Prostate Cancer. Surg Pathol Clin 2025; 18:1-12. [PMID: 39890297 DOI: 10.1016/j.path.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Despite incredible progress in describing the molecular underpinnings of prostate cancer over the last decades, pathologic examination remains indispensable for predicting aggressive behavior in the localized setting. Beyond pathologic grade, specific histologic findings have emerged as critical prognostic or predictive indicators. Here, the authors review molecular correlates of aggressive histologic subtypes of prostate cancer in the localized setting, demonstrating that many of the signature molecular alterations found in metastatic disease-such as tumor suppressor gene loss and DNA repair defects-are enriched in primary disease with adverse histologic features, presaging aggressive behavior, and presenting opportunities for earlier germline screening or targeted therapies.
Collapse
Affiliation(s)
- Chien-Kuang C Ding
- Department of Pathology, University of California, San Francisco (UCSF), 1825 4th Street, M2370, San Francisco, CA 94158, USA
| | - Nancy Y Greenland
- Department of Pathology, University of California, San Francisco (UCSF), 1825 4th Street, M2370, San Francisco, CA 94158, USA
| | - Deepika Sirohi
- Department of Pathology, University of California, San Francisco (UCSF), 1825 4th Street, M2370, San Francisco, CA 94158, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Kral M, Kurfurstova D, Zemla P, Elias M, Bouchal J. New biomarkers and multiplex tests for diagnosis of aggressive prostate cancer and therapy management. Front Oncol 2025; 15:1542511. [PMID: 40115018 PMCID: PMC11923436 DOI: 10.3389/fonc.2025.1542511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 03/22/2025] Open
Abstract
Despite improving diagnostic possibilities, the incidence of prostate cancer is increasing, but we are not able to reduce the mortality rate. While PSA, 4K score, PCA3 and other urinary markers, ExoDX, SelectMDX, Confirm MDx or MiPS tests are used to identify potential prostate cancer carriers, Decipher, Prolaris or Oncotype DX tests are used to assess the aggressiveness of proven cancer in order to stratify patients for early or delayed treatment. More modern forms of treatment for advanced disease include second-generation antiandrogens and PARP inhibitors. By assessing genetic mutations (e.g. BRCA1, BRCA2 genes, single nucleotide polymorphism) or the presence of splice variants of the androgen receptor (ARV7), we are able to identify patients in whom the planned treatment may be expected to be ineffective and thus choose other treatment modalities. In the present review article, we offer a comprehensive overview of current diagnostic tests that find application in the diagnosis of early and advanced prostate cancer.
Collapse
Affiliation(s)
- Milan Kral
- Department of Urology, Medical Faculty, Palacký University and University Hospital Olomouc, Olomouc, Czechia
| | - Daniela Kurfurstova
- Department of Clinical and Molecular Pathology, Medical Faculty, Palacký University and University Hospital Olomouc, Olomouc, Czechia
| | - Pavel Zemla
- Department of Urology, Medical Faculty, Palacký University and University Hospital Olomouc, Olomouc, Czechia
| | - Martin Elias
- Department of Clinical and Molecular Pathology, Medical Faculty, Palacký University and University Hospital Olomouc, Olomouc, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Medical Faculty, Palacký University and University Hospital Olomouc, Olomouc, Czechia
- Institute of Molecular and Translational Medicine, Medical Faculty, Palacký University, Olomouc, Czechia
| |
Collapse
|
16
|
Qiu S, Li Y, Zhang Z, Li C, Wang H, Chen A, Yan Z, Liu Y, Li Z, Huang H, Liu Y, Seow Y, Chen R, Guo J, Wen S, Tian J, Zhang H, Liu R, Han G, Wang B, Wang Y, Niu Y, Yin H. Differentiation of high risk prostate cancer with a facile urinary exosome detection workflow. iScience 2025; 28:111896. [PMID: 39995874 PMCID: PMC11848465 DOI: 10.1016/j.isci.2025.111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/23/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Clear differentiation of high-grade and clinically insignificant prostate cancer (PCa) is critical for clinical decision-making. Here, we developed a proprietary urinary exosome isolation approach (EVLatch) and established a facile diagnostic workflow. We discovered that EEF1A1 levels, abundantly expressed on urinary exosomes, positively correlate to urinary exosome counts irrespective of source and collection time and demonstrated that EEF1A1 enables in-assay quantification of urinary exosomes. Importantly, a prostate cancer urinary EVLatch-based artificial intelligence diagnostics (PURE-AID) classification system utilizing PCA3, HOXC6, and DLX1 as targets with SPDEF for reference and EEF1A1 for quality checking, trained on 271 patients, achieved an area under the receiver operating characteristic curve (AUROC) of 0.76 in the test set of 351 patients. Combination of PURE-AID with prostate-specific antigen (PSA) and age increases AUROC to 0.80 and reduces 54.3% of unnecessary biopsies with 86.8% sensitivity. Our study provides a new classification system for differentiating high-grade PCa in a workflow- and patient-friendly manner.
Collapse
Affiliation(s)
- Shuai Qiu
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yue Li
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zheng Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Chunchang Li
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Haoyu Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ao Chen
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yan
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yang Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Zifei Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Hua Huang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yi Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yiqi Seow
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Republic of Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), Singapore 138673, Republic of Singapore
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jinhong Guo
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simeng Wen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Jing Tian
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Hongtuan Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Ranlu Liu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Gang Han
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Baolong Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yong Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yuanjie Niu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - HaiFang Yin
- State Key Laboratory of Experimental Hematology & The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Medical Technology & School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- China Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
17
|
Pencheva M, Manchorova-Veleva N, Baruh D, Rusinov G, Vangelov L. Analysis of Biomarker Levels in Nasopharyngeal Swabs, Serum, and Saliva Across Different Health Conditions. Life (Basel) 2025; 15:324. [PMID: 40003732 PMCID: PMC11857456 DOI: 10.3390/life15020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is associated with a wide variety of clinical manifestations. AIM This study aims to evaluate the levels of angiotensin-converting enzyme 2 (ACE2), metalloprotease 17 (ADAM17), Interleukin-17A (IL-17A), transmembrane serine protease 2 (TMPRSS2), apelin (AP), and vitamin D (VD) biomarkers in nasopharyngeal swab (NPS), serum, and saliva, as well as the change in their values depending on the health status of individuals. MATERIAL AND METHODS The analysis was performed by using enzyme-linked immunosorbent assay (ELISA) methods. RESULTS Comparing the levels of the investigated markers in saliva, we found significantly elevated ACE2 values in vaccinated patients, followed by those with severe COVID-19, compared to healthy, previously infected, and mild COVID-19 groups. For TMPRSS2, IL-17A, ADAM-17, and AP, values were significantly higher in all non-healthy groups (previously infected, mild, and severe COVID-19) compared to healthy individuals. Serum levels of VD were consistently low across all five studied groups, suggesting values below normal ranges. Analysis of marker data in saliva, NPS, and serum revealed a positive correlation between NPS and serum and saliva and serum, as well as between saliva and NPS for all studied markers. CONCLUSIONS In summary, monitoring changes in biomarkers present in Saliva holds promise as a predictive tool for various diseases. This approach enables the early implementation of preventive measures and protective strategies, potentially improving overall health outcomes.
Collapse
Affiliation(s)
- Mina Pencheva
- Department of Medical Physics and Biophysics, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Neshka Manchorova-Veleva
- Department of Operative Dentistry and Endodontics, Faculty of Dental Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.-V.); (L.V.)
| | - David Baruh
- Department of Software Engineering, Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, 1164 Sofia, Bulgaria;
| | - Georgi Rusinov
- Clinic of Infectious Diseases, University Hospital St. George JSC in Plovdiv, 4021 Plovdiv, Bulgaria;
| | - Lyubomir Vangelov
- Department of Operative Dentistry and Endodontics, Faculty of Dental Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (N.M.-V.); (L.V.)
| |
Collapse
|
18
|
Liao J, Liao J, Wang Y, Wang X, Chai X, Wang H, Xu L, Shan L, Xu X, Fu W, Pan P, Hou T, Sheng R, Li D. Discovery of N-(1,2,4-Thiadiazol-5-yl)benzo[ b]oxepine-4-carboxamide Derivatives as Novel Antiresistance Androgen Receptor Antagonists. J Med Chem 2025; 68:3445-3459. [PMID: 39848621 DOI: 10.1021/acs.jmedchem.4c02649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The ligand-binding pocket of the androgen receptor (AR) is the targeting site of all clinically used AR antagonists. However, various drug-resistant mutations emerged in the pocket. We previously reported a new targeting site at the dimer interface of AR (dimer interface pocket) and identified a novel antagonist M17-B15 that failed in oral administration. In this study, the head part of M17-B15 was substituted with divergent structures. Potent antagonist Z10 with benzo[b]oxepine was first identified. Subsequent structural optimization on the 2-oxopropyl moiety of Z10 generated the more powerful Y5 (IC50 = 0.04 μM). Out of the ordinary, Y5 demonstrated dual mechanisms of action, antagonized AR by disrupting AR dimerization, and induced AR degradation via the ubiquitin-proteasome pathway. Furthermore, Y5 exhibited excellent activity against variant drug-resistant AR mutants comparable to recently approved darolutamide. Furthermore, Y5 effectively suppressed the tumor growth of the LNCaP xenograft via oral administration, providing a potential novel therapeutic for drug-resistant prostate cancer.
Collapse
Affiliation(s)
- Jianing Liao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jinbiao Liao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xinyue Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Chai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huating Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Luhu Shan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Xiaohong Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Weitao Fu
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui 230601, China
| | - Peichen Pan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Tingjun Hou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rong Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321000, China
| | - Dan Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321000, China
| |
Collapse
|
19
|
Mohamed AO, Otifi H, Hassan H, Yousif AA, Mustafa SA, Elsiddig SA, Babker AM, Ali EI, Elhag OO. Exploring the efficacy of AMACR, ERG, and AR immunostains in prostatic adenocarcinoma and their association with novel grade groups. Eur J Histochem 2025; 69:4172. [PMID: 39931952 PMCID: PMC11864098 DOI: 10.4081/ejh.2025.4172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
The study examines the utility of AMACR, ERG, and AR immunostains in diagnosing prostatic adenocarcinoma (PCa) and assessing prognosis in comparison to the Gleason score and new WHO grading groups. Seventeen PCa biopsies and five benign prostatic hyperplasia (BPH) biopsies were analyzed. Immunoreactivity, scored from 1 to 3 based on percentage of positive cells and intensity of expression, was assessed, revealing 76.47% positivity for AMACR, 35.29% for ERG, and 94.12% for AR in PCa cases, with variable scores and intensity among markers and grade groups. AMACR sensitivity and ERG specificity were noted. Higher-grade PCa exhibited increased positivity for both markers, indicating prognostic significance. In BPH cases, AMACR showed positivity in 2 cases, ERG in 1, and AR in all cases, albeit with lower expression. Differential expression was observed among immunomarkers and grade groups of malignancy. AMACR and ERG stains serve as sensitive and specific markers for PCa diagnosis and prognosis. Their increasing positivity with higher-grade groups underscores prognostic value. These findings highlight the importance of immunostains in refining PCa diagnosis and prognostication.
Collapse
Affiliation(s)
- Andarawi O. Mohamed
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hassan Otifi
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hesham Hassan
- Pathology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Adil A. Yousif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saadalnour A. Mustafa
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Saudi Arabia
| | - Shawgi A. Elsiddig
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Asaad Ma Babker
- Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Elryah I. Ali
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Omer Osman Elhag
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, Omdurman Islamic University, Sudan
| |
Collapse
|
20
|
Haffner MC, Morris MJ, Ding CKC, Sayar E, Mehra R, Robinson B, True LD, Gleave M, Lotan TL, Aggarwal R, Huang J, Loda M, Nelson PS, Rubin MA, Beltran H. Framework for the Pathology Workup of Metastatic Castration-Resistant Prostate Cancer Biopsies. Clin Cancer Res 2025; 31:466-478. [PMID: 39589343 PMCID: PMC11790385 DOI: 10.1158/1078-0432.ccr-24-2061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Lineage plasticity and histologic transformation from prostate adenocarcinoma to neuroendocrine (NE) prostate cancer (NEPC) occur in up to 15% to 20% of patients with castration-resistant prostate cancer (CRPC) as a mechanism of treatment resistance and are associated with aggressive disease and poor prognosis. NEPC tumors typically display small cell carcinoma morphology with loss of androgen receptor (AR) expression and gain of NE lineage markers. However, there is a spectrum of phenotypes that are observed during the lineage plasticity process, and the clinical significance of mixed histologies or those that co-express AR and NE markers or lack all markers is not well defined. Translational research studies investigating NEPC have used variable definitions, making clinical trial design challenging. In this manuscript, we discuss the diagnostic workup of metastatic biopsies to help guide the reproducible classification of phenotypic CRPC subtypes. We recommend classifying CRPC tumors based on histomorphology (adenocarcinoma, small cell carcinoma, poorly differentiated carcinoma, other morphologic variant, or mixed morphology) and IHC markers with a priority for AR, NK3 homeobox 1, insulinoma-associated protein 1, synaptophysin, and cell proliferation based on Ki-67 positivity, with additional markers to be considered based on the clinical context. Ultimately, a unified workup of metastatic CRPC biopsies can improve clinical trial design and eventually practice.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Michael J. Morris
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chien-Kuang C. Ding
- Department of Anatomic Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Erolcan Sayar
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, Ann Arbor, MI, USA
- Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI, USA
| | - Brian Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Martin Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Tamara L. Lotan
- Departments of Pathology, Urology, Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rahul Aggarwal
- Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jiaoti Huang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mark A. Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern and Inselspital, Bern, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
21
|
Carouge E, Burnichon C, Figeac M, Sebda S, Vanpouille N, Vinchent A, Truong M, Duterque‐Coquillaud M, Tulasne D, Chotteau‐Lelièvre A. Functional interaction between receptor tyrosine kinase MET and ETS transcription factors promotes prostate cancer progression. Mol Oncol 2025; 19:474-495. [PMID: 39374163 PMCID: PMC11793009 DOI: 10.1002/1878-0261.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 10/09/2024] Open
Abstract
Prostate cancer, the most common malignancy in men, has a relatively favourable prognosis. However, when it spreads to the bone, the survival rate drops dramatically. The development of bone metastases leaves patients with aggressive prostate cancer, the leading cause of death in men. Moreover, bone metastases are incurable and very painful. Hepatocyte growth factor receptor (MET) and fusion of genes encoding E26 transformation-specific (ETS) transcription factors are both involved in the progression of the disease. ETS gene fusions, in particular, have the ability to induce the migratory and invasive properties of prostate cancer cells, whereas MET receptor, through its signalling cascades, is able to activate transcription factor expression. MET signalling and ETS gene fusions are intimately linked to high-grade prostate cancer. However, the collaboration of these factors in prostate cancer progression has not yet been investigated. Here, we show, using cell models of advanced prostate cancer, that ETS translocation variant 1 (ETV1) and transcriptional regulator ERG (ERG) transcription factors (members of the ETS family) promote tumour properties, and that activation of MET signalling enhances these effects. By using a specific MET tyrosine kinase inhibitor in a humanised hepatocyte growth factor (HGF) mouse model, we also establish that MET activity is required for ETV1/ERG-mediated tumour growth. Finally, by performing a comparative transcriptomic analysis, we identify target genes that could play a relevant role in these cellular processes. Thus, our results demonstrate for the first time in prostate cancer models a functional interaction between ETS transcription factors (ETV1 and ERG) and MET signalling that confers more aggressive properties and highlight a molecular signature characteristic of this combined action.
Collapse
Affiliation(s)
- Elisa Carouge
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Clémence Burnichon
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Martin Figeac
- US 41 – UAR 2014 – PLBSInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Shéhérazade Sebda
- US 41 – UAR 2014 – PLBSInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Nathalie Vanpouille
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Audrey Vinchent
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Marie‐José Truong
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Martine Duterque‐Coquillaud
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - David Tulasne
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| | - Anne Chotteau‐Lelièvre
- UMR9020 – UMR1277 – Canther – Cancer Heterogeneity, Plasticity and Resistance to TherapiesInstitut Pasteur de Lille, Univ. Lille, CNRS, Inserm, CHU LilleFrance
| |
Collapse
|
22
|
Smith SC, Melson JW, Quillin JM, Hiemenz MC, Tomlins SA, Wobker SE. A pathologist's primer on implementing new standard-of-care molecular biomarker testing for precision prostate cancer management. Am J Clin Pathol 2025:aqae186. [PMID: 39838622 DOI: 10.1093/ajcp/aqae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Affiliation(s)
- Steven C Smith
- Departments of Pathology and Surgery, VCU School of Medicine, VCU Massey Comprehensive Cancer Center, and Richmond VA Medical Center, Richmond, VA, United States
| | - John W Melson
- Department of Medicine, VCU School of Medicine and VCU Massey Comprehensive Cancer Center, Richmond, VA, United States
| | - John M Quillin
- Department of Pediatrics, VCU School of Medicine, Richmond, VA, United States
| | | | - Scott A Tomlins
- Strata Oncology and Departments of Pathology and Urology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Sara E Wobker
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
23
|
Budreika A, Phoenix JT, Kostlan RJ, Deegan CD, Ferrari MG, Young KS, Fanning SW, Kregel S. The Homeobox Transcription Factor NKX3.1 Displays an Oncogenic Role in Castration-Resistant Prostate Cancer Cells. Cancers (Basel) 2025; 17:306. [PMID: 39858088 PMCID: PMC11763476 DOI: 10.3390/cancers17020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PCa) is the second leading cause of cancer-related death in men. The increase in incidence rates of more advanced and aggressive forms of the disease year-to-year fuels urgency to find new therapeutic interventions and bolster already established ones. PCa is a uniquely targetable disease in that it is fueled by male hormones (androgens) that drive tumorigenesis via the androgen receptor or AR. Current standard-of-care therapies directly target AR and its aberrant signaling axis but resistance to these therapies commonly arises, and the mechanisms behind the onset of therapy-resistance are still elusive. Research has shown that even with resistant disease, AR remains the main driver of growth and survival of PCa, and AR target genes and cofactors may help mediate resistance to therapy. Here, we focused on a homeobox transcription factor that exhibits a close relationship with AR-NKX3.1. Though NKX3.1 is traditionally thought of as a tumor suppressor, it has been previously reported to promote cancer cell survival by cooperating with AR. The role of NKX3.1 as a tumor suppressor perhaps in early-stage disease also contradicts its profile as a diagnostic biomarker for advanced prostate cancer. METHODS We investigated the physical interaction between NKX3.1 and AR, a modulated NKX3.1 expression in prostate cancer cells via overexpression and knockdown and assayed subsequent viability and downstream target gene expression. RESULTS We find that the expression of NKX3.1 is maintained in advanced PCa, and it is often elevated because of aberrant AR activity. Transient knockdown experiments across various PCa cell line models reveal NKX3.1 expression is necessary for survival. Similarly, stable overexpression of NKX3.1 in PCa cell lines reveals an androgen insensitive phenotype, suggesting NKX3.1 is sufficient to promote growth in the absence of an AR ligand. CONCLUSIONS Our work provides new insight into NKX3.1's oncogenic influence on PCa and the molecular interplay of these transcription factors in models of late-stage prostate cancer.
Collapse
Affiliation(s)
- Audris Budreika
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - John T. Phoenix
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Raymond J. Kostlan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carleen D. Deegan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Marina G. Ferrari
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| | - Kristen S. Young
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sean W. Fanning
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| | - Steven Kregel
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| |
Collapse
|
24
|
Tang TM, Zhang Y, Kenney AM, Xie C, Xiao L, Siddiqui J, Srivastava S, Sanda MG, Wei JT, Feng Z, Tosoian JJ, Zheng Y, Chinnaiyan AM, Yu B. A simplified MyProstateScore2.0 for high-grade prostate cancer. Cancer Biomark 2025; 42:18758592241308755. [PMID: 40109218 DOI: 10.1177/18758592241308755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Background: The limited diagnostic accuracy of prostate-specific antigen screening for prostate cancer (PCa) has prompted innovative solutions, such as the state-of-the-art 18-gene urine test for clinically-significant PCa (MyProstateScore2.0 (MPS2)). Objective: We aim to develop a non-invasive biomarker test, the simplified MPS2 (sMPS2), which achieves similar state-of-the-art accuracy as MPS2 for predicting high-grade PCa but requires substantially fewer genes than the 18-gene MPS2 to improve its accessibility for routine clinical care. Methods: We grounded the development of sMPS2 in the Predictability, Computability, and Stability (PCS) framework for veridical data science. Under this framework, we stress-tested the development of sMPS2 across various data preprocessing and modeling choices and developed a stability-driven PCS ranking procedure for selecting the most predictive and robust genes for use in sMPS2. Results: The final sMPS2 model consisted of 7 genes and achieved a 0.784 AUROC (95% confidence interval, 0.742-0.825) for predicting high-grade PCa on a blinded external validation cohort. This is only 2.3% lower than the 18-gene MPS2, which is similar in magnitude to the 1-2% in uncertainty induced by different data preprocessing choices. Conclusions: The 7-gene sMPS2 provides a unique opportunity to expand the reach and adoption of non-invasive PCa screening.
Collapse
Affiliation(s)
- Tiffany M Tang
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ana M Kenney
- Department of Statistics, University of California, Irvine, Irvine, CA, USA
| | - Cassie Xie
- Department of Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Lanbo Xiao
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Javed Siddiqui
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Sanda
- Department of Urology, Emory University, Atlanta, GA, USA
| | - John T Wei
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Ziding Feng
- Department of Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jeffrey J Tosoian
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Yingye Zheng
- Department of Biostatistics, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Bin Yu
- Departments of Statistics and Electrical Engineering and Computer Science, University of California, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
25
|
Agostini M, Giacobbi E, Servadei F, Bishof J, Funke L, Sica G, Rovella V, Carilli M, Iacovelli V, Shi Y, Hou J, Candi E, Melino G, Cervelli G, Scimeca M, Mauriello A, Bove P. Unveiling the molecular profile of a prostate carcinoma: implications for personalized medicine. Biol Direct 2024; 19:146. [PMID: 39741346 PMCID: PMC11686862 DOI: 10.1186/s13062-024-00492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Prostate cancer is the most common diagnosed tumor and the fifth cancer related death among men in Europe. Although several genetic alterations such as ERG-TMPRSS2 fusion, MYC amplification, PTEN deletion and mutations in p53 and BRCA2 genes play a key role in the pathogenesis of prostate cancer, specific gene alteration signature that could distinguish indolent from aggressive prostate cancer or may aid in patient stratification for prognosis and/or clinical management of patients with prostate cancer is still missing. Therefore, here, by a multi-omics approach we describe a prostate cancer carrying the fusion of TMPRSS2 with ERG gene and deletion of 16q chromosome arm. RESULTS We have observed deletion of KDM6A gene, which may represent an additional genomic alteration to be considered for patient stratification. The cancer hallmarks gene signatures highlight intriguing molecular aspects that characterize the biology of this tumor by both a high hypoxia and immune infiltration scores. Moreover, our analysis showed a slight increase in the Tumoral Mutational Burden, as well as an over-expression of the immune checkpoints. The omics profiling integrating hypoxia, ROS and the anti-cancer immune response, optimizes therapeutic strategies and advances personalized care for prostate cancer patients. CONCLUSION The here data reported can lay the foundation for predicting a poor prognosis for the studied prostate cancer, as well as the possibility of targeted therapies based on the modulation of hypoxia, ROS, and the anti-cancer immune response.
Collapse
Affiliation(s)
- Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Julia Bishof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Likas Funke
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Giuseppe Sica
- Department of Surgical Science, University Tor Vergata, Viale Oxford 81, 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Marco Carilli
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Valerio Iacovelli
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy
| | - Yufang Shi
- Institutes for Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, China
| | - Jianquan Hou
- Institutes for Translational Medicine, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Giulio Cervelli
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome, 00133, Italy.
| | - Pierluigi Bove
- Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy.
| |
Collapse
|
26
|
Lee U, Arsala D, Xia S, Li C, Ali M, Svetec N, Langer CB, Sobreira DR, Eres I, Sosa D, Chen J, Zhang L, Reilly P, Guzzetta A, Emerson J, Andolfatto P, Zhou Q, Zhao L, Long M. The three-dimensional genome drives the evolution of asymmetric gene duplicates via enhancer capture-divergence. SCIENCE ADVANCES 2024; 10:eadn6625. [PMID: 39693425 PMCID: PMC11654672 DOI: 10.1126/sciadv.adn6625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 11/11/2024] [Indexed: 12/20/2024]
Abstract
Previous evolutionary models of duplicate gene evolution have overlooked the pivotal role of genome architecture. Here, we show that proximity-based regulatory recruitment by distally duplicated genes is an efficient mechanism for modulating tissue-specific production of preexisting proteins. By leveraging genomic asymmetries, we performed a coexpression analysis on Drosophila melanogaster tissue data to show the generality of enhancer capture-divergence (ECD) as a significant evolutionary driver of asymmetric, distally duplicated genes. We use the recently evolved gene HP6/Umbrea as an example of the ECD process. By assaying genome-wide chromosomal conformations in multiple Drosophila species, we show that HP6/Umbrea was inserted near a preexisting, long-distance three-dimensional genomic interaction. We then use this data to identify a newly found enhancer (FLEE1), buried within the coding region of the highly conserved, essential gene MFS18, that likely neofunctionalized HP6/Umbrea. Last, we demonstrate ancestral transcriptional coregulation of HP6/Umbrea's future insertion site, illustrating how enhancer capture provides a highly evolvable, one-step solution to Ohno's dilemma.
Collapse
Affiliation(s)
- UnJin Lee
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Deanna Arsala
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Shengqian Xia
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Cong Li
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Mujahid Ali
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Christopher B. Langer
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | | | - Ittai Eres
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Dylan Sosa
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Jianhai Chen
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Patrick Reilly
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - J.J. Emerson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis and Protection Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
27
|
Suha H, Tasnim SA, Rahman S, Alodhayb A, Albrithen H, Poirier RA, Uddin KM. Evaluating the Anticancer Properties of Novel Piscidinol A Derivatives: Insights from DFT, Molecular Docking, and Molecular Dynamics Studies. ACS OMEGA 2024; 9:49639-49661. [PMID: 39713673 PMCID: PMC11656217 DOI: 10.1021/acsomega.4c07808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
Cancer is characterized by uncontrolled cell growth and spreading throughout the body. This study employed computational approaches to investigate 18 naturally derived anticancer piscidinol A derivatives (1-18) as potential therapeutics. By examining their interactions with 15 essential target proteins (HIF-1α, RanGAP, FOXM1, PARP2, HER2, ERα, NGF, FAS, GRP78, PRDX2, SCF complex, EGFR, Bcl-xL, ERG, and HSP70) and comparing them with established drugs such as camptothecin, docetaxel, etoposide, irinotecan, paclitaxel, and teniposide, compound 10 emerged as noteworthy. In molecular dynamics simulations, the protein with the strongest binding to the crucial 1A52 protein exceeded druglikeness criteria and displayed extraordinary stability within the enzyme's pocket over varied temperatures (300-320 K). Additionally, density functional theory was used to calculate dipole moments and molecular orbital characteristics, as well as analyze the thermodynamic stability of the putative anticancer derivatives. This finding reveals a well-defined, potentially therapeutic relationship supported by theoretical analysis, which is in good agreement with subsequent assessments of their potential in vitro cytotoxic effects of piscidinol A derivatives (6-18) against various cancer cell lines. Future in vivo and clinical studies are required to validate these findings further. Compound 10 thus emerges as an intriguing contender in the fight against cancer.
Collapse
Affiliation(s)
- Humaera
Noor Suha
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Syed Ahmed Tasnim
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Shofiur Rahman
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad Albrithen
- Biological
and Environmental Sensing Research Unit, King Abdullah Institute for
Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raymond A. Poirier
- Department
of Chemistry, Memorial University, St. John’s, Newfoundland
and Labrador A1C 5S7, Canada
| | - Kabir M. Uddin
- Department
of Biochemistry and Microbiology, North
South University, Bashundhara, Dhaka 1229, Bangladesh
| |
Collapse
|
28
|
Masuda K, Sota Y, Matsuda H. Gene Fusion Detection in Long-Read Transcriptome Datasets from Multiple Cancer Cell Lines. FRONT BIOSCI-LANDMRK 2024; 29:413. [PMID: 39735992 DOI: 10.31083/j.fbl2912413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 12/31/2024]
Abstract
BACKGROUND Fusion genes are important biomarkers in cancer research because their expression can produce abnormal proteins with oncogenic properties. Long-read RNA sequencing (long-read RNA-seq), which can sequence full-length mRNA transcripts, facilitates the detection of such fusion genes. Several tools have been proposed for detecting fusion genes in long-read RNA-seq datasets derived from cancer cells. However, the high sequencing error rate in long-read RNA-seq makes fusion gene detection challenging. METHODS To address this issue, additional steps were incorporated into the fusion detection tool to improve detection accuracy. These steps include anchoring breakpoints to exon boundaries, realigning unaligned regions, and clustering breakpoints. To evaluate the accuracy of our tool in detecting fusion genes, we compared its detection accuracy with two representative existing tools, JAFFAL and FusionSeeker. RESULTS Our tool outperformed the two existing tools in detecting fusion genes, as demonstrated in long-read RNA-seq datasets. We also identified potentially novel fusion genes consistently detected across multiple tools or datasets. CONCLUSIONS The application of our tool to the detection of fusion genes in long-read RNA-seq datasets from two different cancer cell lines demonstrated the detection effectiveness of this tool.
Collapse
Affiliation(s)
- Keigo Masuda
- Graduate School of Information Science and Technology, Osaka University, 565-0871 Suita, Osaka, Japan
| | - Yoshiaki Sota
- Graduate School of Medicine, Osaka University, 565-0871 Suita, Osaka, Japan
| | - Hideo Matsuda
- Graduate School of Information Science and Technology, Osaka University, 565-0871 Suita, Osaka, Japan
| |
Collapse
|
29
|
Huang L, Winter SJ, Olsson LT, Hamilton AM, Halliday SR, Kirk EL, Farnan L, Gerstel A, Craig SG, Finn SP, LaBonte Wilson M, Jain S, Troester MA, Butler EN, Bensen JT, Wobker SE, Allott EH. Associations of Prostate Tumor Immune Landscape with Vigorous Physical Activity and Prostate Cancer Progression. Cancer Epidemiol Biomarkers Prev 2024; 33:1623-1632. [PMID: 39269980 DOI: 10.1158/1055-9965.epi-24-0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/19/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Vigorous physical activity has been associated with lower risk of fatal prostate cancer. However, mechanisms contributing to this relationship are not understood. METHODS We studied 117 men with prostate cancer in the University of North Carolina Cancer Survivorship Cohort (UNC CSC) who underwent radical prostatectomy and 101 radiation-treated patients with prostate cancer in FASTMAN. Structured questionnaires administered in UNC CSC assessed physical activity. In both studies, digital image analysis of hematoxylin and eosin-stained tissues was applied to quantify tumor-infiltrating lymphocytes in segmented regions. NanoString gene expression profiling in UNC CSC and microarray in FASTMAN were performed on tumor tissue, and a 50-gene signature utilized to predict immune cell types. RESULTS Vigorous recreational activity, reported by 34 (29.1%) UNC CSC men, was inversely associated with tumor-infiltrating lymphocyte abundance. Tumors of men reporting any vigorous activity versus none showed lower gene expression-predicted abundance of Th, exhausted CD4 T cells, and macrophages. T-cell subsets, including regulatory T cells, Th, Tfh, exhausted CD4 T cells, and macrophages, were associated with an increased risk of biochemical recurrence, only among men with ERG-positive tumors. CONCLUSIONS Vigorous activity was associated with lower prostate tumor inflammation and immune microenvironment differences. Macrophages and T-cell subsets, including those with immunosuppressive roles and those with lower abundance in men reporting vigorous exercise, were associated with worse outcomes in ERG-positive prostate cancer. IMPACT Our novel findings contribute to our understanding of the role of the tumor immune microenvironment in prostate cancer progression and may provide insights into how vigorous exercise could affect prostate tumor biology.
Collapse
Affiliation(s)
- Lanshan Huang
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sarah J Winter
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Linnea T Olsson
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alina M Hamilton
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sophia R Halliday
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Erin L Kirk
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura Farnan
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adrian Gerstel
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephanie G Craig
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Stephen P Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Melissa LaBonte Wilson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - Melissa A Troester
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eboneé N Butler
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jeannette T Bensen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sara E Wobker
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Emma H Allott
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
30
|
Rupp NJ, Freiberger SN, Ferraro DA, Laudicella R, Heimer J, Muehlematter UJ, Poyet C, Moch H, Eberli D, Rüschoff JH, Burger IA. Immunohistochemical ERG positivity is associated with decreased PSMA expression and lower visibility in corresponding [ 68Ga]Ga-PSMA-11 PET scans of primary prostate cancer. Eur J Nucl Med Mol Imaging 2024; 52:305-313. [PMID: 39083067 PMCID: PMC11599624 DOI: 10.1007/s00259-024-06856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/17/2024] [Indexed: 11/27/2024]
Abstract
PURPOSE TMPRSS2:ERG gene fusion negatively regulates PSMA expression in prostate adenocarcinoma (PCa) cell lines. Therefore, immunohistochemical (IHC) ERG expression, a surrogate for an underlying ERG rearrangement, and PSMA expression patterns in radical prostatectomy (RPE) specimens of primary PCa, including corresponding PSMA-PET scans were investigated. METHODS Two cohorts of RPE samples (total n=148): In cohort #1 (n=62 patients) with available RPE and preoperative [68Ga]Ga-PSMA-11 PET, WHO/ISUP grade groups, IHC-ERG (positive vs. negative) and IHC-PSMA expression (% PSMA-negative tumour area, PSMA%neg) were correlated with the corresponding SUVmax. In the second cohort #2 (n=86 patients) including RPE only, same histopathological parameters were evaluated. RESULTS Cohort #1: PCa with IHC-ERG expression (35.5%) showed significantly lower IHC-PSMA expression and lower SUVmax values on the corresponding PET scans. Eight of 9 PCa with negative PSMA-PET scans had IHC-ERG positivity, and confirmed TMPRSS2::ERG rearrangement. In IHC-PSMA positive PCa, IHC-ERG positivity was significantly associated with lower SUVmax values. In cohort #2, findings of higher IHC-PSMA%neg and IHC-ERG expression was confirmed with only 0-10% PSMA%neg tumour areas in IHC-ERG-negative PCa. CONCLUSION IHC-ERG expression is significantly associated with more heterogeneous and lower IHC-PSMA tissue expression in two independent RPE cohorts. There is a strong association of ERG positivity in RPE tissue with lower [68Ga]Ga-PSMA-11 uptake on corresponding PET scans. Results may serve as a base for future biomarker development to enable tumour-tailored, individualized imaging approaches.
Collapse
Affiliation(s)
- Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| | - Sandra N Freiberger
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Daniela A Ferraro
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiology and Oncology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Riccardo Laudicella
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, Messina, Italy
| | - Jakob Heimer
- Seminar for Statistics, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Urs J Muehlematter
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Daniel Eberli
- University of Zurich, Zurich, Switzerland
- Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jan H Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091, Zürich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Cantonal Hospital Baden, affiliated Hospital for Research and Teaching of the Faculty of Medicine of the University of Zurich, Baden, Switzerland
| |
Collapse
|
31
|
Li J, Tian J, Liu Y, Liu Z, Tong M. Personalized analysis of human cancer multi-omics for precision oncology. Comput Struct Biotechnol J 2024; 23:2049-2056. [PMID: 38783900 PMCID: PMC11112262 DOI: 10.1016/j.csbj.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Multi-omics technologies, encompassing genomics, proteomics, and transcriptomics, provide profound insights into cancer biology. A fundamental computational approach for analyzing multi-omics data is differential analysis, which identifies molecular distinctions between cancerous and normal tissues. Traditional methods, however, often fail to address the distinct heterogeneity of individual tumors, thereby neglecting crucial patient-specific molecular traits. This shortcoming underscores the necessity for tailored differential analysis algorithms, which focus on particular patient variations. Such approaches offer a more nuanced understanding of cancer biology and are instrumental in pinpointing personalized therapeutic strategies. In this review, we summarize the principles of current individualized techniques. We also review their efficacy in analyzing cancer multi-omics data and discuss their potential applications in clinical practice.
Collapse
Affiliation(s)
- Jiaao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- School of Informatics, Xiamen University, Xiamen 316000, China
| | - Jingyi Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- School of Informatics, Xiamen University, Xiamen 316000, China
| | - Yachen Liu
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
- School of Informatics, Xiamen University, Xiamen 316000, China
| | - Zan Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
- School of Informatics, Xiamen University, Xiamen 316000, China
| | - Mengsha Tong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian 361102, China
- School of Informatics, Xiamen University, Xiamen 316000, China
| |
Collapse
|
32
|
Okidi R, Hajarah N, Mukurasi D, Obonyo E, Makai E, Lajul D, Odongkara M, Bamutorana T, Omagino BA, Okello I. Prostatic duct adenocarcinoma-A challenging variant of prostate cancer in a low-resource setting. Clin Case Rep 2024; 12:e9557. [PMID: 39502122 PMCID: PMC11534637 DOI: 10.1002/ccr3.9557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/15/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
This case emphasizes the challenges in diagnosing and treating Prostatic Duct Adenocarcinoma, especially in resource-limited settings. Early and accurate diagnosis is crucial for better patient outcomes, but limited access to advanced diagnostics and specialized treatments significantly hinders the effective management of this aggressive form of prostate cancer.
Collapse
Affiliation(s)
- Ronald Okidi
- Department of SurgeryLacor HospitalGuluUganda
- Faculty of Medicine, Department of SurgeryGulu UniversityGuluUganda
- Central and Southern AfricaCollege of Surgeons of EastArushaTanzania
| | | | - Derrick Mukurasi
- Department of SurgeryLacor HospitalGuluUganda
- Central and Southern AfricaCollege of Surgeons of EastArushaTanzania
| | - Emmanuel Obonyo
- Department of SurgeryLacor HospitalGuluUganda
- Central and Southern AfricaCollege of Surgeons of EastArushaTanzania
- Kalongo, Department of SurgeryDr Ambrosoli HospitalKalongoUganda
| | | | | | | | | | | | - Isaac Okello
- Central and Southern AfricaCollege of Surgeons of EastArushaTanzania
- Medical Teams International (MTI)Lacor HospitalGuluUganda
| |
Collapse
|
33
|
Heimdörfer D, Artamonova N, Culig Z, Heidegger I. Unraveling molecular characteristics and tumor microenvironment dynamics of neuroendocrine prostate cancer. J Cancer Res Clin Oncol 2024; 150:462. [PMID: 39412660 PMCID: PMC11485041 DOI: 10.1007/s00432-024-05983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most prevalent malignancy and the second leading cause of cancer-related deaths among men. While adenocarcinoma of the prostate (adeno-PCa) is well-characterized, neuroendocrine prostate cancer (NEPC) remains poorly understood. Generally, NEPC is a rare but highly aggressive histological variant, however its limited patho-physiological understanding leads to insufficient treatment options associated with low survival rates for NEPC patients. Current treatments for NEPC, including platinum-based therapies, offer some efficacy, but there is a significant need for more targeted approaches. This review summarizes the molecular characteristics of NEPC in contrast to adeno-PCa, providing a comprehensive comparison. A significant portion of the discussion is dedicated to the tumor microenvironment (TME), which has recently been identified as a key factor in tumor progression. The TME includes various cells, signaling molecules, and the extracellular matrix surrounding the tumor, all of which play critical roles in cancer development and response to treatment. Understanding the TME's influence on NEPC could uncover new avenues for innovative treatment strategies, potentially improving outcomes for patients with this challenging variant of PCa.
Collapse
Affiliation(s)
- David Heimdörfer
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Nastasiia Artamonova
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Zoran Culig
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Anichstreet 35, Innsbruck, A-6020, Austria.
| |
Collapse
|
34
|
Tien JCY, Luo J, Chang Y, Zhang Y, Cheng Y, Wang X, Yang J, Mannan R, Mahapatra S, Shah P, Wang XM, Todd AJ, Eyunni S, Cheng C, Rebernick RJ, Xiao L, Bao Y, Neiswender J, Brough R, Pettitt SJ, Cao X, Miner SJ, Zhou L, Wu YM, Labanca E, Wang Y, Parolia A, Cieslik M, Robinson DR, Wang Z, Feng FY, Chou J, Lord CJ, Ding K, Chinnaiyan AM. CDK12 loss drives prostate cancer progression, transcription-replication conflicts, and synthetic lethality with paralog CDK13. Cell Rep Med 2024; 5:101758. [PMID: 39368479 PMCID: PMC11513839 DOI: 10.1016/j.xcrm.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/08/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a metastatic castration-resistant prostate cancer (mCRPC) subtype. It remains unclear, however, whether CDK12 loss drives prostate cancer (PCa) development or uncovers pharmacologic vulnerabilities. Here, we show Cdk12 ablation in murine prostate epithelium is sufficient to induce preneoplastic lesions with lymphocytic infiltration. In allograft-based CRISPR screening, Cdk12 loss associates positively with Trp53 inactivation but negatively with Pten inactivation. Moreover, concurrent Cdk12/Trp53 ablation promotes proliferation of prostate-derived organoids, while Cdk12 knockout in Pten-null mice abrogates prostate tumor growth. In syngeneic systems, Cdk12/Trp53-null allografts exhibit luminal morphology and immune checkpoint blockade sensitivity. Mechanistically, Cdk12 inactivation mediates genomic instability by inducing transcription-replication conflicts. Strikingly, CDK12-mutant organoids and patient-derived xenografts are sensitive to inhibition or degradation of the paralog kinase, CDK13. We therein establish CDK12 as a bona fide tumor suppressor, mechanistically define how CDK12 inactivation causes genomic instability, and advance a therapeutic strategy for CDK12-mutant mCRPC.
Collapse
Affiliation(s)
- Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jie Luo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yu Chang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yunhui Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Jianzhang Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, Guangzhou 511400, People's Republic of China
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Palak Shah
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiao-Ming Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Abigail J Todd
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Caleb Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ryan J Rebernick
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yi Bao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - James Neiswender
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, SW3 6JB London, UK
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, SW3 6JB London, UK
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, SW3 6JB London, UK
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Licheng Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, Guangzhou 511400, People's Republic of China
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and David H. Koch Center for Applied Research of Genitourinary Cancer, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuzhuo Wang
- Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, Guangzhou 511400, People's Republic of China
| | - Felix Y Feng
- Departments of Radiation Oncology and Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, SW3 6JB London, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA; Department of Urology, University of Michigan, Ann Arbor, MI, USA; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Chen L, Guo Z, Deng T, Wu H. scCTS: identifying the cell type-specific marker genes from population-level single-cell RNA-seq. Genome Biol 2024; 25:269. [PMID: 39402623 PMCID: PMC11472465 DOI: 10.1186/s13059-024-03410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) provides gene expression profiles of individual cells from complex samples, facilitating the detection of cell type-specific marker genes. In scRNA-seq experiments with multiple donors, the population level variation brings an extra layer of complexity in cell type-specific gene detection, for example, they may not appear in all donors. Motivated by this observation, we develop a statistical model named scCTS to identify cell type-specific genes from population-level scRNA-seq data. Extensive data analyses demonstrate that the proposed method identifies more biologically meaningful cell type-specific genes compared to traditional methods.
Collapse
Affiliation(s)
- Luxiao Chen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, 30322, USA
| | - Zhenxing Guo
- School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-SZ), Shenzhen, 518172, Guangdong, China
| | - Tao Deng
- School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-SZ), Shenzhen, 518172, Guangdong, China
- Shenzhen Research Institute of Big Data, Shenzhen, 518172, China
| | - Hao Wu
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, Guangdong, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
36
|
Sardar S, McNair CM, Ravindranath L, Chand SN, Yuan W, Bogdan D, Welti J, Sharp A, Ryan NK, Knudsen LA, Schiewer MJ, DeArment EG, Janas T, Su XA, Butler LM, de Bono JS, Frese K, Brooks N, Pegg N, Knudsen KE, Shafi AA. AR coactivators, CBP/p300, are critical mediators of DNA repair in prostate cancer. Oncogene 2024; 43:3197-3213. [PMID: 39266679 PMCID: PMC11493679 DOI: 10.1038/s41388-024-03148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
Castration resistant prostate cancer (CRPC) remains an incurable disease stage with ineffective treatments options. Here, the androgen receptor (AR) coactivators CBP/p300, which are histone acetyltransferases, were identified as critical mediators of DNA damage repair (DDR) to potentially enhance therapeutic targeting of CRPC. Key findings demonstrate that CBP/p300 expression increases with disease progression and selects for poor prognosis in metastatic disease. CBP/p300 bromodomain inhibition enhances response to standard of care therapeutics. Functional studies, CBP/p300 cistrome mapping, and transcriptome in CRPC revealed that CBP/p300 regulates DDR. Further mechanistic investigation showed that CBP/p300 attenuation via therapeutic targeting and genomic knockdown decreases homologous recombination (HR) factors in vitro, in vivo, and in human prostate cancer (PCa) tumors ex vivo. Similarly, CBP/p300 expression in human prostate tissue correlates with HR factors. Lastly, targeting CBP/p300 impacts HR-mediate repair and patient outcome. Collectively, these studies identify CBP/p300 as drivers of PCa tumorigenesis and lay the groundwork to optimize therapeutic strategies for advanced PCa via CBP/p300 inhibition, potentially in combination with AR-directed and DDR therapies.
Collapse
Affiliation(s)
- Sumaira Sardar
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | | | - Lakshmi Ravindranath
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Saswati N Chand
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wei Yuan
- The Institute of Cancer Research, London, United Kingdom
| | - Denisa Bogdan
- The Institute of Cancer Research, London, United Kingdom
| | - Jon Welti
- The Institute of Cancer Research, London, United Kingdom
| | - Adam Sharp
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Natalie K Ryan
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Liam A Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew J Schiewer
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Elise G DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
| | - Xiaofeng A Su
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom
- The Royal Marsden Hospital, London, United Kingdom
| | - Kris Frese
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Neil Pegg
- CellCentric Ltd., Cambridge, United Kingdom
| | | | - Ayesha A Shafi
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD, USA.
| |
Collapse
|
37
|
Stella M, Russo GI, Leonardi R, Carcò D, Gattuso G, Falzone L, Ferrara C, Caponnetto A, Battaglia R, Libra M, Barbagallo D, Di Pietro C, Pernagallo S, Barbagallo C, Ragusa M. Extracellular RNAs from Whole Urine to Distinguish Prostate Cancer from Benign Prostatic Hyperplasia. Int J Mol Sci 2024; 25:10079. [PMID: 39337566 PMCID: PMC11432375 DOI: 10.3390/ijms251810079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
RNAs, especially non-coding RNAs (ncRNAs), are crucial players in regulating cellular mechanisms due to their ability to interact with and regulate other molecules. Altered expression patterns of ncRNAs have been observed in prostate cancer (PCa), contributing to the disease's initiation, progression, and treatment response. This study aimed to evaluate the ability of a specific set of RNAs, including long ncRNAs (lncRNAs), microRNAs (miRNAs), and mRNAs, to discriminate between PCa and the non-neoplastic condition benign prostatic hyperplasia (BPH). After selecting by literature mining the most relevant RNAs differentially expressed in biofluids from PCa patients, we evaluated their discriminatory power in samples of unfiltered urine from 50 PCa and 50 BPH patients using both real-time PCR and droplet digital PCR (ddPCR). Additionally, we also optimized a protocol for urine sample manipulation and RNA extraction. This two-way validation study allowed us to establish that miRNAs (i.e., miR-27b-3p, miR-574-3p, miR-30a-5p, and miR-125b-5p) are more efficient biomarkers for PCa compared to long RNAs (mRNAs and lncRNAs) (e.g., PCA3, PCAT18, and KLK3), as their dysregulation was consistently reported in the whole urine of patients with PCa compared to those with BPH in a statistically significant manner regardless of the quantification methodology performed. Moreover, a significant increase in diagnostic performance was observed when molecular signatures composed of different miRNAs were considered. Hence, the abovementioned circulating ncRNAs represent excellent potential non-invasive biomarkers in urine capable of effectively distinguishing individuals with PCa from those with BPH, potentially reducing cancer overdiagnosis.
Collapse
Affiliation(s)
- Michele Stella
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Giorgio Ivan Russo
- Department of Urology, Polyclinic Hospital, University of Catania, 95123 Catania, Italy
| | - Rosario Leonardi
- Casa di Cura Musumeci GECAS, 95030 Gravina di Catania, Italy
- Department of Medicine and Surgery, University of Enna KORE, 94100 Enna, Italy
| | - Daniela Carcò
- Istituto Oncologico del Mediterraneo, 95029 Viagrande, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, 95123 Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, 95123 Catania, Italy
| | - Carmen Ferrara
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Angela Caponnetto
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinical and General Pathology Section, University of Catania, 95123 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Salvatore Pernagallo
- DESTINA Genomica S.L., Health Sciences Technology Park (PTS), Av. de la Innovación 1, Building Business Innovation Center (BIC), 18016 Granada, Spain
| | - Cristina Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| | - Marco Ragusa
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "G. Sichel", University of Catania, 95123 Catania, Italy
| |
Collapse
|
38
|
Forbes AN, Xu D, Cohen S, Pancholi P, Khurana E. Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data. Cell Syst 2024; 15:824-837.e6. [PMID: 39236711 PMCID: PMC11415227 DOI: 10.1016/j.cels.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/22/2023] [Accepted: 08/08/2024] [Indexed: 09/07/2024]
Abstract
Most cancer types lack targeted therapeutic options, and when first-line targeted therapies are available, treatment resistance is a huge challenge. Recent technological advances enable the use of assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on patient tissue in a high-throughput manner. Here, we present a computational approach that leverages these datasets to identify drug targets based on tumor lineage. We constructed gene regulatory networks for 371 patients of 22 cancer types using machine learning approaches trained with three-dimensional genomic data for enhancer-to-promoter contacts. Next, we identified the key transcription factors (TFs) in these networks, which are used to find therapeutic vulnerabilities, by direct targeting of either TFs or the proteins that they interact with. We validated four candidates identified for neuroendocrine, liver, and renal cancers, which have a dismal prognosis with current therapeutic options.
Collapse
Affiliation(s)
- Andre Neil Forbes
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Duo Xu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sandra Cohen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Priya Pancholi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
39
|
Wang J, Ying L, Xiong H, Zhou DR, Wang YX, Che HL, Zhong ZF, Wu GS, Ge YJ. Comprehensive analysis of stearoyl-coenzyme A desaturase in prostate adenocarcinoma: insights into gene expression, immune microenvironment and tumor progression. Front Immunol 2024; 15:1460915. [PMID: 39351232 PMCID: PMC11439642 DOI: 10.3389/fimmu.2024.1460915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate adenocarcinoma (PRAD) is a prevalent global malignancy which depends more on lipid metabolism for tumor progression compared to other cancer types. Although Stearoyl-coenzyme A desaturase (SCD) is documented to regulate lipid metabolism in multiple cancers, landscape analysis of its implications in PRAD are still missing at present. Here, we conducted an analysis of diverse cancer datasets revealing elevated SCD expression in the PRAD cohort at both mRNA and protein levels. Interestingly, the elevated expression was associated with SCD promoter hypermethylation and genetic alterations, notably the L134V mutation. Integration of comprehensive tumor immunological and genomic data revealed a robust positive correlation between SCD expression levels and the abundance of CD8+ T cells and macrophages. Further analyses identified significant associations between SCD expression and various immune markers in tumor microenvironment. Single-cell transcriptomic profiling unveiled differential SCD expression patterns across distinct cell types within the prostate tumor microenvironment. The Gene Ontology and Kyoto Encyclopedia of Genes and Genome analyses showed that SCD enriched pathways were primarily related to lipid biosynthesis, cholesterol biosynthesis, endoplasmic reticulum membrane functions, and various metabolic pathways. Gene Set Enrichment Analysis highlighted the involvement of elevated SCD expression in crucial cellular processes, including the cell cycle and biosynthesis of cofactors pathways. In functional studies, SCD overexpression promoted the proliferation, metastasis and invasion of prostate cancer cells, whereas downregulation inhibits these processes. This study provides comprehensive insights into the multifaceted roles of SCD in PRAD pathogenesis, underscoring its potential as both a therapeutic target and prognostic biomarker.
Collapse
Affiliation(s)
- Jie Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liang Ying
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - He Xiong
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Duan-Rui Zhou
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yi-Xuan Wang
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui-Lian Che
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhang-Feng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Guo-Sheng Wu
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yun-Jun Ge
- MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases,
Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
40
|
Broomfield J, Kalofonou M, Bevan CL, Georgiou P. Recent Electrochemical Advancements for Liquid-Biopsy Nucleic Acid Detection for Point-of-Care Prostate Cancer Diagnostics and Prognostics. BIOSENSORS 2024; 14:443. [PMID: 39329818 PMCID: PMC11430765 DOI: 10.3390/bios14090443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Current diagnostic and prognostic tests for prostate cancer require specialised laboratories and have low specificity for prostate cancer detection. As such, recent advancements in electrochemical devices for point of care (PoC) prostate cancer detection have seen significant interest. Liquid-biopsy detection of relevant circulating and exosomal nucleic acid markers presents the potential for minimally invasive testing. In combination, electrochemical devices and circulating DNA and RNA detection present an innovative approach for novel prostate cancer diagnostics, potentially directly within the clinic. Recent research in electrochemical impedance spectroscopy, voltammetry, chronoamperometry and potentiometric sensing using field-effect transistors will be discussed. Evaluation of the PoC relevance of these techniques and their fulfilment of the WHO's REASSURED criteria for medical diagnostics is described. Further areas for exploration within electrochemical PoC testing and progression to clinical implementation for prostate cancer are assessed.
Collapse
Affiliation(s)
- Joseph Broomfield
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Melpomeni Kalofonou
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| | - Charlotte L Bevan
- Imperial Centre for Translational and Experimental Medicine, Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Pantelis Georgiou
- Centre for BioInspired Technology, Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
41
|
Su XA, Stopsack KH, Schmidt DR, Ma D, Li Z, Scheet PA, Penney KL, Lotan TL, Abida W, DeArment EG, Lu K, Janas T, Hu S, Vander Heiden MG, Loda M, Boselli M, Amon A, Mucci LA. RAD21 promotes oncogenesis and lethal progression of prostate cancer. Proc Natl Acad Sci U S A 2024; 121:e2405543121. [PMID: 39190349 PMCID: PMC11388324 DOI: 10.1073/pnas.2405543121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Higher levels of aneuploidy, characterized by imbalanced chromosome numbers, are associated with lethal progression in prostate cancer. However, how aneuploidy contributes to prostate cancer aggressiveness remains poorly understood. In this study, we assessed in patients which genes on chromosome 8q, one of the most frequently gained chromosome arms in prostate tumors, were most strongly associated with long-term risk of cancer progression to metastases and death from prostate cancer (lethal disease) in 403 patients and found the strongest candidate was cohesin subunit gene, RAD21, with an odds ratio of 3.7 (95% CI 1.8, 7.6) comparing the highest vs. lowest tertiles of mRNA expression and adjusting for overall aneuploidy burden and Gleason score, both strong prognostic factors in primary prostate cancer. Studying prostate cancer driven by the TMPRSS2-ERG oncogenic fusion, found in about half of all prostate tumors, we found that increased RAD21 alleviated toxic oncogenic stress and DNA damage caused by oncogene expression. Data from both organoids and patients indicate that increased RAD21 thereby enables aggressive tumors to sustain tumor proliferation, and more broadly suggests one path through which tumors benefit from aneuploidy.
Collapse
Affiliation(s)
- Xiaofeng A. Su
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
- Genitourinary Malignancies Branch, National Cancer Institute, NIH, Bethesda, MD20817
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Daniel R. Schmidt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02115
| | - Duanduan Ma
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- The Barbara K. Ostrom (1978) Bioinformatics and Computing Facility in the Swanson Biotechnology Center, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Zhe Li
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
- Department of Medicine, Harvard Medical School, Boston, MA02115
| | - Paul A. Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, TX77030
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Division of Genetics, Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD21218
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY10065
| | - Elise G. DeArment
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Kate Lu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Thomas Janas
- Center for Prostate Disease Research, Murtha Cancer Center Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD20817
- Henry M Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD20817
| | - Sofia Hu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Matthew G. Vander Heiden
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- Dana-Farber Cancer Institute, Boston, MA02115
| | - Massimo Loda
- Weil Cornell Medicine, New York Presbyterian-Weill Cornell Campus, New York, NY10065
| | - Monica Boselli
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Angelika Amon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA02139
- HHMI, Cambridge, MA02139
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA02115
- Discovery Science, American Cancer Society, Atlanta, GA30144
| |
Collapse
|
42
|
Cheng L, Yang C, Lu J, Huang M, Xie R, Lynch S, Elfman J, Huang Y, Liu S, Chen S, He B, Lin T, Li H, Chen X, Huang J. Oncogenic SLC2A11-MIF fusion protein interacts with polypyrimidine tract binding protein 1 to facilitate bladder cancer proliferation and metastasis by regulating mRNA stability. MedComm (Beijing) 2024; 5:e685. [PMID: 39156764 PMCID: PMC11324686 DOI: 10.1002/mco2.685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/20/2024] Open
Abstract
Chimeric RNAs, distinct from DNA gene fusions, have emerged as promising therapeutic targets with diverse functions in cancer treatment. However, the functional significance and therapeutic potential of most chimeric RNAs remain unclear. Here we identify a novel fusion transcript of solute carrier family 2-member 11 (SLC2A11) and macrophage migration inhibitory factor (MIF). In this study, we investigated the upregulation of SLC2A11-MIF in The Cancer Genome Atlas cohort and a cohort of patients from Sun Yat-Sen Memorial Hospital. Subsequently, functional investigations demonstrated that SLC2A11-MIF enhanced the proliferation, antiapoptotic effects, and metastasis of bladder cancer cells in vitro and in vivo. Mechanistically, the fusion protein encoded by SLC2A11-MIF interacted with polypyrimidine tract binding protein 1 (PTBP1) and regulated the mRNA half-lives of Polo Like Kinase 1, Roundabout guidance receptor 1, and phosphoinositide-3-kinase regulatory subunit 3 in BCa cells. Moreover, PTBP1 knockdown abolished the enhanced impact of SLC2A11-MIF on biological function and mRNA stability. Furthermore, the expression of SLC2A11-MIF mRNA is regulated by CCCTC-binding factor and stabilized through RNA N4-acetylcytidine modification facilitated by N-acetyltransferase 10. Overall, our findings revealed a significant fusion protein orchestrated by the SLC2A11-MIF-PTBP1 axis that governs mRNA stability during the multistep progression of bladder cancer.
Collapse
Affiliation(s)
- Liang Cheng
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Chenwei Yang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Junlin Lu
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ming Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Ruihui Xie
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Sarah Lynch
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Justin Elfman
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Yuhang Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Sen Liu
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Siting Chen
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Baoqing He
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Tianxin Lin
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Hui Li
- Department of PathologySchool of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Xu Chen
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| | - Jian Huang
- Department of UrologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationDepartment of Urology,Sun Yat‐sen Memorial Hospital,Sun Yat‐Sen UniversityGuangzhouGuangdongChina
- Guangdong Provincial Clinical Research Center for Urological DiseasesDepartment of Urology, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouGuangdongChina
| |
Collapse
|
43
|
Dong B, Xu JY, Huang Y, Guo J, Dong Q, Wang Y, Li N, Liu Q, Zhang M, Pan Q, Wang H, Jiang J, Chen B, Shen D, Ma Y, Zhai L, Zhang J, Li J, Xue W, Tan M, Qin J. Integrative proteogenomic profiling of high-risk prostate cancer samples from Chinese patients indicates metabolic vulnerabilities and diagnostic biomarkers. NATURE CANCER 2024; 5:1427-1447. [PMID: 39242942 DOI: 10.1038/s43018-024-00820-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/01/2024] [Indexed: 09/09/2024]
Abstract
Prostate cancer (PCa) exhibits significant geoethnic disparities as reflected by distinct variations in the cancer genome and disease progression. Here, we perform a comprehensive proteogenomic characterization of localized high-risk PCa utilizing paired tumors and nearby tissues from 125 Chinese male patients, with the primary objectives of identifying potential biomarkers, unraveling critical oncogenic events and delineating molecular subtypes with poor prognosis. Our integrated analysis highlights the utility of GOLM1 as a noninvasive serum biomarker. Phosphoproteomics analysis reveals the crucial role of Ser331 phosphorylation on FOXA1 in regulating FOXA1-AR-dependent cistrome. Notably, our proteomic profiling identifies three distinct subtypes, with metabolic immune-desert tumors (S-III) emerging as a particularly aggressive subtype linked to poor prognosis and BCAT2 catabolism-driven PCa progression. In summary, our study provides a comprehensive resource detailing the unique proteomic and phosphoproteomic characteristics of PCa molecular pathogenesis and offering valuable insights for the development of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Urology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jun-Yu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China.
| | - Yuqi Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanqing Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiang Pan
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hanling Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Bairun Chen
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Danqing Shen
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Ma
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Linhui Zhai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China.
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
44
|
Graham MK, Wang R, Chikarmane R, Abel B, Vaghasia A, Gupta A, Zheng Q, Hicks J, Sysa-Shah P, Pan X, Castagna N, Liu J, Meyers J, Skaist A, Zhang Y, Rubenstein M, Schuebel K, Simons BW, Bieberich CJ, Nelson WG, Lupold SE, DeWeese TL, De Marzo AM, Yegnasubramanian S. Convergent alterations in the tumor microenvironment of MYC-driven human and murine prostate cancer. Nat Commun 2024; 15:7414. [PMID: 39198404 PMCID: PMC11358296 DOI: 10.1038/s41467-024-51450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
How prostate cancer cells and their precursors mediate changes in the tumor microenvironment (TME) to drive prostate cancer progression is unclear, in part due to the inability to longitudinally study the disease evolution in human tissues. To overcome this limitation, we perform extensive single-cell RNA-sequencing (scRNA-seq) and molecular pathology of the comparative biology between human prostate cancer and key stages in the disease evolution of a genetically engineered mouse model (GEMM) of prostate cancer. Our studies of human tissues reveal that cancer cell-intrinsic activation of MYC signaling is a common denominator across the well-known molecular and pathological heterogeneity of human prostate cancer. Cell communication network and pathway analyses in GEMMs show that MYC oncogene-expressing neoplastic cells, directly and indirectly, reprogram the TME during carcinogenesis, leading to a convergence of cell state alterations in neighboring epithelial, immune, and fibroblast cell types that parallel key findings in human prostate cancer.
Collapse
Affiliation(s)
- Mindy K Graham
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Rulin Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Roshan Chikarmane
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Bulouere Abel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ajay Vaghasia
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Anuj Gupta
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Qizhi Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jessica Hicks
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Polina Sysa-Shah
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xin Pan
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nicole Castagna
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jianyong Liu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jennifer Meyers
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alyza Skaist
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yan Zhang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Michael Rubenstein
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD, USA
| | - Kornel Schuebel
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland at Baltimore County, Baltimore, MD, USA
| | - William G Nelson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Shawn E Lupold
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Theodore L DeWeese
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- The Brady Urological Institute and Department of Urology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
- inHealth Precision Medicine Program, Johns Hopkins Medicine, Baltimore, MD, USA.
| |
Collapse
|
45
|
Liang X, Liu B. Exploration of PVT1 as a biomarker in prostate cancer. Medicine (Baltimore) 2024; 103:e39406. [PMID: 39183420 PMCID: PMC11346897 DOI: 10.1097/md.0000000000039406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Prostate cancer is a malignant tumor originating from the prostate gland, significantly affecting patients' quality of life and survival rates. Public data was utilized to identify differentially expressed genes (DEGs). Weighted gene co-expression network analysis was constructed to classify gene modules. Functional enrichment analysis was performed through Kyoto Encyclopedia of Genes and Genomes and gene ontology annotations, with results visualized using the Metascape database. Additionally, gene set enrichment analysis evaluated gene expression profiles and related pathways, constructed a protein-protein interaction network to predict core genes, analyzed survival data, plotted heatmaps and radar charts, and predicted microRNAs for core genes through miRTarBase. Two prostate cancer datasets (GSE46602 and GSE55909) were analyzed, identifying 710 DEGs. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that DEGs were primarily involved in organic acid metabolism and the P53 signaling pathway. Gene set enrichment analysis and Metascape analyses further confirmed the significance of these pathways. After constructing the weighted gene co-expression network analysis network, 3 core genes (DDX21, NOP56, plasmacytoma variant translocation 1 [PVT1]) were identified. Survival analysis indicated that core genes are closely related to patient prognosis. Through comparative toxicogenomics database and miRNA prediction analysis, PVT1 was considered to play a crucial role in the development of prostate cancer. The PVT1 gene is highly expressed in prostate cancer and has the potential to become a diagnostic biomarker and therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Xiangdong Liang
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| | - Bin Liu
- Department of Urology Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, P. R. China
| |
Collapse
|
46
|
Chin YT, Tsai CL, Ma HH, Cheng DC, Tsai CW, Wang YC, Shih HY, Chang SY, Gu J, Chang WS, Bau DT. Impacts of Interleukin-10 Promoter Genotypes on Prostate Cancer. Life (Basel) 2024; 14:1035. [PMID: 39202777 PMCID: PMC11355935 DOI: 10.3390/life14081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Prostate cancer (PCa) is a multifactorial disease influenced by genetic, environmental, and immunological factors. Genetic polymorphisms in the interleukin-10 (IL-10) gene have been implicated in PCa susceptibility, development, and progression. This study aims to assess the contributions of three IL-10 promoter single nucleotide polymorphisms (SNPs), A-1082G (rs1800896), T-819C (rs3021097), and A-592C (rs1800872), to the risk of PCa in Taiwan. The three IL-10 genotypes were determined using PCR-RFLP methodology and were evaluated for their contributions to PCa risk among 218 PCa patients and 436 non-PCa controls. None of the three IL-10 SNPs were significantly associated with the risks of PCa (p all > 0.05) in the overall analyses. However, the GG at rs1800896 combined with smoking behavior was found to significantly increase the risk of PCa by 3.90-fold (95% confidence interval [95% CI] = 1.28-11.89, p = 0.0231). In addition, the rs1800896 AG and GGs were found to be correlated with the late stages of PCa (odds ratio [OR] = 1.90 and 6.42, 95% CI = 1.05-3.45 and 2.30-17.89, p = 0.0452 and 0.0003, respectively). The IL-10 promoter SNP, A-1082G (rs1800896), might be a risk factor for PCa development among smokers and those at late stages of the disease. These findings should be validated in larger and more diverse populations.
Collapse
Affiliation(s)
- Yu-Ting Chin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chung-Lin Tsai
- Division of Cardiac and Vascular Surgery, Cardiovascular Center, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Hung-Huan Ma
- Division of Nephrology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung 427003, Taiwan
| | - Da-Chuan Cheng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404333, Taiwan
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Hou-Yu Shih
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| | - Shu-Yu Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Nephrology, Chang-Hua Hospital, Ministry of Health and Welfare, Changhua 51341, Taiwan
| | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Da-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
47
|
McCallum M, Park YJ, Stewart C, Sprouse KR, Addetia A, Brown J, Tortorici MA, Gibson C, Wong E, Ieven M, Telenti A, Veesler D. Human coronavirus HKU1 recognition of the TMPRSS2 host receptor. Cell 2024; 187:4231-4245.e13. [PMID: 38964328 DOI: 10.1016/j.cell.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
The human coronavirus HKU1 spike (S) glycoprotein engages host cell surface sialoglycans and transmembrane protease serine 2 (TMPRSS2) to initiate infection. The molecular basis of HKU1 binding to TMPRSS2 and determinants of host receptor tropism remain elusive. We designed an active human TMPRSS2 construct enabling high-yield recombinant production in human cells of this key therapeutic target. We determined a cryo-electron microscopy structure of the HKU1 RBD bound to human TMPRSS2, providing a blueprint of the interactions supporting viral entry and explaining the specificity for TMPRSS2 among orthologous proteases. We identified TMPRSS2 orthologs from five mammalian orders promoting HKU1 S-mediated entry into cells along with key residues governing host receptor usage. Our data show that the TMPRSS2 binding motif is a site of vulnerability to neutralizing antibodies and suggest that HKU1 uses S conformational masking and glycan shielding to balance immune evasion and receptor engagement.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Jack Brown
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | | | - Cecily Gibson
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Emily Wong
- Vir Biotechnology, San Francisco, CA 94158, USA
| | - Margareta Ieven
- Laboratory of Clinical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA.
| |
Collapse
|
48
|
Fernández I, Saunders N, Duquerroy S, Bolland WH, Arbabian A, Baquero E, Blanc C, Lafaye P, Haouz A, Buchrieser J, Schwartz O, Rey FA. Structural basis of TMPRSS2 zymogen activation and recognition by the HKU1 seasonal coronavirus. Cell 2024; 187:4246-4260.e16. [PMID: 38964326 DOI: 10.1016/j.cell.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/16/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
The human seasonal coronavirus HKU1-CoV, which causes common colds worldwide, relies on the sequential binding to surface glycans and transmembrane serine protease 2 (TMPRSS2) for entry into target cells. TMPRSS2 is synthesized as a zymogen that undergoes autolytic activation to process its substrates. Several respiratory viruses, in particular coronaviruses, use TMPRSS2 for proteolytic priming of their surface spike protein to drive membrane fusion upon receptor binding. We describe the crystal structure of the HKU1-CoV receptor binding domain in complex with TMPRSS2, showing that it recognizes residues lining the catalytic groove. Combined mutagenesis of interface residues and comparison across species highlight positions 417 and 469 as determinants of HKU1-CoV host tropism. The structure of a receptor-blocking nanobody in complex with zymogen or activated TMPRSS2 further provides the structural basis of TMPRSS2 activating conformational change, which alters loops recognized by HKU1-CoV and dramatically increases binding affinity.
Collapse
Affiliation(s)
- Ignacio Fernández
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Structural Virology Unit, 75015 Paris, France
| | - Nell Saunders
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus & Immunity Unit, 75015 Paris, France
| | - Stéphane Duquerroy
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Structural Virology Unit, 75015 Paris, France; Université Paris-Saclay, Faculté des Sciences, Orsay, France
| | - William H Bolland
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus & Immunity Unit, 75015 Paris, France
| | - Atousa Arbabian
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Structural Virology Unit, 75015 Paris, France
| | - Eduard Baquero
- Institut Pasteur, Université de Paris Cité, INSERM U1222, Nanoimaging core, 75015 Paris, France
| | - Catherine Blanc
- Institut Pasteur, Université de Paris Cité, Pasteur-TheraVectys Joint Lab, Paris, France
| | - Pierre Lafaye
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Antibody Engineering Facility-C2RT, 75015 Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Crystalogenesis Facility-C2RT, 75015 Paris, France
| | - Julian Buchrieser
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus & Immunity Unit, 75015 Paris, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus & Immunity Unit, 75015 Paris, France; Vaccine Research Institute, Créteil, France.
| | - Félix A Rey
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Structural Virology Unit, 75015 Paris, France.
| |
Collapse
|
49
|
Cacciatore A, Shinde D, Musumeci C, Sandrini G, Guarrera L, Albino D, Civenni G, Storelli E, Mosole S, Federici E, Fusina A, Iozzo M, Rinaldi A, Pecoraro M, Geiger R, Bolis M, Catapano CV, Carbone GM. Epigenome-wide impact of MAT2A sustains the androgen-indifferent state and confers synthetic vulnerability in ERG fusion-positive prostate cancer. Nat Commun 2024; 15:6672. [PMID: 39107274 PMCID: PMC11303763 DOI: 10.1038/s41467-024-50908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2024] [Indexed: 08/09/2024] Open
Abstract
Castration-resistant prostate cancer (CRPC) is a frequently occurring disease with adverse clinical outcomes and limited therapeutic options. Here, we identify methionine adenosyltransferase 2a (MAT2A) as a critical driver of the androgen-indifferent state in ERG fusion-positive CRPC. MAT2A is upregulated in CRPC and cooperates with ERG in promoting cell plasticity, stemness and tumorigenesis. RNA, ATAC and ChIP-sequencing coupled with histone post-translational modification analysis by mass spectrometry show that MAT2A broadly impacts the transcriptional and epigenetic landscape. MAT2A enhances H3K4me2 at multiple genomic sites, promoting the expression of pro-tumorigenic non-canonical AR target genes. Genetic and pharmacological inhibition of MAT2A reverses the transcriptional and epigenetic remodeling in CRPC models and improves the response to AR and EZH2 inhibitors. These data reveal a role of MAT2A in epigenetic reprogramming and provide a proof of concept for testing MAT2A inhibitors in CRPC patients to improve clinical responses and prevent treatment resistance.
Collapse
MESH Headings
- Male
- Humans
- Transcriptional Regulator ERG/genetics
- Transcriptional Regulator ERG/metabolism
- Methionine Adenosyltransferase/genetics
- Methionine Adenosyltransferase/metabolism
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Epigenesis, Genetic/drug effects
- Animals
- Androgens/metabolism
- Epigenome
- Mice
- Histones/metabolism
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Enhancer of Zeste Homolog 2 Protein/genetics
- Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors
Collapse
Affiliation(s)
- Alessia Cacciatore
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Dheeraj Shinde
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Carola Musumeci
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Giada Sandrini
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Bioinformatics Core Unit, 6500, Bellinzona, Switzerland
| | - Luca Guarrera
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156, Milano, Italy
| | - Domenico Albino
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Gianluca Civenni
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Elisa Storelli
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Elisa Federici
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Alessio Fusina
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Marta Iozzo
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Roger Geiger
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
- Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, 20156, Milano, Italy
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Giuseppina M Carbone
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland.
| |
Collapse
|
50
|
Ng RR, Lin Z, Zhang Y, Ti SC, Javed A, Wong JWH, Fang Q, Leung JWC, Tang AHN, Huen MSY. R-loop resolution by ARIP4 helicase promotes androgen-mediated transcription induction. SCIENCE ADVANCES 2024; 10:eadm9577. [PMID: 39028815 PMCID: PMC11259169 DOI: 10.1126/sciadv.adm9577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Pausing of RNA polymerase II (Pol II) at transcription start sites (TSSs) primes target genes for productive elongation. Coincidentally, DNA double-strand breaks (DSBs) enrich at highly transcribed and Pol II-paused genes, although their interplay remains undefined. Using androgen receptor (AR) signaling as a model, we have uncovered AR-interacting protein 4 (ARIP4) helicase as a driver of androgen-dependent transcription induction. Chromatin immunoprecipitation sequencing analysis revealed that ARIP4 preferentially co-occupies TSSs with paused Pol II. Moreover, we found that ARIP4 complexes with topoisomerase II beta and mediates transient DSB formation upon hormone stimulation. Accordingly, ARIP4 deficiency compromised release of paused Pol II and resulted in R-loop accumulation at a panel of highly transcribed AR target genes. Last, we showed that ARIP4 binds and unwinds R-loops in vitro and that its expression positively correlates with prostate cancer progression. We propose that androgen stimulation triggers ARIP4-mediated unwinding of R-loops at TSSs, enforcing Pol II pause release to effectively drive an androgen-dependent expression program.
Collapse
Affiliation(s)
- Raissa Regina Ng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Zhongyang Lin
- Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Yanmin Zhang
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Shih Chieh Ti
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Asif Javed
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Qingming Fang
- Department of Biochemistry and Structural Biology and Greehey Children’s Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Justin Wai Chung Leung
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alex Hin Ning Tang
- Department of Pathology, School of Clinical Medicine LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| | - Michael Shing Yan Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R
| |
Collapse
|