1
|
Li X, Wang J, Mai J, Sun Y, Li W, Cai Z, Xu W, Chen Z, Chen S, Wang N. Role of the cell cycle-related gene cdk2 and its associated ceRNA network in sexual size dimorphism of Cynoglossus semilaevis. Comp Biochem Physiol A Mol Integr Physiol 2025; 305:111867. [PMID: 40250729 DOI: 10.1016/j.cbpa.2025.111867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
Sexual size dimorphism (SSD) in Cynoglossus semilaevis affects its annual production and restricts aquaculture development. Our previous multi-omics data analysis showed that cell cycle genes and the relevant non-coding RNAs (ncRNAs) were closely involved in SSD regulation. In this study, we analyzed cyclin-dependent kinase 2 (cdk2) gene together with its associated microRNA (miRNA) and long ncRNA (lncRNA) in C. semilaevis, predicting a competing endogenous RNA (ceRNA) regulatory network (MSTRG.24810.1-miR-460-cdk2) and verifying the targeting relationship using dual luciferase reporter assays. Expression profile analysis showed that cdk2 and the lncRNA MSTRG.24810.1 were highly expressed in female gonad and muscle, and their expression levels increased from 3-month-old (3M) to 8M. On the other hand, their negative regulator miR-460-x displayed lower expression in female than in male. After miR-460-x mimic transfection in C. semilaevis ovarian cells, the expressions of cdk2, cyclin E, and MSTRG.24810.1 were significantly decreased and cell cycle transition through G1 to S phase was obviously blocked. In vitro and in vivo experiments also indicated that RNAi-mediated knock-down of cdk2 caused down-regulation of MSTRG.24810.1 and other cell cycle related genes like cyclin E, cyclin A, e2f1, and h2b. Taken together, these results suggested that cdk2 gene and its associated ceRNA network may affect sex growth difference and differentiation of C. semilaevis individuals via regulating cell division and proliferation. The study will not only expand our knowledge on SSD regulatory mechanism, but also help to make an application on promoting growth and development of the fish.
Collapse
Affiliation(s)
- Xihong Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jiacheng Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jiaqi Mai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yuqi Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Wenjie Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenyu Cai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Wenteng Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Zhangfan Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Na Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Ren X, Liu G, Zhou J. Nuclear-activating miRNAs: unveiling the intricacies of subcellular miRNA function and regulation in cancer and immunity disease. Cancer Cell Int 2025; 25:147. [PMID: 40234876 PMCID: PMC11998458 DOI: 10.1186/s12935-025-03760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 03/19/2025] [Indexed: 04/17/2025] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that traditionally recognized as negative regulators of gene expression through post-transcriptional regulation in the cytoplasm. However, recent discoveries have unveiled some novel miRNA functions in the cell nucleus, where a subset of miRNAs, termed nuclear-activating miRNAs (NamiRNAs), play pivotal roles in gene activation and transcriptional regulation for cancer and immunity disease. The discovery of NamiRNAs demonstrated a complementary regulatory function of miRNA, showing their differential activities in the nucleus and cytoplasm. This review aims to explore the biogenesis, mechanisms, and regulatory functions of NamiRNAs, deciphering their involvement in NamiRNA-gene network for gene expression modulation, and emerging significance as drug targets against cancer.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Nanjing Street 155, Shenyang, 110001, China
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Yantai, China
| | - Gang Liu
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Nanjing Street 155, Shenyang, 110001, China
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China
| | - Jianping Zhou
- Department of Gastrointestinal Surgery, The First Hospital of China Medical University, Nanjing Street 155, Shenyang, 110001, China.
- Shenyang Medical Nutrition Clinical Medical Research Center, Shenyang, China.
| |
Collapse
|
3
|
Li H, Meng J, Wang Z, Luan Y. PmiProPred: A novel method towards plant miRNA promoter prediction based on CNN-Transformer network and convolutional block attention mechanism. Int J Biol Macromol 2025; 302:140630. [PMID: 39909261 DOI: 10.1016/j.ijbiomac.2025.140630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
It is crucial to understand the transcription mechanisms of miRNAs, especially considering the presence of peptides encoded by miRNAs. Since promoters function as the switch for gene transcription, precisely identifying these regions is essential for fully annotating miRNA transcripts. Nonetheless, existing computational methods still have room for improvement in the characterization of promoter regions. Here, we present PmiProPred, an advanced tool designed for predicting plant miRNA promoters from a wide spectrum of genomes. It consists of two core components: multi-stream deep feature extraction (MsDFE) and multi-stream deep feature refinement (MsDFR). The MsDFE utilizes Transformer and CNN to gather multi-view features, while the MsDFR focuses on aligning and refining them using channel and spatial attention mechanisms. Ultimately, a multi-layer perceptron is employed to accomplish the miRNA promoter identification task. Across three independent testing datasets, PmiProPred achieves accuracies of 94.630%, 96.659%, and 92.480%, respectively, substantially surpassing the latest methods. Additionally, PmiProPred is employed to identify potential core promoters in the upstream 2-kb regions of intergenic miRNAs in five plant species. We further conduct cis-regulatory elements mining on the predicted promoters and perform an in-depth analysis of the identified motifs. Altogether, PmiProPred is a robust and effective tool for discovering plant miRNA promoters.
Collapse
Affiliation(s)
- Haibin Li
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhaowei Wang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China.
| |
Collapse
|
4
|
Yue Y, Fan H, Zhao J, Xia J. Protein language model-based prediction for plant miRNA encoded peptides. PeerJ Comput Sci 2025; 11:e2733. [PMID: 40134870 PMCID: PMC11935769 DOI: 10.7717/peerj-cs.2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/05/2025] [Indexed: 03/27/2025]
Abstract
Plant miRNA encoded peptides (miPEPs), which are short peptides derived from small open reading frames within primary miRNAs, play a crucial role in regulating diverse plant traits. Plant miPEPs identification is challenging due to limitations in the available number of known miPEPs for training. Existing prediction methods rely on manually encoded features, including miPEPPred-FRL, to infer plant miPEPs. Recent advances in deep learning modeling of protein sequences provide an opportunity to improve the representation of key features, leveraging large datasets of protein sequences. In this study, we propose an accurate prediction model, called pLM4PEP, which integrates ESM2 peptide embedding with machine learning methods. Our model not only demonstrates precise identification capabilities for plant miPEPs, but also achieves remarkable results across diverse datasets that include other bioactive peptides. The source codes, datasets of pLM4PEP are available at https://github.com/xialab-ahu/pLM4PEP.
Collapse
Affiliation(s)
- Yishan Yue
- College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Henghui Fan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Jianping Zhao
- College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang, China
| | - Junfeng Xia
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| |
Collapse
|
5
|
Shi Y, Liao G, Li A, Li X, Xiao D, Wang A, He L, Zhan J. A Novel Ah-miR2916-AhERF13-AhSUC3 Module Regulates Al Tolerance via Ethylene-Mediated Signaling in Peanut (Arachis hypogea L.). PLANT, CELL & ENVIRONMENT 2025; 48:2009-2023. [PMID: 39535456 DOI: 10.1111/pce.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Aluminum (Al) toxicity in acidic soils leads to a considerable reduction in crop yields. MicroRNAs play essential roles in abiotic stress responses, but little is known of their role in the response of peanut (Arachis hypogea L.) to Al stress. In this study, a novel Ah-miR2916 (miR2916)-AhERF13-AhSUC3 module was found to be involved in the Al-stress response via ethylene-mediated signaling in peanut. Overexpression of miR2916 in Arabidopsis resulted in reduced Al tolerance by downregulating ethylene biosynthesis, while knockdown miR2916 in peanut enhanced Al tolerance. Notably, the APETALA2/ethylene-responsive factor (ERF), AhERF13, was identified as a potential target of miR2916. AhERF13 expression was increased in miR2916 knockdown peanut lines and displayed an opposing pattern to that of miR2916 under Al stress. Consistently, knockdown AhERF13 peanut lines indicated that AhERF13 positively regulates Al tolerance by upregulating ethylene biosynthesis. AhERF13 was shown capable of binding to an ERF motif in the promoter region of sucrose transport protein 3 (AhSUC3) and positively regulate its expression. Consequently, AhSUC3 improved Al tolerance by upregulating ethylene biosynthesis. These results provide further insights into the molecular mechanisms operating during peanut response to Al stress, and suggests targets for manipulation in breeding programs for improved Al tolerance.
Collapse
Affiliation(s)
- Yusun Shi
- College of Agriculture, Guangxi University, Nanning, China
| | - Guoting Liao
- College of Agriculture, Guangxi University, Nanning, China
| | - Ailing Li
- College of Agriculture, Guangxi University, Nanning, China
| | - Xinyue Li
- College of Agriculture, Guangxi University, Nanning, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Cai X, Li D, Liu C, Chen J, Wei X, Hu S, Lu L, Chen S, Yao Q, Xie S, Xu X, Liu R, Qin Y, Zheng P. Identification and characterization of GRAS genes in passion fruit (Passiflora edulis Sims) revealed their roles in development regulation and stress response. PLANT CELL REPORTS 2025; 44:46. [PMID: 39885065 DOI: 10.1007/s00299-025-03432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
KEY MESSAGE Twenty-nine GRAS genes were identified in passion fruit, the N-terminal regions and 3D (three-dimensional) structures were closely related with their tissue-specific expression patterns. Candidate PeGRASs for enhancing stress resistance were identified. Passion fruit (Passiflora edulis Sims) is a tropical fruit crop with significant edible and ornamental value, but its growth and development are highly sensitive to environmental conditions. The plant-specific GRAS gene family plays critical roles in regulating growth, development, and stress responses. Here, we performed the first comprehensive analysis of the GRAS gene family in passion fruit. A total of 29 GRAS genes were identified and named PeGRAS1 to PeGRAS29 based on their chromosomal locations. Phylogenetic analysis using GRAS proteins from passion fruit, Arabidopsis, and rice revealed that PeGRAS proteins could be classified into 10 subfamilies. Compared to Arabidopsis, passion fruit lacked members from the LAS subfamily but gained one GRAS member (PeGRAS9) clustered with the rice-specific Os4 subfamily. Structural analysis performed in silico revealed that most PeGRAS members were intron less and exhibited conserved motif patterns near the C-terminus, while the N-terminal regions varied in sequence length and composition. Members within certain subfamilies including DLT, PAT1, and LISCL with similar unstructured N-terminal regions and 3D structures, exhibited similar tissue-specific expression patterns. While PeGRAS members with difference in these structural features, even within the same subfamily (e.g., DELLA), displayed distinct expression patterns. These findings highlighted that the N-terminal regions of GRAS proteins may be critical for their specific functions. Moreover, many PeGRAS members, particularly those from the PAT1 subfamily, were widely involved in stress responses, with PeGRAS19 and PeGRAS26 likely playing roles in cold tolerance, and PeGRAS25 and PeGRAS28 in drought resistance. This study provides a foundation for further functional research on PeGRASs and offers potential candidates for molecular breeding aimed at enhancing stress tolerance in passion fruit.
Collapse
Affiliation(s)
- Xinkai Cai
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Denglin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chaojia Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiayi Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuqing Wei
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, Fujian, China
| | - Sitong Hu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Lu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shengzhen Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qinglong Yao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiyu Xie
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaowen Xu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruoyu Liu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ping Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Life Sciences, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Li K, Song Y, Fan Y, Zhang H, Chu M, Liu Y. Transcriptome integration analysis revealed that miR-103-3p regulates goat myoblast proliferation by targeting FGF18. BMC Genomics 2025; 26:16. [PMID: 39773020 PMCID: PMC11706129 DOI: 10.1186/s12864-024-11183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myoblasts serve as the fundamental building blocks of muscle fibers, and there is a positive correlation between the diameter of myofibers during the juvenile phase and the rate of muscle growth, which does not change in adulthood. However, the molecular mechanisms governing myofiber diameter across various developmental stages in goats remain largely unclear. RESULTS In this study, we examined miRNA expression in the longissimus dorsi muscle tissue of goats at two distinct ages: one month, a period characterized by robust muscle growth, and nine months, when muscle development plateaus in adulthood. A total of 408 known miRNAs and 86 novel miRNAs were identified, with 32 miRNAs exhibiting differential expression between the two groups. A functional enrichment analysis of these targeted genes revealed significant enrichment in pathways closely correlated with skeletal muscle growth, development, and senescence. Notably, chi-miR-103-3p was identified among the DE miRNAs and appeared to play an important role in skeletal myoblast proliferation. Bioinformatics analysis, complemented by dual luciferase activity assays revealed that chi-miR-103-3p specifically targets the 3'UTR of FGF18. Subsequent cell transfection experiments demonstrated that chi-miR-103-3p suppresses the expression of FGF18 in goat myoblasts, thereby inhibiting cell proliferation. Moreover, FGF18 was observed to enhance the proliferation of goat myoblasts. CONCLUSIONS Collectively, our data indicated that the elevated expression of chi-miR-103-3p in adult goat myoblasts significantly repressed FGF18 expression, thereby limiting rapid muscle growth. Proliferation and differentiation of myoblasts can affect myofiber number and cell volume expansion. These findings lay the foundation for further elucidation of the molecular mechanisms underlying muscle growth and development across different life stages of goats. Additionally, it could be a potential molecular marker for improving muscle production in goats.
Collapse
Affiliation(s)
- Kunyu Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yize Song
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yekai Fan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Ren W, La Y, Ma X, Wu X, Guo X, Chu M, Yan P, Lan X, Liang C. Comparative Analysis of miRNA Expression Profiles of Yak Milk-Derived Exosomes at Different Altitudes. Animals (Basel) 2025; 15:87. [PMID: 39795030 PMCID: PMC11718820 DOI: 10.3390/ani15010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/25/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Yaks are a rare and unique animal species inhabiting the Qinghai-Tibet Plateau; they are renowned for their remarkable ability to thrive in harsh environments. Milk-derived exosomes, tiny vesicles containing various biological molecules, play crucial roles in numerous pathological and physiological processes, including cell growth, development, and immune regulation. This study delved into the microRNA expression profiles of yak milk-derived exosomes collected from both high- and low-altitude populations using small RNA sequencing. These miRNAs were found to be implicated in pathways associated with mammary gland inflammation, virus infection regulation, and heat stress response. Functional enrichment analyses, utilizing GO and KEGG databases, revealed that the target genes of these differentially expressed miRNAs are enriched in signaling pathways crucial for Th17 cell differentiation and the Ras-MAPK signaling pathway. In conclusion, this research illuminates the adaptive mechanisms of yaks through the differential expression of miRNAs in their milk-derived exosomes across varying environmental conditions. These findings provide a valuable foundation for future investigations into yak resilience and the potential of milk-derived exosomes as tools for disease management and immune modulation.
Collapse
Affiliation(s)
- Wenwen Ren
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yongfu La
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
9
|
Abbasifard M, Ostad Ebrahimi H, Taghipur Khajeh Sharifi G, Bahrehmand F, Bagheri-Hosseinabadi Z. Investigation of the circulatory microRNAs and their involvement in regulation of inflammation in patients with COVID-19. Hum Immunol 2025; 86:111208. [PMID: 39667207 DOI: 10.1016/j.humimm.2024.111208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Dysregulated levels of cytokines may lead to cytokine storm, which has been implicated in the immunopathogenesis of coronavirus disease 2019 (COVID-19). Here in the current study, the role of microRNA (miR)-155-5p, miR-146a, and miR-221-3p in the regulation of the immune responses and inflammatory state in patients with COVID-19 was investigated. METHODS In this case-control study, peripheral blood samples were obtained from 75 COVID-19 subjects and 100 healthy controls. From the plasma samples, RNA was extracted and cDNA was synthesized, and subsequently the transcript level of miRNAs was measured by Real-time PCR. The plasma levels of interleukin (IL)-4 and interferon (IFN)-γ were determined using ELISA. RESULTS miR-155-5p (fold change = 1.87, P = 0.020) and miR-221-3p (fold change = 2.26, P = 0.008), but not miR-146a, was upregulated in the plasma sample of COVID-19 cases compared to controls. The level of IFN-γ (but not IL-4) was significantly higher in the plasma samples of COVID-19 patients compared to control group. The expression level of miR-155-5p (r = 0.35, corrected P = 0.066) and miR-221-3p (r = 0.25, corrected P = 0.066) had positive correlation with the plasma levels of IFN-γ. CONCLUSIONS IFN-γ pathway in involved in the pathogenesis of COVID-19 that is regulated through miR-155-5p and miR-221-3p. These miRNAs showed potential utility as biomarkers for predicting the severity of COVID-19.
Collapse
Affiliation(s)
- Mitra Abbasifard
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Ostad Ebrahimi
- Department of Paediatrics, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Fatemeh Bahrehmand
- Molecular Medicine Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Zahra Bagheri-Hosseinabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
10
|
Krivmane B, Ruņģis DE. Differential microRNA and Target Gene Expression in Scots Pine ( Pinus sylvestris L.) Needles in Response to Methyl Jasmonate Treatment. Genes (Basel) 2024; 16:26. [PMID: 39858573 PMCID: PMC11765084 DOI: 10.3390/genes16010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background/objectives: Methyl jasmonate is a plant signaling molecule involved in a wide range of functions, including stress responses. This study investigates the relative differential expression of microRNAs and their target genes in response to methyl jasmonate treatment of Scots pine needles. Methods: A combined strategy of high-throughput sequencing and in silico prediction of potential target genes was implemented. Results: a total of 58 differentially expressed (DE) microRNAs (miRNAs) (43 up-regulated and 15 down-regulated), belonging to 29 miRNA families, were identified. The 41 DE miRNAs from 17 families were conifer-specific miRNA families-miR946, miR947, miR950, miR1312, miR1313, miR1314, miR3693, miR3107, miR11452, miR11466, miR11487, miR11490, miR11504, miR11511, miR11532, miR11544, and miR11551. The other DE miRNAs (miR159, miR164, miR169, miR396, miR397, miR398, miR408, miR535) were conserved miRNAs, which are also found in angiosperm species. Transcriptome analysis identified 389 gene transcripts with 562 miRNA-target sites targeted by 57 of the 58 DE miRNAs. Of these, 250 target genes with 138 different GO annotations were found for the 41 DE conifer-specific conserved miRNAs. Conclusions: The 26 DE miRNAs from 14 DE miRNA families, of which almost all (12 families, 24 miRNAs) are conifer specific, and were associated with 68 disease resistance and TMV resistance proteins, TIR-NBS-LRR, LRR receptor-like serine/threonine-protein kinase, putative CC-NBS-LRR protein, and putative NBS-LRR protein target transcripts with 29 target gene GO term descriptions. Some of the genes targeted by conifer-specific miRNAs have been previously reported to be targeted by other miRNAs in angiosperms, indicating that the miRNA-target gene regulation system can vary between species.
Collapse
Affiliation(s)
| | - Dainis Edgars Ruņģis
- Latvian State Forest Research Institute “Silava”, 111 Rigas St., LV-2169 Salaspils, Latvia;
| |
Collapse
|
11
|
Liu S, Lei X, Gou W, Xiong C, Min W, Kong D, Wang X, Liu T, Ling Y, Ma X, Zhao J. Genome-wide identification, characterization and expression analysis of key gene families in RNA silencing in centipedegrass. BMC Genomics 2024; 25:1139. [PMID: 39587505 PMCID: PMC11590561 DOI: 10.1186/s12864-024-11062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Argonaute (AGO), Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) are essential components of RNA silencing pathways in plants. These components are crucial for the generation and regulatory functions of small RNAs, especially in plant development and response to environmental stresses. Despite their well-characterized functions in other plant species, there is limited information about these genes and their stress responses in centipedegrass (Eremochloa ophiuroides), a key turfgrass species. RESULTS Using genome-wide analysis we identified 20 AGO, 6 DCL, and 10 RDR members in centipedegrass and provided a comprehensive overview of their characteristics. We performed the chromosomal location, gene duplication, syntenic analysis, conserve motif, gene structure, and cis-acting elements analysis. And conducted phylogenetic analyses to clarify the evolutionary relationships among the EoAGO, EoDCL, and EoRDR gene families. Three-dimensional modeling prediction of EoAGO, EoDCL, and EoRDR proteins supported the phylogenetic classification. Furthermore, we examined the expression patterns of these genes in different tissues (spike, stem, leaf, root, and flower) and under different stress conditions (cold, salt, drought, aluminum, and herbicide) using RT-qPCR. The results revealed that most of EoAGO, EoDCL, and EoRDR genes were upregulated in response to multiple abiotic stresses, while some exhibited unique responses, suggesting potential specialized regulatory functions. CONCLUSION In this study, we performed a comprehensive genome‑wide identification, and phylogenetic and expression pattern analyses of the EoAGO, EoDCL and EoRDR gene families. Our analysis provides a foundation for future research on the RNA silence elements of turfgrass, and affords scientific basis and insights for clarifying the expression patterns of EoAGO, EoDCL and EoRDR genes under adversity stress. Further functional validation and molecular breeding of these genes can be carried out for enhancing the stress resistance of centipedegrass.
Collapse
Affiliation(s)
- Siyu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu , Sichuan, 611130, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China
| | - Wenlong Gou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Chunsen Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu , Sichuan, 611130, China
| | - Wei Min
- Aba County Bureau of Science, Technology and Agriculture and Animal Husbandry, Aba, Sichuan, 624600, China
| | - Dandan Kong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu , Sichuan, 611130, China
| | - Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu , Sichuan, 611130, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu , Sichuan, 611130, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu , Sichuan, 611130, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu , Sichuan, 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu , Sichuan, 611130, China.
| |
Collapse
|
12
|
Xing N, Gao L, Xie W, Deng H, Yang F, Liu D, Li A, Pang Q. Mining of potentially stem cell-related miRNAs in planarians. Mol Biol Rep 2024; 51:1045. [PMID: 39377855 DOI: 10.1007/s11033-024-09977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Stem cells and regenerative medicine have recently become important research topics. However, the complex stem cell regulatory networks involved in various microRNA (miRNA)-mediated mechanisms have not yet been fully elucidated. Planarians are ideal animal models for studying stem cells owing to their rich stem cell populations (neoblasts) and extremely strong regeneration capacity. The roles of planarian miRNAs in stem cells and regeneration have long attracted attention. However, previous studies have generally provided simple datasets lacking integrative analysis. Here, we have summarized the miRNA family reported in planarians and highlighted conservation in both sequence and function. Furthermore, we summarized miRNA data related to planarian stem cells and regeneration and screened potential involved candidates. Nevertheless, the roles of these miRNAs in planarian regeneration and stem cells remain unclear. The identification of potential stem cell-related miRNAs offers more precise suggestions and references for future investigations of miRNAs in planarians. Furthermore, it provides potential research avenues for understanding the mechanisms of stem cell regulatory networks. Finally, we compiled a summary of the experimental methods employed for studying planarian miRNAs, with the aim of highlighting special considerations in certain procedures and providing more convenient technical support for future research endeavors.
Collapse
Affiliation(s)
- Nianhong Xing
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| | - Wenshuo Xie
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Hongkuan Deng
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Fengtang Yang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| |
Collapse
|
13
|
Hao S, Zuo F, Zhang H, Wang Y, Huang L, Ma F, Song T, Zhang T, Ren X, Wang N. LncRNA RP11-301G19.1 is required for the maintenance of vascular smooth muscle cell contractile phenotype via sponging miR-17-5P/ATOH8 axis. IUBMB Life 2024; 76:731-744. [PMID: 38651683 DOI: 10.1002/iub.2824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Long noncoding RNAs (LncRNAs) play essential roles in regulating gene expression in various biological processes. However, the function of lncRNAs in vascular smooth muscle cell (VSMC) transformation remains to be explained. In this work, we discover that a new bone marrow protein (BMP) signaling target, lncRNA RP11-301G19.1, is significantly induced in BMP7-treated VSMCs through lncRNA microarray analysis. Addition of BMP signaling inhibitor LDN-193189 attenuates the expression of ACTA2 and SM-22α, as well as the mRNA level of RP11-301G19.1. Furthermore, lncRNA RP11-301G19.1 is critical to the VSMC differentiation and is directly activated by SMAD1/9. Mechanistically, knocking down of RP11-301G19.1 leads to the decrease of ATOH8, another BMP target, while the forced expression of RP11-301G19.1 reactivates ATOH8. In addition, miR-17-5p, a miRNA negatively regulated by BMP-7, contains predicted binding sites for lncRNA RP11-301G19.1 and ATOH8 3'UTR. Accordingly, overexpression of miR-17-5p decreases the levels of them. Together, our results revealed the role of lncRNA RP11-301G19.1 as a miRNA sponge to upregulate ATOH8 in VSMC phenotype transformation.
Collapse
Affiliation(s)
- Shuning Hao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Feifei Zuo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Hongmin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Ying Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Liwen Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Fenghui Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Tiefeng Song
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| | - Xuejun Ren
- Department of Cardiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin, China
| |
Collapse
|
14
|
Zhao J, Ma Y, Zheng X, Sun Z, Lin H, Du C, Cao J. Bladder cancer: non-coding RNAs and exosomal non-coding RNAs. Funct Integr Genomics 2024; 24:147. [PMID: 39217254 DOI: 10.1007/s10142-024-01433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Bladder cancer (BCa) is a highly prevalent type of cancer worldwide, and it is responsible for numerous deaths and cases of disease. Due to the diverse nature of this disease, it is necessary to conduct significant research that delves deeper into the molecular aspects, to potentially discover novel diagnostic and therapeutic approaches. Lately, there has been a significant increase in the focus on non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), due to their growing recognition for their involvement in the progression and manifestation of BCa. The interest in exosomes has greatly grown due to their potential for transporting a diverse array of active substances, including proteins, nucleic acids, carbohydrates, and lipids. The combination of these components differs based on the specific cell and its condition. Research indicates that using exosomes could have considerable advantages in identifying and forecasting BCa, offering a less invasive alternative. The distinctive arrangement of the lipid bilayer membrane found in exosomes is what makes them particularly effective for administering treatments aimed at managing cancer. In this review, we have tried to summarize different ncRNAs that are involved in BCa pathogenesis. Moreover, we highlighted the role of exosomal ncRNAs in BCa.
Collapse
Affiliation(s)
- Jingang Zhao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Yangyang Ma
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China
| | - Xiaodong Zheng
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Zhen Sun
- Department of the First Surgery, Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Force, Hangzhou, 310051, Zhe'jiang, China
| | - Hongxiang Lin
- Department of Urology, Ganzhou Donghe Hospital, Ganzhou, 341000, Jiang'xi, China
| | - Chuanjun Du
- Department of Urology, Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310009, Zhe'jiang, China
| | - Jing Cao
- Department of Urology, Hangzhou Mingzhou Hospital, Hangzhou, 311215, Zhe'jiang, China.
| |
Collapse
|
15
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. Front Cell Infect Microbiol 2024; 14:1427562. [PMID: 39086604 PMCID: PMC11288922 DOI: 10.3389/fcimb.2024.1427562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
16
|
Cao M, Xiong L, Wang X, Guo S, Hu L, Kang Y, Wu X, Bao P, Chu M, Liang C, Pei J, Guo X. Comprehensive analysis of differentially expressed mRNAs, circRNAs, and miRNAs and their ceRNA network in the testis of cattle-yak, yak, and cattle. Genomics 2024; 116:110872. [PMID: 38849017 DOI: 10.1016/j.ygeno.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Cattle-yak is a hybrid offspring resulting from the crossbreeding of yak and cattle, and it exhibits substantial heterosis in production performance. However, male sterility in cattle-yak remains a concern. Reports suggest that noncoding RNAs are involved in the regulation of spermatogenesis. Therefore, in this study, we comprehensively compared testicular transcription profiles among cattle, yak, and cattle-yak. Numerous differentially expressed genes (DEGs), differentially expressed circRNAs (DECs), and differentially expressed miRNAs (DEMs) were identified in the intersection of two comparison groups, namely cattle versus cattle-yak and yak versus cattle-yak, with the number of DEGs, DECs, and DEMs being 4968, 360, and 59, respectively. The DEGs in cattle-yaks, cattle, and yaks were mainly associated with spermatogenesis, male gamete generation, and sexual reproduction. Concurrently, GO and KEGG analyses indicated that DEC host genes and DEM source genes were involved in the regulation of spermatogenesis. The construction of a potential competing endogenous RNA network revealed that some differentially expressed noncoding RNAs may be involved in regulating the expression of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, and miR-15b, as well as previously unreported miR-6123 and miR-1306, along with various miRNA-circRNA interaction pairs. This study serves as a valuable reference for further investigations into the mechanisms underlying male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Mengli Cao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Liyan Hu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyu Wu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
17
|
Luo G, Li L, Yang X, Yu Y, Gao L, Mo B, Chen X, Liu L. MicroRNA1432 regulates rice drought stress tolerance by targeting the CALMODULIN-LIKE2 gene. PLANT PHYSIOLOGY 2024; 195:1954-1968. [PMID: 38466155 DOI: 10.1093/plphys/kiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Due to climate change, drought has become a major threat to rice (Oryza sativa L.) growth and yield worldwide. Understanding the genetic basis of drought tolerance in rice is therefore of great importance. Here, we identified a microRNA, miR1432, which regulates rice drought tolerance by targeting the CALMODULIN-LIKE2 (OsCaML2) gene. Mutation of MIR1432 or suppression of miR1432 expression significantly impaired seed germination and seedling growth under drought-stress conditions. Molecular analysis demonstrated that miR1432 affected rice drought tolerance by directly targeting OsCaML2, which encodes an EF-hand chiral calcium-binding protein. Overexpression of a miR1432-resistant form of OsCaML2 (OEmCaML2) phenocopied the mir1432 mutant and miR1432 suppression plants. Furthermore, the suppression of miR1432 severely affected the expression of genes involved in responses to stimulation, metabolism and signal transduction, especially the mitogen-activated protein kinase (MAPK) pathway and hormone transduction pathway in rice under drought stress. Thus, our findings show that the miR1432-OsCaML2 module plays an important role in the regulation of rice drought tolerance, suggesting its potential utilization in developing molecular breeding strategies that improve crop drought tolerance.
Collapse
Affiliation(s)
- Guangyu Luo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Lin Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiaoyu Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yu Yu
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xuemei Chen
- School of Life Sciences, Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
18
|
Patil BL, Tripathi S. Differential expression of microRNAs in response to Papaya ringspot virus infection in differentially responding genotypes of papaya ( Carica papaya L.) and its wild relative. FRONTIERS IN PLANT SCIENCE 2024; 15:1398437. [PMID: 38966149 PMCID: PMC11222417 DOI: 10.3389/fpls.2024.1398437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/06/2024]
Abstract
Papaya ringspot virus (PRSV) is one of the most devastating viruses of papaya that has significantly hampered papaya production across the globe. Although PRSV resistance is known in some of its wild relatives, such as Vasconcellea cauliflora and in some of the improved papaya genotypes, the molecular basis of this resistance mechanism has not been studied and understood. Plant microRNAs are an important class of small RNAs that regulate the gene expression in several plant species against the invading plant pathogens. These miRNAs are known to manifest the expression of genes involved in resistance against plant pathogens, through modulation of the plant's biochemistry and physiology. In this study we made an attempt to study the overall expression pattern of small RNAs and more specifically the miRNAs in different papaya genotypes from India, that exhibit varying levels of tolerance or resistance to PRSV. Our study found that the expression of some of the miRNAs was differentially regulated in these papaya genotypes and they had entirely different miRNA expression profile in healthy and PRSV infected symptomatic plants. This data may help in improvement of papaya cultivars for resistance against PRSV through new breeding initiatives or biotechnological approaches such as genome editing.
Collapse
Affiliation(s)
| | - Savarni Tripathi
- ICAR-Indian Agricultural Research Institute, Regional Station, Pune, India
| |
Collapse
|
19
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
20
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592465. [PMID: 38765993 PMCID: PMC11100627 DOI: 10.1101/2024.05.03.592465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
21
|
Li H, Meng J, Wang Z, Tang Y, Xia S, Wang Y, Qin Z, Luan Y. miPEPPred-FRL: A Novel Method for Predicting Plant MiRNA-Encoded Peptides Using Adaptive Feature Representation Learning. J Chem Inf Model 2024; 64:2889-2900. [PMID: 37733290 DOI: 10.1021/acs.jcim.3c01020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
MicroRNAs (miRNAs) are an essential type of small molecule RNAs that play significant regulatory roles in organisms. Recent studies have demonstrated that small open reading frames (sORFs) harbored in primary miRNAs (pri-miRNAs) can encode small peptides, known as miPEPs. Plant miPEPs can increase the abundance and activity of cognate miRNAs by promoting the transcription of their corresponding pri-miRNAs, thereby modulating plant traits. Biological experiments are the most effective way to accurately identify miPEPs; however, they are time-consuming and expensive. Hence, an efficient computational method for the identification of miPEPs on a large scale is highly desirable. Up to now, there have been no specialized computational tools for identifying miPEPs. In this work, a novel predictor named miPEPPred-FRL based on an adaptive feature representation learning framework that consists of the feature transformation module and the cascade architecture has been proposed. The feature transformation module integrating a newly designed feature selection method and classifier selection rule is developed to convert sequence-based features into primary class and probabilistic features, which are then fed into the improved cascade architecture to obtain more stable and discriminative augmented features. Finally, the augmented features are utilized to construct the final predictor. Cross-validation experiments illustrate that the novel feature selection method and classifier selection rule contribute to boosting the feature representation ability of the framework. Furthermore, the high accuracy of miPEPPred-FRL on independent testing data suggests that it is a trustworthy and valuable tool for the identification of miPEPs.
Collapse
Affiliation(s)
- Haibin Li
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhaowei Wang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Youwei Tang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Shihao Xia
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yu Wang
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Zhaojing Qin
- School of Computer Science and Technology, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
22
|
Unnikrishnan DK, Sreeharsha RV, Mudalkar S, Reddy AR. Flowering onset time is regulated by microRNA-mediated trehalose-6-phosphate signaling in Cajanus cajan L . under elevated CO 2. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:483-496. [PMID: 38633268 PMCID: PMC11018574 DOI: 10.1007/s12298-024-01434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
CO2 levels are known to have an impact on plant development and physiology. In the current study, we have investigated the effect of elevated CO2 on flowering and its regulation through miRNA mediated sugar signaling. We also unraveled small RNA transcriptome of pigeonpea under ambient and elevated CO2 conditions and predicted the targets for crucial miRNAs through computational methods. The results have shown that the delayed flowering in pigeonpea under elevated CO2 was due to an imbalance in C:N stoichiometry and differential expression pattern of aging pathway genes, including SQUAMOSA PROMOTER BINDING PROTEIN-LIKE. Furthermore, qRT PCR analysis has revealed the role of miR156 and miR172 in mediating trehalose-6-phosphate dependent flowering regulation. The current study is crucial in understanding the responses of flowering patterns in a legume crop to elevated CO2 which showed a significant impact on its final yields. Also, these findings are crucial in devising effective crop improvement strategies for developing climate resilient crops, including pigeonpea. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01434-9.
Collapse
Affiliation(s)
| | | | - Shalini Mudalkar
- Forest College and Research Institute, Hyderabad, Mulugu, Telangana 502279 India
| | - Attipalli R. Reddy
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500049 India
| |
Collapse
|
23
|
Ruan Q, Bai X, Wang Y, Zhang X, Wang B, Zhao Y, Zhu X, Wei X. Regulation of endogenous hormone and miRNA in leaves of alfalfa (Medicago sativa L.) seedlings under drought stress by endogenous nitric oxide. BMC Genomics 2024; 25:229. [PMID: 38429670 PMCID: PMC10908014 DOI: 10.1186/s12864-024-10024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/17/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.
Collapse
Affiliation(s)
- Qian Ruan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaoming Bai
- Pratacultural College, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Yizhen Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of agronomy, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaofang Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Ying Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- College of agronomy, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, 730070, China.
- Gansu Key Laboratory of Crop Genetic Improvement and Germplasm Innovation, Lanzhou, Gansu, 730070, China.
- Gansu Key Laboratory of Arid Habitat Crop Science, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
24
|
Chen MM, Kopittke PM, Zhao FJ, Wang P. Applications and opportunities of click chemistry in plant science. TRENDS IN PLANT SCIENCE 2024; 29:167-178. [PMID: 37612212 DOI: 10.1016/j.tplants.2023.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
The Nobel Prize in Chemistry for 2022 was awarded to the pioneers of Lego-like 'click chemistry': combinatorial chemistry with remarkable modularity and diversity. It has been applied to a wide variety of biological systems, from microorganisms to plants and animals, including humans. Although click chemistry is a powerful chemical biology tool, comparatively few studies have examined its potential in plant science. Here, we review click chemistry reactions and their applications in plant systems, highlighting the activity-based probes and metabolic labeling strategies combined with bioorthogonal click chemistry to visualize plant biological processes. These applications offer new opportunities to explore and understand the underlying molecular mechanisms regulating plant composition, growth, metabolism, defense, and immune responses.
Collapse
Affiliation(s)
- Ming-Ming Chen
- Centre of Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peter M Kopittke
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- Centre of Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Guo S, Zhang M, Feng M, Liu G, Torregrosa L, Tao X, Ren R, Fang Y, Zhang Z, Meng J, Xu T. miR156b-targeted VvSBP8/13 functions downstream of the abscisic acid signal to regulate anthocyanins biosynthesis in grapevine fruit under drought. HORTICULTURE RESEARCH 2024; 11:uhad293. [PMID: 38371638 PMCID: PMC10873574 DOI: 10.1093/hr/uhad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/20/2023] [Indexed: 02/20/2024]
Abstract
Anthocyanins are the primary color components of grapevine berries and wines. In cultivation practices, a moderate water deficit can promote anthocyanin accumulation in red grape skins. Our previous study showed that abscisic acid (ABA) plays a key role in this process. Herein, we identified a microRNA, vv-miR156b, that is generated in grapevine berries in response to drought stress, along with increasing anthocyanin content and biosynthetic structural gene transcripts. In contrast, vv-miR156b short tandem target mimic (STTM) function-loss callus exhibits the opposite phenotype. Results from in vivo and in vitro experiments revealed that the ABA-signaling-regulated transcription factor VvAREB2 binds directly to the ABA-responsive element (ABRE) of the MIR156b promoter and activates miR156b expression. Furthermore, two miR156b downstream targets, VvSBP8 and VvSBP13, exhibited reduced grape anthocyanin content in their overexpressors but there was a contrary result in their CRISPR-edited lines, the decrease in anthocyanin content was rescued in miR156b and SBP8/13 double overexpressors. We further demonstrated that both VvSBP8 and VvSBP13, encoding transcriptional repressors, displayed sufficient ability to interact with VvMYC1 and VvMYBA1, thereby interfering with MYB-bHLH-WD (MBW) repeat transcriptional complex formation, resulting in the repression of anthocyanin biosynthesis. Our findings demonstrate a direct functional relationship between ABA signaling and the miR156-SBP-MBW complex regulatory module in driving drought-induced anthocyanin accumulation in grape berries.
Collapse
Affiliation(s)
- Shuihuan Guo
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Meng Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxin Feng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guipeng Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Laurent Torregrosa
- UMR LEPSE, Université de Montpellier , CIRAD, INRAE, Institut Agro, 34060 Montpellier, France
| | - Xiaoqing Tao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruihua Ren
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Fang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
26
|
Sivapornnukul P, Khamwut A, Chanchaem P, Chusongsang P, Chusongsang Y, Poodeepiyasawat P, Limpanont Y, Reamtong O, Payungporn S. Comprehensive analysis of miRNA profiling in Schistosoma mekongi across life cycle stages. Sci Rep 2024; 14:2347. [PMID: 38281987 PMCID: PMC10822868 DOI: 10.1038/s41598-024-52835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
Schistosoma mekongi, a significant schistosome parasite, has various life stages, including egg, cercaria, female, and male, that play crucial roles in the complex life cycle. This study aimed to explore the microRNA (miRNA) profiles across these developmental stages to understand their potential functions and evolutionary significance, which have not been studied. Pre-processed sequencing reads of small RNA (sRNA) were obtained, and annotations were performed against the S. japonicum reference miRNA database. Results indicated marked variations in miRNA profiles across different life stages, with notable similarities observed between female and male S. mekongi. Principal Coordinate Analysis (PCoA) and unsupervised clustering revealed distinct miRNA signatures for each stage. Gene ontology (GO) analysis unveiled the potential roles of these miRNAs in various biological processes. The differential expression of specific miRNAs was prominent across stages, suggesting their involvement in crucial developmental processes. Furthermore, orthologous miRNA analysis against various worm species revealed distinct presence-absence patterns, providing insights into the evolutionary relationships of these miRNAs. In conclusion, this comprehensive investigation into the miRNA profiles of S. mekongi offers valuable insights into the functional and evolutionary aspects of miRNAs in schistosome biology.
Collapse
Affiliation(s)
- Pavaret Sivapornnukul
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ariya Khamwut
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Paporn Poodeepiyasawat
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
27
|
He Y, Chen S, Guo X, He X, Di R, Zhang X, Zhang J, Wang X, Chu M. Transcriptomic Analysis Reveals Differentially Expressed Circular RNAs Associated with Fecundity in the Sheep Hypothalamus with Different FecB Genotypes. Animals (Basel) 2024; 14:198. [PMID: 38254366 PMCID: PMC10812736 DOI: 10.3390/ani14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Circular RNAs (circRNAs) are a specific type of noncoding RNA, and some have defined roles in cellular and biological processes. However, little is known about the role of circRNAs in follicular development in sheep with FecB (fecundity Booroola) mutations. Here, the expression profiles of circRNAs were investigated using RNA sequencing (RNA-seq) in the follicular phase (F) and the luteal phase (L) of FecB mutant homozygous (BB) and wild-type (WW) Small Tail Han sheep. A total of 38,979 circRNAs were identified, and 314, 343, 336, and 296 of them were differentially expressed (DE) between BB_F and BB_L, WW_F and WW_L, BB_F and WW_F, and BB_L and WW_L, respectively. The length, type, and chromosome distribution of the circRNAs and the expression characteristic between the circRNAs and their host genes in the sheep hypothalamus were ascertained. Enrichment analysis showed that the host genes of DE circRNAs in the follicular and luteal phases were annotated to MAPK, gap junctions, progesterone-mediated oocyte maturation, oocyte meiosis, and other hormone-related signaling pathways, and the different FecB genotypes were annotated to the gap junctions, circadian entrainment, MAPK, and other hormone-related signaling pathways. The competing endogenous RNA network prediction revealed that the 129 target miRNAs might be bound to 336 DE circRNAs. oar_circ_0000523 and oar_circ_0028984, which were specifically expressed during the follicular phase in the BB genotype sheep, probably acted as miRNA sponges involved in the regulation of LH synthesis and secretion. This study reveals the expression profiles and characterization of circRNAs at two phases of follicular development considering different FecB genotypes, thereby providing an improved understanding of the roles of circRNAs in the sheep hypothalamus and their involvement in follicular development and ovulation.
Collapse
Affiliation(s)
- Yu He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.H.); (S.C.); (X.G.); (X.H.); (R.D.)
| | - Si Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.H.); (S.C.); (X.G.); (X.H.); (R.D.)
| | - Xiaofei Guo
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.H.); (S.C.); (X.G.); (X.H.); (R.D.)
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
- Jilin Provincial Key Laboratory of Grassland Farming, Jilin Province Feed Processing and Ruminant Precision Breeding Cross Regional Cooperation Technology Innovation Center, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.H.); (S.C.); (X.G.); (X.H.); (R.D.)
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.H.); (S.C.); (X.G.); (X.H.); (R.D.)
| | - Xiaosheng Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Jinlong Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.H.); (S.C.); (X.G.); (X.H.); (R.D.)
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Y.H.); (S.C.); (X.G.); (X.H.); (R.D.)
| |
Collapse
|
28
|
Wei S, Liao D, Hu J. Inhibition of miR-144-3p/FOXO1 Attenuates Diabetic Keratopathy Via Modulating Autophagy and Apoptosis. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38165707 PMCID: PMC10768711 DOI: 10.1167/iovs.65.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024] Open
Abstract
Purpose Diabetic keratopathy (DK) is a vision-threatening disease that occurs in people with diabetes. Mounting evidence indicates that microRNAs (miRNAs) are indispensable in nerve regeneration within DK. Herein, the role of miRNAs associated with DK, especially focusing on autophagy and apoptosis regulation, was investigated. Methods To identify differentially expressed miRNAs, we performed miRNA sequencing on trigeminal ganglion (TG) tissues derived from streptozotocin-induced type 1 diabetic mellitus (T1DM) and normal mice. MiR-144-3p was chosen for the subsequent experiments. To explore the regulatory role of miR-144-3p in DK, miRNA antagomir was utilized to inhibit miR-144-3p expression. Bioinformatic tools were used to predict the target genes of miR-144-3p, and a dual-luciferase reporter assay was then applied for validation. Autophagy and apoptosis activities were measured utilizing TUNEL staining, immunofluorescence staining, and Western blotting. Results Overall, 56 differentially expressed miRNAs were detected in diabetic versus control mice. In the diabetic mouse TG tissue, miR-144-3p expression was aberrantly enhanced, whereas decreasing its expression contributed to improved diabetic corneal re-epithelialization and nerve regeneration. Fork-head Box O1 (FOXO1) was validated as a target gene of miR-144-3p. Overexpression of FOXO1 could prevent both inadequate autophagy and excessive apoptosis in DK. Consistently, a specific miR-144-3p inhibition enhanced autophagy and prevented apoptosis in DK. Conclusions In this study, our research confirmed the target binding relationship between miR-144-3p and FOXO1. Inhibiting miR-144-3p might modulate autophagy and apoptosis, which could generate positive outcomes for corneal nerves via targeting FOXO1 in DK.
Collapse
Affiliation(s)
- Shijia Wei
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Danling Liao
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
29
|
Tang Y, Wu S, He H, Gao Q, Ding W, Xue J, Qiu L, Li Y. The CsmiR1579-CsKr-h1 module mediates rice stem borer development and reproduction: An effective target for transgenic insect-resistant rice. Int J Biol Macromol 2024; 254:127752. [PMID: 38287594 DOI: 10.1016/j.ijbiomac.2023.127752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
The rice stem borer (RSB, Chilo suppressalis) is a significant agricultural pest that mainly depends on chemical control. However, it has grown to varied degrees of pesticide resistance, which poses a severe threat to rice production and emphasizes the need for safer, more efficient alternative pest management strategies. Here, in vitro and in vivo experiments analyses reveal miR-1579 binds to the critical transcription factor Krüppel homologue 1 (Kr-h1) and negatively regulates its expression. Overexpression of miR-1579 in larvae with significantly lower levels of Kr-h1 was associated with a decline in larval growth and survival. Furthermore, in female pupae, miR-1579 overexpression led to abnormalities in ovarian development, suggesting that targeting miR-1579 could be a potential management strategy against C. suppressalis. Therefore, we generated transgenic rice expressing miR-1579 and screened three lines that had a single copy of highly abundant mature miR-1579 transcripts. Expectedly, fed with transgenic miR-1579 rice lines were significantly lower survival rates in larvae and high levels of resistance to damage caused by C. suppressalis infestation. These findings suggest that miRNA-mediated RNAi could provide an effective and species-specific strategy for C. suppressalis control.
Collapse
Affiliation(s)
- Yan Tang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Shuang Wu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Hualiang He
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Qiao Gao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Wenbing Ding
- National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Engineering & Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, China
| | - Jin Xue
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Lin Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| | - Youzhi Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; National Research Center of Engineering & Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
30
|
Li X, Chang Y, Shen W, Huang G, Hu N, Lv H, Jin M. miR-138 from ADSC Exo accelerates wound healing by targeting SIRT1/PTEN pathway to promote angiogenesis and fibrosis. Cell Signal 2023; 111:110843. [PMID: 37544635 DOI: 10.1016/j.cellsig.2023.110843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Xue Li
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yuzhen Chang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Weijun Shen
- Department of Anesthesiology, Tenth People's Hospital of Tongji University, No 301 Middle Yan Chang Road, Shanghai 200072, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Nan Hu
- Department of Vascular Surgery, The Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, 21000, Jiangsu, China.
| | - Haihong Lv
- Department of endocrinology, The First Hospital of Lanzhou University, #1 Donggang West Road Road, Lanzhou, 730000, Gansu, China.
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
31
|
Zhang G, Xu J, Zhang Y, Yang S, Jiang H. Expression of miRNA-1-3p and its target gene in hair follicle cycle development of Liaoning Cashmere goat. Anim Biotechnol 2023; 34:1937-1942. [PMID: 35443150 DOI: 10.1080/10495398.2022.2058519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
MicroRNA exerts an important regulatory role in almost all the biological process, including hair follicle development in Liaoning Cashmere goat. In order to improve the Cashmere performance of goat, the regulatory role of microRNA in hair follicle cycle has drawn hotspot attention. However, the molecular mechanisms of miRNA-1-3p involved in hair follicle development are poorly understood. In this study, we found that miRNA-1-3p was less expressed in anagen stage of hair follicle cycle of Cashmere goat than that in telogen stage by using RT-qPCR and immunoblotting analysis, in contrast to the expression pattern of FGF14. The Dual-Luciferase reporter assay was employed to verify the relationship between miRNA-1-3p and FGF14. The results showed that miRNA-1-3p specifically binds to the 3'UTR of FGF14 mRNA, and FGF14 is the target gene of miR-1-3p. In conclusion, this study shows that miRNA-1-3p may regulate hair follicle development in Liaoning Cashmere goats by targeting FGF14.
Collapse
Affiliation(s)
- Guishan Zhang
- School of Public Health, Jilin Medical University, Jilin, Jilin Province, China
| | - Jing Xu
- School of Basic Medical Sciences, Jilin Medical University, Jilin, Jilin Province, China
| | - Yingnan Zhang
- School of Public Health, Jilin Medical University, Jilin, Jilin Province, China
| | - Shubao Yang
- School of Basic Medical Sciences, Jilin Medical University, Jilin, Jilin Province, China
| | - Huaizhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| |
Collapse
|
32
|
Xu X, Feng G, Yang Z, Liu Q, Nie G, Li D, Huang T, Huang L, Zhang X. Transcriptome Analysis Reveals the Potential Molecular Mechanisms of Tiller Bud Development in Orchardgrass. Int J Mol Sci 2023; 24:15762. [PMID: 37958746 PMCID: PMC10650679 DOI: 10.3390/ijms242115762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Tillering is a special type of branching and one of the important contributors to the yield of cereal crops. Strigolactone and sucrose play a vital role in controlling tiller formation, but their mechanism has not been elucidated completely in most crops. Orchardgrass (Dactylis glomerata L.) is an important perennial forage with prominent tillering ability among crops. To date, the mechanism of tillering in orchardgrass is still largely unknown. Therefore, we performed a transcriptome and miRNA analysis to reveal the potential RNA mechanism of tiller formation under strigolactone and sucrose treatment in orchardgrass. Our results found that D3, COL5, NCED1, HXK7, miRNA4393-z, and miRNA531-z could be key factors to control tiller bud development in orchardgrass. In addition, strigolactones might affect the ABA biosynthesis pathway to regulate the tiller bud development of orchardgrass, which may be related to the expression changes in miRNA4393-z, NCED1, and D10. miRNA531-z could be involved in the interaction of strigolactones and sucrose in regulating tillering. These results will be further used to clarify the potential mechanism of tillering for breeding new high-tillering and high-production orchardgrass varieties and beneficial to improving the production and reproduction of crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
33
|
Zhang JY, Ren CQ, Cao YN, Ren Y, Zou L, Zhou C, Peng LX. Role of MicroRNAs in Dietary Interventions for Obesity and Obesity-Related Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14396-14412. [PMID: 37782460 DOI: 10.1021/acs.jafc.3c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Obesity and related metabolic syndromes pose a serious threat to human health and quality of life. A proper diet is a safe and effective strategy to prevent and control obesity, thus maintaining overall health. However, no consensus exists on the connotations of proper diet, and it is attributed to various factors, including "nutritional dark matter" and the "matrix effect" of food. Accumulating evidence confirms that obesity is associated with the in vivo levels of miRNAs, which serve as potential markers and regulatory targets for obesity onset and progression; food-derived miRNAs can regulate host obesity by targeting the related genes or gut microbiota across the animal kingdom. Host miRNAs mediate food nutrient-gut microbiota-obesity interactions. Thus, miRNAs are important correlates of diet and obesity onset. This review outlines the recent findings on miRNA-mediated food interventions for obesity, thereby elucidating their potential applications. Overall, we provide new perspectives and views on the evaluation of dietary nutrition, which may bear important implications for dietary control and obesity prevention.
Collapse
Affiliation(s)
- Ji-Yue Zhang
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chao-Qin Ren
- Aba Teachers University, Wenchuan, Sichuan 623002, People's Republic of China
| | - Ya-Nan Cao
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Chuang Zhou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| | - Lian-Xin Peng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Sichuan Province Engineering Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, People's Republic of China
| |
Collapse
|
34
|
Dong Y, Li S, Wu H, Gao Y, Feng Z, Zhao X, Shan L, Zhang Z, Ren H, Liu X. Advances in understanding epigenetic regulation of plant trichome development: a comprehensive review. HORTICULTURE RESEARCH 2023; 10:uhad145. [PMID: 37691965 PMCID: PMC10483894 DOI: 10.1093/hr/uhad145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/14/2023] [Indexed: 09/12/2023]
Abstract
Plant growth and development are controlled by a complex gene regulatory network, which is currently a focal point of research. It has been established that epigenetic factors play a crucial role in plant growth. Trichomes, specialized appendages that arise from epidermal cells, are of great significance in plant growth and development. As a model system for studying plant development, trichomes possess both commercial and research value. Epigenetic regulation has only recently been implicated in the development of trichomes in a limited number of studies, and microRNA-mediated post-transcriptional regulation appears to dominate in this context. In light of this, we have conducted a review that explores the interplay between epigenetic regulations and the formation of plant trichomes, building upon existing knowledge of hormones and transcription factors in trichome development. Through this review, we aim to deepen our understanding of the regulatory mechanisms underlying trichome formation and shed light on future avenues of research in the field of epigenetics as it pertains to epidermal hair growth.
Collapse
Affiliation(s)
- Yuming Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Sen Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haoying Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yiming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongxuan Feng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Li Shan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongren Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya Hainan 572000, China
| | - Xingwang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya Hainan 572000, China
| |
Collapse
|
35
|
Riyazuddin R, Singh K, Iqbal N, Labhane N, Ramteke P, Singh VP, Gupta R. Unveiling the biosynthesis, mechanisms, and impacts of miRNAs in drought stress resilience in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107978. [PMID: 37660607 DOI: 10.1016/j.plaphy.2023.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
Drought stress is one of the most serious threats to sustainable agriculture and is predicted to be further intensified in the coming decades. Therefore, understanding the mechanism of drought stress tolerance and the development of drought-resilient crops are the major goals at present. In recent years, noncoding microRNAs (miRNAs) have emerged as key regulators of gene expressions under drought stress conditions and are turning out to be the potential candidates that can be targeted to develop drought-resilient crops in the future. miRNAs are known to target and decrease the expression of various genes to govern the drought stress response in plants. In addition, emerging evidence also suggests a regulatory role of long non-coding RNAs (lncRNAs) in the regulation of miRNAs and the expression of their target genes by a process referred as miRNA sponging. In this review, we present the regulatory roles of miRNAs in the modulation of drought-responsive genes along with discussing their biosynthesis and action mechanisms. Additionally, the interactive roles of miRNAs with phytohormone signaling components have also been highlighted to present the global view of miRNA functioning under drought-stress conditions.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, H-6726, Szeged, Hungary.
| | - Kalpita Singh
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, 2100, Gödöllő, Hungary; Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, H-2462, Martonvásár, Hungary.
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary.
| | - Nitin Labhane
- Department of Botany, Bhavan's College Andheri West, Mumbai, 400058, India.
| | - Pramod Ramteke
- Department of Biotechnology, Dr. Ambedkar College, Nagpur, India.
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Ravi Gupta
- College of General Education, Kookmin University, 02707, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Ota S, Yokoyama K, Kanamori F, Mamiya T, Uda K, Araki Y, Wakabayashi T, Yoshikawa K, Saito R. Moyamoya disease-specific extracellular vesicle-derived microRNAs in the cerebrospinal fluid revealed by comprehensive expression analysis through microRNA sequencing. Acta Neurochir (Wien) 2023; 165:2045-2055. [PMID: 37079107 DOI: 10.1007/s00701-023-05579-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE To examine the specific changes that occur in the expression levels of extracellular vesicle-derived microRNAs (miRNAs) in intracranial cerebrospinal fluid (CSF) in moyamoya disease. METHODS Patients with arteriosclerotic cerebral ischemia were used as controls to eliminate the effects of cerebral ischemia. Intracranial CSF was collected from moyamoya disease and control patients during bypass surgery. Extracellular vesicles (EVs) were extracted from the CSF. Comprehensive expression analysis of miRNAs extracted from EVs by next-generation sequencing (NGS) and validation by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed. RESULTS Experiments were conducted on eight cases of moyamoya disease and four control cases. In the comprehensive miRNA expression analysis, 153 miRNAs were upregulated, and 98 miRNAs were downregulated in moyamoya disease compared to the control cases (q-value < 0.05 and |log2 fold change|> 1). qRT-PCR performed on the four most variable miRNAs (hsa-miR-421, hsa-miR-361-5p, hsa-miR-320a, and hsa-miR-29b-3p) associated with vascular lesions among the differentially expressed miRNAs gave the same results as miRNA sequencing. On gene ontology (GO) analysis for the target genes, cytoplasmic stress granule was the most significant GO term. CONCLUSIONS This study is the first comprehensive expression analysis of EV-derived miRNAs in the CSF of moyamoya disease patients using NGS. The miRNAs identified here may be related to the etiology and pathophysiology of moyamoya disease.
Collapse
Affiliation(s)
- Shinji Ota
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Kinya Yokoyama
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan.
| | - Fumiaki Kanamori
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Takashi Mamiya
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Kenji Uda
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Yoshio Araki
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| | - Kazuhiro Yoshikawa
- Division of Research Creation and Biobank, Research Creation Support Center, Aichi Medical University, Nagakute, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya City, Aichi, 466-8550, Japan
| |
Collapse
|
37
|
H. Al-Zuaini H, Rafiq Zahid K, Xiao X, Raza U, Huang Q, Zeng T. Hypoxia-driven ncRNAs in breast cancer. Front Oncol 2023; 13:1207253. [PMID: 37583933 PMCID: PMC10424730 DOI: 10.3389/fonc.2023.1207253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023] Open
Abstract
Low oxygen tension, or hypoxia is the driving force behind tumor aggressiveness, leading to therapy resistance, metastasis, and stemness in solid cancers including breast cancer, which now stands as the leading cause of cancer-related mortality in women. With the great advancements in exploring the regulatory roles of the non-coding genome in recent years, the wide spectrum of hypoxia-responsive genome is not limited to just protein-coding genes but also includes multiple types of non-coding RNAs, such as micro RNAs, long non-coding RNAs, and circular RNAs. Over the years, these hypoxia-responsive non-coding molecules have been greatly implicated in breast cancer. Hypoxia drives the expression of these non-coding RNAs as upstream modulators and downstream effectors of hypoxia inducible factor signaling in the favor of breast cancer through a myriad of molecular mechanisms. These non-coding RNAs then contribute in orchestrating aggressive hypoxic tumor environment and regulate cancer associated cellular processes such as proliferation, evasion of apoptotic death, extracellular matrix remodeling, angiogenesis, migration, invasion, epithelial-to-mesenchymal transition, metastasis, therapy resistance, stemness, and evasion of the immune system in breast cancer. In addition, the interplay between hypoxia-driven non-coding RNAs as well as feedback and feedforward loops between these ncRNAs and HIFs further contribute to breast cancer progression. Although the current clinical implications of hypoxia-driven non-coding RNAs are limited to prognostics and diagnostics in breast cancer, extensive explorations have established some of these hypoxia-driven non-coding RNAs as promising targets to treat aggressive breast cancers, and future scientific endeavors hold great promise in targeting hypoxia-driven ncRNAs at clinics to treat breast cancer and limit global cancer burden.
Collapse
Affiliation(s)
| | - Kashif Rafiq Zahid
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Radiation Oncology, Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiangyan Xiao
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Qiyuan Huang
- Department of Clinical Biobank Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Zeng
- Department of Medical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
38
|
Ronai I. How molecular techniques are developed from natural systems. Genetics 2023; 224:iyad067. [PMID: 37184565 PMCID: PMC10324945 DOI: 10.1093/genetics/iyad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
A striking characteristic of the molecular techniques of genetics is that they are derived from natural occurring systems. RNA interference, for example, utilizes a mechanism that evolved in eukaryotes to destroy foreign nucleic acid. Other case studies I highlight are restriction enzymes, DNA sequencing, polymerase chain reaction, gene targeting, fluorescent proteins (such as, green fluorescent protein), induced pluripotent stem cells, and clustered regularly interspaced short palindromic repeats-CRISPR associated 9. The natural systems' strategy for technique development means that biologists utilize the activity of a mechanism's effector (protein or RNA) and exploit biological specificity (protein or nucleic acid can cause precise reactions). I also argue that the developmental trajectory of novel molecular techniques, such as RNA interference, has 4 characteristic phases. The first phase is discovery of a biological phenomenon. The second phase is identification of the biological mechanism's trigger(s): the effector and biological specificity. The third phase is the application of the trigger(s) as a technique. The final phase is the maturation and refinement of the technique. Developing new molecular techniques from nature is crucial for future genetic research.
Collapse
Affiliation(s)
- Isobel Ronai
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney 2006, Australia
- Department of Organismic and Evolutionary Biology, Harvard University
| |
Collapse
|
39
|
Habibi B, Gholami S, Bagheri A, Fakhar M, Moradi A, Khazeei Tabari MA. Cystic echinococcosis microRNAs as potential noninvasive biomarkers: current insights and upcoming perspective. Expert Rev Mol Diagn 2023; 23:885-894. [PMID: 37553726 DOI: 10.1080/14737159.2023.2246367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
INTRODUCTION Echinococcosis, also known as hydatidosis, is a zoonotic foodborne disease occurred by infection with the larvae of Echinococcus spp. which can lead to the development of hydatid cysts in various organs of the host. The diagnosis of echinococcosis remains challenging due to limited diagnostic tools. AREAS COVERED In recent years, microRNAs (miRNAs) have emerged as a promising biomarker for various infectious diseases, including those caused by helminths. Recent studies have identified several novel miRNAs in Echinococcus spp. shedding light on their essential roles in hydatid cyst host-parasite interactions. In this regard, several studies have shown that Echinococcus-derived miRNAs are present in biofluids such as serum and plasma of infected hosts. The detection of these miRNAs in the early stages of infection can serve as an early prognostic and diagnostic biomarker for echinococcosis. EXPERT OPINION The miRNAs specific to Echinococcus spp. show great potential as early diagnostic biomarkers for echinococcosis and can also provide insights into the pathogenesis of this disease. This review attempts to provide a comprehensive overview of Echinococcus-specific miRNAs, their use as early diagnostic biomarkers, and their function in host-parasite interactions.
Collapse
Affiliation(s)
- Bentolhoda Habibi
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shirzad Gholami
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Immunogenetics Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, Mazandaran Registry Center for Hydatid Cyst, Mazandaran University of Medical Sciences, Sari, Iran
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alimohammad Moradi
- Department of General Surgery Division of HPB and Transplantation Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
40
|
Podder A, Ahmed FF, Suman MZH, Mim AY, Hasan K. Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory element analyses in sunflower (Helianthus annuus). PLoS One 2023; 18:e0286994. [PMID: 37294803 PMCID: PMC10256174 DOI: 10.1371/journal.pone.0286994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/27/2023] [Indexed: 06/11/2023] Open
Abstract
RNA interference (RNAi) regulates a variety of eukaryotic gene expressions that are engaged in response to stress, growth, and the conservation of genomic stability during developmental phases. It is also intimately connected to the post-transcriptional gene silencing (PTGS) process and chromatin modification levels. The entire process of RNA interference (RNAi) pathway gene families mediates RNA silencing. The main factors of RNA silencing are the Dicer-Like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) gene families. To the best of our knowledge, genome-wide identification of RNAi gene families like DCL, AGO, and RDR in sunflower (Helianthus annuus) has not yet been studied despite being discovered in some species. So, the goal of this study is to find the RNAi gene families like DCL, AGO, and RDR in sunflower based on bioinformatics approaches. Therefore, we accomplished an inclusive in silico investigation for genome-wide identification of RNAi pathway gene families DCL, AGO, and RDR through bioinformatics approaches such as (sequence homogeneity, phylogenetic relationship, gene structure, chromosomal localization, PPIs, GO, sub-cellular localization). In this study, we have identified five DCL (HaDCLs), fifteen AGO (HaAGOs), and ten RDR (HaRDRs) in the sunflower genome database corresponding to the RNAi genes of model plant Arabidopsis thaliana based on genome-wide analysis and a phylogenetic method. The analysis of the gene structure that contains exon-intron numbers, conserved domain, and motif composition analyses for all HaDCL, HaAGO, and HaRDR gene families indicated almost homogeneity among the same gene family. The protein-protein interaction (PPI) network analysis illustrated that there exists interconnection among identified three gene families. The analysis of the Gene Ontology (GO) enrichment showed that the detected genes directly contribute to the RNA gene-silencing and were involved in crucial pathways. It was observed that the cis-acting regulatory components connected to the identified genes were shown to be responsive to hormone, light, stress, and other functions. That was found in HaDCL, HaAGO, and HaRDR genes associated with the development and growth of plants. Finally, we are able to provide some essential information about the components of sunflower RNA silencing through our genome-wide comparison and integrated bioinformatics analysis, which open the door for further research into the functional mechanisms of the identified genes and their regulatory elements.
Collapse
Affiliation(s)
- Anamika Podder
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Zahid Hasan Suman
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Afsana Yeasmin Mim
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Khadiza Hasan
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
41
|
Qin X, Li X, Li C, Li Y, Wu Q, Wen H, Jiang D, Tang T, Nan W, Liang Y, Zhang H. Genome-wide identification of nitrate-responsive microRNAs by small RNA sequencing in the rice restorer cultivar Nanhui 511. FRONTIERS IN PLANT SCIENCE 2023; 14:1198809. [PMID: 37332718 PMCID: PMC10272429 DOI: 10.3389/fpls.2023.1198809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Rice productivity relies heavily on nitrogen fertilization, and improving nitrogen use efficiency (NUE) is important for hybrid rice breeding. Reducing nitrogen inputs is the key to achieving sustainable rice production and reducing environmental problems. Here, we analyzed the genome-wide transcriptomic changes in microRNAs (miRNAs) in the indica rice restorer cultivar Nanhui 511 (NH511) under high (HN) and low nitrogen (LN) conditions. The results showed that NH511 is sensitive to nitrogen supplies and HN conditions promoted the growth its lateral roots at the seedling stage. Furthermore, we identified 483 known miRNAs and 128 novel miRNAs by small RNA sequencing in response to nitrogen in NH511. We also detected 100 differentially expressed genes (DEGs), including 75 upregulated and 25 downregulated DEGs, under HN conditions. Among these DEGs, 43 miRNAs that exhibited a 2-fold change in their expression were identified in response to HN conditions, including 28 upregulated and 15 downregulated genes. Additionally, some differentially expressed miRNAs were further validated by qPCR analysis, which showed that miR443, miR1861b, and miR166k-3p were upregulated, whereas miR395v and miR444b.1 were downregulated under HN conditions. Moreover, the degradomes of possible target genes for miR166k-3p and miR444b.1 and expression variations were analyzed by qPCR at different time points under HN conditions. Our findings revealed comprehensive expression profiles of miRNAs responsive to HN treatments in an indica rice restorer cultivar, which advances our understanding of the regulation of nitrogen signaling mediated by miRNAs and provides novel data for high-NUE hybrid rice cultivation.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Huan Wen
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tingting Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| |
Collapse
|
42
|
Rawal HC, Ali S, Mondal TK. Role of non-coding RNAs against salinity stress in Oryza species: Strategies and challenges in analyzing miRNAs, tRFs and circRNAs. Int J Biol Macromol 2023; 242:125172. [PMID: 37268077 DOI: 10.1016/j.ijbiomac.2023.125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Salinity is an imbalanced concentration of mineral salts in the soil or water that causes yield loss in salt-sensitive crops. Rice plant is vulnerable to soil salinity stress at seedling and reproductive stages. Different non-coding RNAs (ncRNAs) post-transcriptionally regulate different sets of genes during different developmental stages under varying salinity tolerance levels. While microRNAs (miRNAs) are well known small endogenous ncRNAs, tRNA-derived RNA fragments (tRFs) are an emerging class of small ncRNAs derived from tRNA genes with a demonstrated regulatory role, like miRNAs, in humans but unexplored in plants. Circular RNA (circRNA), another ncRNA produced by back-splicing events, acts as target mimics by preventing miRNAs from binding with their target mRNAs, thereby reducing the miRNA's action upon its target. Same may hold true between circRNAs and tRFs. Hence, the work done on these ncRNAs was reviewed and no reports were found for circRNAs and tRFs under salinity stress in rice, either at seedling or reproductive stages. Even the reports on miRNAs are restricted to seedling stage only, in spite of severe effects on rice crop production due to salt stress during reproductive stage. Moreover, this review sheds light on strategies to predict and analyze these ncRNAs in an effective manner.
Collapse
Affiliation(s)
- Hukam Chand Rawal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India; School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Shakir Ali
- School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India; Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Tapan Kumar Mondal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India.
| |
Collapse
|
43
|
Sanya DRA, Onésime D. Roles of non-coding RNAs in the metabolism and pathogenesis of bladder cancer. Hum Cell 2023:10.1007/s13577-023-00915-5. [PMID: 37209205 DOI: 10.1007/s13577-023-00915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Bladder cancer (BC) is featured as the second most common malignancy of the urinary tract worldwide with few treatments leading to high incidence and mortality. It stayed a virtually intractable disease, and efforts to identify innovative and effective therapies are urgently needed. At present, more and more evidence shows the importance of non-coding RNA (ncRNA) for disease-related study, diagnosis, and treatment of diverse types of malignancies. Recent evidence suggests that dysregulated functions of ncRNAs are closely associated with the pathogenesis of numerous cancers including BC. The detailed mechanisms underlying the dysregulated role of ncRNAs in cancer progression are still not fully understood. This review mainly summarizes recent findings on regulatory mechanisms of the ncRNAs, long non-coding RNAs, microRNAs, and circular RNAs, in cancer progression or suppression and focuses on the predictive values of ncRNAs-related signatures in BC clinical outcomes. A deeper understanding of the ncRNA interactive network could be compelling framework for developing biomarker-guided clinical trials.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Micalis Institute, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, Université Paris-Saclay, INRAE, AgroParisTech, 78350, Jouy-en-Josas, France
| |
Collapse
|
44
|
Krivmane B, Ruņģe KS, Samsone I, Ruņģis DE. Differentially Expressed Conserved Plant Vegetative Phase-Change-Related microRNAs in Mature and Rejuvenated Silver Birch In Vitro Propagated Tissues. PLANTS (BASEL, SWITZERLAND) 2023; 12:1993. [PMID: 37653911 PMCID: PMC10220576 DOI: 10.3390/plants12101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 09/02/2023]
Abstract
In plants, phase change from the juvenile stage to maturity involves physiological and anatomical changes, which are initiated and controlled by evolutionary highly conserved microRNAs. This process is of particular significance for the in vitro propagation of woody plant species, as individuals or tissues that have undergone the transition to vegetative maturity are recalcitrant to propagation. Conserved miRNAs differentially expressed between juvenile (including rejuvenated) and mature silver birch tissues were identified using high-throughput sequencing of small RNA libraries. Expression of some miR156 isoforms was high in juvenile tissues and has been previously reported to regulate phase transitions in a range of species. Additional miRNAs, such as miR394 and miR396, that were previously reported to be highly expressed in juvenile woody plant tissues were also differentially expressed in this study. However, expression of miR172, previously reported to be highly expressed in mature tissues, was low in all sample types in this study. The obtained results will provide insight for further investigation of the molecular mechanisms regulating vegetative phase change in silver birch and other perennial woody plant species, by analysing a wider range of genotypes, tissue types and maturation stages. This knowledge can potentially assist in identification of rejuvenated material at an earlier stage than currently possible, increasing the efficiency of silver birch in vitro propagation.
Collapse
Affiliation(s)
| | | | | | - Dainis Edgars Ruņģis
- Latvian State Forest Research Institute “Silava”, 111 Rīgas st, LV-2169 Salaspils, Latvia (K.S.R.)
| |
Collapse
|
45
|
Shirazi Z, Khakdan F, Rafiei F, Balalami MY, Ranjbar M. Genome-wide identification and expression profile analysis of metal tolerance protein gene family in Eucalyptus grandis under metal stresses. BMC PLANT BIOLOGY 2023; 23:240. [PMID: 37149585 PMCID: PMC10163719 DOI: 10.1186/s12870-023-04240-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Metal tolerance proteins (MTPs) as Me2+/H+(K+) antiporters participate in the transport of divalent cations, leading to heavy metal stress resistance and mineral utilization in plants. In the present study, to obtain better knowledge of the biological functions of the MTPs family, 20 potential EgMTPs genes were identified in Eucalyptus grandis and classified into seven groups belonging to three cation diffusion facilitator groups (Mn-CDFs, Zn/Fe-CDFs, and Zn-CDFs) and seven groups. EgMTP-encoded amino acids ranged from 315 to 884, and most of them contained 4-6 recognized transmembrane domains and were clearly prognosticated to localize into the cell vacuole. Almost all EgMTP genes experienced gene duplication events, in which some might be uniformly distributed in the genome. The numbers of cation efflux and the zinc transporter dimerization domain were highest in EgMTP proteins. The promoter regions of EgMTP genes have different cis-regulatory elements, indicating that the transcription rate of EgMTP genes can be a controlled response to different stimuli in multiple pathways. Our findings provide accurate perception on the role of the predicted miRNAs and the presence of SSR marker in the Eucalyptus genome and clarify their functions in metal tolerance regulation and marker-assisted selection, respectively. Gene expression profiling based on previous RNA-seq data indicates a probable function for EgMTP genes during development and responses to biotic stress. Additionally, the upregulation of EgMTP6, EgMTP5, and EgMTP11.1 to excess Cd2+ and Cu2+ exposure might be responsible for metal translocation from roots to leaves.
Collapse
Affiliation(s)
- Zahra Shirazi
- Department of Biotechnology Research, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), National Botanical Garden, Tehran Karaj Freeway, P.O. Box 13185-116, Tehran, Iran.
| | | | - Fariba Rafiei
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Mahdi Yahyazadeh Balalami
- Department of Medicinal Plant Research, Research Institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), National Botanical Garden, Tehran Karaj Freeway, P.O. Box 13185-116, Tehran, Iran
| | - Mojtaba Ranjbar
- Microbial Biotechnology Department, College of Biotechnology, University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
46
|
Arora S, Singh AK, Chaudhary B. Coordination of floral and fiber development in cotton (Gossypium) by hormone- and flavonoid-signalling associated regulatory miRNAs. PLANT MOLECULAR BIOLOGY 2023; 112:1-18. [PMID: 37067671 DOI: 10.1007/s11103-023-01341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/16/2023] [Indexed: 05/09/2023]
Abstract
Various plant development activities and stress responses are tightly regulated by various microRNAs (miRNA) and their target genes, or transcription factors in a spatiotemporal manner. Here, to exemplify how flowering-associated regulatory miRNAs synchronize their expression dynamics during floral and fiber development in cotton, constitutive expression diminution transgenic lines of auxin-signaling regulatory Gh-miR167 (35S-MIM167) were developed through target mimicry approach. 'Moderate' (58% to 80%)- and 'high' (> 80%)-Gh-miR167 diminution mimic lines showed dosage-dependent developmental deformities in anther development, pollen maturation, and fruit (= boll) formation. Cross pollination of 'moderate' 35S-MIM167 mimic lines with wild type (WT) plant partially restored boll formation and emergence of fiber initials on the ovule surface. Gh-miR167 diminution favored organ-specific transcription biases in miR159, miR166 as well as miR160, miR164, and miR172 along with their target genes during anther and petal development, respectively. Similarly, accumulative effect of percent Gh-miR167 diminution, cross regulation of its target ARF6/8 genes, and temporal mis-expression of hormone signaling- and flavonoid biosynthesis-associated regulatory miRNAs at early fiber initiation stage caused irregular fiber formation. Spatial and temporal transcription proportions of regulatory miRNAs were also found crucial for the execution of hormone- and flavonoid-dependent progression of floral and fiber development. These observations discover how assorted regulatory genetic circuits get organized in response to Gh-miR167 diminution and converge upon ensuing episodes of floral and fiber development in cotton.
Collapse
Affiliation(s)
- Sakshi Arora
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India
| | - Amarjeet Kumar Singh
- Center for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Bhupendra Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, 201312, India.
| |
Collapse
|
47
|
Wang P, Yang Q, Yan Z, Huang X, Gao X, Gun S. Identification of MicroRNAs Regulating Clostridium perfringens Type C Infection in the Spleen of Diarrheic Piglets. Curr Issues Mol Biol 2023; 45:3193-3207. [PMID: 37185732 PMCID: PMC10136749 DOI: 10.3390/cimb45040208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Clostridium perfringens (C. perfringens) type C is one of the common bacteria in piglet diarrhea, which seriously affects the swine industry's development. The spleen plays crucial roles in the resistance and elimination of pathogenic microorganisms, and miRNAs play important roles in regulating piglet diarrhea caused by pathogens. However, the mechanism by which miRNAs in the spleen are involved in regulating C. perfringens type C causing diarrhea in piglets remains unclear. The expression profiles of the spleen miRNAs of 7-day-old piglets challenged by C. perfringens type C were studied using small RNA-sequencing in control (SC), susceptible (SS), and resistant (SR) groups. Eight-eight differentially expressed miRNAs were screened. The KEGG pathway analysis of target genes revealed that the miRNAs were involved in the MAPK, p53, and ECM-receptor interaction signaling pathways. NFATC4 was determined to be a direct target of miR-532-3p and miR-133b using a dual-luciferase reporter assay. Thus, miR-133b and miR-532-3p targeted to NFATC4 were likely involved to piglet resistance to C. perfringens type C. This paper provides the valuable resources to deeply understand the genetic basis of C. perfringens type C resistance in piglets and a solid foundation to identify novel markers of C. perfringens type C resistance.
Collapse
Affiliation(s)
- Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Research Center for Swine Production Engineering and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
48
|
Zhang Y, Gao L, Wang Y, Niu D, Yuan Y, Liu C, Zhan X, Gai S. Dual functions of PsmiR172b-PsTOE3 module in dormancy release and flowering in tree peony ( Paeonia suffruticosa). HORTICULTURE RESEARCH 2023; 10:uhad033. [PMID: 37090095 PMCID: PMC10120838 DOI: 10.1093/hr/uhad033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that interact with target genes and are involved in many physiological processes in plants. miR172-AP2 mainly plays a role in the regulation of flowering time and floral organ differentiation. Bud dormancy release is necessary for forcing culture of tree peony in winter, but the mechanism of dormancy regulation is unclear. In this study, we found that a miR172 family member, PsmiR172b, was downregulated during chilling-induced bud dormancy release in tree peony, exhibiting a trend opposite to that of PsTOE3. RNA ligase-mediated (RLM) 5'-RACE (rapid amplification of cDNA ends) confirmed that miR172b targeted PsTOE3, and the cleavage site was between bases 12 (T) and 13 (C) within the complementary site to miR172b. The functions of miR172b and PsTOE3 were detected by virus-induced gene silencing (VIGS) and their overexpression in tree peony buds. PsmiR172b negatively regulated bud dormancy release, but PsTOE3 promoted bud dormancy release, and the genes associated with bud dormancy release, including PsEBB1, PsEBB3, PsCYCD, and PsBG6, were upregulated. Further analysis indicated that PsTOE3 directly regulated PsEBB1 by binding to its promoter, and the specific binding site was a C-repeat (ACCGAC). Ectopic expression in Arabidopsis revealed that the PsmiR172b-PsTOE3 module displayed conservative function in regulating flowering. In conclusion, our results provided a novel insight into the functions of PsmiR172-PsTOE3 and possible molecular mechanism underlying bud dormancy release in tree peony.
Collapse
Affiliation(s)
- Yuxi Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | | | | | - Demei Niu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Yanchao Yuan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Chunying Liu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | - Xinmei Zhan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- University Key Laboratory of Plant Biotechnology in Shandong Province, Qingdao, 266109, China
| | | |
Collapse
|
49
|
Subramanian E, Elewa A, Brito G, Kumar A, Segerstolpe Å, Karampelias C, Björklund Å, Sandberg R, Echeverri K, Lui WO, Andersson O, Simon A. A small noncoding RNA links ribosome recovery and translation control to dedifferentiation during salamander limb regeneration. Dev Cell 2023; 58:450-460.e6. [PMID: 36893754 DOI: 10.1016/j.devcel.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 08/11/2022] [Accepted: 02/09/2023] [Indexed: 03/11/2023]
Abstract
Building a blastema from the stump is a key step of salamander limb regeneration. Stump-derived cells temporarily suspend their identity as they contribute to the blastema by a process generally referred to as dedifferentiation. Here, we provide evidence for a mechanism that involves an active inhibition of protein synthesis during blastema formation and growth. Relieving this inhibition results in a higher number of cycling cells and enhances the pace of limb regeneration. By small RNA profiling and fate mapping of skeletal muscle progeny as a cellular model for dedifferentiation, we find that the downregulation of miR-10b-5p is critical for rebooting the translation machinery. miR-10b-5p targets ribosomal mRNAs, and its artificial upregulation causes decreased blastema cell proliferation, reduction in transcripts that encode ribosomal subunits, diminished nascent protein synthesis, and retardation of limb regeneration. Taken together, our data identify a link between miRNA regulation, ribosome biogenesis, and protein synthesis during newt limb regeneration.
Collapse
Affiliation(s)
| | - Ahmed Elewa
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Gonçalo Brito
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anoop Kumar
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa Björklund
- Department of Cell and Molecular Biology, National Infrastructure of Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Echeverri
- Marine Biological Laboratory, Eugene Bell Center for Regenerative Biology and Tissue Engineering, University of Chicago, Woods Hole, MA, USA
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
50
|
Li X, Chen Y, Lin M, Wang J, Wang N, Chen Z, Chen S. A novel miRNA, Cse-miR-33, functions as an immune regulator by targeting CsTRAF6 in Chinese tongue sole (Cynoglossus semilaevis). FISH & SHELLFISH IMMUNOLOGY 2023; 134:108606. [PMID: 36758656 DOI: 10.1016/j.fsi.2023.108606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The tumor necrosis factor receptor-associated factor 6 (TRAF6) can act as a fundamental adaptor protein in a chain reaction of signal transduction and cascade events to finish off immune defenses. However, immunomodulatory research on TRAF6 gene is still limited in fish. In this study, a novel miRNA, Cse-miR-33 was identified from the whole genome of Chinese tongue sole (Cynoglossus semilaevis). After separate infections with three different Vibrio strains (V. harveyi, V. anguillarum, V. parahemolyticus) and one virus (nervous necrosis virus, NNV), the expressions of CsTRAF6 and Cse-miR-33 displayed significant time-dependent changes in immune related tissues and the trends were opposite in general. Through target gene prediction and dual luciferase reporter assay, Cse-miR-33 was proven to regulate CsTRAF6 by combining with 3'-UTR sequence of the gene. The results of qRT-PCR and western blotting (WB) analyses showed that Cse-miR-33 blocked the translation of CsTRAF6 protein at post-transcriptional level, rather than degrading the target mRNA. Further experiment indicated that Cse-miR-33 inhibitor largely reduced the death rate of Chinese tongue sole caused by V. harveyi and NNV. The expressions of CsTRAF6-associated immune genes (such as CsIL-1R, CsMYD88, CsIRAK1, CsTNFα, CsIL6 and CsIL8) were also significantly changed in response to Cse-miR-33 agomir and inhibitor. The study suggested that Cse-miR-33 affected the immune response via targeting CsTRAF6 in C. semilaevis, which would provide us deep insights into miRNA-mediated regulatory network and help improve the immunity in fish.
Collapse
Affiliation(s)
- Xihong Li
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Yadong Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Mengjiao Lin
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 200000, China
| | - Jing Wang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 200000, China
| | - Na Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Zhangfan Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Songlin Chen
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| |
Collapse
|