1
|
Iskandar M, Xiao Barbero M, Jaber M, Chen R, Gomez-Guevara R, Cruz E, Westerheide S. A Review of Telomere Attrition in Cancer and Aging: Current Molecular Insights and Future Therapeutic Approaches. Cancers (Basel) 2025; 17:257. [PMID: 39858038 PMCID: PMC11764024 DOI: 10.3390/cancers17020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES As cells divide, telomeres shorten through a phenomenon known as telomere attrition, which leads to unavoidable senescence of cells. Unprotected DNA exponentially increases the odds of mutations, which can evolve into premature aging disorders and tumorigenesis. There has been growing academic and clinical interest in exploring this duality and developing optimal therapeutic strategies to combat telomere attrition in aging and cellular immortality in cancer. The purpose of this review is to provide an updated overview of telomere biology and therapeutic tactics to address aging and cancer. METHODS We used the Rayyan platform to review the PubMed database and examined the ClinicalTrial.gov registry to gain insight into clinical trials and their results. RESULTS Cancer cells activate telomerase or utilize alternative lengthening of telomeres to escape telomere shortening, leading to near immortality. Contrarily, normal cells experience telomeric erosion, contributing to premature aging disorders, such as Werner syndrome and Hutchinson-Gilford Progeria, and (2) aging-related diseases, such as neurodegenerative and cardiovascular diseases. CONCLUSIONS The literature presents several promising therapeutic approaches to potentially balance telomere maintenance in aging and shortening in cancer. This review highlights gaps in knowledge and points to the potential of these optimal interventions in preclinical and clinical studies to inform future research in cancer and aging.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandy Westerheide
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (M.X.B.); (M.J.); (R.C.); (R.G.-G.); (E.C.)
| |
Collapse
|
2
|
Burdusel D, Doeppner TR, Surugiu R, Hermann DM, Olaru DG, Popa-Wagner A. The Intersection of Epigenetics and Senolytics in Mechanisms of Aging and Therapeutic Approaches. Biomolecules 2024; 15:18. [PMID: 39858413 PMCID: PMC11762397 DOI: 10.3390/biom15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging. Senolytics, a class of drugs targeting and eliminating senescent cells, address the accumulation of dysfunctional cells that contribute to tissue degradation and chronic inflammation through the senescence-associated secretory phenotype. This scoping review examines the intersection of epigenetic mechanisms and senolytic therapies in aging, focusing on their combined potential for therapeutic interventions. Senescent cells display distinct epigenetic signatures, such as DNA hypermethylation and histone modifications, which can be targeted to enhance senolytic efficacy. Epigenetic reprogramming strategies, such as induced pluripotent stem cells, may further complement senolytics by rejuvenating aged cells. Integrating epigenetic modulation with senolytic therapy offers a dual approach to improving healthspan and mitigating age-related pathologies. This narrative review underscores the need for continued research into the molecular mechanisms underlying these interactions and suggests future directions for therapeutic development, including clinical trials, biomarker discovery, and combination therapies that synergistically target aging processes.
Collapse
Affiliation(s)
- Daiana Burdusel
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Thorsten R. Doeppner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany;
- Department of Neurology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Roxana Surugiu
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Dirk M. Hermann
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| | - Denissa Greta Olaru
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
| | - Aurel Popa-Wagner
- Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania; (D.B.); (R.S.); (D.M.H.)
- Chair of Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
3
|
Ruggieri E, Di Domenico E, Locatelli AG, Isopo F, Damanti S, De Lorenzo R, Milan E, Musco G, Rovere-Querini P, Cenci S, Vénéreau E. HMGB1, an evolving pleiotropic protein critical for cellular and tissue homeostasis: Role in aging and age-related diseases. Ageing Res Rev 2024; 102:102550. [PMID: 39427887 DOI: 10.1016/j.arr.2024.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
Aging is a universal biological process characterized by a progressive, cumulative decline in homeostatic capabilities and physiological functions, which inevitably increases vulnerability to diseases. A number of molecular pathomechanisms and hallmarks of aging have been recognized, yet we miss a thorough understanding of their complex interconnectedness. This review explores the molecular and cellular mechanisms underlying human aging, with a focus on the multiple roles of high mobility group Box 1 protein (HMGB1), the archetypal damage-associated molecular pattern (DAMP) molecule. In the nucleus, this non-histone chromatin-associated protein functions as a DNA chaperone and regulator of gene transcription, influencing DNA structure and gene expression. Moreover, this versatile protein can translocate to the cytoplasm to orchestrate other processes, such as autophagy, or be unconventionally secreted into the extracellular environment, where it acts as a DAMP, combining inflammatory and regenerative properties. Notably, lower expression of HMGB1 within the cell and its heightened extracellular release have been associated with diverse age-associated traits, making it a suitable candidate as a universal biomarker of aging. In this review, we outline the evidence implicating HMGB1 in aging, also in light of an evolutionary perspective on its functional pleiotropy, and propose critical issues that need to be addressed to gauge the value of HMGB1 as a potential biomarker across age-related diseases and therapeutic target to promote healthy longevity.
Collapse
Affiliation(s)
- Elena Ruggieri
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Erika Di Domenico
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Flavio Isopo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Sarah Damanti
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Rebecca De Lorenzo
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Enrico Milan
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | | | - Patrizia Rovere-Querini
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| | - Simone Cenci
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| | - Emilie Vénéreau
- IRCCS Ospedale San Raffaele, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
4
|
Chen J, Li H, Huang Y, Tang Q. The role of high mobility group proteins in cellular senescence mechanisms. FRONTIERS IN AGING 2024; 5:1486281. [PMID: 39507236 PMCID: PMC11537863 DOI: 10.3389/fragi.2024.1486281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Aging is a universal physiological phenomenon, and chronic age-related diseases have become one of the leading causes of human mortality, accounting for nearly half of all deaths. Studies have shown that reducing the incidence of these diseases can not only extend lifespan but also promote healthy aging. In recent years, the potential role of non-histone high-mobility group proteins (HMGs) in the regulation of aging and lifespan has attracted widespread attention. HMGs play critical roles in cellular senescence and associated diseases through various pathways, encompassing multi-layered mechanisms involving protein interactions, molecular regulation, and chromatin dynamics. This review provides a comprehensive analysis of the interactions between HMG family proteins and senescence-associated secretory phenotype (SASP), chromatin structure, and histone modifications, offering a deeper exploration of the pivotal functions and impacts of HMGs in the aging process. Furthermore, we summarize recent findings on the contributions of HMG proteins to aging and age-related diseases. HMG proteins not only regulate senescence-associated inflammation through modulating the SASP but also influence genomic stability and cell fate decisions via interactions with chromatin and histones. Targeting HMG proteins holds great potential in delaying the progression of aging and its associated diseases. This review aims to provide a systematic overview of HMG proteins' roles in aging and to lay a solid foundation for future anti-aging drug development and therapeutic strategies. With the advancing understanding of the mechanisms by which HMGs regulate aging, developing therapeutic interventions targeting HMGs may emerge as a promising approach to extending lifespan and enhancing healthspan.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Jain A, Casanova D, Padilla AV, Paniagua Bojorges A, Kotla S, Ko KA, Samanthapudi VSK, Chau K, Nguyen MTH, Wen J, Hernandez Gonzalez SL, Rodgers SP, Olmsted-Davis EA, Hamilton DJ, Reyes-Gibby C, Yeung SCJ, Cooke JP, Herrmann J, Chini EN, Xu X, Yusuf SW, Yoshimoto M, Lorenzi PL, Hobbs B, Krishnan S, Koutroumpakis E, Palaskas NL, Wang G, Deswal A, Lin SH, Abe JI, Le NT. Premature senescence and cardiovascular disease following cancer treatments: mechanistic insights. Front Cardiovasc Med 2023; 10:1212174. [PMID: 37781317 PMCID: PMC10540075 DOI: 10.3389/fcvm.2023.1212174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 10/03/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality, especially among the aging population. The "response-to-injury" model proposed by Dr. Russell Ross in 1999 emphasizes inflammation as a critical factor in atherosclerosis development, with atherosclerotic plaques forming due to endothelial cell (EC) injury, followed by myeloid cell adhesion and invasion into the blood vessel walls. Recent evidence indicates that cancer and its treatments can lead to long-term complications, including CVD. Cellular senescence, a hallmark of aging, is implicated in CVD pathogenesis, particularly in cancer survivors. However, the precise mechanisms linking premature senescence to CVD in cancer survivors remain poorly understood. This article aims to provide mechanistic insights into this association and propose future directions to better comprehend this complex interplay.
Collapse
Affiliation(s)
- Ashita Jain
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Diego Casanova
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jake Wen
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Shaefali P. Rodgers
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | | | - Dale J. Hamilton
- Department of Medicine, Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Xiaolei Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Momoko Yoshimoto
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, Division of VP Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brain Hobbs
- Department of Population Health, The University of Texas at Austin, Austin, TX, United States
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Efstratios Koutroumpakis
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
6
|
Cha J, Aguayo-Mazzucato C, Thompson PJ. Pancreatic β-cell senescence in diabetes: mechanisms, markers and therapies. Front Endocrinol (Lausanne) 2023; 14:1212716. [PMID: 37720527 PMCID: PMC10501801 DOI: 10.3389/fendo.2023.1212716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Cellular senescence is a response to a wide variety of stressors, including DNA damage, oncogene activation and physiologic aging, and pathologically accelerated senescence contributes to human disease, including diabetes mellitus. Indeed, recent work in this field has demonstrated a role for pancreatic β-cell senescence in the pathogenesis of Type 1 Diabetes, Type 2 Diabetes and monogenic diabetes. Small molecule or genetic targeting of senescent β-cells has shown promise as a novel therapeutic approach for preventing and treating diabetes. Despite these advances, major questions remain around the molecular mechanisms driving senescence in the β-cell, identification of molecular markers that distinguish senescent from non-senescent β-cell subpopulations, and translation of proof-of-concept therapies into novel treatments for diabetes in humans. Here, we summarize the current state of the field of β-cell senescence, highlighting insights from mouse models as well as studies on human islets and β-cells. We identify markers that have been used to detect β-cell senescence to unify future research efforts in this field. We discuss emerging concepts of the natural history of senescence in β-cells, heterogeneity of senescent β-cells subpopulations, role of sex differences in senescent responses, and the consequences of senescence on integrated islet function and microenvironment. As a young and developing field, there remain many open research questions which need to be addressed to move senescence-targeted approaches towards clinical investigation.
Collapse
Affiliation(s)
- Jeeyeon Cha
- Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, United States
| | | | - Peter J. Thompson
- Diabetes Research Envisioned and Accomplished in Manitoba Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Le NT. Metabolic regulation of endothelial senescence. Front Cardiovasc Med 2023; 10:1232681. [PMID: 37649668 PMCID: PMC10464912 DOI: 10.3389/fcvm.2023.1232681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023] Open
Abstract
Endothelial cell (EC) senescence is increasingly recognized as a significant contributor to the development of vascular dysfunction and age-related disorders and diseases, including cancer and cardiovascular diseases (CVD). The regulation of cellular senescence is known to be influenced by cellular metabolism. While extensive research has been conducted on the metabolic regulation of senescence in other cells such as cancer cells and fibroblasts, our understanding of the metabolic regulation of EC senescence remains limited. The specific metabolic changes that drive EC senescence are yet to be fully elucidated. The objective of this review is to provide an overview of the intricate interplay between cellular metabolism and senescence, with a particular emphasis on recent advancements in understanding the metabolic changes preceding cellular senescence. I will summarize the current knowledge on the metabolic regulation of EC senescence, aiming to offer insights into the underlying mechanisms and future research directions.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
8
|
Banerjee P, Rosales JE, Chau K, Nguyen MTH, Kotla S, Lin SH, Deswal A, Dantzer R, Olmsted-Davis EA, Nguyen H, Wang G, Cooke JP, Abe JI, Le NT. Possible molecular mechanisms underlying the development of atherosclerosis in cancer survivors. Front Cardiovasc Med 2023; 10:1186679. [PMID: 37332576 PMCID: PMC10272458 DOI: 10.3389/fcvm.2023.1186679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Cancer survivors undergone treatment face an increased risk of developing atherosclerotic cardiovascular disease (CVD), yet the underlying mechanisms remain elusive. Recent studies have revealed that chemotherapy can drive senescent cancer cells to acquire a proliferative phenotype known as senescence-associated stemness (SAS). These SAS cells exhibit enhanced growth and resistance to cancer treatment, thereby contributing to disease progression. Endothelial cell (EC) senescence has been implicated in atherosclerosis and cancer, including among cancer survivors. Treatment modalities for cancer can induce EC senescence, leading to the development of SAS phenotype and subsequent atherosclerosis in cancer survivors. Consequently, targeting senescent ECs displaying the SAS phenotype hold promise as a therapeutic approach for managing atherosclerotic CVD in this population. This review aims to provide a mechanistic understanding of SAS induction in ECs and its contribution to atherosclerosis among cancer survivors. We delve into the mechanisms underlying EC senescence in response to disturbed flow and ionizing radiation, which play pivotal role in atherosclerosis and cancer. Key pathways, including p90RSK/TERF2IP, TGFβR1/SMAD, and BH4 signaling are explored as potential targets for cancer treatment. By comprehending the similarities and distinctions between different types of senescence and the associated pathways, we can pave the way for targeted interventions aim at enhancing the cardiovascular health of this vulnerable population. The insights gained from this review may facilitate the development of novel therapeutic strategies for managing atherosclerotic CVD in cancer survivors.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Julia Enterría Rosales
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- School of Medicine, Instituto Tecnológico de Monterrey, Guadalajara, Mexico
| | - Khanh Chau
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
- Department of Life Science, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Dantzer
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elizabeth A. Olmsted-Davis
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Guangyu Wang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
9
|
Luo L, Pervaiz S, Clement MV. A superoxide-driven redox state promotes geroconversion and resistance to senolysis in replication-stress associated senescence. Redox Biol 2023; 64:102757. [PMID: 37285741 DOI: 10.1016/j.redox.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
Using S-phase synchronized RPE1-hTERT cells exposed to the DNA damaging agent, methyl methanesulfonate, we show the existence of a redox state associated with replication stress-induced senescence termed senescence-associated redox state (SA-redox state). SA-redox state is characterized by its reactivity with superoxide-sensing fluorescent probes such as dihydroethidine, lucigenin and mitosox and peroxynitrite or hydroxyl radical sensing probe hydroxyphenyl fluorescein (HPF) but not the hydrogen peroxide (H2O2) reactive fluorescent probe CM-H2DCFDA. Measurement of GSH and GSSH also reveals that SA-redox state mitigates the level of total GSH rather than oxidizes GSH to GSSG. Moreover, supporting the role of superoxide (O2.-) in the SA-redox state, we show that incubation of senescent RPE1-hTERT cells with the O2.- scavenger, Tiron, decreases the reactivity of SA-redox state with the oxidants' reactive probes lucigenin and HPF while the H2O2 antioxidant N-acetyl cysteine has no effect. SA-redox state does not participate in the loss of proliferative capacity, G2/M cell cycle arrest or the increase in SA-β-Gal activity. However, SA-redox state is associated with the activation of NF-κB, dictates the profile of the Senescence Associated Secretory Phenotype, increases TFEB protein level, promotes geroconversion evidenced by increased phosphorylation of S6K and S6 proteins, and influences senescent cells response to senolysis. Furthermore, we provide evidence for crosstalk between SA redox state, p53 and p21. While p53 mitigates the establishment of SA-redox state, p21 is critical for the sustained reinforcement of the SA-redox state involved in geroconversion and resistance to senolysis.
Collapse
Affiliation(s)
- Le Luo
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore; Integrated Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore
| | - Marie-Veronique Clement
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore; NUS Medicine Healthy Longevity Program, National University of Singapore, Singapore; Integrated Science and Engineering Program, NUS Graduate School, National University of Singapore, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore.
| |
Collapse
|
10
|
Dietrich N, Trotter K, Ward JM, Archer TK. BRG1 HSA domain interactions with BCL7 proteins are critical for remodeling and gene expression. Life Sci Alliance 2023; 6:e202201770. [PMID: 36801810 PMCID: PMC9939006 DOI: 10.26508/lsa.202201770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
The SWI/SNF complex remodels chromatin in an ATP-dependent manner through the subunits BRG1 and BRM. Chromatin remodeling alters nucleosome structure to change gene expression; however, aberrant remodeling can result in cancer. We identified BCL7 proteins as critical SWI/SNF members that drive BRG1-dependent gene expression changes. BCL7s have been implicated in B-cell lymphoma, but characterization of their functional role within the SWI/SNF complex has been limited. This study implicates their function alongside BRG1 to drive large-scale changes in gene expression. Mechanistically, the BCL7 proteins bind to the HSA domain of BRG1 and require this domain for binding to chromatin. BRG1 proteins without the HSA domain fail to interact with the BCL7 proteins and have severely reduced chromatin remodeling activity. These results link the HSA domain and the formation of a functional SWI/SNF remodeling complex through the interaction with BCL7 proteins. These data highlight the importance of correct formation of the SWI/SNF complex to drive critical biological functions, as losses of individual accessory members or protein domains can cause loss of complex function.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Kevin Trotter
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - James M Ward
- Integrative Bioinformatics, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
11
|
Pacinella G, Ciaccio AM, Tuttolomondo A. Endothelial Dysfunction and Chronic Inflammation: The Cornerstones of Vascular Alterations in Age-Related Diseases. Int J Mol Sci 2022; 23:15722. [PMID: 36555364 PMCID: PMC9779461 DOI: 10.3390/ijms232415722] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Vascular diseases of the elderly are a topic of enormous interest in clinical practice, as they have great epidemiological significance and lead to ever-increasing healthcare expenditures. The mechanisms underlying these pathologies have been increasingly characterized over the years. It has emerged that endothelial dysfunction and chronic inflammation play a diriment role among the most relevant pathophysiological mechanisms. As one can easily imagine, various processes occur during aging, and several pathways undergo irreversible alterations that can promote the decline and aberrations that trigger the diseases above. Endothelial dysfunction and aging of circulating and resident cells are the main characteristics of the aged organism; they represent the framework within which an enormous array of molecular abnormalities occur and contribute to accelerating and perpetuating the decline of organs and tissues. Recognizing and detailing each of these dysfunctional pathways is helpful for therapeutic purposes, as it allows one to hypothesize the possibility of tailoring interventions to the damaged mechanism and hypothetically limiting the cascade of events that drive the onset of these diseases. With this paper, we have reviewed the scientific literature, analysing the pathophysiological basis of the vascular diseases of the elderly and pausing to reflect on attempts to interrupt the vicious cycle that connotes the diseases of aging, laying the groundwork for therapeutic reasoning and expanding the field of scientific research by moving from a solid foundation.
Collapse
Affiliation(s)
| | | | - Antonino Tuttolomondo
- Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (PROMISE) G. D’Alessandro, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
12
|
Gems D, Kern CC. Is "cellular senescence" a misnomer? GeroScience 2022; 44:2461-2469. [PMID: 36068483 PMCID: PMC9768054 DOI: 10.1007/s11357-022-00652-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 01/06/2023] Open
Abstract
One of the most striking findings in biogerontology in the 2010s was the demonstration that elimination of senescent cells delays many late-life diseases and extends lifespan in mice. This implied that accumulation of senescent cells promotes late-life diseases, particularly through action of senescent cell secretions (the senescence-associated secretory phenotype, or SASP). But what exactly is a senescent cell? Subsequent to the initial characterization of cellular senescence, it became clear that, prior to aging, this phenomenon is in fact adaptive. It supports tissue remodeling functions in a variety of contexts, including embryogenesis, parturition, and acute inflammatory processes that restore normal tissue architecture and function, such as wound healing, tissue repair after infection, and amphibian limb regeneration. In these contexts, such cells are normal and healthy and not in any way senescent in the true sense of the word, as originally meant by Hayflick. Thus, it is misleading to refer to them as "senescent." Similarly, the common assertion that senescent cells accumulate with age due to stress and DNA damage is no longer safe, particularly given their role in inflammation-a process that becomes persistent in later life. We therefore suggest that it would be useful to update some terminology, to bring it into line with contemporary understanding, and to avoid future confusion. To open a discussion of this issue, we propose replacing the term cellular senescence with remodeling activation, and SASP with RASP (remodeling-associated secretory phenotype).
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| | - Carina C. Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| |
Collapse
|
13
|
Senotherapeutics in Cancer and HIV. Cells 2022; 11:cells11071222. [PMID: 35406785 PMCID: PMC8997781 DOI: 10.3390/cells11071222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a stress-response mechanism that contributes to homeostasis maintenance, playing a beneficial role during embryogenesis and in normal adult organisms. In contrast, chronic senescence activation may be responsible for other events such as age-related disorders, HIV and cancer development. Cellular senescence activation can be triggered by different insults. Regardless of the inducer, there are several phenotypes generally shared among senescent cells: cell division arrest, an aberrant shape, increased size, high granularity because of increased numbers of lysosomes and vacuoles, apoptosis resistance, defective metabolism and some chromatin alterations. Senescent cells constitute an important area for research due to their contributions to the pathogenesis of different diseases such as frailty, sarcopenia and aging-related diseases, including cancer and HIV infection, which show an accelerated aging. Hence, a new pharmacological category of treatments called senotherapeutics is under development. This group includes senolytic drugs that selectively attack senescent cells and senostatic drugs that suppress SASP factor delivery, inhibiting senescent cell development. These new drugs can have positive therapeutic effects on aging-related disorders and act in cancer as antitumor drugs, avoiding the undesired effects of senescent cells such as those from SASP. Here, we review senotherapeutics and how they might affect cancer and HIV disease, two very different aging-related diseases, and review some compounds acting as senolytics in clinical trials.
Collapse
|
14
|
Mikuła-Pietrasik J, Rutecki S, Książek K. The functional multipotency of transforming growth factor β signaling at the intersection of senescence and cancer. Cell Mol Life Sci 2022; 79:196. [PMID: 35305149 PMCID: PMC11073081 DOI: 10.1007/s00018-022-04236-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022]
Abstract
The transforming growth factor β (TGF-β) family of cytokines comprises a group of proteins, their receptors, and effector molecules that, in a coordinated manner, modulate a plethora of physiological and pathophysiological processes. TGF-β1 is the best known and plausibly most active representative of this group. It acts as an immunosuppressant, contributes to extracellular matrix remodeling, and stimulates tissue fibrosis, differentiation, angiogenesis, and epithelial-mesenchymal transition. In recent years, this cytokine has been established as a vital regulator of organismal aging and cellular senescence. Finally, the role of TGF-β1 in cancer progression is no longer in question. Because this protein is involved in so many, often overlapping phenomena, the question arises whether it can be considered a molecular bridge linking some of these phenomena together and governing their reciprocal interactions. In this study, we reviewed the literature from the perspective of the role of various TGF-β family members as regulators of a complex mutual interplay between senescence and cancer. These aspects are then considered in a broader context of remaining TGF-β-related functions and coexisting processes. The main narrative axis in this work is centered around the interaction between the senescence of normal peritoneal cells and ovarian cancer cells. The discussion also includes examples of TGF-β activity at the interface of other normal and cancer cell types.
Collapse
Affiliation(s)
- Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Szymon Rutecki
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Długa ½ Str, Poznań University of Medical Sciences, 61-848, Poznań, Poland.
| |
Collapse
|
15
|
Application of 233 nm far-UVC LEDs for eradication of MRSA and MSSA and risk assessment on skin models. Sci Rep 2022; 12:2587. [PMID: 35173210 PMCID: PMC8850561 DOI: 10.1038/s41598-022-06397-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/25/2022] [Indexed: 11/08/2022] Open
Abstract
A newly developed UVC LED source with an emission wavelength of 233 nm was proved on bactericidal efficacy and skin tolerability. The bactericidal efficacy was qualitatively analysed using blood agar test. Subsequently, quantitative analyses were performed on germ carrier tests using the MRSA strain DSM11822, the MSSA strain DSM799, S. epidermidis DSM1798 with various soil loads. Additionally, the compatibility of the germicidal radiation doses on excised human skin and reconstructed human epidermis was proved. Cell viability, DNA damage and production of radicals were assessed in comparison to typical UVC radiation from discharge lamps (222 nm, 254 nm) and UVB (280–380 nm) radiation for clinical assessment. At a dose of 40 mJ/cm2, the 233 nm light source reduced the viable microorganisms by a log10 reduction (LR) of 5 log10 levels if no soil load was present. Mucin and protein containing soil loads diminished the effect to an LR of 1.5–3.3. A salt solution representing artificial sweat (pH 8.4) had only minor effects on the reduction. The viability of the skin models was not reduced and the DNA damage was far below the damage evoked by 0.1 UVB minimal erythema dose, which can be regarded as safe. Furthermore, the induced damage vanished after 24 h. Irradiation on four consecutive days also did not evoke DNA damage. The radical formation was far lower than 20 min outdoor visible light would cause, which is classified as low radical load and can be compensated by the antioxidant defence system.
Collapse
|
16
|
Yadav P, Chatterjee K, Saini DK. Senescent cells in 3D culture show suppressed senescence signatures. Biomater Sci 2021; 9:6461-6473. [PMID: 34582533 DOI: 10.1039/d1bm00536g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular senescence, an irreversible proliferation arrested but viable cellular state, has been implicated in the progression of several age-associated pathologies. A vast amount of information about senescence has been acquired in cultured cells; however, senescence in living organisms (in vivo) remains poorly understood, mainly because of technical limitations. Furthermore, it is now widely recognized that three-dimensional (3D) culture systems are a better mimic of the in vivo physiology. Herein, senescence was induced in HeLa cells by irradiation. Non-senescent or senescent cells were cultured in soft 3D polymer scaffolds and compared with cells in conventional two-dimensional (2D) culture. This work shows that the morphology of the senescent cells markedly varies between substrates/culture platforms, driving the differences in the cytoskeletal organization, cellular division, and nanomechanical properties. One characteristic feature of senescent cells on 2D culture systems is the enlarged and flattened morphology; however, such drastic changes are not seen in vivo. This is an artificial effect of the substrate, which renders such non-physiological morphology to senescent cells. In the 3D scaffolds, this artifact is reduced. Hence, it serves as a better mimic of tissues, leading to reduced expression of senescence-associated genes, implying that the 3D scaffolds suppress the senescence in cells.
Collapse
Affiliation(s)
- Parul Yadav
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.,Department of Materials Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| | - Deepak Kumar Saini
- Centre for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
17
|
Barros PR, Costa TJ, Akamine EH, Tostes RC. Vascular Aging in Rodent Models: Contrasting Mechanisms Driving the Female and Male Vascular Senescence. FRONTIERS IN AGING 2021; 2:727604. [PMID: 35821995 PMCID: PMC9261394 DOI: 10.3389/fragi.2021.727604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Increasing scientific interest has been directed to sex as a biological and decisive factor on several diseases. Several different mechanisms orchestrate vascular function, as well as vascular dysfunction in cardiovascular and metabolic diseases in males and females. Certain vascular sex differences are present throughout life, while others are more evident before the menopause, suggesting two important and correlated drivers: genetic and hormonal factors. With the increasing life expectancy and aging population, studies on aging-related diseases and aging-related physiological changes have steeply grown and, with them, the use of aging animal models. Mouse and rat models of aging, the most studied laboratory animals in aging research, exhibit sex differences in many systems and physiological functions, as well as sex differences in the aging process and aging-associated cardiovascular changes. In the present review, we introduce the most common aging and senescence-accelerated animal models and emphasize that sex is a biological variable that should be considered in aging studies. Sex differences in the cardiovascular system, with a focus on sex differences in aging-associated vascular alterations (endothelial dysfunction, remodeling and oxidative and inflammatory processes) in these animal models are reviewed and discussed.
Collapse
Affiliation(s)
- Paula R. Barros
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Tiago J. Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliana H. Akamine
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Rita C. Tostes, ; Eliana H. Akamine,
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- *Correspondence: Rita C. Tostes, ; Eliana H. Akamine,
| |
Collapse
|
18
|
Wang G, Cheng X, Zhang J, Liao Y, Jia Y, Qing C. Possibility of inducing tumor cell senescence during therapy. Oncol Lett 2021; 22:496. [PMID: 33981358 PMCID: PMC8108274 DOI: 10.3892/ol.2021.12757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The treatment options for cancer include surgery, radiotherapy and chemotherapy. However, the traditional approach of high-dose chemotherapy brings tremendous toxic side effects to patients, as well as potentially causing drug resistance. Drug resistance affects cell proliferation, cell senescence and apoptosis. Cellular senescence refers to the process in which cells change from an active proliferative status to a growth-arrested status. There are multiple factors that regulate this process and cellular senescence is activated by various pathways. Senescent cells present specific characteristics, such as an increased cell volume, flattened cell body morphology, ceased cell division and the expression of β-galactosidase. Tumor senescence can be categorized into replicative senescence and premature senescence. Cellular senescence may inhibit the occurrence and development of tumors, serving as an innovative strategy for the treatment of cancer. The present review mainly focuses on senescent biomarkers, methods for the induction of cellular senescence and its possible application in the treatment of cancer.
Collapse
Affiliation(s)
- Guohui Wang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xianliang Cheng
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jingyi Zhang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yinnong Jia
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
19
|
Alajati A, D'Ambrosio M, Troiani M, Mosole S, Pellegrini L, Chen J, Revandkar A, Bolis M, Theurillat JP, Guccini I, Losa M, Calcinotto A, De Bernardis G, Pasquini E, D'Antuono R, Sharp A, Figueiredo I, Nava Rodrigues D, Welti J, Gil V, Yuan W, Vlajnic T, Bubendorf L, Chiorino G, Gnetti L, Torrano V, Carracedo A, Camplese L, Hirabayashi S, Canato E, Pasut G, Montopoli M, Rüschoff JH, Wild P, Moch H, De Bono J, Alimonti A. CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J Clin Invest 2021; 130:2435-2450. [PMID: 32250342 DOI: 10.1172/jci131133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanisms by which prostate cancer shifts from an indolent castration-sensitive phenotype to lethal castration-resistant prostate cancer (CRPC) are poorly understood. Identification of clinically relevant genetic alterations leading to CRPC may reveal potential vulnerabilities for cancer therapy. Here we find that CUB domain-containing protein 1 (CDCP1), a transmembrane protein that acts as a substrate for SRC family kinases (SFKs), is overexpressed in a subset of CRPC. Notably, CDCP1 cooperates with the loss of the tumor suppressor gene PTEN to promote the emergence of metastatic prostate cancer. Mechanistically, we find that androgens suppress CDCP1 expression and that androgen deprivation in combination with loss of PTEN promotes the upregulation of CDCP1 and the subsequent activation of the SRC/MAPK pathway. Moreover, we demonstrate that anti-CDCP1 immunoliposomes (anti-CDCP1 ILs) loaded with chemotherapy suppress prostate cancer growth when administered in combination with enzalutamide. Thus, our study identifies CDCP1 as a powerful driver of prostate cancer progression and uncovers different potential therapeutic strategies for the treatment of metastatic prostate tumors.
Collapse
Affiliation(s)
- Abdullah Alajati
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland.,Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Simone Mosole
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Laura Pellegrini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Jingjing Chen
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland.,Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Ajinkya Revandkar
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland.,Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland
| | - Marco Bolis
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Ilaria Guccini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Marco Losa
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Arianna Calcinotto
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Gaston De Bernardis
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland
| | - Rocco D'Antuono
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Adam Sharp
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom
| | - Ines Figueiredo
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Daniel Nava Rodrigues
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jonathan Welti
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Veronica Gil
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Wei Yuan
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Tatjana Vlajnic
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | - Lukas Bubendorf
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Letizia Gnetti
- Pathology Unit, University Hospital of Parma, Parma, Italy
| | - Verónica Torrano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Ikerbasque: Basque Foundation for Science, Bilbao, Spain
| | - Laura Camplese
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London, United Kingdom
| | - Susumu Hirabayashi
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London, United Kingdom
| | - Elena Canato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Jan Hendrik Rüschoff
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Peter Wild
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Johann De Bono
- Division of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona, Switzerland.,Universita' della Svizzera Italiana, Lugano, Switzerland.,Faculty of Biology and Medicine, University of Lausanne UNIL, Lausanne, Switzerland.,Department of Medicine, University of Padua, Padua, Italy.,Department of Health Sciences and Technology, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland
| |
Collapse
|
20
|
Ting KK, Coleman P, Zhao Y, Vadas MA, Gamble JR. The aging endothelium. VASCULAR BIOLOGY 2021; 3:R35-R47. [PMID: 33880430 PMCID: PMC8052565 DOI: 10.1530/vb-20-0013] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is now recognized as one of the hallmarks of aging. Herein, we examine current findings on senescence of the vascular endothelium and its impacts on age-related vascular diseases. Endothelial senescence can result in systemic metabolic changes, implicating senescence in chronic diseases such as diabetes, obesity and atherosclerosis. Senolytics, drugs that eliminate senescent cells, afford new therapeutic strategies for control of these chronic diseases.
Collapse
Affiliation(s)
- Ka Ka Ting
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul Coleman
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Yang Zhao
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Mathew A Vadas
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer R Gamble
- Centre for the Endothelium Vascular Biology Program Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Huidobro C, Martín-Vicente P, López-Martínez C, Alonso-López I, Amado-Rodríguez L, Crespo I, M Albaiceta G. Cellular and molecular features of senescence in acute lung injury. Mech Ageing Dev 2020; 193:111410. [PMID: 33249191 DOI: 10.1016/j.mad.2020.111410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
A wide range of insults can trigger acute injury in the lungs, which eventually may lead to respiratory failure and death of patients. Current treatment relies mainly on supportive measures and mechanical ventilation. Even so, survivors frequently develop important sequels that compromise quality of life. In the search for new approaches to prevent and treat acute lung injury, many investigations have focused on molecular and cellular pathways which could exert a pathogenic role in this disease. Herein, we review recent findings in the literature suggesting that cellular senescence could be involved in lung injury and discuss the potential use of senotherapies to prevent disease progression.
Collapse
Affiliation(s)
- Covadonga Huidobro
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain.
| | - Paula Martín-Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Cecilia López-Martínez
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Inés Alonso-López
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Avenida de Roma s/n, 33011, Oviedo, Spain
| | - Irene Crespo
- Departamento de Biología Funcional. Universidad de Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida de Roma s/n, 33011, Oviedo, Spain; Centro de Investigación Biomédica en Red (CIBER)-Enfermedades Respiratorias, Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias, Calle Fernando Bongera s/n, 33006, Oviedo, Spain; Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central de Asturias, Oviedo, Avenida de Roma s/n, 33011, Oviedo, Spain; Departamento de Biología Funcional. Universidad de Oviedo, C/ Julián Clavería s/n, 33006, Oviedo, Spain
| |
Collapse
|
22
|
Stationary Distribution of Telomere Lengths in Cells with Telomere Length Maintenance and its Parametric Inference. Bull Math Biol 2020; 82:150. [PMID: 33216232 DOI: 10.1007/s11538-020-00811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Telomeres are nucleotide caps located at the ends of each eukaryotic chromosome. Under normal physiological conditions as well as in culture, they shorten during each DNA replication round. Short telomeres initiate a proliferative arrest of cells termed 'replicative senescence'. However, cancer cells possessing limitless replication potential can avoid senescence by the telomere maintenance mechanism, which offsets telomeric loss. Therefore, cancer cells have sufficiently long telomeres even though their lengths are significantly shorter than their normal counterparts. This implies that the attrition and elongation rates play crucial roles in deciding whether and when cells ultimately become carcinogenic. In this research, we propose a concise mathematical model that shows the shortest telomere length at each cell division and prove mathematical conditions related to the attrition and elongation rates, which are necessary and sufficient for the existence of stationary distribution of telomere lengths. Moreover, we estimate the parameters of the telomere length maintenance process based on frequentist and Bayesian approaches. This study expands our knowledge of the mathematical relationship between the telomere attrition and elongation rates in cancer cells, which is important because the telomere length dynamics is a useful biomarker of cancer diagnosis and prognosis.
Collapse
|
23
|
Menon R, Behnia F, Polettini J, Richardson LS. Novel pathways of inflammation in human fetal membranes associated with preterm birth and preterm pre-labor rupture of the membranes. Semin Immunopathol 2020; 42:431-450. [PMID: 32785751 DOI: 10.1007/s00281-020-00808-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022]
Abstract
Spontaneous preterm birth (PTB) and preterm pre-labor rupture of the membranes (pPROM) are major pregnancy complications. Although PTB and pPROM have common etiologies, they arise from distinct pathophysiologic pathways. Inflammation is a common underlying mechanism in both conditions. Balanced inflammation is required for fetoplacental growth; however, overwhelming inflammation (physiologic at term and pathologic at preterm) can lead to term and preterm parturition. A lack of effective strategies to control inflammation and reduce the risk of PTB and pPROM suggests that there are several modes of the generation of inflammation which may be dependent on the type of uterine tissue. The avascular fetal membrane (amniochorion), which provides structure, support, and protection to the intrauterine cavity, is one of the key contributors of inflammation. Localized membrane inflammation helps tissue remodeling during pregnancy. Two unique mechanisms that generate balanced inflammation are the progressive development of senescence (aging) and cyclic cellular transitions: epithelial to mesenchymal (EMT) and mesenchymal to epithelial (MET). The intrauterine build-up of oxidative stress at term or in response to risk factors (preterm) can accelerate senescence and promote a terminal state of EMT, resulting in the accumulation of inflammation. Inflammation degrades the matrix and destabilizes membrane function. Inflammatory mediators from damaged membranes are propagated via extracellular vesicles (EV) to maternal uterine tissues and transition quiescent maternal uterine tissues into an active state of labor. Membrane inflammation and its propagation are fetal signals that may promote parturition. This review summarizes the mechanisms of fetal membrane cellular senescence, transitions, and the generation of inflammation that contributes to term and preterm parturitions.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA.
| | - Faranak Behnia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, McGovern Medical School at the University of Texas Health Science Center at Houston, UT Health, Houston, Texas, USA
| | - Jossimara Polettini
- Universidade Federal da Fronteira Sul, Campus Passo Fundo, Rua Capitão Araujo, 20, Centro, Passo Fundo, Rio Grande do Sul, Brazil
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine and Perinatal Research Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, MRB 11.138, 301 301 University Blvd, Galveston, TX, 77555-1062, USA
| |
Collapse
|
24
|
Witkowski JM, Bryl E, Fulop T. Should we Try to Alleviate Immunosenescence and Inflammaging - Why, How and to What Extent? Curr Pharm Des 2020; 25:4154-4162. [PMID: 31713479 DOI: 10.2174/1381612825666191111153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
With advancing age, immune responses of human beings to external pathogens, i.e., bacteria, viruses, fungi and parasites, and to internal pathogens - malignant neoplasm cells - become less effective. Two major features in the process of aging of the human immune system are immunosenescence and inflammaging. The immune systems of our predecessors co-evolved with pathogens, which led to the occurrence of effective immunity. However, the otherwise beneficial activity may pose problems to the organism of the host and so it has builtin brakes (regulatory immune cells) and - with age - it undergoes adaptations and modifications, examples of which are the mentioned inflammaging and immunosenescence. Here we describe the mechanisms that first created our immune systems, then the consequences of their changes associated with aging, and the mechanisms of inflammaging and immunosenescence. Finally, we discuss to what extent both processes are detrimental and to what extent they might be beneficial and propose some therapeutic approaches for their wise control.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
25
|
Batra A, Rigo R, Sheka D, Cheung WY. Real-world evidence on adjuvant chemotherapy in older adults with stage II/III colon cancer. World J Gastrointest Oncol 2020; 12:604-618. [PMID: 32699576 PMCID: PMC7340998 DOI: 10.4251/wjgo.v12.i6.604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Colon cancer represents one of the most common cancers diagnosed in older adults worldwide. The standard of care in resected stage II and stage III colon cancer continues to evolve. While there is unequivocal evidence to suggest both disease free and overall survival benefits with the use of combination chemotherapy in patients with stage III colon cancer, data regarding its use in patients with stage II colon cancer are less clear. Further, although colon cancer is a disease that affects older adults, there is considerable debate on the value of adjuvant chemotherapy in the aging population. In particular, many older patients are undertreated when compared to their younger counterparts. In this review, we will describe the clinical trials that contributed to the current adjuvant chemotherapy approach in colon cancer, discuss representation of older adults in trials and the specific challenges associated with the management of this sub-population, and highlight the role of comprehensive geriatric assessments. We will also review how real-world evidence complements the data gaps from clinical trials of early stage colon cancer.
Collapse
Affiliation(s)
- Atul Batra
- Department of Medicine, Tom Baker Cancer Centre, Calgary, Alberta T2N 1N4, Canada
| | - Rodrigo Rigo
- Department of Medicine, Tom Baker Cancer Centre, Calgary, Alberta T2N 1N4, Canada
| | - Dropen Sheka
- Department of Medicine, Tom Baker Cancer Centre, Calgary, Alberta T2N 1N4, Canada
| | - Winson Y Cheung
- Department of Oncology, University of Calgary, Calgary, Alberta T2N 4N2, Canada
| |
Collapse
|
26
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|
27
|
Zhang H, Wang Y, Guan L, Chen Y, Chen P, Sun J, Gonzalez FJ, Huang M, Bi H. Lipidomics reveals carnitine palmitoyltransferase 1C protects cancer cells from lipotoxicity and senescence. J Pharm Anal 2020; 11:340-350. [PMID: 34277122 PMCID: PMC8264383 DOI: 10.1016/j.jpha.2020.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Lipotoxicity, caused by intracellular lipid accumulation, accelerates the degenerative process of cellular senescence, which has implications in cancer development and therapy. Previously, carnitine palmitoyltransferase 1C (CPT1C), a mitochondrial enzyme that catalyzes carnitinylation of fatty acids, was found to be a critical regulator of cancer cell senescence. However, whether loss of CPT1C could induce senescence as a result of lipotoxicity remains unknown. An LC/MS-based lipidomic analysis of PANC-1, MDA-MB-231, HCT-116 and A549 cancer cells was conducted after siRNA depletion of CPT1C. Cellular lipotoxicity was further confirmed by lipotoxicity assays. Significant changes were found in the lipidome of CPT1C-depleted cells, including major alterations in fatty acid, diacylglycerol, triacylglycerol, oxidative lipids, cardiolipin, phosphatidylglycerol, phosphatidylcholine/phosphatidylethanolamine ratio and sphingomyelin. This was coincident with changes in expressions of mRNAs involved in lipogenesis. Histological and biochemical analyses revealed higher lipid accumulation and increased malondialdehyde and reactive oxygen species, signatures of lipid peroxidation and oxidative stress. Reduction of ATP synthesis, loss of mitochondrial transmembrane potential and down-regulation of expression of mitochondriogenesis gene mRNAs indicated mitochondrial dysfunction induced by lipotoxicity, which could further result in cellular senescence. Taken together, this study demonstrated CPT1C plays a critical role in the regulation of cancer cell lipotoxicity and cell senescence, suggesting that inhibition of CPT1C may serve as a new therapeutic strategy through induction of tumor lipotoxicity and senescence.
Collapse
Affiliation(s)
- Huizhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yongtao Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Lihuan Guan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yixin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Panpan Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahong Sun
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
28
|
Xu C, Jiang T, Ni S, Chen C, Li C, Zhuang C, Zhao G, Jiang S, Wang L, Zhu R, van Wijnen AJ, Wang Y. FSTL1 promotes nitric oxide-induced chondrocyte apoptosis via activating the SAPK/JNK/caspase3 signaling pathway. Gene 2020; 732:144339. [PMID: 31927008 DOI: 10.1016/j.gene.2020.144339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/22/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Previous studies have shown that follistatin-like protein 1 (FSTL1) is elevated in the synovial fluid of osteoarthritis and is associated with disease activity. The experiment was performed to stuy the effect and mechanism of FSTL1 on chondrocyte apoptosis in osteoarthritis. DESIGN After the isolation of human normal and osteoarthritis (OA) chondrocytes, the expression of FSTL1 was detected by Q-PCR and western blot analyses. Chondrocytes were pre-transfected with FSTL1 overexpression plasmids then treated with SNP, and chondrocyte viability and apoptosis levels were detected by MTS and flow cytometry, respectively. Cartilage matrix gene expression was measured by Q-PCR and signal pathway-related proteins were assessed by western blot. RESULTS The expression of FSTL1 in OA chondrocytes was markedly up-regulated compared with normal human chondrocytes (P < 0.05). The apoptosis rate of chondrocytes in the FSTL1 overexpression groups was highly elevated in the comparison with the negative control groups (P < 0.05). Additionally, FSTL1 potentiated protein abundances of MMP1, MMP3, MMP-9, and Bax as well as reduced Coll2a1 and Aggrecan and Bcl-2 expression. Furthermore, western blot results showed that the SAPK/JNK/Caspase3 signal pathway was significantly activated and the Ac-DEVD-FMK impaired FSTL1 induced chondrocyte apoptosis. CONCLUSION FSTL1 promoted SNP-induced chondrocytes apoptosis by activating the SAPK/JNK/Caspase3 signal pathway.
Collapse
Affiliation(s)
- Chao Xu
- Nanjing Medical University, 101Longmian Avenue, Jiangning District, Nanjing 210039, China
| | - Tao Jiang
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 Heping North Road, Changzhou 213003, China
| | - Su Ni
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou 213003, China
| | - Chaoqun Chen
- Department of Orthopaedics, Changzhou Traditional Chinese Medical Hospital, Affiliated to Nanjing University of Traditional Chinese Medicine, 25 Heping North Road, Changzhou 213003, China
| | - Chenkai Li
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou 213003, China
| | - Chao Zhuang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou 213003, China
| | - Gongyin Zhao
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou 213003, China
| | - Shijie Jiang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou 213003, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou 213003, China
| | - Ruixia Zhu
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou 213003, China
| | - Andre J van Wijnen
- Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Yuji Wang
- Department of Orthopedics, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou 213003, China; Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Chinese Medicine, 222 Silong Road, Baiyin 730900, China; Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
29
|
Nogueira-Recalde U, Lorenzo-Gómez I, Blanco FJ, Loza MI, Grassi D, Shirinsky V, Shirinsky I, Lotz M, Robbins PD, Domínguez E, Caramés B. Fibrates as drugs with senolytic and autophagic activity for osteoarthritis therapy. EBioMedicine 2019; 45:588-605. [PMID: 31285188 PMCID: PMC6642320 DOI: 10.1016/j.ebiom.2019.06.049] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Ageing-related failure of homeostasis mechanisms contributes to articular cartilage degeneration and osteoarthritis (OA), for which disease-modifying treatments are not available. Our objective was to identify molecules to prevent OA by regulating chondrocyte senescence and autophagy. Methods Human chondrocytes with IL-6 induced senescence and autophagy suppression and SA-β-gal as a reporter of senescence and LC3 as reporter of autophagic flux were used to screen the Prestwick Chemical Library of approved drugs. Preclinical cellular, tissue and blood from OA and blood from OA and ageing models were used to test the efficacy and relevance of activating PPARα related to cartilage degeneration. Findings Senotherapeutic molecules with pro-autophagic activity were identified. Fenofibrate (FN), a PPARα agonist used for dyslipidaemias in humans, reduced the number of senescent cells via apoptosis, increased autophagic flux, and protected against cartilage degradation. FN reduced both senescence and inflammation and increased autophagy in both ageing human and OA chondrocytes whereas PPARα knockdown conferred the opposite effect. Moreover, PPARα expression was reduced through both ageing and OA in mice and also in blood and cartilage from knees of OA patients. Remarkably, in a retrospective study, fibrate treatment improved OA clinical conditions in human patients from the Osteoarthritis Initiative (OAI) Cohort. Interpretation These results demonstrate that FDA-approved fibrate drugs targeting lipid metabolism protect against cartilage degeneration seen with ageing and OA. Thus, these drugs could have immediate clinically utility for age-related cartilage degeneration and OA treatment. Fund This study was supported by Instituto de Salud Carlos III- Ministerio de Ciencia, Innovación y Universidades, Spain, Plan Estatal 2013–2016 and Fondo Europeo de Desarrollo Regional (FEDER), “Una manera de hacer Europa”, PI14/01324 and PI17/02059, by Innopharma Pharmacogenomics platform applied to the validation of targets and discovery of drugs candidates to preclinical phases, Ministerio de Economía y Competitividad, by grants of the National Instiutes of Health to PDR (P01 AG043376 and U19 AG056278). We thank FOREUM Foundation for Research in Rheumatology for their support.
Collapse
Affiliation(s)
- Uxía Nogueira-Recalde
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - Irene Lorenzo-Gómez
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - Francisco J Blanco
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| | - María I Loza
- Eduardo Domínguez: Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Spain
| | - Diego Grassi
- Institute for Interdisciplinary Neuroscience (IINS), Bordeaux, Nouvelle-Aquitaine, France
| | - Valery Shirinsky
- Scientific Research Institute of Clinical immunology, Novosibirsk, Russia
| | - Ivan Shirinsky
- Scientific Research Institute of Clinical immunology, Novosibirsk, Russia
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Eduardo Domínguez
- Eduardo Domínguez: Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidad de Santiago de Compostela, Spain.
| | - Beatriz Caramés
- Uxía Nogueira-Recalde, Irene Lorenzo Gómez, Francisco J. Blanco and Beatriz Caramés, Grupo de Biología del Cartílago, Servicio de Reumatología, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complejo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain.
| |
Collapse
|
30
|
Pawelec G. Is There a Positive Side to T Cell Exhaustion? Front Immunol 2019; 10:111. [PMID: 30761152 PMCID: PMC6362299 DOI: 10.3389/fimmu.2019.00111] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
T cell “exhaustion” describes a state of late-stage differentiation usually associated with active prevention of functionality via ligation of negative signaling receptors on the cell surface, and which can be reversed by blocking these interactions. This contrasts with T cell “senescence,” which has been defined as a state that is maintained by intrinsic internal cell signaling (caused by DNA damage or other stresses) and which can be reversed pharmacologically. Interventions to alleviate these two different categories of inhibitory pathways may be desirable in immunotherapy for cancer and possibly certain infectious diseases, but reciprocally inducing and maintaining these states, or some properties thereof, may be beneficial in organ transplantation and autoimmunity. Even under physiological non-pathological conditions, T cell exhaustion and senescence may play a role in the retention of T cell clones required for immunosurveillance, and prevent their loss via elimination at the Hayflick limit. This essay briefly reviews T cell exhaustion in contrast to replicative senescence, and circumstances under which their modulation may be beneficial.
Collapse
Affiliation(s)
- Graham Pawelec
- Second Department of Internal Medicine, University of Tübingen, Tübingen, Germany.,Cancer Solutions Program, Health Sciences North Research Institute, Sudbury, ON, Canada
| |
Collapse
|
31
|
Abstract
A critical hallmark of aging is cellular senescence, a state of growth arrest and inflammatory cytokine release in cells, caused by a variety of stresses. Recent work has convincingly linked the accumulation of senescent cells in aged tissues to a decline in health and a limit of lifespan, primarily through "inflammaging". Importantly, interventions that clear senescent cells have achieved marked improvements in healthspan and lifespan in mice. A growing list of studies show that environmental stimuli can affect aging and longevity through conserved pathways which, in turn, modulate chromatin states. This review consolidates key findings of chromatin state changes in senescence including histone modifications, histone variants, DNA methylation and changes in three-dimensional genome organization. This information will facilitate the identification of mechanisms and discovery of potential epigenetic targets for therapeutic interventions in aging and age-related disease.
Collapse
Affiliation(s)
- Na Yang
- National Institute on Aging, NIH, Laboratory of Genetics and Genomics, Functional Epigenomics Unit, Baltimore, MD 21224, USA
| | - Payel Sen
- Epigenetics Institute and Department of Cell and Developmental Biology, University of Pennsylvania, Smilow Center for Translational Research, Philadelphia, PA 19104, USA
| |
Collapse
|
32
|
Schosserer M, Grillari J, Breitenbach M. The Dual Role of Cellular Senescence in Developing Tumors and Their Response to Cancer Therapy. Front Oncol 2017; 7:278. [PMID: 29218300 PMCID: PMC5703792 DOI: 10.3389/fonc.2017.00278] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence describes an irreversible growth arrest characterized by distinct morphology, gene expression pattern, and secretory phenotype. The final or intermediate stages of senescence can be reached by different genetic mechanisms and in answer to different external and internal stresses. It has been maintained in the literature but never proven by clearcut experiments that the induction of senescence serves the evolutionary purpose of protecting the individual from development and growth of cancers. This hypothesis was recently scrutinized by new experiments and found to be partly true, but part of the gene activities now known to happen in senescence are also needed for cancer growth, leading to the view that senescence is a double-edged sword in cancer development. In current cancer therapy, cellular senescence is, on the one hand, intended to occur in tumor cells, as thereby the therapeutic outcome is improved, but might, on the other hand, also be induced unintentionally in non-tumor cells, causing inflammation, secondary tumors, and cancer relapse. Importantly, organismic aging leads to accumulation of senescent cells in tissues and organs of aged individuals. Senescent cells can occur transiently, e.g., during embryogenesis or during wound healing, with beneficial effects on tissue homeostasis and regeneration or accumulate chronically in tissues, which detrimentally affects the microenvironment by de- or transdifferentiation of senescent cells and their neighboring stromal cells, loss of tissue specific functionality, and induction of the senescence-associated secretory phenotype, an increased secretory profile consisting of pro-inflammatory and tissue remodeling factors. These factors shape their surroundings toward a pro-carcinogenic microenvironment, which fuels the development of aging-associated cancers together with the accumulation of mutations over time. We are presenting an overview of well-documented stress situations and signals, which induce senescence. Among them, oncogene-induced senescence and stress-induced premature senescence are prominent. New findings about the role of senescence in tumor biology are critically reviewed with respect to new suggestions for cancer therapy leveraging genetic and pharmacological methods to prevent senescence or to selectively kill senescent cells in tumors.
Collapse
Affiliation(s)
- Markus Schosserer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Christian Doppler Laboratory for Biotechnology of Skin Aging, Vienna, Austria.,Evercyte GmbH, Vienna, Austria
| | - Michael Breitenbach
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg, Austria
| |
Collapse
|
33
|
Abstract
Current theories attribute aging to a failure of selection, due to either pleiotropic constraints or declining strength of selection after the onset of reproduction. These theories implicitly leave open the possibility that if senescence-causing alleles could be identified, or if antagonistic pleiotropy could be broken, the effects of aging might be ameliorated or delayed indefinitely. These theories are built on models of selection between multicellular organisms, but a full understanding of aging also requires examining the role of somatic selection within an organism. Selection between somatic cells (i.e., intercellular competition) can delay aging by purging nonfunctioning cells. However, the fitness of a multicellular organism depends not just on how functional its individual cells are but also on how well cells work together. While intercellular competition weeds out nonfunctional cells, it may also select for cells that do not cooperate. Thus, intercellular competition creates an inescapable double bind that makes aging inevitable in multicellular organisms.
Collapse
|
34
|
Mavrogonatou E, Pratsinis H, Papadopoulou A, Karamanos NK, Kletsas D. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis. Matrix Biol 2017; 75-76:27-42. [PMID: 29066153 DOI: 10.1016/j.matbio.2017.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 12/16/2022]
Abstract
Normal cells after a defined number of successive divisions or after exposure to genotoxic stresses are becoming senescent, characterized by a permanent growth arrest. In addition, they secrete increased levels of pro-inflammatory and catabolic mediators, collectively termed "senescence-associated secretory phenotype". Furthermore, senescent cells exhibit an altered expression and organization of many extracellular matrix components, leading to specific remodeling of their microenvironment. In this review we present the current knowledge on extracellular matrix alterations associated with cellular senescence and critically discuss certain characteristic examples, highlighting the ambiguous role of senescent cells in the homeostasis of various tissues under both normal and pathologic conditions.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
35
|
Sahu S, Dattani A, Aboobaker AA. Secrets from immortal worms: What can we learn about biological ageing from the planarian model system? Semin Cell Dev Biol 2017; 70:108-121. [PMID: 28818620 DOI: 10.1016/j.semcdb.2017.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Understanding how some animals are immortal and avoid the ageing process is important. We currently know very little about how they achieve this. Research with genetic model systems has revealed the existence of conserved genetic pathways and molecular processes that affect longevity. Most of these established model organisms have relatively short lifespans. Here we consider the use of planarians, with an immortal life-history that is able to entirely avoid the ageing process. These animals are capable of profound feats of regeneration fueled by a population of adult stem cells called neoblasts. These cells are capable of indefinite self-renewal that has underpinned the evolution of animals that reproduce only by fission, having disposed of the germline, and must therefore be somatically immortal and avoid the ageing process. How they do this is only now starting to be understood. Here we suggest that the evidence so far supports the hypothesis that the lack of ageing is an emergent property of both being highly regenerative and the evolution of highly effective mechanisms for ensuring genome stability in the neoblast stem cell population. The details of these mechanisms could prove to be very informative in understanding how the causes of ageing can be avoided, slowed or even reversed.
Collapse
Affiliation(s)
- Sounak Sahu
- Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Anish Dattani
- Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
36
|
Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K. Senescence-Associated MicroRNAs. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:177-205. [PMID: 28838538 PMCID: PMC8436595 DOI: 10.1016/bs.ircmb.2017.03.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Senescent cells arise as a consequence of cellular damage and can have either a detrimental or advantageous impact on tissues and organs depending on the specific cell type and metabolic state. As senescent cells accumulate in tissues with advancing age, they have been implicated in many age-related declines and diseases. The major facets of senescence include two pathways responsible for establishing and maintaining a senescence program, p53/CDKN1A(p21) and CDKN2A(p16)/RB, as well as the senescence-associated secretory phenotype. Numerous MicroRNAs influence senescence by modulating the abundance of key senescence regulatory proteins, generally by lowering the stability and/or translation of mRNAs that encode such factors. Accordingly, understanding the molecular mechanisms by which MicroRNAs influence senescence will enable diagnostic and therapeutic opportunities directed at senescent cells. Here, we review senescence-associated (SA)-MicroRNAs and discuss their implications in senescence-relevant pathologies.
Collapse
Affiliation(s)
- Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Amaresh C Panda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Ioannis Grammatikakis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| |
Collapse
|
37
|
Lees H, Walters H, Cox LS. Animal and human models to understand ageing. Maturitas 2016; 93:18-27. [PMID: 27372369 DOI: 10.1016/j.maturitas.2016.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
Abstract
Human ageing is the gradual decline in organ and tissue function with increasing chronological time, leading eventually to loss of function and death. To study the processes involved over research-relevant timescales requires the use of accessible model systems that share significant similarities with humans. In this review, we assess the usefulness of various models, including unicellular yeasts, invertebrate worms and flies, mice and primates including humans, and highlight the benefits and possible drawbacks of each model system in its ability to illuminate human ageing mechanisms. We describe the strong evolutionary conservation of molecular pathways that govern cell responses to extracellular and intracellular signals and which are strongly implicated in ageing. Such pathways centre around insulin-like growth factor signalling and integration of stress and nutritional signals through mTOR kinase. The process of cellular senescence is evaluated as a possible underlying cause for many of the frailties and diseases of human ageing. Also considered is ageing arising from systemic changes that cannot be modelled in lower organisms and instead require studies either in small mammals or in primates. We also touch briefly on novel therapeutic options arising from a better understanding of the biology of ageing.
Collapse
Affiliation(s)
- Hayley Lees
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Hannah Walters
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
38
|
Ruhland MK, Loza AJ, Capietto AH, Luo X, Knolhoff BL, Flanagan KC, Belt BA, Alspach E, Leahy K, Luo J, Schaffer A, Edwards JR, Longmore G, Faccio R, DeNardo DG, Stewart SA. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun 2016; 7:11762. [PMID: 27272654 PMCID: PMC4899869 DOI: 10.1038/ncomms11762] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022] Open
Abstract
Age is a significant risk factor for the development of cancer. However, the mechanisms that drive age-related increases in cancer remain poorly understood. To determine if senescent stromal cells influence tumorigenesis, we develop a mouse model that mimics the aged skin microenvironment. Using this model, here we find that senescent stromal cells are sufficient to drive localized increases in suppressive myeloid cells that contributed to tumour promotion. Further, we find that the stromal-derived senescence-associated secretory phenotype factor interleukin-6 orchestrates both increases in suppressive myeloid cells and their ability to inhibit anti-tumour T-cell responses. Significantly, in aged, cancer-free individuals, we find similar increases in immune cells that also localize near senescent stromal cells. This work provides evidence that the accumulation of senescent stromal cells is sufficient to establish a tumour-permissive, chronic inflammatory microenvironment that can shelter incipient tumour cells, thus allowing them to proliferate and progress unabated by the immune system.
Collapse
Affiliation(s)
- Megan K Ruhland
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Andrew J Loza
- Department of Medicine,Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Aude-Helene Capietto
- Department of Orthopedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Xianmin Luo
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Brett L Knolhoff
- Department of Medicine,Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Kevin C Flanagan
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Brian A Belt
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Elise Alspach
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Kathleen Leahy
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Jingqin Luo
- Division of Biostatistics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Andras Schaffer
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - John R Edwards
- Department of Medicine,Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Center For Pharmacogenomics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - Gregory Longmore
- Department of Medicine,Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,ICCE Institute, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Roberta Faccio
- Department of Orthopedic Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | - David G DeNardo
- Department of Medicine,Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,ICCE Institute, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| | - Sheila A Stewart
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Department of Medicine,Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA.,ICCE Institute, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, Missouri 63110, USA
| |
Collapse
|
39
|
Breathing to younger skin: 'reversing the molecular mechanism of skin aging with yoga'. Future Sci OA 2016; 2:FSO122. [PMID: 28031969 PMCID: PMC5137887 DOI: 10.4155/fsoa-2016-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/13/2016] [Indexed: 11/30/2022] Open
|
40
|
Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules 2015; 5:545-89. [PMID: 25906193 PMCID: PMC4496685 DOI: 10.3390/biom5020545] [Citation(s) in RCA: 539] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress in skin plays a major role in the aging process. This is true for intrinsic aging and even more for extrinsic aging. Although the results are quite different in dermis and epidermis, extrinsic aging is driven to a large extent by oxidative stress caused by UV irradiation. In this review the overall effects of oxidative stress are discussed as well as the sources of ROS including the mitochondrial ETC, peroxisomal and ER localized proteins, the Fenton reaction, and such enzymes as cyclooxygenases, lipoxygenases, xanthine oxidases, and NADPH oxidases. Furthermore, the defense mechanisms against oxidative stress ranging from enzymes like superoxide dismutases, catalases, peroxiredoxins, and GSH peroxidases to organic compounds such as L-ascorbate, α-tocopherol, beta-carotene, uric acid, CoQ10, and glutathione are described in more detail. In addition the oxidative stress induced modifications caused to proteins, lipids and DNA are discussed. Finally age-related changes of the skin are also a topic of this review. They include a disruption of the epidermal calcium gradient in old skin with an accompanying change in the composition of the cornified envelope. This modified cornified envelope also leads to an altered anti-oxidative capacity and a reduced barrier function of the epidermis.
Collapse
Affiliation(s)
- Mark Rinnerthaler
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Johannes Bischof
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Maria Karolin Streubel
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| | - Andrea Trost
- Department of Ophthalmology and Optometry, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria.
| | - Klaus Richter
- Department of Cell Biology, Division of Genetics, University of Salzburg, Salzburg 5020, Austria.
| |
Collapse
|
41
|
Chondrosenescence: definition, hallmarks and potential role in the pathogenesis of osteoarthritis. Maturitas 2014; 80:237-44. [PMID: 25637957 DOI: 10.1016/j.maturitas.2014.12.003] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 01/07/2023]
Abstract
Aging and inflammation are major contributing factors to the development and progression of arthritic and musculoskeletal diseases. "Inflammaging" refers to low-grade inflammation that occurs during physiological aging. In this paper we review the published literature on cartilage aging and propose the term "chondrosenescence" to define the age-dependent deterioration of chondrocyte function and how it undermines cartilage function in osteoarthritis. We propose the concept that a small number of senescent chondrocytes may be able to take advantage of the inflammatory tissue microenvironment and the inflammaging and immunosenescence that is concurrently occurring in the arthritic joint, further contributing to the age-related degradation of articular cartilage, subchondral bone, synovium and other tissues. In this new framework "chondrosenescence" is intimately linked with inflammaging and the disturbed interplay between autophagy and inflammasomes, thus contributing to the age-related increase in the prevalence of osteoarthritis and a decrease in the efficacy of articular cartilage repair. A better understanding of the basic mechanisms underlying chondrosenescence and its modification by drugs, weight loss, improved nutrition and physical exercise could lead to the development of new therapeutic and preventive strategies for osteoarthritis and a range of other age-related inflammatory joint diseases. Aging is inevitable but age-related diseases may be modifiable.
Collapse
|
42
|
Vjetrovic J, Shankaranarayanan P, Mendoza‐Parra MA, Gronemeyer H. Senescence-secreted factors activate Myc and sensitize pretransformed cells to TRAIL-induced apoptosis. Aging Cell 2014; 13:487-96. [PMID: 24589226 PMCID: PMC4326894 DOI: 10.1111/acel.12197] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2013] [Indexed: 11/29/2022] Open
Abstract
Senescent cells secrete a plethora of factors with potent paracrine signaling capacity. Strikingly, senescence, which acts as defense against cell transformation, exerts pro-tumorigenic activities through its secretome by promoting tumor-specific features, such as cellular proliferation, epithelial-mesenchymal transition and invasiveness. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has the unique activity of activating cell death exclusively in tumor cells. Given that the senescence-associated secretome (SAS) supports cell transformation, we asked whether SAS factor(s) would establish a program required for the acquisition of TRAIL sensitivity. We found that conditioned media from several types of senescent cells (CMS) efficiently sensitized pretransformed cells to TRAIL, while the same was not observed with normal or immortalized cells. Dynamic transcription profiling of CMS-exposed pretransformed cells indicated a paracrine autoregulatory loop of SAS factors and a dominant role of CMS-induced MYC. Sensitization to TRAIL coincided with and depended on MYC upregulation and massive changes in gene regulation. Senescent cell-induced MYC silenced its target gene CFLAR, encoding the apoptosis inhibitor FLIPL, thus leading to the acquisition of TRAIL sensitivity. Altogether, our results reveal that senescent cell-secreted factors exert a TRAIL-sensitizing effect on pretransformed cells by modulating the expression of MYC and CFLAR. Notably, CMS dose-dependent sensitization to TRAIL was observed with TRAIL-insensitive cancer cells and confirmed in co-culture experiments. Dissection and characterization of TRAIL-sensitizing CMS factors and the associated signaling pathway(s) will not only provide a mechanistic insight into the acquisition of TRAIL sensitivity but may lead to novel concepts for apoptogenic therapies of premalignant and TRAIL-resistant tumors.
Collapse
Affiliation(s)
- Jelena Vjetrovic
- Department Functional Genomics and Cancer Equipe Labellisée Ligue Contre le Cancer Institut Génétique de Biologie Moléculaire et Cellulaire (IGBMC) CNRS/INSERM/UdS/CERBM BP 10142 67404 Illkirch‐Cedex C.U. de Strasbourg France
| | - Pattabhiraman Shankaranarayanan
- Department Functional Genomics and Cancer Equipe Labellisée Ligue Contre le Cancer Institut Génétique de Biologie Moléculaire et Cellulaire (IGBMC) CNRS/INSERM/UdS/CERBM BP 10142 67404 Illkirch‐Cedex C.U. de Strasbourg France
| | - Marco A. Mendoza‐Parra
- Department Functional Genomics and Cancer Equipe Labellisée Ligue Contre le Cancer Institut Génétique de Biologie Moléculaire et Cellulaire (IGBMC) CNRS/INSERM/UdS/CERBM BP 10142 67404 Illkirch‐Cedex C.U. de Strasbourg France
| | - Hinrich Gronemeyer
- Department Functional Genomics and Cancer Equipe Labellisée Ligue Contre le Cancer Institut Génétique de Biologie Moléculaire et Cellulaire (IGBMC) CNRS/INSERM/UdS/CERBM BP 10142 67404 Illkirch‐Cedex C.U. de Strasbourg France
| |
Collapse
|
43
|
Gao R, Singh R, Kaul Z, Kaul SC, Wadhwa R. Targeting of DNA Damage Signaling Pathway Induced Senescence and Reduced Migration of Cancer cells. J Gerontol A Biol Sci Med Sci 2014; 70:701-13. [PMID: 24747666 DOI: 10.1093/gerona/glu019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/22/2014] [Indexed: 01/20/2023] Open
Abstract
The heat shock 70 family protein, mortalin, has pancytoplasmic distribution pattern in normal and perinuclear in cancer human cells. Cancer cells when induced to senesce by either chemicals or stress showed shift in mortalin staining pattern from perinuclear to pancytoplasmic type. Using such shift in mortalin staining as a reporter, we screened human shRNA library and identified nine senescence-inducing siRNA candidates. An independent Comparative Genomic Hybridization analysis of 35 breast cancer cell lines revealed that five (NBS1, BRCA1, TIN2, MRE11A, and KPNA2) of the nine genes located on chromosome regions identified as the gain of locus in more than 80% cell lines. By gene-specific PCR, these five genes were found to be frequently amplified in cancer cell lines. Bioinformatics revealed that the identified targets were connected to MRN (MRE11-RAD50-NBS1) complex, the DNA damage-sensing complex. We demonstrate that the identified shRNAs triggered DNA damage response and induced the expression of tumor suppressor protein p16(INK4A) causing growth arrest of cancer cells. Furthermore, cells showed decreased migration, mediated by decrease in matrix metalloproteases. Taken together, we demonstrate that the MRN complex is a potential target of cancer cell proliferation and migration, and staining pattern of mortalin could serve as an assay to identify senescence-inducing/anticancer reagents.
Collapse
Affiliation(s)
- Ran Gao
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Rumani Singh
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Zeenia Kaul
- Cell Proliferation Research Group and Department of Molecular Virology, Immunology and Medical Genetics, Wexner Cancer Center, College of Medicine, The Ohio State University, Columbus
| | - Sunil C Kaul
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Renu Wadhwa
- Cell Proliferation Research Group and DBT-AIST International Laboratory for Advanced Biomedicine, National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
44
|
Wang FW, Guan XY, Xie D. Roles of eukaryotic initiation factor 5A2 in human cancer. Int J Biol Sci 2013; 9:1013-20. [PMID: 24250246 PMCID: PMC3831114 DOI: 10.7150/ijbs.7191] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/26/2013] [Indexed: 12/15/2022] Open
Abstract
Eukaryotic initiation factor 5A (eIF5A), the only known cellular protein containing the amino acid hypusine, is an essential component of translation elongation. eIF5A2, one of the two isoforms in the eIF5A family, is reported to be a novel oncogenic protein in many types of human cancer. Both in vitro and in vivo studies showed that eIF5A2 could initiate tumor formation, enhance cancer cell growth, and increase cancer cell motility and metastasis by inducing epithelial-mesenchymal transition. Accumulatied evidence suggests that eIF5A2 is a useful biomarker in the prediction of cancer prognoses and serves as an anticancer molecular target. In this review, we will focus on updating current knowledge of the EIF5A2 gene in human cancers. The molecular mechanisms of EIF5A2 related to tumorigenesis will also be discussed.
Collapse
Affiliation(s)
- Feng-wei Wang
- 1. Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China. Collaborative Innovation Center of Cancer Medicine
| | | | | |
Collapse
|
45
|
Secher T, Samba-Louaka A, Oswald E, Nougayrède JP. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS One 2013; 8:e77157. [PMID: 24116215 PMCID: PMC3792898 DOI: 10.1371/journal.pone.0077157] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/30/2013] [Indexed: 01/19/2023] Open
Abstract
Cellular senescence is an irreversible state of proliferation arrest evoked by a myriad of stresses including oncogene activation, telomere shortening/dysfunction and genotoxic insults. It has been associated with tumor activation, immune suppression and aging, owing to the secretion of proinflammatory mediators. The bacterial genotoxin colibactin, encoded by the pks genomic island is frequently harboured by Escherichia coli strains of the B2 phylogenetic group. Mammalian cells exposed to live pks+ bacteria exhibit DNA-double strand breaks (DSB) and undergo cell-cycle arrest and death. Here we show that cells that survive the acute bacterial infection with pks+ E. coli display hallmarks of cellular senescence: chronic DSB, prolonged cell-cycle arrest, enhanced senescence-associated β-galactosidase (SA-β-Gal) activity, expansion of promyelocytic leukemia nuclear foci and senescence-associated heterochromatin foci. This was accompanied by reactive oxygen species production and pro-inflammatory cytokines, chemokines and proteases secretion. These mediators were able to trigger DSB and enhanced SA-β-Gal activity in bystander recipient cells treated with conditioned medium from senescent cells. Furthermore, these senescent cells promoted the growth of human tumor cells. In conclusion, the present data demonstrated that the E. coli genotoxin colibactin induces cellular senescence and subsequently propel bystander genotoxic and oncogenic effects.
Collapse
Affiliation(s)
- Thomas Secher
- INRA, USC 1360, Toulouse, France
- INSERM, UMR 1043, Toulouse, France
- CNRS, UMR 5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie Toulouse Purpan (CPTP), Toulouse, France
| | - Ascel Samba-Louaka
- INRA, USC 1360, Toulouse, France
- INSERM, UMR 1043, Toulouse, France
- CNRS, UMR 5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie Toulouse Purpan (CPTP), Toulouse, France
| | - Eric Oswald
- INRA, USC 1360, Toulouse, France
- INSERM, UMR 1043, Toulouse, France
- CNRS, UMR 5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie Toulouse Purpan (CPTP), Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service de bactériologie-Hygiène, Toulouse, France
| | - Jean-Philippe Nougayrède
- INRA, USC 1360, Toulouse, France
- INSERM, UMR 1043, Toulouse, France
- CNRS, UMR 5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie Toulouse Purpan (CPTP), Toulouse, France
- * E-mail:
| |
Collapse
|
46
|
Capparelli C, Whitaker-Menezes D, Guido C, Balliet R, Pestell TG, Howell A, Sneddon S, Pestell RG, Martinez-Outschoorn U, Lisanti MP, Sotgia F. CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle 2012; 11:2272-84. [PMID: 22684333 PMCID: PMC3383589 DOI: 10.4161/cc.20717] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previous studies have demonstrated that loss of caveolin-1 (Cav-1) in stromal cells drives the activation of the TGF-β signaling, with increased transcription of TGF-β target genes, such as connective tissue growth factor (CTGF). In addition, loss of stromal Cav-1 results in the metabolic reprogramming of cancer-associated fibroblasts, with the induction of autophagy and glycolysis. However, it remains unknown if activation of the TGF-β / CTGF pathway regulates the metabolism of cancer-associated fibroblasts. Therefore, we investigated whether CTGF modulates metabolism in the tumor microenvironment. For this purpose, CTGF was overexpressed in normal human fibroblasts or MDA-MB-231 breast cancer cells. Overexpression of CTGF induces HIF-1α-dependent metabolic alterations, with the induction of autophagy/mitophagy, senescence, and glycolysis. Here, we show that CTGF exerts compartment-specific effects on tumorigenesis, depending on the cell-type. In a xenograft model, CTGF overexpressing fibroblasts promote the growth of co-injected MDA-MB-231 cells, without any increases in angiogenesis. Conversely, CTGF overexpression in MDA-MB-231 cells dramatically inhibits tumor growth in mice. Intriguingly, increased extracellular matrix deposition was seen in tumors with either fibroblast or MDA-MB-231 overexpression of CTGF. Thus, the effects of CTGF expression on tumor formation are independent of its extracellular matrix function, but rather depend on its ability to activate catabolic metabolism. As such, CTGF-mediated induction of autophagy in fibroblasts supports tumor growth via the generation of recycled nutrients, whereas CTGF-mediated autophagy in breast cancer cells suppresses tumor growth, via tumor cell self-digestion. Our studies shed new light on the compartment-specific role of CTGF in mammary tumorigenesis, and provide novel insights into the mechanism(s) generating a lethal tumor microenvironment in patients lacking stromal Cav-1. As loss of Cav-1 is a stromal marker of poor clinical outcome in women with primary breast cancer, dissecting the downstream signaling effects of Cav-1 are important for understanding disease pathogenesis, and identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Claudia Capparelli
- The Jefferson Stem Cell Biology and Regenerative Medicine Center, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen M, Huang JD, Deng HK, Dong S, Deng W, Tsang SL, Huen MSY, Chen L, Zan T, Zhu GX, Guan XY. Overexpression of eIF-5A2 in mice causes accelerated organismal aging by increasing chromosome instability. BMC Cancer 2011; 11:199. [PMID: 21612665 PMCID: PMC3118894 DOI: 10.1186/1471-2407-11-199] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 05/26/2011] [Indexed: 11/24/2022] Open
Abstract
Background Amplification of 3q26 is one of the most frequent genetic alterations in many human malignancies. Recently, we isolated a novel oncogene eIF-5A2 within the 3q26 region. Functional study has demonstrated the oncogenic role of eIF-5A2 in the initiation and progression of human cancers. In the present study, we aim to investigate the physiological and pathological effect of eIF-5A2 in an eIF-5A2 transgenic mouse model. Methods An eIF-5A2 transgenic mouse model was generated using human eIF-5A2 cDNA. The eIF-5A2 transgenic mice were characterized by histological and immunohistochemistry analyses. The aging phenotypes were further characterized by wound healing, bone X-ray imaging and calcification analysis. Mouse embryo fibroblasts (MEF) were isolated to further investigate molecular mechanism of eIF-5A2 in aging. Results Instead of resulting in spontaneous tumor formation, overexpression of eIF-5A2 accelerated the aging process in adult transgenic mice. This included decreased growth rate and body weight, shortened life span, kyphosis, osteoporosis, delay of wound healing and ossification. Investigation of the correlation between cellular senescence and aging showed that cellular senescence is not required for the aging phenotypes in eIF-5A2 mice. Interestingly, we found that activation of eIF-5A2 repressed p19 level and therefore destabilized p53 in transgenic mouse embryo fibroblast (MEF) cells. This subsequently allowed for the accumulation of chromosomal instability, such as errors in cell dividing during metaphase and anaphase. Additionally, a significantly increase in number of aneuploidy cells (p < 0.05) resulted from an increase in the incidences of misaligned and lagging chromosomal materials, anaphase bridges, and micronuclei in the transgenic mice. Conclusion These observations suggest that eIF-5A2 mouse models could accelerate organismal aging by increasing chromosome instability.
Collapse
Affiliation(s)
- Muhan Chen
- Department of Clinical Oncology, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hamerman D. Can biogerontologists and geriatricians unite to apply aging science to health care in the decade ahead? J Gerontol A Biol Sci Med Sci 2010; 65:1193-7. [PMID: 20591875 DOI: 10.1093/gerona/glq117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Biogerontologists and academic geriatricians are both dedicated to promoting a healthier longevity for our society from their perspectives of scientific research on aging and education as part of clinical care for older persons. Yet at the present time, the prospects for translating research advances made by the biogerontologists to improve the outlook for health care provided by the geriatricians are limited by a "gulf" that exists between them, with little shared dialogue or scientific interchange. This article sets forth a basis for a union between both disciplines to prepare for the potential application of basic aging research to the provision of health care, with the aim ultimately to extend "health span" during our life span.
Collapse
Affiliation(s)
- David Hamerman
- International Longevity Center, 60 East 86th Street, New York, NY 10028, USA.
| |
Collapse
|
49
|
Fossel M, Flanary B. Telomerase and human disease: the beginnings of the ends? Rejuvenation Res 2010; 12:333-40. [PMID: 19725774 DOI: 10.1089/rej.2009.0873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Michael Fossel
- Department of Medicine, Michigan State University, Ada, Michigan, USA
| | | |
Collapse
|
50
|
Abstract
Normal mammalian somatic cells proliferate a finite number of times in vitro before permanently withdrawing from the cell cycle into a cellular state referred to as senescence. Senescence may be triggered by excessive mitogenic stimulation or by various forms of cellular damage including excessive telomere shortening. Over the past decade, there has been continuing accumulation of evidence that senescence occurs in vivo, that it is relevant to aging and that it has a tumor suppressor function. However, the phenotype of senescence has also been found to include a number of puzzling features, including the secretion of proinflammatory factors that may foster tumorigenesis as well as the senescence of neighboring cells. On the basis of these antagonistic pro- and antitumorigenic effects, and of the observation that many viruses have developed proteins that prevent senescence of the cells they infect, it is argued that the primary function of senescence may have been as an antiviral defense mechanism. Recent progress in understanding how tumor cells evade senescence is also reviewed here.
Collapse
Affiliation(s)
- Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, New South Wales 2145, Australia.
| |
Collapse
|