1
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
2
|
Day D, Ganju V, Chung K, Si L, Mao L, Aghmesheh M, Hoyer R, Brewin K, Zeng S, Zhang M, Lu Q, Jiang C, Ren F, Zhu Y, Guo J. First-in-human phase I study of EMB-02, a bispecific antibody targeting PD-1 and LAG-3 in patients with advanced solid tumors. Br J Cancer 2025; 132:905-912. [PMID: 40234667 DOI: 10.1038/s41416-025-02990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND EMB-02 is a symmetric bispecific antibody targeting programmed cell death protein-1 and lymphocyte-activation gene 3 simultaneously. Here, we present the first-in-human study results of EMB-02 in patients with advanced solid tumors. METHODS Patients were treated with intravenous infusions of EMB-02 at doses of 6-900 mg. The primary objective was to evaluate the safety and tolerability and to determine the maximum tolerated dose and/or recommended phase II dose(s). Secondary objectives included characterizing the pharmacokinetic (PK) profile, assessing preliminary antitumor activity and the immunogenicity. RESULTS A total of 47 patients were enrolled. All grade and grade 3/4 treatment-emergent and treatment related adverse events occurred in 97.9%, 48.9%, 68.1% and 12.8% patients, respectively. The objective response rate (ORR) was 6.4% and clinical benefit rate at 24 weeks (CBR-24) was 25.5% in overall population. The CBR-24 was 33.3% in checkpoint inhibitor (CPI)-naïve patients, and 15% in CPI-treated. No clear relationship was observed between the efficacy and PD-L1, LAG-3, or MHC II expression level. Doses 360 mg or higher resulted in sustained saturation of PD-1 receptors on circulating CD3 + T cells. CONCLUSIONS EMB-02 demonstrated a favorable safety profile and early efficacy signals in multiple solid tumors, warranting further development. (NCT04618393).
Collapse
Affiliation(s)
- Daphne Day
- Medical Oncology Department, Monash Health-Monash MedicalCentre, Clayton, VIC, Australia
| | - Vinod Ganju
- Oncology Department, Peninsula And Southeast Oncology, Frankston, VIC, Australia
| | - Ki Chung
- Department of Medicine, Prisma Health Cancer Institute, Greenville, SC, USA
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Collaborative Innovation Center for Cancer Medicine, Peking UniversityCancer Hospital and Institute, Beijing, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Collaborative Innovation Center for Cancer Medicine, Peking UniversityCancer Hospital and Institute, Beijing, China
| | - Morteza Aghmesheh
- Medical Oncology Department, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Robert Hoyer
- Medical Oncology Department, UCHealth Memorial Hospital Central, Colorado Springs, CO, USA
| | - Kim Brewin
- Medical Oncology Department, Monash Health-Monash MedicalCentre, Clayton, VIC, Australia
| | - Shuqi Zeng
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Mingfei Zhang
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Qiaoyang Lu
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Chengjun Jiang
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Fang Ren
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Yonghong Zhu
- Clinical Development, Shanghai EpimAb Biotherapeutics Co., Ltd., Shanghai, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Collaborative Innovation Center for Cancer Medicine, Peking UniversityCancer Hospital and Institute, Beijing, China.
| |
Collapse
|
3
|
Amrane K, Le Noac'h P, Hemon P, Abgral R, Le Meur C, Pradier O, Misery L, Legoupil D, Berthou C, Uguen A. MHC class II: a predictor of outcome in melanoma treated with immune checkpoint inhibitors. Melanoma Res 2025; 35:176-186. [PMID: 39945603 DOI: 10.1097/cmr.0000000000001022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
This study aimed to evaluate the predictive value of MHC class II (MHC-II) expression by melanoma cells in a large cohort of metastatic cutaneous melanoma patients treated with immune checkpoint inhibitors (ICIs). We conducted a single-center, retrospective study involving stage IV cutaneous melanoma patients who received ICI as first-line therapy. MHC-II expression in melanoma cells was quantified using dual-color anti-SOX10 and anti-MHC-II immunohistochemistry on tumor samples from 95 patients. The primary endpoint was event-free survival (EFS), with secondary endpoints including 1-year EFS, 1-year overall survival (OS), disease control rate (DCR), and the correlation between MHC-II expression and clinico-biological characteristics. The cohort had a median age of 67 years (range, 33-90), with a male-to-female ratio of 50 : 45. Thirty-three percent of patients received the ipilimumab-nivolumab combination. The median follow-up was 16.8 months. Disease progression occurred in 58 patients (61%), with a median time to progression of 4.8 months. Forty-six patients (48.4%) experienced an event within the first year, and 52 patients (54.7%) died during follow-up. MHC-II positivity was observed in ≥10% of melanoma cells in 6.3% of patients. MHC-II expression was significantly associated with 1-year EFS ( P = 0.037) and DCR ( P = 0.032), but not with EFS or 1-year OS. Age, phototype, and brain metastases were correlated with MHC-II expression status. Our findings suggest that MHC-II expression by melanoma cells may serve as a favorable predictive biomarker for survival in metastatic cutaneous melanoma patients treated with ICIs.
Collapse
Affiliation(s)
- Karim Amrane
- Department of Oncology, Regional Hospital of Morlaix, Morlaix
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx IGO
| | - Pierre Le Noac'h
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx IGO
- Department of Pathology, University Hospital of Brest
| | - Patrice Hemon
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx IGO
| | - Ronan Abgral
- Department of Nuclear Medicine, University Hospital of Brest
- UMR Inserm 1304 GETBO, IFR 148, University of Western Brittany
| | - Coline Le Meur
- Department of Radiotherapy, University Hospital of Brest
| | - Olivier Pradier
- Department of Radiotherapy, University Hospital of Brest
- Inserm, UMR1101, LaTIM, University of Western Brittany
| | - Laurent Misery
- Department of Dermatology, University Hospital of Brest
- Laboratoire sur les Interactions Épithéliums-Neurones (LIEN-EA4685), Université de Bretagne Occidentale
| | - Delphine Legoupil
- Department of Dermatology, University Hospital of Brest
- Laboratoire sur les Interactions Épithéliums-Neurones (LIEN-EA4685), Université de Bretagne Occidentale
| | - Christian Berthou
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx IGO
- Department of Hematology, University Hospital of Brest, Brest, France
| | - Arnaud Uguen
- Inserm, UMR1227, Lymphocytes B et Autoimmunité, Univ Brest, Inserm, LabEx IGO
- UMR Inserm 1304 GETBO, IFR 148, University of Western Brittany
| |
Collapse
|
4
|
Zhang Y, Zhou Z, Rui Y, Kong F, Guo Z, Zhao G, Wang J, Li J, Zhao F, Huang H, Fang F, Zhang J, Zhang T, Zhang W, Wang P, Chen X, Zhen P, Pang Q. LAG3 as a marker of immune activation in esophageal squamous carcinoma treated with concurrent chemoradiotherapy. Cancer Immunol Immunother 2025; 74:215. [PMID: 40411616 PMCID: PMC12103390 DOI: 10.1007/s00262-025-04076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/30/2025] [Indexed: 05/26/2025]
Abstract
INTRODUCTION Esophageal squamous carcinoma (ESCC) is a common malignant tumor of the gastrointestinal tract with high morbidity and mortality rates. Lymphocyte activation gene-3 (LAG3), an important suppressive immune checkpoint in tumor immunity, exhibits a wobbling effect in the prediction of ESCC efficacy. METHODS Tumor bite paraffin-embedded specimens from 84 patients diagnosed with ESCC, all of whom received radical concurrent chemoradiotherapy (CCRT) at our institution, were screened. For each tissue, we delineated the partitions and analyzed the spatial distribution of the tumor in an in situ immune microenvironment. The density and regional characteristics of immune factor-positive cells, together with the dynamics of various cells based on treatment regimens, were considered important factors influencing the prognostic significance of cancer. RESULTS Compared with baseline tissues, the density of CD4 + and CD8 + T cells in the tumor microenvironment of the on-treatment tissues decreased, but the expression of IFN-γ in CD4 + and CD8 + T cells increased. The density of LAG3 positive cells was correlated significantly with the density of CD4 + and CD8 + T cells in both baseline and on-treatment tissues. The density of LAG3 + T cells and the rate of LAG3 positivity in activated CD4 + and CD8 + T cells were associated with elevated Ki67 expression. There was a significant correlation between high LAG3 expression and active CD4 + and CD8 + T cells in tumor cells. Elevated densities and tighter spatial relationships of both CD4 + and CD8 + T cells were associated with longer overall survival with ESCC. CONCLUSION Concurrent chemoradiotherapy without combined immunotherapy inhibited tumor-infiltrating T cells to a certain extent, and elevated immune checkpoint LAG3 was closely associated with immune activation in the ESCC tumor microenvironment.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Zijing Zhou
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Yuanyuan Rui
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Fanhao Kong
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Zhoubo Guo
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Gang Zhao
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Jun Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Hebei Clinical Research Center for Radiation Oncology, No. 12 Jian Kang Road, Shijiazhuang, 050010, Hebei, China
| | - Jiacheng Li
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Fangdong Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Hui Huang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Fang Fang
- Department of Radiation Oncology, Chifeng Tumor Hospital, Second Affiliated Hospital of Chifeng University, 45 Jiefang Street, Hongshan District, Chifeng, 024000, Inner Mongolia, China
| | - Jiarui Zhang
- Department of Radiation Oncology, Chifeng Tumor Hospital, Second Affiliated Hospital of Chifeng University, 45 Jiefang Street, Hongshan District, Chifeng, 024000, Inner Mongolia, China
| | - Tian Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China
| | - Peng Zhen
- Department of Radiation Oncology, Chifeng Tumor Hospital, Second Affiliated Hospital of Chifeng University, 45 Jiefang Street, Hongshan District, Chifeng, 024000, Inner Mongolia, China.
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, West Huan-Hu Rd, Ti Yuan Bei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
5
|
Kannan K, Mohan S. Targeting exon mutations in NSCLC: clinical insights into LAG-3, TIM-3 pathways, and advances in fourth-generation EGFR-TKIs. Med Oncol 2025; 42:196. [PMID: 40325239 DOI: 10.1007/s12032-025-02755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Lung cancer remains the second leading cause of cancer-related morbidity and mortality worldwide, with non-small cell lung cancer (NSCLC) accounting for the majority of cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have become the standard first-line therapy for advanced NSCLC with EGFR mutations, offering significant improvements in progression-free survival (PFS), overall survival (OS), and objective response rate (ORR) compared to chemotherapy alone. Recent studies suggest that their effectiveness decreased with the emergence of acquired resistance, such as C797S and T790M. Immunotherapy alone also shows enhanced PFS and OS over chemotherapy; however, its applicability can be limited in cases with low programmed cell death ligand 1 (PD-L1) expression and result in immune-related adverse effects like those observed in retrospective, non-randomized studies. Emerging fourth-generation EGFR-TKIs, currently under clinical trials, show promising potential to address these resistance mechanisms. Advanced inhibitors, including BBT-176, BLU-945, and BLU-701, have effectively targeted resistant mutations and reduced disease progression. Studies have suggested that combining fourth-generation EGFR-TKIs with immunotherapies targeting novel pathways like LAG-3 and TIM-3 may enhance patient outcomes. Such combination regimens aim to optimize PFS, OS, and ORR while minimizing adverse effects and addressing the limitations of current therapies. This study explores the landscape of EGFR mutations, their clinical significance, and the integration of innovative fourth-generation EGFR-TKIs with immunotherapies, emphasizing the potential of precision medicine in advancing the management of EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Koteeswaran Kannan
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603 203, India
| | - Sumithra Mohan
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603 203, India.
| |
Collapse
|
6
|
Liu J, Zhang W, Chen L, Wang X, Mao X, Wu Z, Shi H, Qi H, Chen L, Huang Y, Li J, Zhong M, Shi X, Li Q, Wang T. VSIG4 Promotes Tumour-Associated Macrophage M2 Polarization and Immune Escape in Colorectal Cancer via Fatty Acid Oxidation Pathway. Clin Transl Med 2025; 15:e70340. [PMID: 40405491 PMCID: PMC12098961 DOI: 10.1002/ctm2.70340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/26/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND V-set and immunoglobulin domain containing 4 (VSIG4) is a B7-family-related protein almost exclusively expressed on macrophages. The difference in its expression mediates the dynamic transformation of the polarization state of macrophages, but the underlying mechanism is still unclear. We sought to reveal the correlation between VSIG4 and the polarization of tumour-associated macrophages (TAMs) and the immune escape of tumour cells in colorectal cancer (CRC). METHODS THP-1 monocyte-derived macrophages expressing different levels of VSIG4 were used for in vitro investigations. In addition, the co-culture system was used to verify the effect of tumour cells on the expression of VSIG4 in macrophages, and the effect of VSIG4 expression level on tumour cells in turn. Subcutaneous xenograft models evaluated the tumour growth inhibition efficacy of VSIG4 blockade as monotherapy and combined with immune checkpoint inhibitors (ICIs). RESULTS CRC cells secreted lactate to promote VSIG4 expression in macrophages. On the contrary, VSIG4 promoted macrophage M2 polarization and induced malignant progression of tumour cells by promoting M2 macrophage secretion of heparin-bound epidermal growth factor. In vivo experiments confirmed that knockdown VSIG4 inhibited tumour growth and improved the efficacy of ICIs therapy. Mechanistically, lactate secreted by CRC cells promoted its expression by influencing the epigenetic modification of VSIG4 in macrophages. In addition, VSIG4 enhanced the fatty acid oxidation (FAO) of macrophages and upregulated PPAR-γ expression by activating the JAK2/STAT3 pathway, which ultimately induced M2 polarization of macrophages. Downregulation of VSIG4 or blocking of FAO reversed the M2 polarization process of macrophages. CONCLUSIONS Our findings provide a molecular basis for VSIG4 to influence TAMs polarization by regulating the reprogramming of FAO, suggesting that targeting VSIG4 in macrophages could enhance the ICIs efficacy and represent a new combination therapy strategy for immunotherapy of CRC. KEY POINTS Colorectal cancer cells secrete lactate to upregulate VSIG4 in macrophages via the H3K18la-METTL14-m6A axis. VSIG4 promotes fatty acid oxidation of macrophages and drives its M2-type polarization. These VSIG4-expressing M2 macrophages promote tumour progression and an immunosuppressive microenvironment. Inhibition of VSIG4 expression can synergistically enhance the therapeutic effect of anti-PD-1 antibody.
Collapse
Affiliation(s)
- Jiafeng Liu
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - WenXin Zhang
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Lu Chen
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Xinhai Wang
- Department of Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiang Mao
- Department of Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Zimei Wu
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Huanying Shi
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Huijie Qi
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan‐Xuhui HospitalFudan UniversityShanghaiChina
| | - Yuxin Huang
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiyifan Li
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Mingkang Zhong
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Xiaojin Shi
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Qunyi Li
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| | - Tianxiao Wang
- Department of Pharmacy, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Chen M, Zhou Y, Bao K, Chen S, Song G, Wang S. Multispecific Antibodies Targeting PD-1/PD-L1 in Cancer. BioDrugs 2025; 39:427-444. [PMID: 40106158 DOI: 10.1007/s40259-025-00712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/22/2025]
Abstract
The development of immune checkpoint inhibitors has revolutionized the treatment of patients with cancer. Targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1(PD-L1) interaction using monoclonal antibodies has emerged as a prominent focus in tumor therapy with rapid advancements. However, the efficacy of anti-PD-1/PD-L1 treatment is hindered by primary or acquired resistance, limiting the effectiveness of single-drug approaches. Moreover, combining PD-1/PD-L1 with other immune drugs, targeted therapies, or chemotherapy significantly enhances response rates while exacerbating adverse reactions. Multispecific antibodies, capable of binding to different epitopes, offer improved antitumor efficacy while reducing drug-related side effects, serving as a promising therapeutic approach in cancer treatment. Several bispecific antibodies (bsAbs) targeting PD-1/PD-L1 have received regulatory approval, and many more are currently in clinical development. Additionally, tri-specific antibodies (TsAbs) and tetra-specific antibodies (TetraMabs) are under development. This review comprehensively explores the fundamental structure, preclinical principles, clinical trial progress, and challenges associated with bsAbs targeting PD-1/PD-L1.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Yuli Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kaicheng Bao
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Siyu Chen
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China
| | - Guoqing Song
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| | - Siliang Wang
- Department of Oncology, Shengjing Hospital of China Medical University, 36 Sanhao Road, Shenyang, 110004, China.
| |
Collapse
|
8
|
Jiang Y, Dai A, Huang Y, Li H, Cui J, Yang H, Si L, Jiao T, Ren Z, Zhang Z, Mou S, Zhu H, Guo W, Huang Q, Li Y, Xue M, Jiang J, Wang F, Li L, Zhong Q, Wang K, Liu B, Wang J, Fan G, Guo J, Chen L, Workman CJ, Shen Z, Kong Y, Vignali DAA, Xu C, Wang H. Ligand-induced ubiquitination unleashes LAG3 immune checkpoint function by hindering membrane sequestration of signaling motifs. Cell 2025; 188:2354-2371.e18. [PMID: 40101708 DOI: 10.1016/j.cell.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/16/2024] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Abstract
Lymphocyte activation gene 3 (LAG3) has emerged as a promising cancer immunotherapy target, but the mechanism underlying LAG3 activation upon ligand engagement remains elusive. Here, LAG3 was found to undergo robust non-K48-linked polyubiquitination upon ligand engagement, which promotes LAG3's inhibitory function instead of causing degradation. This ubiquitination could be triggered by the engagement of major histocompatibility complex class II (MHC class II) and membrane-bound (but not soluble) fibrinogen-like protein 1 (FGL1). LAG3 ubiquitination, mediated redundantly by the E3 ligases c-Cbl and Cbl-b, disrupted the membrane binding of the juxtamembrane basic residue-rich sequence, thereby stabilizing the LAG3 cytoplasmic tail in a membrane-dissociated conformation enabling signaling. Furthermore, LAG3 ubiquitination is crucial for the LAG3-mediated suppression of antitumor immunity in vivo. Consistently, LAG3 therapeutic antibodies repress LAG3 ubiquitination, correlating with their checkpoint blockade effects. Moreover, patient cohort analyses suggest that LAG3/CBL coexpression could serve as a biomarker for response to LAG3 blockade. Collectively, our study reveals an immune-checkpoint-triggering mechanism with translational potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Yong Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Anran Dai
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuwei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Lingang Laboratory, Shanghai 200031, China
| | - Hua Li
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Cui
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Haochen Yang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Tao Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Zhengxu Ren
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Si Mou
- BeiGene, Ltd, Beijing 102206, China
| | | | - Wenhui Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Qiang Huang
- School of Medicine, Shanghai University, Shanghai 200444, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an 710032, China
| | - Yilin Li
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Manman Xue
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingwei Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Li Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Baichuan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Lingang Laboratory, Shanghai 200031, China
| | - Jinjiao Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai 200444, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an 710032, China
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing 100142, China.
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Chenqi Xu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shanghai Academy of Natural Sciences (SANS), Shanghai 200031, China.
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Academy of Natural Sciences (SANS), Shanghai 200031, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
9
|
Kabut J, Gorzelak-Magiera A, Gisterek-Grocholska I. New Therapeutic Targets TIGIT, LAG-3 and TIM-3 in the Treatment of Advanced, Non-Small-Cell Lung Cancer. Int J Mol Sci 2025; 26:4096. [PMID: 40362333 PMCID: PMC12072094 DOI: 10.3390/ijms26094096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The introduction of immunotherapy and target therapy into clinical practice has become a chance for many patients with cancer to prolong their survival while maintaining optimal quality of life. Treatment of lung cancer is excellent evidence of the progress of medical therapies. An understanding of the mechanisms of tumor development has led to the evolution of new methods of treatment. Immunoreceptors of T cells with the immunoglobulin domain ITIM, TIM-3 (T-cell immunoglobulin- and mucin domain-3-containing molecule 3), and LAG-3 (lymphocyte activation gene-3) represent new interesting therapeutic targets. The combination of anti-PD-1 and anti-CTLA-4 blockade has proven the possibility of strengthening the anti-tumor response by acting via two separate mechanisms. Adding additional checkpoints to the PD-1 blockade offers hope for further improvements in the effects of the treatment of patients and expanding the group responding to immunotherapy. This paper presents new promising molecular targets along with studies demonstrating the treatment results using them.
Collapse
Affiliation(s)
- Jacek Kabut
- Department of Oncology and Radiotherapy, Medical University of Silesia, 40-514 Katowice, Poland;
| | | | | |
Collapse
|
10
|
Rothe R, Golle T, Hachkar B, Hörz T, Pablik J, Rupp L, Dietsche I, Kruppa C, Fitze G, Schmitz M, Haase M, Wehner R. Tertiary Lymphoid Structures Are Associated with Progression-Free Survival of Peripheral Neuroblastic Tumor Patients. Cancers (Basel) 2025; 17:1303. [PMID: 40282480 PMCID: PMC12025499 DOI: 10.3390/cancers17081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Peripheral neuroblastic tumors (pNT) are a biologically heterogeneous group of embryonal tumors that derive from the neural crest and affect the sympathetic nervous system. So far, little is known about the complex immune landscape in these rare childhood cancers. Methods: We focused on the immune cell infiltrate of treatment-naïve pNT from 24 patients, including high-risk neuroblastoma (HR-NBL), non-high-risk neuroblastoma (NHR-NBL), ganglioneuroblastoma (GNBL), and rare ganglioneuroma (GN). To gain novel insights into the immune architecture of these pNT subtypes, we used multiplex immunohistochemistry, multispectral imaging, and algorithm-based data evaluation to detect and characterize T cells, B cells, neutrophils, macrophages, and tertiary lymphoid structures (TLS). Results: The majority of the investigated tumor-infiltrating immune cells were macrophages and T cells. Their detailed phenotypic characterization revealed high proportions of M2-like macrophages as well as activated GrzB+ CD8+ and PD-1+ T lymphocytes. Proportions of these T cell phenotypes were significantly increased in GN compared to HR-NBL, NHR-NBL, or GNBL. In addition, TLS occurred in 11 of 24 patients, independent of immune cell frequencies in the whole tissues. Interestingly, all GN, most GNBL, but only a few NBL contained TLS. We distinguished between three TLS maturation stages that were present irrespective of the pNT subtype. The majority belonged to mature TLS of the primary follicle state. Mature LAMP3+ dendritic cells were also found, predominantly in T cell zones of TLS. Furthermore, TLS presence identified pNT patients with significantly prolonged progression-free survival in contrast to all other analyzed immunological features. Conclusions: We propose TLS to be a potential prognostic marker for pNT to predict patient outcomes.
Collapse
Affiliation(s)
- Rebecca Rothe
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (R.R.); (T.G.); (B.H.); (L.R.); (I.D.); (M.S.)
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden, a Partnership Between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), 01307 Dresden, Germany
| | - Therés Golle
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (R.R.); (T.G.); (B.H.); (L.R.); (I.D.); (M.S.)
| | - Basma Hachkar
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (R.R.); (T.G.); (B.H.); (L.R.); (I.D.); (M.S.)
| | - Tina Hörz
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (T.H.); (C.K.); (G.F.); (M.H.)
| | - Jessica Pablik
- Department of Pathology, University Hospital Carl Gustav Carus, 01307 Dresden, Germany;
| | - Luise Rupp
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (R.R.); (T.G.); (B.H.); (L.R.); (I.D.); (M.S.)
| | - Ina Dietsche
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (R.R.); (T.G.); (B.H.); (L.R.); (I.D.); (M.S.)
| | - Christian Kruppa
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (T.H.); (C.K.); (G.F.); (M.H.)
| | - Guido Fitze
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (T.H.); (C.K.); (G.F.); (M.H.)
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (R.R.); (T.G.); (B.H.); (L.R.); (I.D.); (M.S.)
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden, a Partnership Between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), 01307 Dresden, Germany
| | - Michael Haase
- Department of Pediatric Surgery, University Hospital Carl Gustav Carus, 01307 Dresden, Germany; (T.H.); (C.K.); (G.F.); (M.H.)
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, 01307 Dresden, Germany; (R.R.); (T.G.); (B.H.); (L.R.); (I.D.); (M.S.)
- National Center for Tumor Diseases (NCT), NCT/UCC Dresden, a Partnership Between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), 01307 Dresden, Germany
| |
Collapse
|
11
|
Fatima S. Tumor Microenvironment: A Complex Landscape of Cancer Development and Drug Resistance. Cureus 2025; 17:e82090. [PMID: 40351953 PMCID: PMC12066109 DOI: 10.7759/cureus.82090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Cancer is responsible for nearly one in six global fatalities, making it a major health issue worldwide. Despite advancements in early detection, surgery, and targeted therapies, effective treatment remains challenging due to the complexity and heterogeneity of the disease. A key factor in cancer progression and resistance to treatment is the tumor microenvironment (TME). It is a complex ecosystem comprising cancer cells, stromal cells, immune cells, extracellular matrix (ECM), and soluble factors like cytokines and chemokines. These components interact dynamically to influence tumor growth, metastasis, immune evasion, and treatment resistance. Cancer cells drive the formation of the TME by releasing signaling molecules, while stromal cells, such as fibroblasts and endothelial cells, support tumor metabolism, angiogenesis, and invasion. Immune cells within the TME can either suppress or promote tumor progression, depending on their activation state. Additionally, the TME can promote the growth of immunosuppressive cells that aid cancer cells in evading immune surveillance, such as regulatory T-cells and myeloid-derived suppressor cells. The TME also impedes drug delivery by creating defective blood vessels, contributing to drug resistance. Recent technological advancements have deepened our understanding of the TME, revealing its role in immune modulation, metabolism, and extracellular matrix remodeling. As a result, targeting the TME has become a promising strategy to overcome treatment resistance and improve cancer therapy outcomes.
Collapse
Affiliation(s)
- Sohaila Fatima
- Pathology, College of Medicine, King Khalid University, Abha, SAU
| |
Collapse
|
12
|
Mivehchi H, Eskandari-Yaghbastlo A, Ghazanfarpour M, Ziaei S, Mesgari H, Faghihinia F, Zokaei Ashtiani N, Afjadi MN. Microenvironment-based immunotherapy in oral cancer: a comprehensive review. Med Oncol 2025; 42:140. [PMID: 40153139 DOI: 10.1007/s12032-025-02694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
Oral cancer, a prevalent form of head and neck malignancy, accounts for 4% of global cancer cases. The most common type, oral squamous cell carcinoma (OSCC), has a survival rate of about 50%. Even though emerging molecular therapies show promise for managing oral cancer, current treatments like surgery, radiotherapy, and chemotherapy have significant side effects. In addition, the complex tumor microenvironment (TME), involving the extracellular matrix (ECM) and cells like fibroblasts and stromal cells like immune cells, promotes tumor growth and inhibits immune responses, complicating treatment. Nonetheless, immunotherapy is crucial in cancer treatment, especially in oral cancers. Indeed, its effectiveness lies in targeting immune checkpoints such as PD-1 and CTLA-4 inhibitors, as well as monoclonal antibodies like pembrolizumab and cetuximab, adoptive cell transfer methods (including CAR-T cell therapy), cytokine therapy such as IL-2, and tumor vaccines. Thus, these interventions collectively regulate tumor proliferation and metastasis by targeting the TME through autocrine-paracrine signaling pathways. Immunotherapy indeed aims to stimulate the immune system, leveraging both innate and adaptive immunity to counteract cancer cell signals and promote tumor destruction. This review will explore how the TME controls tumor proliferation and metastasis via autocrine-paracrine signaling pathways. It will then detail the effectiveness of immunotherapy in oral cancers, focusing on immune checkpoints, targeted monoclonal antibodies, adoptive cell transfer, cytokine therapy, and tumor vaccines.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - SeyedMehdi Ziaei
- Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
13
|
Ren X, Guo A, Geng J, Chen Y, Wang X, Zhou L, Shi L. Pan-cancer analysis of co-inhibitory molecules revealing their potential prognostic and clinical values in immunotherapy. Front Immunol 2025; 16:1544104. [PMID: 40196117 PMCID: PMC11973099 DOI: 10.3389/fimmu.2025.1544104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Background The widespread use of immune checkpoint inhibitors (anti-CTLA4 or PD-1) has opened a new chapter in tumor immunotherapy by providing long-term remission for patients. Unfortunately, however, these agents are not universally available and only a minority of patients respond to them. Therefore, there is an urgent need to develop novel therapeutic strategies targeting other co-inhibitory molecules. However, comprehensive information on the expression and prognostic value of co-inhibitory molecules, including co-inhibitory receptors and their ligands, in different cancers is not yet available. Methods We investigated the expression, correlation, and prognostic value of co-inhibitory molecules in different cancer types based on TCGA, UCSC Xena, TIMER, CellMiner datasets. We also examined the associations between the expression of these molecules and the extent of immune cell infiltration. Besides, we conducted a more in-depth study of VISTA. Result The results of differential expression analysis, correlation analysis, and drug sensitivity analysis suggest that CTLA4, PD-1, TIGIT, LAG3, TIM3, NRP1, VISTA, CD80, CD86, PD-L1, PD-L2, PVR, PVRL2, FGL1, LGALS9, HMGB1, SEMA4A, and VEGFA are associated with tumor prognosis and immune cell infiltration. Therefore, we believe that they are hopefully to serve as prognostic biomarkers for certain cancers. In addition, our analysis indicates that VISTA plays a complex role and its expression is related to TMB, MSI, cancer cell stemness, DNA/RNA methylation, and drug sensitivity. Conclusions These co-inhibitory molecules have the potential to serve as prognostic biomarkers and therapeutic targets for a broad spectrum of cancers, given their strong associations with key clinical metrics. Furthermore, the analysis results indicate that VISTA may represent a promising target for cancer therapy.
Collapse
Affiliation(s)
- Xiaoyu Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Anjie Guo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jiahui Geng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yuling Chen
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lian Zhou
- Department of Head&Neck Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Zhou X, Zhou F, Zhang L. Dual inhibition of PD-1 and LAG-3: uncovering mechanisms to reverse T cell exhaustion and enhance anti-tumor immunity. Sci Bull (Beijing) 2025; 70:624-626. [PMID: 39638663 DOI: 10.1016/j.scib.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Affiliation(s)
- Xiaoxue Zhou
- School of Medicine, Hangzhou City University, Hangzhou 310015, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fangfang Zhou
- School of Medicine, Hangzhou City University, Hangzhou 310015, China; The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215031, China.
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Ye H, Liao W, Pan J, Shi Y, Wang Q. Immune checkpoint blockade for cancer therapy: current progress and perspectives. J Zhejiang Univ Sci B 2025; 26:203-226. [PMID: 40082201 PMCID: PMC11906392 DOI: 10.1631/jzus.b2300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/05/2023] [Indexed: 03/16/2025]
Abstract
Dysfunction of anti-tumor immune responses is crucial for cancer progression. Immune checkpoint blockade (ICB), which can potentiate T cell responses, is an effective strategy for the normalization of host anti-tumor immunity. In recent years, immune checkpoints, expressed on both tumor cells and immune cells, have been identified; some of them have exhibited potential druggability and have been approved by the US Food and Drug Administration (FDA) for clinical treatment. However, limited responses and immune-related adverse events (irAEs) cannot be ignored. This review outlines the development and applications of ICBs, potential strategies for overcoming resistance, and future directions for ICB-based cancer immunotherapy.
Collapse
Affiliation(s)
- Hongying Ye
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - Weijie Liao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - Jiongli Pan
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China
| | - Yin Shi
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- The Key Laboratory for Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
16
|
Liu J, Li P, Zhang Y, Zheng L. Transcriptome combined with single-cell sequencing explored prognostic markers associated with T cell exhaustion characteristics in head and neck squamous carcinoma. Sci Rep 2025; 15:8209. [PMID: 40065044 PMCID: PMC11893791 DOI: 10.1038/s41598-025-91299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) ranks among the most prevalent cancers worldwide, characterized by significant heterogeneity and a complex immune microenvironment. T cell exhaustion is pivotal in the pathogenesis of HNSC, where depleted T cells exhibit reduced proliferative capacity and diminished effector function, facilitating tumor immune escape and subsequent disease progression. A thorough understanding of the primary mechanisms driving T cell depletion within the tumor microenvironment is essential for enhancing the efficacy of immunotherapeutic approaches in HNSC, with profound implications for patient outcomes. In this study, a single-cell atlas of HNSC was constructed, enabling an in-depth analysis of T cell heterogeneity. The differentiation trajectory of T cells, transitioning from normal tissue to HNSC, was characterized, revealing a predisposition toward depletion in the C2 T cell subgroup. A subsequent cross-analysis of significantly upregulated differentially expressed genes in the C2 T cell subset identified five characteristics pertinent to T cell C2, which informed the development of a clinical prognostic model. Additionally, maximum half inhibitory concentration (IC50) values for various pharmacological agents were calculated, leading to the identification of eleven drugs relevant to the risk model, providing an intriguing starting point for further work in personalized cancer treatment. However, certain limitations of this study must be acknowledged. While T cell heterogeneity and differentiation trajectories were mapped, the interrelationships among these subpopulations remain poorly understood. Further research is required to elucidate the specific biological processes and molecular evolutionary mechanisms involved. The insights from this study provide a valuable foundation for future investigations into the molecular mechanisms and immune landscape associated with the progression from normal tissue to malignant squamous cell carcinoma.
Collapse
Affiliation(s)
- Jie Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Penghui Li
- Department of Gastrointestinal surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yuanyuan Zhang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- The First Affiliated Hospital of Zhengzhou University, NO.1 Jianshedong Road, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
17
|
Michelet R, Petersson K, Huisman MC, Menke‐van der Houven van Oordt CW, Miedema IHC, Thiele A, Montaseri G, Pérez‐Pitarch A, Busse D. A minimal physiologically-based pharmacokinetic modeling platform to predict intratumor exposure and receptor occupancy of an anti-LAG-3 monoclonal antibody. CPT Pharmacometrics Syst Pharmacol 2025; 14:460-473. [PMID: 39654382 PMCID: PMC11919264 DOI: 10.1002/psp4.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 03/20/2025] Open
Abstract
In oncology drug development, measuring drug concentrations at the tumor site and at the targeted receptor remains an ongoing challenge. Positron emission tomography (PET)-imaging is a promising noninvasive method to quantify intratumor exposure of a radiolabeled drug (biodistribution data) and target saturation by treatment doses in vivo. Here, we present the development and application of a minimal physiologically-based pharmacokinetic (mPBPK) modeling approach to integrate biodistribution data in a quantitative platform to characterize and predict intratumor exposure and receptor occupancy (RO) of BI 754111, an IgG-based anti-lymphocyte-activation gene 3 (LAG-3) monoclonal antibody (mAb). Specifically, calibration and qualification of the predictions were performed using 89Zr-labeled BI 754111 biodistribution data, that is, PET-derived intratumor drug concentration data, tumor-to-plasma ratios, and data from Patlak analyses. The model predictions were refined iteratively by the inclusion of additional biological processes into the model structure and the use of sensitivity analyses to assess the impact of model assumptions and parameter uncertainty on the predictions and model robustness. The developed mPBPK model allowed an adequate description of observed tumor radioactivity concentrations and tumor-to-plasma ratios leading to subsequent adequate prediction of LAG-3 RO at different dose levels. In the future, the developed model could be used as a platform for the prediction and analysis of biodistribution data for other mAbs and may ultimately support dose optimization by identifying dosages resulting in saturated RO.
Collapse
Affiliation(s)
| | | | - Marc C. Huisman
- Department of Radiology and Nuclear MedicineAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | | | - Iris H. C. Miedema
- Department of Medical OncologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Imaging and BiomarkersCancer Center AmsterdamAmsterdamThe Netherlands
| | - Andrea Thiele
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RißGermany
| | - Ghazal Montaseri
- Boehringer Ingelheim Pharma GmbH & Co. KGBiberach an der RißGermany
| | - Alejandro Pérez‐Pitarch
- Boehringer Ingelheim Pharma GmbH & Co. KGIngelheim am RheinGermany
- Present address:
RegeneronTarrytownNew YorkUSA
| | - David Busse
- Boehringer Ingelheim Pharma GmbH & Co. KGIngelheim am RheinGermany
| |
Collapse
|
18
|
Kuang J, Li J, Zhou S, Li Y, Lin J, Huang W, Yuan X. Genomic and micro-environmental insights into drug resistance in colorectal cancer liver metastases. Discov Oncol 2025; 16:241. [PMID: 40009285 DOI: 10.1007/s12672-025-01976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is known for its high heterogeneity, with liver metastases significantly impairing survival outcomes. Understanding the tumor microenvironment (TME) and genomic alterations in metastatic sites is crucial for developing personalized therapies that overcome drug resistance and improve prognosis. METHODS We profiled 54 CRC liver metastases, comparing them with 198 other metastatic lesions and normal liver tissues. By analyzing immune cell infiltration, stromal interactions, and key genomic alterations, we constructed an 11-gene prognostic model to predict survival and immunotherapy outcomes. RESULTS CRC liver metastases with high-risk profiles demonstrated enriched follicular helper T cells, activated dendritic cells, and M2 macrophages in the TME. Frequent mutations in APC, TP53, KRAS, and PIK3CA were identified, alongside altered EGFR signaling. The 11-gene model effectively stratified patients by prognosis and predicted immunotherapy responses, emphasizing the therapeutic potential of targeting resistance mechanisms. CONCLUSIONS This study reveals how genomic and TME-driven factors contribute to drug resistance in CRC liver metastases. Integrating these insights with clinical data could advance precision therapies, addressing the evolving challenge of tumor drug resistance in CRC.
Collapse
Affiliation(s)
- Junjie Kuang
- The Second Department of Oncology, Cancer Center, Huizhou First Hospital, Huizhou, Guangdong, China
| | - Jun Li
- The Second Department of Oncology, Cancer Center, Huizhou First Hospital, Huizhou, Guangdong, China
| | - Siwei Zhou
- The Second Department of Oncology, Cancer Center, Huizhou First Hospital, Huizhou, Guangdong, China
| | - Yi Li
- The Second Department of Oncology, Cancer Center, Huizhou First Hospital, Huizhou, Guangdong, China
| | - Jinbo Lin
- The Second Department of Oncology, Cancer Center, Huizhou First Hospital, Huizhou, Guangdong, China
| | - Weizhen Huang
- The Second Department of Oncology, Cancer Center, Huizhou First Hospital, Huizhou, Guangdong, China.
| | - Xia Yuan
- The Second Department of Oncology, Cancer Center, Huizhou First Hospital, Huizhou, Guangdong, China.
| |
Collapse
|
19
|
Vizioli G, Nicoletti A, Feliciani D, Funaro B, Zileri Dal Verme L, Ponziani FR, Zocco MA, Gasbarrini A, Gabrielli M. Immunotherapy and MASLD-Related HCC: Should We Reconsider the Role of Etiology in the Therapeutic Approach to HCC? APPLIED SCIENCES 2025; 15:2279. [DOI: 10.3390/app15052279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancers and typically arises in the context of chronic liver disease. With the increasing prevalence of metabolic disorders, metabolic dysfunction-associated steatotic liver disease (MASLD) has become the leading cause of chronic liver disease and the most rapidly increasing cause of HCC. The role of dysfunctional innate and adaptive immune responses in the development and progression of HCC is well-established, prompting numerous trials to evaluate the efficacy of immune checkpoint inhibitors (ICIs) in targeting tumor cells. These trials have yielded promising results, and ICIs, in combination with anti-vascular endothelial growth factor (VEGF) monoclonal antibodies, are now approved as first-line therapy for patients with metastatic or unresectable HCC, irrespective of the underlying liver disease. Notably, MASLD itself is characterized by immune system dysfunction, as metabolic inflammation plays a central role in its onset and progression. However, clinical studies and post-hoc analyses suggest that immunotherapy may be less effective in MASLD-associated HCC compared to viral-related HCC. This emerging evidence raises the question of whether the underlying liver disease influences the therapeutic response to ICIs in HCC. It may be time to consider tailoring therapeutic strategies for HCC based on the specific etiological, histological, and genotypical subgroups.
Collapse
Affiliation(s)
- Giuseppina Vizioli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Nicoletti
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Daniela Feliciani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Barbara Funaro
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Zileri Dal Verme
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Assunta Zocco
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Gabrielli
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
20
|
Zhao B, Xuan R, Yang G, Hu T, Chen Y, Cai L, Hu B, Ling G, Xia Z. A novel golgi related genes based correlation prognostic index can better predict the prognosis of glioma and responses to immunotherapy. Discov Oncol 2025; 16:212. [PMID: 39976877 PMCID: PMC11842676 DOI: 10.1007/s12672-025-01889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/03/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND The Golgi apparatus (GA) serves as the center of protein and lipid synthesis and modification within cells, playing a crucial role in regulating diverse cellular processes as a signaling hub. Dysregulation of GA function can give rise to a range of pathological conditions, including tumors. Notably, mutations in Golgi-associated genes (GARGs) are frequently observed in various tumors, and these mutations have been implicated in promoting tumor metastasis. However, the precise relationship between GARGs and glioma, a type of brain tumor, remains poorly understood. Therefore, the objective of this investigation was to assess the prognostic significance of GARGs in glioma and evaluate their impact on the immune microenvironment. METHODS The expression of GARGs was obtained from the TCGA and CGGA databases, encompassing a total of 1564 glioma samples (598 from TCGA and 966 from CGGA). Subsequently, a risk prediction model was constructed using LASSO regression and Cox analysis, and its efficacy was assessed. Additionally, qRT-PCR was employed to validate the expression of GARGs in relation to glioma prognosis. Furthermore, the association between GARGs and immunity, mutation, and drug resistance was investigated. RESULTS A selection of GARGs (SPRY1, CHST6, B4GALNT1, CTSL, ADCY3, GNL1, KIF20A, CHP1, RPS6, CLEC18C) were selected through differential expression analysis and Cox analysis, which were subsequently incorporated into the risk model. This model demonstrated favorable predictive efficiency, as evidenced by the area under the curve (AUC) values of 0.877, 0.943, and 0.900 for 1, 3, and 5-year predictions, respectively. Furthermore, the risk model exhibited a significant association with the tumor immune microenvironment and mutation status, as well as a diminished sensitivity to chemotherapy drugs. qRT-PCR analysis confirmed the up-regulation or down-regulation of the aforementioned genes in glioma. CONCLUSION The utilization of GARGs in our constructed model exhibits a high level of accuracy in prognosticating glioma and offers promising avenues for the development of therapeutic interventions targeting glioma.
Collapse
Affiliation(s)
- Beichuan Zhao
- The Department of Neurosurgery of The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
- Neuro-Medicine Center of The Seventh Affiliated Hospital of Sun-Yat-sen University, Shenzhen, Guangdong, China
| | - Ruoheng Xuan
- The Department of Neurosurgery of The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Guitao Yang
- The Department of Neurosurgery of The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
- Neuro-Medicine Center of The Seventh Affiliated Hospital of Sun-Yat-sen University, Shenzhen, Guangdong, China
- Huashan Hospital Fudan University, Shanghai, China
| | - Tianyu Hu
- The Department of Neurosurgery of The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Yihong Chen
- The Department of Neurosurgery of The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Lingshan Cai
- The Department of Neurosurgery of The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Hu
- The Department of Neurosurgery of The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China
| | - Gengqiang Ling
- Neuro-Medicine Center of The Seventh Affiliated Hospital of Sun-Yat-sen University, Shenzhen, Guangdong, China
| | - Zhibo Xia
- The Department of Neurosurgery of The First Affiliated Hospital of Sun-Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
21
|
Cheng B, Lv J, Xiao Y, Song C, Chen J, Shao C. Small molecule inhibitors targeting PD-L1, CTLA4, VISTA, TIM-3, and LAG3 for cancer immunotherapy (2020-2024). Eur J Med Chem 2025; 283:117141. [PMID: 39653621 DOI: 10.1016/j.ejmech.2024.117141] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Cancer immunotherapy, leveraging antibodies, excels in targeting efficacy but faces hurdles in tissue penetration, oral delivery, and prolonged half-life, with costly production and risk of adverse immunogenic effects. In contrast, small molecule immuno-oncology agents provide favorable pharmacokinetic properties and benign toxicity profiles. These agents are well-positioned to address the limitations of antibody-based immunotherapies, augment existing treatment modalities, and achieve synergistic effects when combined with antibodies. This review, for the first time, summarizes the recent advances (2020-2024) in small molecule inhibitors targeting PD-1/PD-L1, CTLA4, VISTA, TIM-3, and LAG3, highlighting rational design, benefits, and potential limitations. It also outlines the prospects for small-molecule immunotherapy.
Collapse
Affiliation(s)
- Binbin Cheng
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China; Hubei Polytechnic University, Huangshi, Hubei 435003, China
| | - Jinke Lv
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan 528000, China
| | - Yao Xiao
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan Wuchang Hospital, Wuchang 430063, China
| | - Changshan Song
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan 528000, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Chuxiao Shao
- Central Laboratory, Wenzhou Medical University Lishui Hospital, Lishui People's Hospital, Lishui, Zhejiang 323000, China.
| |
Collapse
|
22
|
Azzariti A, De Summa S, Marvulli TM, De Risi I, De Palma G, Di Fonte R, Fasano R, Serratì S, Strippoli S, Porcelli L, Guida M. Developing a risk score using liquid biopsy biomarkers for selecting Immunotherapy responders and stratifying disease progression risk in metastatic melanoma patients. J Exp Clin Cancer Res 2025; 44:40. [PMID: 39910579 PMCID: PMC11796275 DOI: 10.1186/s13046-025-03306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Despite the high response rate to PD-1 blockade therapy in metastatic melanoma (MM) patients, a significant proportion of patients do not respond. Identifying biomarkers to predict patient response is crucial, ideally through non-invasive methods such as liquid biopsy. METHODS Soluble forms of PD1, PD-L1, LAG-3, CTLA-4, CD4, CD73, and CD74 were quantified using ELISA assay in plasma of a cohort of 110 MM patients, at baseline, to investigate possible correlations with clinical outcomes. A clinical risk prediction model was applied and validated in pilot studies. RESULTS No biomarker showed statistically significant differences between responders and non-responders. However, high number of significant correlations were observed among certain biomarkers in non-responders. Through univariate and multivariate Cox analyses, we identified sPD-L1, sCTLA-4, sCD73, and sCD74 as independent biomarkers predicting progression-free survival and overall survival. According to ROC analysis we discovered that, except for sCD73, values of sPD-L1, sCTLA-4, and sCD74 lower than the cut-off predicted lower disease progression and reduced mortality. A comprehensive risk score for predicting progression-free survival was developed by incorporating the values of the two identified independent factors, sCTLA-4 and sCD74, which significantly improved the accuracy of outcome prediction. Pilot validations highlighted the potential use of the risk score in treatment-naive individuals and long responders. CONCLUSION In summary, risk score based on circulating sCTLA-4 and sCD74 reflects the response to immune checkpoint inhibitor (ICI) therapy in MM patients. If confirmed, through further validation, these findings could assist in recommending therapy to patients likely to experience a long-lasting response.
Collapse
Affiliation(s)
- Amalia Azzariti
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari, 70124, Italy.
| | - Simona De Summa
- Biostatistic and Bioinformatic Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Tommaso M Marvulli
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Ivana De Risi
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | | | - Roberta Di Fonte
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari, 70124, Italy
| | - Rossella Fasano
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari, 70124, Italy
| | - Simona Serratì
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari, 70124, Italy
| | - Sabino Strippoli
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Letizia Porcelli
- Experimental Pharmacology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari, 70124, Italy
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| |
Collapse
|
23
|
Buehning F, Lerchner T, Vogel J, Hendgen-Cotta UB, Totzeck M, Rassaf T, Michel L. Preclinical models of cardiotoxicity from immune checkpoint inhibitor therapy. Basic Res Cardiol 2025; 120:171-185. [PMID: 39039301 PMCID: PMC11790694 DOI: 10.1007/s00395-024-01070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/30/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapy represents a ground-breaking paradigm in cancer treatment, harnessing the immune system to combat malignancies by targeting checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1 (PD-1). The use of ICI therapy generates distinctive immune-related adverse events (irAEs) including cardiovascular toxicity, necessitating targeted research efforts. This comprehensive review explores preclinical models dedicated to ICI-mediated cardiovascular complications including myocarditis. Tailored preclinical models of ICI-mediated myocardial toxicities highlight the key role of CD8+ T cells, emphasizing the profound impact of immune checkpoints on maintaining cardiac integrity. Cytokines and macrophages were identified as possible driving factors in disease progression, and at the same time, initial data on possible cardiac antigens responsible are emerging. The implications of contributing factors including thoracic radiation, autoimmune disorder, and the presence of cancer itself are increasingly understood. Besides myocarditis, mouse models unveiled an accelerated progression of atherosclerosis, adding another layer for a thorough understanding of the diverse processes involving cardiovascular immune checkpoint signalling. This review aims to discuss current preclinical models of ICI cardiotoxicity and their potential for improving enhanced risk assessment and diagnostics, offering potential targets for innovative cardioprotective strategies. Lessons from ICI therapy can drive novel approaches in cardiovascular research, extending insights to areas such as myocardial infarction and heart failure.
Collapse
Affiliation(s)
- Florian Buehning
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tobias Lerchner
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Julia Vogel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Ulrike B Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
24
|
Patel L, Kolundzic N, Abedalthagafi M. Progress in personalized immunotherapy for patients with brain metastasis. NPJ Precis Oncol 2025; 9:31. [PMID: 39880875 PMCID: PMC11779815 DOI: 10.1038/s41698-025-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Brain metastasis leads to poor outcomes and CNS injury, significantly reducing quality of life and survival rates. Advances in understanding the tumor immune microenvironment have revealed the promise of immunotherapies, which, alongside surgery, chemotherapy, and radiation, offer improved survival for some patients. However, resistance to immunotherapy remains a critical challenge. This review explores the immune landscape of brain metastases, current therapies, clinical trials, and the need for personalized, biomarker-driven approaches to optimize outcomes.
Collapse
Affiliation(s)
- Lalit Patel
- Department of Pathology and Lab Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Nikola Kolundzic
- Department of Women & Children's Health, Faculty of Life Sciences & Medicine, King's College London, London, UK
- REPROCELL Europe Ltd., Glasgow, UK
| | - Malak Abedalthagafi
- Department of Pathology and Lab Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
25
|
Salimi Asl A, Davari M, Ghorbani A, Seddighi N, Arabi K, Saburi E. Neoadjuvant immunotherapy and oncolytic virotherapy in HPV positive and HPV negative skin cancer: A comprehensive review. Int Immunopharmacol 2025; 146:113790. [PMID: 39673996 DOI: 10.1016/j.intimp.2024.113790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
Skin cancer is the most common new cancer among Caucasians. This cancer has different types, of which non-melanoma skin cancer is the most common type. Various factors affect this disease, one of which is viral infections, including HPV. This virus plays an important role in skin cancer, especially cSCCs. There are various options for the treatment of skin cancer, and today special attention has been paid to treatments based on therapeutic goals, immunotherapy and combination therapy. In this study, we have investigated treatments based on immunotherapy and virotherapy and the effect of HPV virus on the effectiveness of these treatments in skin cancer. Treatments based on virotherapy are performed for a long time in combination with other common treatments such as radiotherapy and chemotherapy in order to have a greater effect and lower its side effects, which include: shortness of breath, tachycardia, lowering blood pressure in the patient. Also, the most important axis of immunotherapy is to focus on PD1-PDL1, despite abundant evidence on the importance of immunotherapy, many studies investigate the use of immunotherapy inhibitors in the adjuvant and neoadjuvant setting in various cancers. Also, previous findings show conflicting evidence of the effect of HPV status on the response to immunotherapy.
Collapse
Affiliation(s)
- Ali Salimi Asl
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Mohsen Davari
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Atousa Ghorbani
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Narjes Seddighi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kimia Arabi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Wolf E, Sacchi de Camargo Correia G, Li S, Zhao Y, Manochakian R, Lou Y. Emerging Immunotherapies for Advanced Non-Small-Cell Lung Cancer. Vaccines (Basel) 2025; 13:128. [PMID: 40006675 PMCID: PMC11861325 DOI: 10.3390/vaccines13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer, with nearly half of all patients diagnosed at an advanced stage. Immune checkpoint inhibitors (ICIs) harness the host immune system to combat malignant cells. ICIs, which target programmed death-ligand 1 (PD-L1), programmed cell death 1 (PD-1), and cytotoxic T-cell lymphocyte-4 (CTLA-4), have transformed the treatment landscape for advanced NSCLC. While a subset of patients experiences a long-term durable response, most patients will develop disease progression. New drugs targeting novel pathways are being tested in clinical trials to improve the efficacy of immunotherapy and overcome resistance patterns. This review aims to summarize the currently available ICIs for advanced NSCLC and describe emerging immunotherapies with recently published data from phase I/II clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanyan Lou
- Division of Hematology and Medical Oncology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA; (E.W.); (G.S.d.C.C.); (S.L.); (Y.Z.); (R.M.)
| |
Collapse
|
27
|
Cesano A, Augustin R, Barrea L, Bedognetti D, Bruno TC, Carturan A, Hammer C, Ho WS, Kather JN, Kirchhoff T, Lu RO, McQuade J, Najjar YG, Pietrobon V, Ruella M, Shen R, Soldati L, Spencer C, Betof Warner A, Warren S, Ziv E, Marincola FM. Advances in the understanding and therapeutic manipulation of cancer immune responsiveness: a Society for Immunotherapy of Cancer (SITC) review. J Immunother Cancer 2025; 13:e008876. [PMID: 39824527 PMCID: PMC11749597 DOI: 10.1136/jitc-2024-008876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025] Open
Abstract
Cancer immunotherapy-including immune checkpoint inhibition (ICI) and adoptive cell therapy (ACT)-has become a standard, potentially curative treatment for a subset of advanced solid and liquid tumors. However, most patients with cancer do not benefit from the rapidly evolving improvements in the understanding of principal mechanisms determining cancer immune responsiveness (CIR); including patient-specific genetically determined and acquired factors, as well as intrinsic cancer cell biology. Though CIR is multifactorial, fundamental concepts are emerging that should be considered for the design of novel therapeutic strategies and related clinical studies. Recent advancements as well as novel approaches to address the limitations of current treatments are discussed here, with a specific focus on ICI and ACT.
Collapse
Affiliation(s)
| | - Ryan Augustin
- University of Pittsburgh Department of Medicine, Pittsburgh, Pennsylvania, USA
- Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Tullia C Bruno
- University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Winson S Ho
- University of California San Francisco, San Francisco, California, USA
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Dresden, Germany
| | - Tomas Kirchhoff
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Rongze O Lu
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Jennifer McQuade
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yana G Najjar
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Marco Ruella
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rhine Shen
- Kite Pharma Inc, Santa Monica, California, USA
| | | | - Christine Spencer
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| | | | | | - Elad Ziv
- University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
28
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
29
|
Adam K, Butler SC, Workman CJ, Vignali DAA. Advances in LAG3 cancer immunotherapeutics. Trends Cancer 2025; 11:37-48. [PMID: 39603977 PMCID: PMC12047404 DOI: 10.1016/j.trecan.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024]
Abstract
Cancer treatment has entered the age of immunotherapy. Immune checkpoint inhibitor (ICI) therapy has shown robust therapeutic potential in clinical practice, with significant improvements in progression-free survival (PFS) and overall survival (OS). Recently, checkpoint blockade of the lymphocyte activation gene 3 (LAG3) inhibitory receptor (IR) in combination with programmed death protein 1 (PD1) inhibition has been FDA approved in patients with advanced melanoma. This has encouraged the clinical evaluation of new LAG3-directed biologics in combination with other checkpoint inhibitors. Several of these studies are evaluating bispecific antibodies that target exhausted T (TEX) cells expressing multiple IRs. This review discusses the current understanding of LAG3 in regulating antitumor immunity and the ongoing clinical testing of LAG3 inhibition in cancer.
Collapse
Affiliation(s)
- Kieran Adam
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Samuel C Butler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Zou C, Zhang Y, Liu C, Li Y, Lin C, Chen H, Hou J, Gao G, Liu Z, Yan Q, Su W. Identification of CENPM as a key gene driving adrenocortical carcinoma metastasis via physical interaction with immune checkpoint ligand FGL1. Clin Transl Med 2025; 15:e70182. [PMID: 39778025 PMCID: PMC11707433 DOI: 10.1002/ctm2.70182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Distant metastasis occurs in the majority of adrenocortical carcinoma (ACC), leading to an extremely poor prognosis. However, the key genes driving ACC metastasis remain unclear. METHODS Weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis were conducted to identify ACC metastasis-related genes. Data from RNA-seq and microarray were analyzed to reveal correlations of the CENPM gene with cancer, metastasis, and survival in ACC. Immunohistochemistry was used to assess CENPM protein expression. The impact of CENPM on metastasis behaviour was verified in ACC (H295R and SW-13) cells and xenograft NPG mice. DIA quantitative proteomics analysis, western blot, immunofluorescence, and co-immunoprecipitation assay were performed to identify the downstream target of CENPM. RESULTS Among the 12 035 analyzed genes, 363 genes were related to ACC metastasis and CENPM was identified as the hub gene. CENPM was upregulated in ACC samples and associated with metastasis and poor prognosis. Knockdown of CENPM inhibited proliferation, invasion, and migration of ACC cells and suppressed liver metastasis in xenograft NPG mice. Collagen-containing extracellular matrix signalling was primarily downregulated when CENPM was knocked down. FGL1, important components of ECM signalling and immune checkpoint ligand of LAG3, were downregulated following CENPM silence, overexpressed in human advanced ACC samples, and colocalized with CENPM. Physical interaction between CENPM and FGL1 was identified. Overexpression of FGL1 rescued migration and invasion of CENPM knockdown ACC cells. CONCLUSIONS CENPM is a key gene in driving ACC metastasis. CENPM promotes ACC metastasis through physical interaction with the immune checkpoint ligand FGL1. CENPM can be used as a new prognostic biomarker and therapeutic target for metastatic ACC. HIGHLIGHTS CENPM is the key gene that drives ACC metastasis, and a robust biomarker for ACC prognosis. Silencing CENPM impedes ACC metastasis in vitro and in vivo by physical interaction with immune checkpoint ligand FGL1. FGL1 is overexpressed in ACC and promotes ACC metastasis.
Collapse
Affiliation(s)
- Cunru Zou
- Department of PhysiologySchool of Basic MedicineShandong Second Medical UniversityWeifangChina
| | - Yu Zhang
- Department of PhysiologySchool of Basic MedicineShandong Second Medical UniversityWeifangChina
| | - Chengyue Liu
- Department of PhysiologySchool of Basic MedicineShandong Second Medical UniversityWeifangChina
| | - Yaxin Li
- Department of PhysiologySchool of Basic MedicineShandong Second Medical UniversityWeifangChina
| | - Congjie Lin
- Department of PathologyAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Hao Chen
- Department of PhysiologySchool of Basic MedicineShandong Second Medical UniversityWeifangChina
| | - Jiangping Hou
- Department of OphthalmologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Guojun Gao
- Department of Urology SurgeryAffiliated Hospital of Shandong Second Medical UniversityWeifangChina
| | - Zheng Liu
- Department of Urology SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Qiupeng Yan
- Department of Teaching and Research Section of Introduction to Basic MedicineSchool of Basic MedicineShandong Second Medical UniversityWeifangChina
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher EducationShandong Second Medical UniversityWeifangChina
| | - Wenxia Su
- Department of PhysiologySchool of Basic MedicineShandong Second Medical UniversityWeifangChina
| |
Collapse
|
31
|
Pedersen L, Eriksen LL, Brix FH, Vilstrup H, Deleuran B, Sandahl TD, Støy S. The FGL-1/LAG-3 Axis is Associated With Disease Course in Alcohol-associated Hepatitis: A Preliminary Report. J Clin Exp Hepatol 2025; 15:102424. [PMID: 39553834 PMCID: PMC11567029 DOI: 10.1016/j.jceh.2024.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/05/2024] [Indexed: 11/19/2024] Open
Abstract
Background Alcohol-associated hepatitis (AH) has a short-term mortality rate of up to 40% primarily related to impaired hepatocyte regeneration and uncontrolled liver inflammation. The acute phase protein fibrinogen-like protein 1 (FGL-1) produced by hepatocytes stimulates hepatocyte proliferation by autocrine signaling. FGL-1 also is a ligand for the inhibitory T cell receptor lymphocyte activation gene 3 (LAG-3). In these ways, FGL-1 and LAG-3 have beneficial interactions that could be interrupted in AH. Aims We aimed to characterize FGL-1 and LAG-3 in patients with AH and describe their relationship with the disease state and course. Methods Thirty-two patients with AH were included at diagnosis and followed up for 3 years. We measured the hepatic gene expression of FGL-1 and LAG-3 using RNA sequencing, plasma FGL-1 and soluble (s)LAG-3 using ELISA, and LAG-3+CD8+ T cells using flow cytometry. Healthy persons (HC) and patients with stable alcohol-associated cirrhosis served as controls. Results At diagnosis of AH, liver FGL-1 mRNA was increased when compared to HC, whereas plasma FGL-1 was unchanged. In contrast, liver LAG-3 mRNA was reduced in AH. Plasma sLAG-3 levels and the frequency of LAG-3+CD8+ T cells were as in HC. However, those patients who had the lowest plasma FGL-1 and the lowest frequency of LAG-3+CD8+ T cells at diagnosis had the highest disease severity and mortality. Conclusions Our data suggest that an impaired FGL-1/LAG-3 axis may be involved in the pathogenesis and course of AH.
Collapse
Affiliation(s)
- Lasse Pedersen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Lotte L. Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frederik H. Brix
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Bent Deleuran
- Department of Rheumatology, Biomedicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Thomas D. Sandahl
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Sidsel Støy
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
32
|
Seghers S, Domen A, Prenen H. Challenges and prospects of LAG-3 inhibition in advanced gastric and gastroesophageal junction cancer: insights from the RELATIVITY-060 trial. J Gastrointest Oncol 2024; 15:2735-2738. [PMID: 39816014 PMCID: PMC11732350 DOI: 10.21037/jgo-24-757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/04/2024] [Indexed: 01/18/2025] Open
Affiliation(s)
- Sofie Seghers
- Department of Medical Oncology, University Hospital Antwerp, Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Andreas Domen
- Department of Medical Oncology, University Hospital Antwerp, Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Hans Prenen
- Department of Medical Oncology, University Hospital Antwerp, Edegem, Belgium
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
33
|
Carrese B, Coppola L, Smaldone G, D'Aiuto M, Mossetti G, Febbraro A, Soricelli A, Salvatore M, Ciaramella V. Role of immune-checkpoint LAG3 as a biomarker finding tool in patient-derived organoid cultures of breast cancer. Sci Rep 2024; 14:31504. [PMID: 39733124 PMCID: PMC11682343 DOI: 10.1038/s41598-024-83061-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls. LAG3 blockade inhibited proliferation of in vitro and ex vivo 3D human organoids and immune micro-environment through both a decrease of PD-L1, TIM-3 and CTLA4 expression and an increased production of several pro-inflammatory cytokines (IFNγ, IL-12, IL-6, IL-1β, TNFα) and EMT markers. These effects trigger a more permissive anti-tumor immune reaction, recruiting immune cells to the tumor sites, boosting the anti-tumor response. LAG3 acts as an immunosuppressive molecule in breast cancer, inhibiting T CD8 + cell proliferation and cytokine production by T cells. We proposed the modulation of a novel checkpoint molecule, such as LAG3, as potential biomarkers associated to a rapid diagnosis.
Collapse
Affiliation(s)
| | | | | | | | - Gennaro Mossetti
- Pathological Anatomy Service, Maria Rosaria Clinic, Pompei, Naples, 80045, Italy
| | - Antonio Febbraro
- Oncology Unit, Casa di Cura Cobellis, Vallo della Lucania, Italy
| | | | | | | |
Collapse
|
34
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
35
|
Merenstein A, Obeidat L, Zaravinos A, Bonavida B. The Role of YY1 in the Regulation of LAG-3 Expression in CD8 T Cells and Immune Evasion in Cancer: Therapeutic Implications. Cancers (Basel) 2024; 17:19. [PMID: 39796650 PMCID: PMC11718991 DOI: 10.3390/cancers17010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The treatment of cancers with immunotherapies has yielded significant milestones in recent years. Amongst these immunotherapeutic strategies, the FDA has approved several checkpoint inhibitors (CPIs), primarily Anti-Programmed Death-1 (PD-1) and Programmed Death Ligand-1/2 (PDL-1/2) monoclonal antibodies, in the treatment of various cancers unresponsive to immune therapeutics. Such treatments resulted in significant clinical responses and the prolongation of survival in a subset of patients. However, not all patients responded to CPIs, due to various mechanisms of immune resistance. One such mechanism is that, in addition to PD-1 expression on CD8 T cells, other inhibitory receptors exist, such as Lymphocyte Activation Gene 3 (LAG-3), T cell Immunoglobulin Mucin 3 (TIM3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT). These inhibitory receptors might be active in the presence of the above approved CPIs. Clearly, it is clinically challenging to block all such inhibitory receptors simultaneously using conventional antibodies. To circumvent this difficulty, we sought to target a potential transcription factor that may be involved in the molecular regulation of more than one inhibitory receptor. The transcription factor Yin Yang1 (YY1) was found to regulate the expression of PD-1, LAG-3, and TIM3. Therefore, we hypothesized that targeting YY1 in CD8 T cells should inhibit the expression of these receptors and, thus, prevent the inactivation of the anti-tumor CD8 T cells by these receptors, by corresponding ligands to tumor cells. This strategy should result in the prevention of immune evasion, leading to the inhibition of tumor growth. In addition, this strategy will be particularly effective in a subset of cancer patients who were unresponsive to approved CPIs. In this review, we discuss the regulation of LAG-3 by YY1 as proof of principle for the potential use of targeting YY1 as an alternative therapeutic approach to preventing the immune evasion of cancer. We present findings on the molecular regulations of both YY1 and LAG-3 expressions, the direct regulation of LAG-3 by YY1, the various approaches to targeting YY1 to evade immune evasion, and their clinical challenges. We also present bioinformatic analyses demonstrating the overexpression of LAG-3, YY1, and PD-L1 in various cancers, their associations with immune infiltrates, and the fact that when LAG-3 is hypermethylated in its promoter region it correlates with a better overall survival. Hence, targeting YY1 in CD8 T cells will result in restoring the anti-tumor immune response and tumor regression. Notably, in addition to the beneficial effects of targeting YY1 in CD8 T cells to inhibit the expression of inhibitory receptors, we also suggest targeting YY1 overexpressed in the tumor cells, which will also inhibit PD-L1 expression and other YY1-associated pro-tumorigenic activities.
Collapse
Affiliation(s)
- Adam Merenstein
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA;
| | - Loiy Obeidat
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus; (L.O.); (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Apostolos Zaravinos
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), 1516 Nicosia, Cyprus; (L.O.); (A.Z.)
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
36
|
Hosseininejad-Chafi M, Eftekhari Z, Oghalaie A, Behdani M, Sotoudeh N, Kazemi-Lomedasht F. Nanobodies as innovative immune checkpoint modulators: advancing cancer immunotherapy. Med Oncol 2024; 42:36. [PMID: 39719469 DOI: 10.1007/s12032-024-02588-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection. Traditional antibodies, such as IgGs, have been widely used in immune therapies but are limited by their size and complexity. Nanobodies (Nbs), derived from camelid heavy-chain-only antibodies, offer a promising alternative. These small, stable antibody fragments retain the antigen-binding specificity of traditional antibodies but have enhanced solubility and the ability to target otherwise inaccessible epitopes. This review explores the use of Nbs as ICIs, emphasizing their potential in cancer immunotherapy and other immune-related treatments. Their unique structural properties and small size make Nbs highly effective tools for modulating immune responses, representing a novel approach in the evolving landscape of checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Mohammad Hosseininejad-Chafi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Nazli Sotoudeh
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
37
|
Guégan JP, Peyraud F, Dadone-Montaudie B, Teyssonneau D, Palmieri LJ, Clot E, Cousin S, Roubaud G, Cabart M, Leroy L, Lebreton C, Rey C, Lara O, Odin O, Brunet M, Vanhersecke L, Gruyters EO, Achour I, Belcaid L, Le Moulec S, Grellety T, Bessede A, Italiano A. Analysis of PD1, LAG3, TIGIT, and TIM3 expression in human lung adenocarcinoma reveals a 25-gene signature predicting immunotherapy response. Cell Rep Med 2024; 5:101831. [PMID: 39591972 PMCID: PMC11722093 DOI: 10.1016/j.xcrm.2024.101831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have advanced the treatment of non-small cell lung cancer (NSCLC). This study evaluates the predictive value of CD8+ T cell exhaustion in patients with lung adenocarcinoma treated with ICIs. By analyzing tumor samples from 166 patients through multiplex immunofluorescence, we quantify tumor-infiltrating lymphocytes (TILs) expressing exhaustion markers programmed cell death-1 (PD1), lymphocyte activation gene 3 (LAG3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), and T cell immunoglobulin and mucin domain 3 (TIM3). Their co-expression is associated with ICI resistance, irrespective of programmed cell death ligand-1 (PD-L1) status. We also identify a 25-gene signature indicative of CD8+ T cell exhaustion with high predictive accuracy for ICI response. Validated using several datasets from various clinical trials, this signature accurately predicts ICI responsiveness. Our findings highlight T cell exhaustion's significance in lung adenocarcinoma responses to ICIs and suggest the 25-gene signature as a potential universal biomarker to reinforce precision medicine. This was registered under Clinical Trial registration number NCT02534649.
Collapse
Affiliation(s)
| | - Florent Peyraud
- Explicyte Immuno-Oncology, Bordeaux, France; Department of Medicine, Institut Bergonié, Bordeaux, France
| | | | - Diego Teyssonneau
- Explicyte Immuno-Oncology, Bordeaux, France; Department of Medicine, Institut Bergonié, Bordeaux, France
| | - Lola-Jade Palmieri
- Explicyte Immuno-Oncology, Bordeaux, France; Department of Medicine, Institut Bergonié, Bordeaux, France
| | - Emma Clot
- Department of Medicine, Institut Bergonié, Bordeaux, France
| | - Sophie Cousin
- Department of Medicine, Institut Bergonié, Bordeaux, France
| | | | | | - Laura Leroy
- Department of Medicine, Institut Bergonié, Bordeaux, France
| | | | | | - Oren Lara
- Explicyte Immuno-Oncology, Bordeaux, France
| | | | - Maxime Brunet
- Department of Medicine, Institut Bergonié, Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Gayen S, Mukherjee S, Dasgupta S, Roy S. Emerging druggable targets for immune checkpoint modulation in cancer immunotherapy: the iceberg lies beneath the surface. Apoptosis 2024; 29:1879-1913. [PMID: 39354213 DOI: 10.1007/s10495-024-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
The immune system serves as a fundamental defender against the initiation and progression of cancer. Failure of the immune system augments immunosuppressive action that leading to cancer manifestation. This immunosuppressive effect causes from significant alterations in immune checkpoint expression associated with tumoral progression. The tumor microenvironment promotes immune escape mechanisms that further amplifying immunosuppressive actions. Notably, substantial targeting of immune checkpoints has been pragmatic in the advancement of cancer research. This study highlights a comprehensive review of emerging druggable targets aimed at modulating immune checkpoint co-inhibitory as well as co-stimulatory molecules in response to immune system activation. This modulation has prompted to the development of newer therapeutic insights, eventually inducing immunogenic cell death through immunomodulatory actions. The study emphasizes the role of immune checkpoints in immunogenic regulation of cancer pathogenesis and explores potential therapeutic avenues in cancer immunotherapy.Modulation of Immunosuppressive and Immunostimulatory pathways of immune checkpoints in cancer immunotherapy.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
39
|
Farzeen Z, Khan RRM, Chaudhry AR, Pervaiz M, Saeed Z, Rasheed S, Shehzad B, Adnan A, Summer M. Dostarlimab: A promising new PD-1 inhibitor for cancer immunotherapy. J Oncol Pharm Pract 2024; 30:1411-1431. [PMID: 39056234 DOI: 10.1177/10781552241265058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Dostarlimab, a humanized monoclonal PD-1 blocking antibody, is being tested as a cancer therapy in this review. Specifically, it addresses mismatch repair failure in endometrial cancer and locally progressed rectal cancer patients. DATA SOURCES A thorough database search found Dostarlimab clinical trials and studies. Published publications and ongoing clinical trials on Dostarlimab's efficacy as a single therapy and in conjunction with other medicines across cancer types were searched. DATA SUMMARY The review recommends Dostarlimab for endometrial cancer mismatch repair failure, as supported by GARNET studies. The analysis also highlights locally advanced rectal cancer findings. In the evolving area of cancer therapy, immune checkpoint inhibitors including pembrolizumab, avelumab, atezolizumab, nivolumab, and durvalumab were discussed. CONCLUSIONS Locally advanced rectal cancer patients responded 100% to Dostarlimab. Many clinical trials, including ROSCAN, AMBER, IOLite, CITRINO, JASPER, OPAL, PRIME, PERLA, and others, are investigating Dostarlimab in combination treatment. This research sheds light on Dostarlimab's current and future possibilities, in improving cancer immunotherapy understanding.
Collapse
Affiliation(s)
- Zubaria Farzeen
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | | | - Ayoub Rashid Chaudhry
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Shahzad Rasheed
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Behram Shehzad
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Ahmad Adnan
- Department of Chemistry, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University Lahore, Lahore, Pakistan
| |
Collapse
|
40
|
Wang B, Zhang B, Wu M, Xu T. Unlocking therapeutic potential: Targeting lymphocyte activation Gene-3 (LAG-3) with fibrinogen-like protein 1 (FGL1) in systemic lupus erythematosus. J Transl Autoimmun 2024; 9:100249. [PMID: 39228513 PMCID: PMC11369448 DOI: 10.1016/j.jtauto.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Systemic lupus erythematosus (SLE) represents an autoimmune disorder that affects multiple systems. In the treatment of this condition, the focus primarily revolves around inflammation suppression and immunosuppression. Consequently, targeted therapy has emerged as a prevailing approach. Currently, the quest for highly sensitive and specifically effective targets has gained significant momentum in the context of SLE treatment. Lymphocyte activation gene-3 (LAG-3) stands out as a crucial inhibitory receptor that binds to pMHC-II, thereby effectively dampening autoimmune responses. Fibrinogen-like protein 1 (FGL1) serves as the principal immunosuppressive ligand for LAG-3, and their combined action demonstrates a potent immunosuppressive effect. This intricate mechanism paves the way for potential SLE treatment by targeting LAG-3 with FGL1. This work provides a comprehensive summary of LAG-3's role in the pathogenesis of SLE and elucidates the feasibility of leveraging FGL1 as a therapeutic approach for SLE management. It introduces a novel therapeutic target and opens up new avenues of therapeutic consideration in the clinical context of SLE treatment.
Collapse
Affiliation(s)
- Bing Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Biqing Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
41
|
Hirahara Y, Shimizu K, Yamasaki S, Iyoda T, Ueda S, Sato S, Harada J, Saji H, Fujii S, Miyagi Y, Miyagi E, Fujii SI. Crucial immunological roles of the invasion front in innate and adaptive immunity in cervical cancer. Br J Cancer 2024; 131:1762-1774. [PMID: 39472714 PMCID: PMC11589768 DOI: 10.1038/s41416-024-02877-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The immunostimulatory actions of innate and adaptive immune responses play a crucial role in the cancer-immunity cycle. Although cervical cancer (CC) exhibits a high recurrence rate, the relation with lymphocytes in the tumor tissue have not been analyzed. METHODS We analyzed NKT, NK, and T cells, not only in peripheral blood (PB), but also tumor tissue through histological analysis from 23 patients with CC collected before treatment. A correlation of them between PB and the tumor tissue were assessed. RESULTS We detected functional NKT and NKG2Dhi NK cells and effector CD4+ Tregs in PB. In the tumor, we detected the infiltration of LAG-3+ TIM-3+ CD4+ and CD8+ T cells rather than NK cells particularly in the invasion front (IF) by fluorescent multiplex immunohistochemistry. The heatmap and correlation analysis revealed that LAG-3+ TIM-3+ CD8+ T cells are highly associated with CD69+ CD103- exhausted CD8+ T cells. We identified the statistical relationship between CD4+Tregs in PB and the number of LAG-3+ TIM-3+ CD4+ T cells in the IF, which may be related to recurrence in patients with CC. CONCLUSIONS LAG-3+ TIM-3+ T cells located in the IF may play a key role in regulation of the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yuhya Hirahara
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
- aAVC Drug Translational Unit, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tomonori Iyoda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shogo Ueda
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, 241-8515, Japan
| | - Jotaro Harada
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Haruya Saji
- Department of Gynecology, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, 241-8515, Japan
| | - Satoshi Fujii
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Kanagawa, 241-8515, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan.
- aAVC Drug Translational Unit, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan.
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
42
|
Mantilla Rosa C, Vancheswaran A, Ariyan CE. T-cell immunotherapy for melanoma. Surg Oncol 2024; 57:102160. [PMID: 39579510 DOI: 10.1016/j.suronc.2024.102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
This review explores T-cell immunotherapy for melanoma, highlighting immune checkpoint inhibitors (anti-CTLA-4, anti-PD-1, anti-LAG-3), tumor-infiltrating lymphocytes (TILs), and emerging therapies that engineer T cells with specific receptors or T-cell receptors, such as CAR-T and TCR cells, and RNA vaccines. We discuss the history of T-cell immunotherapy, mechanisms of action, and future directions for improving patient outcomes.
Collapse
Affiliation(s)
- Cristian Mantilla Rosa
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Aparna Vancheswaran
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Charlotte E Ariyan
- Department of Surgical Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
43
|
Rong A, Han Z, Zhou M, Nie C, Zhu M, Cheng S, Wang T, Wang J, Quan Z, Wang K, Liu S, Hu X, Wang H, Wang J, Wu Y, Sun X. Respiratory delivery of single low-dose nebulized PFCE-C25 NEs for lymphatic transport and durable stimulation of antitumor immunity in lung cancer. SCIENCE ADVANCES 2024; 10:eadp7561. [PMID: 39612330 PMCID: PMC11606447 DOI: 10.1126/sciadv.adp7561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
The currently available immune checkpoint inhibitors (ICIs) often fail to achieve the desired clinical outcomes due to inadequate immune activation, particularly in patients with lung cancer. To reverse this situation, we synthesized inhalable PFCE-C25 nanoemulsions (NEs), which target lymphocyte activation genes (LAG-3) on immune cells within tumor microenvironment and tumor-draining lymph nodes (TDLNs). By combining in vivo 19F-MR molecular imaging, we investigate the immunological effects of a single low-dose PFCE-C25 NEs in multiple murine lung cancer models, including human immune system (HIS) mouse models, and validated its immunological effects in human TDLNs. The nebulization therapy with PFCE-C25 NEs demonstrated a notable and enduring maturation of dendritic cells (DCs) in TDLNs, leading to systemic immune responses, prolonged survival, the establishment of immune memory, and resistance to tumor rechallenge. Thus, PFCE-C25 NEs successfully demonstrate a promising and efficient approach for enhancing lymphatic transport and sustained activation of antitumor immune responses in lung cancer.
Collapse
Affiliation(s)
- Rong A
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Meifang Zhou
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Chaoqun Nie
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Mengyuan Zhu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Sijie Cheng
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Tianyi Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Jing Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Zhen Quan
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Kaiqi Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Shanshan Liu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Xinxin Hu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Haoyu Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Jiannan Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Yongyi Wu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Xilin Sun
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| |
Collapse
|
44
|
Zhang F, Li W, Zheng X, Ren Y, Li L, Yin H. The novel immune landscape of immune-checkpoint blockade in EBV-associated malignancies. FASEB J 2024; 38:e70139. [PMID: 39520274 DOI: 10.1096/fj.202301980rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous gamma-herpesvirus and a class 1 carcinogen that is closely associated with a series of malignant lymphomas and epithelial cell carcinomas. Although these EBV-related cancers may exhibit different features in clinical symptoms and anatomical sites, they all have a characteristic immune-suppressed tumor immune microenvironment (TIME) that is tightly correlated with an abundance of tumor-infiltrating lymphocytes (TILs) that primarily result from the EBV infection. Overwhelming evidence indicates that an upregulation of immune-checkpoint molecules is a powerful strategy employed by the EBV to escape immune surveillance. While previous studies have mainly focused on the therapeutic effects of PD-1 and CTLA-4 blockades in treating EBV-associated tumors, several novel inhibitory receptors (e.g., CD47, LAG-3, TIM-3, VISTA, and DDR1) have recently been identified as potential targets for treating EBV-associated malignancies (EBVaMs). This review retrospectively summarizes the biological mechanisms used for immune checkpoint evasion in EBV-associated tumors. Its purpose is to update our current knowledge concerning the underlying mechanisms by which an immune checkpoint blockade triggers host antitumor immunity against EBVaMs. Additionally, this review may help investigators to more fully understand the correlation between EBV infection and tumor development and subsequently develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjing Li
- The First Class Ward 2 of the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinglong Zheng
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yinlong Ren
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lijun Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
45
|
Kim D, Kim G, Yu R, Lee J, Kim S, Gleason MR, Qiu K, Montauti E, Wang LL, Fang D, Choi J, Chandel NS, Weinberg S, Min B. Inhibitory co-receptor Lag3 supports Foxp3 + regulatory T cell function by restraining Myc-dependent metabolic programming. Immunity 2024; 57:2634-2650.e5. [PMID: 39236718 DOI: 10.1016/j.immuni.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Lymphocyte activation gene 3 (Lag3) is an inhibitory co-receptor expressed on activated T cells and has been proposed to regulate regulatory T (Treg) cell function. However, its precise modality and mechanisms remain elusive. We generated Treg cell-specific Lag3-mutant mouse models and found that Lag3 was essential for Treg cell control of autoimmunity. RNA sequencing analysis revealed that Lag3 mutation altered genes associated with metabolic processes, especially Myc target genes. Myc expression in Lag3-mutant Treg cells was increased to the level seen in conventional T helper (Th)1-type effector cells and directly correlated with their metabolic profiles and in vivo suppressive functions. The phosphatidylinositol 3-kinase (PI3K)-Akt-Rictor pathway was activated in Lag3-mutant Treg cells, and inhibiting PI3K, Rictor, or lactate dehydrogenase A (Ldha), a key Myc target enzyme converting pyruvate to lactate, was sufficient to restore normal metabolism and suppressive function in Lag3-mutant Treg cells. These findings indicate that Lag3 supports Treg cell suppression partly by tuning Myc-dependent metabolic programming.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Giha Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rongzhen Yu
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juyeun Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mia R Gleason
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Samuel Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
46
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Gao M, Skolnick J. Predicting protein interactions of the kinase Lck critical to T cell modulation. Structure 2024; 32:2168-2179.e2. [PMID: 39368461 PMCID: PMC11560573 DOI: 10.1016/j.str.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 10/07/2024]
Abstract
Protein-protein interactions (PPIs) play pivotal roles in directing T cell fate. One key player is the non-receptor tyrosine protein kinase Lck that helps to transduce T cell activation signals. Lck is mediated by other proteins via interactions that are inadequately understood. Here, we use the deep learning method AF2Complex to predict PPIs involving Lck, by screening it against ∼1,000 proteins implicated in immune responses, followed by extensive structural modeling for selected interactions. Remarkably, we describe how Lck may be specifically targeted by a palmitoyltransferase using a phosphotyrosine motif. We uncover "hotspot" interactions between Lck and the tyrosine phosphatase CD45, leading to a significant conformational shift of Lck for activation. Lastly, we present intriguing interactions between the phosphotyrosine-binding domain of Lck and the cytoplasmic tail of the immune checkpoint LAG3 and propose a molecular mechanism for its inhibitory role. Together, this multifaceted study provides valuable insights into T cell regulation and signaling.
Collapse
Affiliation(s)
- Mu Gao
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; AgnistaBio Inc, Palo Alto, CA 94301, USA.
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
48
|
Swede H, Ridwan SM, Strandberg J, Salner AL, Sporn JR, Kuo L, Ru K, Smilowitz HM. Baseline sLAG-3 levels in Caucasian and African-American breast cancer patients. Breast Cancer Res Treat 2024; 208:193-200. [PMID: 39230627 DOI: 10.1007/s10549-024-07455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Worse survival persists for African-Americans (AA) with breast cancer compared to other race/ethnic groups despite recent improvements for all. Unstudied in outcomes disparities to date is soluble LAG-3 (sLAG-3), cleaved from the LAG-3 immune checkpoint receptor which is a proposed target for deactivation in emerging immunotherapies due to its prominent immunosuppressive function in the tumoral microenvironment. A prior study has found that lower sLAG-3 baseline level was associated with poor outcomes. METHODS In a cross-sectional study of 95 patients with primary breast cancer (n = 58 Caucasian, n = 37 AA), we measured sLAG-3 (ELISA pg/ml) in pre-treatment blood samples using the non-parametric Mann-Whitney u-Test for independent samples, and, calculated Pearson r correlation coefficients of sLAG-3 with circulating cytokines by race. RESULTS Mean sLAG-3 level was lower in AA compared to Caucasian patients (1377.6 vs 3690.3, P = .002), and in patients with triple-negative breast cancer (TNBC) compared to those with non-TNBC malignancies (P = .02). When patients with TNBC tumors were excluded from analyses, the difference in sLAG-3 level between AA (n = 21) and Caucasian patients (n = 40) substantially remained (1937.4 vs 4182.4, P = .06). Among Caucasian patients, sLAG-3 was correlated with IL-6, IL-8 and IL-10 (r = .69, P < .001; r = .70, P < .001; and, r = .46, P = .01; respectively). For AA patients, sLAG-3 was correlated only with IL-6 (r = .37, P = .03). CONCLUSIONS We present the first report that African-American breast cancer patients might have comparatively low pre-treatment sLAG-3 levels, independent of TNBC status, along with reduced co-expression with circulating cytokines. The mechanistic and prognostic role of cleaved LAG-3, particularly in disparate outcomes, remains to be elucidated.
Collapse
Affiliation(s)
- Helen Swede
- Department of Public Health Sciences, University of Connecticut Health, Farmington, CT, USA
| | - Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Jillian Strandberg
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Andrew L Salner
- Cancer Center, Hartford Hospital, Hartford HealthCare, Hartford, CT, USA
| | - Jonathan R Sporn
- Yale Smilow Cancer Program, Saint Francis Hospital, Hartford, CT, USA
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, Storrs, CT, USA
| | - Karen Ru
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA
| | - Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health, 263 Farmington Avenue, Farmington, CT, 06030, USA.
| |
Collapse
|
49
|
Ademe M, Osorio Y, Fikre H, Adane D, Mulaw T, Travi BL, Howe R, Hailu A, Abebe T, Melby PC. T-cell and Soluble Co-inhibitory Receptor Expression in Patients With Visceral Leishmaniasis Are Markers of Treatment Response and Clinical Outcome. Open Forum Infect Dis 2024; 11:ofae649. [PMID: 39564149 PMCID: PMC11574617 DOI: 10.1093/ofid/ofae649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Background Co-inhibitory receptors (immune checkpoints) regulate activated immune cells. Their expression on T cells can limit host defense. We hypothesized that chronic Leishmania donovani infection in patients with visceral leishmaniasis (VL) leads to expression of co-inhibitory receptors that could be markers of treatment response and clinical outcome. Method A prospective cohort of 21 subjects with VL (7 with HIV coinfection) and 10 controls was established to measure T-cell expression of co-inhibitory receptors (PD-1, Tim-3, LAG-3, CTLA-4, and TIGIT) by flow cytometry in discarded remnants of diagnostic splenic or bone marrow aspirates and peripheral blood collected before and after treatment. Plasma levels of soluble co-inhibitory proteins (sPD-1, sTim-3, sLAG-3, and sCTLA-4) and selected cytokines were determined by immunoassay. Results Expression of co-inhibitory receptors in peripheral blood T cells generally reflected findings in spleen and bone marrow aspirates. PD-1 and Tim-3 were upregulated in CD4+ T cells in HIV-negative and HIV-positive subjects with VL compared to controls. CD8+ T cells from HIV-negative subjects with VL displayed a similar pattern. Plasma levels of sPD-1 and sTim-3 were also greater in VL patients than controls. CD8+ and CD4+ T cells coexpressing PD-1 and Tim-3 showed considerable decline with treatment. Mortality in HIV-negative VL patients was associated with increased CD8+ T cells coexpressing Tim-3 and PD-1, triple-positive CD4+ and CD8+ T cells (PD-1+Tim-3+LAG-3+), and elevated sLAG3. Conclusions Tim-3 and PD-1 expression on CD4+ and CD8+ T cells, and increased plasma sLAG-3, were markers of treatment response and clinical outcome in patients with VL.
Collapse
Affiliation(s)
- Muluneh Ademe
- Department of Microbiology, Immunology & Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yaneth Osorio
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Helina Fikre
- Leishmaniasis Research and Treatment Center, University of Gondar, Gondar, Ethiopia
| | - Desalegn Adane
- Leishmaniasis Research and Treatment Center, University of Gondar, Gondar, Ethiopia
| | - Tadele Mulaw
- Leishmaniasis Research and Treatment Center, University of Gondar, Gondar, Ethiopia
| | - Bruno L Travi
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rawliegh Howe
- Aramuer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Asrat Hailu
- Department of Microbiology, Immunology & Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamrat Abebe
- Department of Microbiology, Immunology & Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Peter C Melby
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
50
|
Novysedlak R, Guney M, Al Khouri M, Bartolini R, Koumbas Foley L, Benesova I, Ozaniak A, Novak V, Vesely S, Pacas P, Buchler T, Ozaniak Strizova Z. The Immune Microenvironment in Prostate Cancer: A Comprehensive Review. Oncology 2024:1-25. [PMID: 39380471 DOI: 10.1159/000541881] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Prostate cancer (PCa) is a malignancy with significant immunosuppressive properties and limited immune activation. This immunosuppression is linked to reduced cytotoxic T cell activity, impaired antigen presentation, and elevated levels of immunosuppressive cytokines and immune checkpoint molecules. Studies demonstrate that cytotoxic CD8+ T cell infiltration correlates with improved survival, while increased regulatory T cells (Tregs) and tumor-associated macrophages (TAMs) are associated with worse outcomes and therapeutic resistance. Th1 cells are beneficial, whereas Th17 cells, producing interleukin-17 (IL-17), contribute to tumor progression. Tumor-associated neutrophils (TANs) and immune checkpoint molecules, such as PD-1/PD-L1 and T cell immunoglobulin-3 (TIM-3) are also linked to advanced stages of PCa. Chemotherapy holds promise in converting the "cold" tumor microenvironment (TME) to a "hot" one by depleting immunosuppressive cells and enhancing tumor immunogenicity. SUMMARY This comprehensive review examines the immune microenvironment in PCa, focusing on the intricate interactions between immune and tumor cells in the TME. It highlights how TAMs, Tregs, cytotoxic T cells, and other immune cell types contribute to tumor progression or suppression and how PCa's low immunogenicity complicates immunotherapy. KEY MESSAGES The infiltration of cytotoxic CD8+ T cells and Th1 cells correlates with better outcomes, while elevated T regs and TAMs promote tumor growth, metastasis, and resistance. TANs and natural killer (NK) cells exhibit dual roles, with higher NK cell levels linked to better prognoses. Immune checkpoint molecules like PD-1, PD-L1, and TIM-3 are associated with advanced disease. Chemotherapy can improve tumor immunogenicity by depleting T regs and myeloid-derived suppressor cells, offering therapeutic promise.
Collapse
Affiliation(s)
- Rene Novysedlak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Miray Guney
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Majd Al Khouri
- Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Robin Bartolini
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Lily Koumbas Foley
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Iva Benesova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Andrej Ozaniak
- Third Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Vojtech Novak
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Stepan Vesely
- Department of Urology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Pavel Pacas
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| | - Zuzana Ozaniak Strizova
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czechia
| |
Collapse
|