1
|
Li H, Chatla S, Liu X, Tian Z, Vekariya U, Wang P, Kim D, Octaviani S, Lian Z, Morton G, Feng Z, Yang D, Sullivan-Reed K, Childers W, Yu X, Chitrala KN, Madzo J, Skorski T, Huang J. ZNF251 haploinsufficiency confers PARP inhibitors resistance in BRCA1-mutated cancer cells through activation of homologous recombination. Cancer Lett 2025; 613:217505. [PMID: 39892701 DOI: 10.1016/j.canlet.2025.217505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) represent a promising new class of agents that have demonstrated efficacy in treating various cancers, particularly those with BRCA1/2 mutations. Cancer-associated BRCA1/2 mutations disrupt DNA double-strand break (DSB) repair via homologous recombination (HR). PARP inhibitors (PARPis) have been used to trigger synthetic lethality in BRCA1/2-mutated cancer cells by promoting the accumulation of toxic DSBs. Unfortunately, resistance to PARPis is common and can occur through multiple mechanisms, including the restoration of HR and/or stabilization of replication forks. To gain a better understanding of the mechanisms underlying PARPis resistance, we conducted an unbiased CRISPR-pooled genome-wide library screen to identify new genes whose deficiency confers resistance to the PARPi olaparib. Our research revealed that haploinsufficiency of the ZNF251 gene, which encodes zinc finger protein 251, is associated with resistance to PARPis in various breast and ovarian cancer cell lines carrying BRCA1 mutations. Mechanistically, we discovered that ZNF251 haploinsufficiency leads to stimulation of RAD51-mediated HR repair of DSBs in olaparib-treated BRCA1-mutated cancer cells. Moreover, we demonstrated that a RAD51 inhibitor reversed PARPi resistance in ZNF251 haploinsufficient cancer cells harboring BRCA1 mutations. Our findings provide important insights into the mechanisms underlying PARPis resistance by highlighting the role of RAD51 in this phenomenon.
Collapse
Affiliation(s)
- Huan Li
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xiaolei Liu
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Zhen Tian
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Peng Wang
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Dongwook Kim
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Stacia Octaviani
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Zhaorui Lian
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - George Morton
- Moulder Center for Drug Discovery Research, School of Pharmacy, Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA, United States
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Dan Yang
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Wayne Childers
- Moulder Center for Drug Discovery Research, School of Pharmacy, Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA, United States
| | - Xiang Yu
- Shanghai Jiao Tong University, School of Life Science and Biotechnology, Shanghai, PR China
| | - Kumaraswamy Naidu Chitrala
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jozef Madzo
- Coriell Institute for Medical Research, Camden, NJ, United States
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States; Nuclear Dynamics Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, United States.
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, NJ, United States; Temple University Lewis Katz School of Medicine, Center for Metabolic Disease Research, Philadelphia, PA, United States; Cooper Medical School of Rowan University, Camden, NJ, United States.
| |
Collapse
|
2
|
Gutierrez DA, Llano M. NF-κB-Driven HIV-1 Gene Expression in Human Cells Is Independent of Poly(ADP-ribose) polymerase-1 Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642491. [PMID: 40161754 PMCID: PMC11952441 DOI: 10.1101/2025.03.10.642491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The cellular enzyme poly (ADP-ribose) polymerase-1 (PARP-1) is required for NF-κB to activate inflammatory and immune response gene expression. NF-κB is also an important transcription factor in HIV-1 gene expression during active replication and latency reactivation. Therefore, enhancing NF-κB signaling is an alternative for HIV-1 latency reactivation, but significant systemic side effects related to the NF-κB role in inflammatory and immune responses are predictable. To verify this prediction, we determined whether PARP-1 is required in NF-κB-dependent HIV-1 gene expression in a human CD4+ T lymphoblastoid cell line (SUP-T1) and HEK 293T cells. Our findings indicated that PARP-1 knockout does not impair HIV-1 infection or gene expression. Specifically, NF-κB-dependent HIV-1 gene expression was not impaired by PARP-1 deficiency, highlighting an important transcriptional regulatory difference between HIV-1 and inflammatory and immune activation genes. Our findings define a negligible role of PARP-1 in HIV-1 gene expression, suggesting that PARP-1 antagonism could ameliorate the expected inflammatory response with latency-reactivating agents that act through the NF-κB signaling pathway. Importance PARP-1 is required for NF-κB to activate the expression of inflammatory and immune response genes. NF-κB is also an important transcription factor in HIV-1 gene expression during active replication and latency reactivation. Enhancing NF-κB signaling is expected to cause HIV-1 latency reactivation, but significant systemic side effects related to the NF-κB role in inflammatory and immune responses are predictable. The role of PARP-1 in NF-κB-mediated activation of HIV-1 gene expression and in viral infection has not been determined in the context of HIV-1 infection of CD4+ T cells. Our data indicate that PARP-1 is dispensable for NF-κB-mediated activation of HIV-1 gene expression in a human CD4+ T lymphoblastoid cell line. These findings suggest that the pharmacological antagonism of PARP-1 could diminish the inflammatory effects of latency-reactivating agents that activate NF-κB signaling without impairing their effect on HIV-1 gene expression.
Collapse
|
3
|
Wu Y, Zeng Y, Wu Y, Ha X, Feng Z, Liu C, Liu Z, Wang J, Ju X, Huang S, Liang L, Zheng B, Yang L, Wang J, Wu X, Li S, Wen H. HIF-1α-induced long noncoding RNA LINC02776 promotes drug resistance of ovarian cancer by increasing polyADP-ribosylation. Clin Transl Med 2025; 15:e70244. [PMID: 40118782 PMCID: PMC11928293 DOI: 10.1002/ctm2.70244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 02/12/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Chemoresistance remains a major hurdle in ovarian cancer (OC) treatment, as many patients eventually develop resistance to platinum-based chemotherapy and/or PARP inhibitors (PARPi). METHODS We performed transcriptome-wide analysis by RNA sequencing (RNA-seq) data of platinum-resistant and -sensitive OC tissues. We demonstrated the role of LINC02776 in platinum resistance in OC cells, mice models and patient-derived organoid (PDO) models. RESULTS We identify the long noncoding RNA LINC02776 as a critical factor of platinum resistance. Elevated expression of LINC02776 is observed in platinum-resistant OC and serves as an independent prognostic factor for OC patients. Functionally, silencing LINC02776 reduces proliferation and DNA damage repair in OC cells, thereby enhancing sensitivity to platinum and PARPi in both xenograft mouse models and patient-derived organoid (PDO) models with acquired chemoresistance. Mechanistically, LINC02776 binds to the catalytic domain of poly (ADP-ribose) polymerase 1 (PARP1), promoting PARP1-dependent polyADP-ribosylation (PARylation) and facilitating homologous recombination (HR) restoration. Additionally, high HIF-1α expression in platinum-resistant tissues further stimulates LINC02776 transcription. CONCLUSIONS Our findings suggest that targeting LINC02776 represents a promising therapeutic strategy for OC patients who have developed resistance to platinum or PARPi. KEY POINTS LINC02776 promotes OC cell proliferation by regulating DNA damage and apoptosis signaling pathways. LINC02776 binds PARP1 to promote DNA damage-triggered PARylation in OC cells. LINC02776 mediates cisplatin and olaparib resistance in OC cells by enhancing PARP1-mediated PARylation activity and regulating the PARP1-mediated HR pathway. The high expression of LINC02776 is induced by HIF-1α in platinum-resistant OC cells and tissues.
Collapse
Affiliation(s)
- Yangjun Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Yu Zeng
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic DiseasesShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yong Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xinyu Ha
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Zheng Feng
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Chaohua Liu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Ziqi Liu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Jiajia Wang
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Xingzhu Ju
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shenglin Huang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
| | - Linhui Liang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical SciencesFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
| | - Bin Zheng
- Accurate International Biotechnology Co. Ltd.GuangzhouChina
| | - Lulu Yang
- Wuhan Benagen Technology Co., LtdWuhanChina
| | - Jun Wang
- Wuhan Benagen Technology Co., LtdWuhanChina
| | - Xiaohua Wu
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| | - Shengli Li
- Precision Research Center for Refractory Diseases and Shanghai Key Laboratory of Pancreatic DiseasesShanghai General Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Wen
- Department of Gynecologic OncologyFudan University Shanghai Cancer Center, Fudan UniversityShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
4
|
Shanmugam N, Chatterjee S, Cisneros GA. Impact of a Cancer-Associated Mutation on Poly(ADP-ribose) Polymerase1 Inhibition. J Phys Chem B 2025; 129:2175-2186. [PMID: 39962867 DOI: 10.1021/acs.jpcb.4c07960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Poly(ADP-ribose) polymerase1 (PARP1) plays a vital role in DNA repair, and its inhibition in cancer cells may cause cell apoptosis. In this study, we investigated the effects of a PARP1 variant, V762A, which is strongly associated with several cancers in humans, on the inhibition of PARP1 by three FDA-approved inhibitors: niraparib, rucaparib, and talazoparib. Specifically, we compared the inhibition of the mutant to that of wild-type (WT) PARP1. Additionally, we investigated how the mutation influences the binding of these inhibitors to PARP1. Our work suggests that while mutant PARP1 exhibits only minor differences in residual fluctuations, backbone deviations, and residue motion correlations compared to the WT under niraparib and rucaparib inhibitions, it shows significant and distinct differences in these features when inhibited by talazoparib. Among the three inhibitions, talazoparib inhibition uniquely lowers the average residue fluctuations in the mutant than the WT including lower fluctuations of mutant's N- and C-terminal residues in the catalytic domain, conserved H-Y-E traid residues, and donor loop (D-loop) residues which are important for catalysis more effectively than other inhibitions. However, talazoparib also significantly enhances destabilizing interactions between the mutation site in the HD domain in the mutant than WT. Further, among the three inhibitions, talazoparib inhibition uniquely and significantly disrupts the functional fluctuations of terminal regions in the mutant, which are otherwise present in the WT. The mutation and inhibition do not significantly affect PARP1's essential dynamics. Lastly, these inhibitors bind to the V762A mutant more effectively than to the WT, with similar binding free energies between them.
Collapse
Affiliation(s)
- Neel Shanmugam
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| | - Shubham Chatterjee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
5
|
Hussain M, Khadka P, Pekhale K, Kulikowicz T, Gray S, May A, Croteau DL, Bohr VA. RECQL4 requires PARP1 for recruitment to DNA damage, and PARG dePARylation facilitates its associated role in end joining. Exp Mol Med 2025; 57:264-280. [PMID: 39870799 PMCID: PMC11799438 DOI: 10.1038/s12276-024-01383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 01/29/2025] Open
Abstract
RecQ helicases, highly conserved proteins with pivotal roles in DNA replication, DNA repair and homologous recombination, are crucial for maintaining genomic integrity. Mutations in RECQL4 have been associated with various human diseases, including Rothmund-Thomson syndrome. RECQL4 is involved in regulating major DNA repair pathways, such as homologous recombination and nonhomologous end joining (NHEJ). RECQL4 has more prominent single-strand DNA annealing activity than helicase activity. Its ability to promote DNA damage repair and the precise role of its DNA annealing activity in DNA repair are unclear. Here we demonstrate that PARP1 interacts with RECQL4, increasing its single-stranded DNA strand annealing activity. PARP1 specifically promoted RECQL4 PARylation at both its N- and C-terminal regions, promoting RECQL4 recruitment to DNA double-strand breaks (DSBs). Inhibition or depletion of PARP1 significantly diminished RECQL4 recruitment and occupancy at specific DSB sites on chromosomes. After DNA damage, PARG dePARylated RECQL4 and stimulated its end-joining activity. RECQL4 actively displaced replication protein A from single-stranded DNA, promoting microhomology annealing in vitro. Furthermore, depletion of PARP1 or RECQL4 substantially impacted classical-NHEJ- and alternative-NHEJ-mediated DSB repair. Consequently, the combined activities of PARP1, PARG and RECQL4 modulate DNA repair.
Collapse
Affiliation(s)
- Mansoor Hussain
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Prabhat Khadka
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Komal Pekhale
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tomasz Kulikowicz
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Samuel Gray
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Alfred May
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Deborah L Croteau
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Dept of ICMM, University of Copenhagen, Copenhagn, Denmark.
| |
Collapse
|
6
|
Tan JZC, Zhang Z, Goh HX, Ngeow J. BRCA and Beyond: Impact on Therapeutic Choices Across Cancer. Cancers (Basel) 2024; 17:8. [PMID: 39796639 PMCID: PMC11718952 DOI: 10.3390/cancers17010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Identifying patients with gBRCAm is crucial to facilitate screening strategies, preventive measures and the usage of targeted therapeutics in their management. This review examines the evidence for the latest predictive and therapeutic approaches in BRCA-associated cancers. CLINICAL DESCRIPTION Data supports the use of adjuvant olaparib in patients with gBRCAm high-risk HER2-negative breast cancer. In advanced gBRCAm HER2-negative breast cancer, the PARPis talazoparib and olaparib have demonstrated benefit over standard chemotherapy. In ovarian cancer, olaparib, niraparib or rucaparib can be used as monotherapy in frontline maintenance. Olaparib and bevacizumab as a combination can also be used as frontline maintenance. In the relapsed platinum-sensitive setting, olaparib, niraparib and rucaparib are effective maintenance options in BRCAm patients who are PARPi naive. Both olaparib and rucaparib are effective options in BRCAm metastatic castrate-resistant prostate cancer (mCRPC). Evidence also exists for the benefit of PARPi combinations in mCRPC. In metastatic pancreatic cancer, olaparib can be used in gBRCAm patients who are responding to platinum chemotherapy. However, there may be a development of PARPi resistance. Understanding the pathophysiology that contributes to such resistance may allow the development of novel therapeutics. Combination therapy appears to have promising results in emerging trials. Seeking avenues for subsidised genetic testing can reduce the total costs of cancer management, leading to improve detection rates. CONCLUSION Identifying breast, ovarian, pancreatic and prostate cancer patients with gBRCAm plays a crucial predictive role in selecting those who will benefit significantly from PARPi therapy. The use of PARPi in gBRCAm HBOC-related cancers has resulted in significant survival benefits. Beyond BRCA1/2, HRR gene assessment and the consideration of other cancer predisposition syndromes may allow more patients to be eligible for and benefit from targeted therapies.
Collapse
Affiliation(s)
- Joshua Zhi Chien Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (J.Z.C.T.); (Z.Z.)
| | - Zewen Zhang
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (J.Z.C.T.); (Z.Z.)
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
| | - Hui Xuan Goh
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (J.Z.C.T.); (Z.Z.)
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 11 Mandalay Rd, Singapore 308232, Singapore
| |
Collapse
|
7
|
Chaudhari PS, Ermolaeva MA. Too old for healthy aging? Exploring age limits of longevity treatments. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:37. [PMID: 39678297 PMCID: PMC11638076 DOI: 10.1038/s44324-024-00040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
It is well documented that aging elicits metabolic failures, while poor metabolism contributes to accelerated aging. Metabolism in general, and energy metabolism in particular are also effective entry points for interventions that extend lifespan and improve organ function during aging. In this review, we discuss common metabolic remedies for healthy aging from the angle of their potential age-specificity. We demonstrate that some well-known metabolic treatments are mostly effective in young and middle-aged organisms, while others maintain high efficacy independently of age. The mechanistic basis of presence or lack of the age limitations is laid out and discussed.
Collapse
Affiliation(s)
| | - Maria A. Ermolaeva
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
8
|
Schultz A, Albertos-Arranz H, Sáez XS, Morgan J, Darland DC, Gonzalez-Duarte A, Kaufmann H, Mendoza-Santiesteban CE, Cuenca N, Lefcort F. Neuronal and glial cell alterations involved in the retinal degeneration of the familial dysautonomia optic neuropathy. Glia 2024; 72:2268-2294. [PMID: 39228100 DOI: 10.1002/glia.24612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
Familial dysautonomia (FD) is a rare genetic neurodevelopmental and neurodegenerative disorder. In addition to the autonomic and peripheral sensory neuropathies that challenge patient survival, one of the most debilitating symptoms affecting patients' quality of life is progressive blindness resulting from the steady loss of retinal ganglion cells (RGCs). Within the FD community, there is a concerted effort to develop treatments to prevent the loss of RGCs. However, the mechanisms underlying the death of RGCs are not well understood. To study the mechanisms underlying RGC death, Pax6-cre;Elp1loxp/loxp male and female mice and postmortem retinal tissue from an FD patient were used to explore the neuronal and non-neuronal cellular pathology associated with the FD optic neuropathy. Neurons, astrocytes, microglia, Müller glia, and endothelial cells were investigated using a combination of histological analyses. We identified a novel disruption of cellular homeostasis and gliosis in the FD retina. Beginning shortly after birth and progressing with age, the FD retina is marked by astrogliosis and perturbations in microglia, which coincide with vascular remodeling. These changes begin before the onset of RGC death, suggesting alterations in the retinal neurovascular unit may contribute to and exacerbate RGC death. We reveal for the first time that the FD retina pathology includes reactive gliosis, increased microglial recruitment to the ganglion cell layer (GCL), disruptions in the deep and superficial vascular plexuses, and alterations in signaling pathways. These studies implicate the neurovascular unit as a disease-modifying target for therapeutic interventions in FD.
Collapse
Affiliation(s)
- Anastasia Schultz
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Henar Albertos-Arranz
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Xavier Sánchez Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Jamie Morgan
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Diane C Darland
- Department of Biology, University of North Dakota, Grand Forks, North Dakota, USA
| | | | - Horacio Kaufmann
- Department of Neurology, NYU Langone Health, New York, New York, USA
| | - Carlos E Mendoza-Santiesteban
- Department of Neurology, NYU Langone Health, New York, New York, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, Alicante, Spain
| | - Frances Lefcort
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
9
|
Pöstyéni E, Gábriel R, Kovács-Valasek A. Poly (ADP-Ribose) Polymerase-1 (PARP-1) Inhibitors in Diabetic Retinopathy: An Attractive but Elusive Choice for Drug Development. Pharmaceutics 2024; 16:1320. [PMID: 39458649 PMCID: PMC11510672 DOI: 10.3390/pharmaceutics16101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Owing to its promiscuous roles, poly (ADP-ribose) polymerase-1 (PARP-1) is involved in various neurological disorders including several retinal pathologies. Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus affecting the retina. In the present review, we highlight the importance of PARP-1 participation in pathophysiology of DR and discuss promising potential inhibitors for treatment. A high glucose level enhances PARP-1 expression; PARP inhibitors have gained attention due to their potential therapeutic effects in DR. They target different checkpoints (blocking nuclear transcription factor (NF-κB) activation; oxidative stress protection, influence on vascular endothelial growth factor (VEGF) expression, impacting neovascularization). Nowadays, there are several improved clinical PARP-1 inhibitors with different allosteric effects. Combining PARP-1 inhibitors with other compounds is another promising option in DR treatments. Besides pharmacological inhibition, genetic disruption of the PARP-1 gene is another approach in PARP-1-initiated therapies. In terms of future treatments, the limitations of single-target approaches shift the focus onto combined therapies. We emphasize the importance of multi-targeted therapies, which could be effective not only in DR, but also in other ischemic conditions.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary; (E.P.); (A.K.-V.)
| | - Róbert Gábriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary; (E.P.); (A.K.-V.)
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Ifjúság útja 6, 7624 Pécs, Hungary; (E.P.); (A.K.-V.)
- János Szentágothai Research Centre, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
10
|
Zhang J, Chen Y, Gong X, Yang Y, Gu Y, Huang L, Fu J, Zhao M, Huang Y, Li L, Liu W, Wan Y, He X, Ma Z, Zhao W, Zhang M, Tang T, Wang Y, Thiery JP, Zheng X, Chen L. GATA factor TRPS1, a new DNA repair protein, cooperates with reversible PARylation to promote chemoresistance in patients with breast cancer. J Biol Chem 2024; 300:107780. [PMID: 39276941 PMCID: PMC11490888 DOI: 10.1016/j.jbc.2024.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024] Open
Abstract
Resistance to DNA-damaging agents is a major unsolved challenge for breast cancer patients undergoing chemotherapy. Here, we show that elevated expression of transcriptional repressor GATA binding 1 (TRPS1) is associated with lower drug sensitivity, reduced response rate, and poor prognosis in chemotherapy-treated breast cancer patients. Mechanistically, elevated TRPS1 expression promotes hyperactivity of DNA damage repair (DDR) in breast cancer cells. We provide evidence that TRPS1 dynamically localizes to DNA breaks in a Ku70-and Ku80-dependent manner and that TRPS1 is a new member of the DDR protein family. We also discover that the dynamics of TRPS1 assembly at DNA breaks is regulated by its reversible PARylation in the DDR, and that mutations of the PARylation sites on TRPS1 lead to increased sensitivity to chemotherapeutic drugs. Taken together, our findings provide new mechanistic insights into the DDR and chemoresistance in breast cancer patients and identify TRPS1 as a critical DDR protein. TRPS1 may also be considered as a target to improve chemo-sensitization strategies and, consequently, clinical outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yatao Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xue Gong
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China; Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Yongfeng Yang
- State Key Lab of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Yun Gu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Ling Huang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jianfeng Fu
- State Key Lab of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Menglu Zhao
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yehong Huang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lulu Li
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenzhuo Liu
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yajie Wan
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xilin He
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhifang Ma
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China; Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Weiyong Zhao
- Department of Radiation Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng Zhang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Tao Tang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuzhi Wang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China
| | | | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, China; Jiangsu Institute of Cancer Research, Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Jiang J, Yang P, Xu X, Yuan H, Zhu H. Donafenib inhibits PARP1 expression and induces DNA damage, in combination with PARP1 inhibitors promotes apoptosis in liver cancer cells. Anticancer Drugs 2024; 35:789-805. [PMID: 38940933 DOI: 10.1097/cad.0000000000001631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Liver cancer is a prevalent malignant tumor globally. The newly approved first-line drug, donafenib, is a novel oral small molecule multi-tyrosine kinase inhibitor that has significant antitumor effects on liver cancer. This study aims to investigate the antitumor effects of donafenib on liver cancer and to explore its potential mechanisms. Donafenib significantly inhibited the viability of Huh-7 and HCCLM3 cells, inhibited malignant cell proliferation, and promoted cell apoptosis, as demonstrated by CCK-8, EdU, and Calcein/PI (propidium iodide) staining experiments. The results of DNA damage detection experiments and western blot analysis indicate that donafenib caused considerable DNA damage in liver cancer cells. The analysis of poly (ADP-ribose) polymerase 1 (PARP1) in liver cancer patients using online bioinformatics data websites such as TIMER2.0, GEPIA, UALCAN, cBioPortal, Kaplan-Meier Plotter, and HPA revealed a high expression of PARP1, which is associated with poor prognosis. Molecular docking and western blot analysis demonstrated that donafenib can directly target and downregulate the protein expression of PARP1, a DNA damage repair protein, thereby promoting DNA damage in liver cancer cells. Western blot and immunofluorescence detection showed that the group treated with donafenib combined with PARP1 inhibitor had significantly higher expression of γ-H2AX and 8-OHdG compared to the groups treated with donafenib or PARP1 inhibitors alone, the combined treatment suppresses the expression of the antiapoptotic protein Bcl2 and enhances the protein expression level of the proapoptotic protein Bcl-2-associated X protein (BAX). These data suggest that the combination of donafenib and a PARP1 inhibitor results in more significant DNA damage in cells and promotes cell apoptosis. Thus, the combination of donafenib and PARP1 inhibitors has the potential to be a treatment option for liver cancer.
Collapse
Affiliation(s)
| | - Pingping Yang
- Department of Laboratory Medicine, People's Hospital of Qiannan Prefecture, Guizhou
| | - Xinyu Xu
- School of Clinical Medicine, Guizhou Medical University
| | - Huixiong Yuan
- Affiliated Hospital of Youjiang Medical University for Nationalities; Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Guangxi
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou, China
| |
Collapse
|
12
|
Ouararhni K, Mietton F, Sabir JSM, Ibrahim A, Molla A, Albheyri RS, Zari AT, Bahieldin A, Menoni H, Bronner C, Dimitrov S, Hamiche A. Identification of a novel DNA oxidative damage repair pathway, requiring the ubiquitination of the histone variant macroH2A1.1. BMC Biol 2024; 22:188. [PMID: 39218869 PMCID: PMC11368025 DOI: 10.1186/s12915-024-01987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. RESULTS Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. CONCLUSIONS Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.
Collapse
Affiliation(s)
- Khalid Ouararhni
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
| | - Flore Mietton
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Jamal S M Sabir
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulkhaleg Ibrahim
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
- National Research Centre for Tropical and Transboundary Diseases (NRCTTD), Alzentan, 99316, Libya
| | - Annie Molla
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Raed S Albheyri
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ali T Zari
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Bahieldin
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hervé Menoni
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France
| | - Christian Bronner
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France
| | - Stefan Dimitrov
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000, Grenoble, France.
- Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Ali Hamiche
- Département de Génomique Fonctionnelle Et Cancer, Institut de Génétique Et Biologie Moléculaire Et Cellulaire (IGBMC), Université de Strasbourg/CNRS/INSERM, Equipe Labellisée La Ligue Nationale Contre Le Cancer, 67404, Illkirch Cedex, France.
| |
Collapse
|
13
|
Feltes BC, Alvares LDO. PARP1 in the intersection of different DNA repair pathways, memory formation, and sleep pressure in neurons. J Neurochem 2024; 168:2351-2362. [PMID: 38750651 DOI: 10.1111/jnc.16131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/10/2024] [Accepted: 05/04/2024] [Indexed: 10/04/2024]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) is a bottleneck that connects different DNA pathways during a DNA damage response. Interestingly, PARP1 has a dualist role in neurons, acting as a neuroprotector and inducer of cell death in distinct neurological diseases. Recent studies significantly expanded our knowledge of how PARP1 regulates repair pathways in neurons and uncovered new roles for PARP1 in promoting sleep to enhance DNA repair. Likewise, PARP1 is deeply associated with memory consolidation, implying that it has multiple layers of regulation in the neural tissue. In this review, we critically discuss PARP1 recent advances in neurons, focusing on its interplay with different DNA repair mechanisms, memory, and sleep. Provocative questions about how oxidative damage is accessed, and different hypotheses about the molecular mechanisms influenced by PARP1 in neurons are presented to expand the debate of future studies.
Collapse
Affiliation(s)
- Bruno César Feltes
- Department of Biophysics, Institute of BiosciencesFederal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Lucas de Oliveira Alvares
- Department of Biophysics, Institute of BiosciencesFederal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Huang M, Zhu X, Wang C, He L, Li L, Wang H, Fan G, Wang Y. PINX1 loss confers susceptibility to PARP inhibition in pan-cancer cells. Cell Death Dis 2024; 15:610. [PMID: 39174499 PMCID: PMC11341912 DOI: 10.1038/s41419-024-07009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
PARP1 is crucial in DNA damage repair, chromatin remodeling, and transcriptional regulation. The principle of synthetic lethality has effectively guided the application of PARP inhibitors in treating tumors carrying BRCA1/2 mutations. Meanwhile, PARP inhibitors have exhibited efficacy in BRCA-proficient patients, further highlighting the necessity for a deeper understanding of PARP1 function and its inhibition in cancer therapy. Here, we unveil PIN2/TRF1-interacting telomerase inhibitor 1 (PINX1) as an uncharacterized PARP1-interacting protein that synergizes with PARP inhibitors upon its depletion across various cancer cell lines. Loss of PINX1 compromises DNA damage repair capacity upon etoposide treatment. The vulnerability of PINX1-deficient cells to etoposide and PARP inhibitors could be effectively restored by introducing either a full-length or a mutant form of PINX1 lacking telomerase inhibitory activity. Mechanistically, PINX1 is recruited to DNA lesions through binding to the ZnF3-BRCT domain of PARP1, facilitating the downstream recruitment of the DNA repair factor XRCC1. In the absence of DNA damage, PINX1 constitutively binds to PARP1, promoting PARP1-chromatin association and transcription of specific DNA damage repair proteins, including XRCC1, and transcriptional regulators, including GLIS3. Collectively, our findings identify PINX1 as a multifaceted partner of PARP1, crucial for safeguarding cells against genotoxic stress and emerging as a potential candidate for targeted tumor therapy.
Collapse
Affiliation(s)
- Mei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Liying He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
| | - Yu Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
15
|
Jeong KY, Kang JH. Poly (ADP-ribose): A double-edged sword governing cancer cell survival and death. World J Clin Oncol 2024; 15:806-810. [PMID: 39071462 PMCID: PMC11271724 DOI: 10.5306/wjco.v15.i7.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Poly (ADP-ribose) (PAR), a polymer of ADP-ribose, is synthesized by PAR polymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications. Beyond its supportive role, PAR also triggers cancer cell death by excessive accumulation of PAR leading to an energy crisis and parthanatos. This phenomenon underscores the potential of targeting PAR regulation as a novel anticancer strategy, and the rationale would present an engaging topic in the field of anticancer research. Therefore, this editorial provides an overview of the mechanisms determining cancer cell fate, emphasizing the central role of PAR. It further introduces promising methods for modulating PAR concentrations that may pave the way for innovative anticancer therapies.
Collapse
Affiliation(s)
| | - Ji-Hyuk Kang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Daejeon University, Daejeon 34520, South Korea
| |
Collapse
|
16
|
Pan W, Tsokos MG, Scherlinger M, Li W, Tsokos GC. The PP2A regulatory subunit PPP2R2A controls NAD + biosynthesis to regulate T cell subset differentiation in systemic autoimmunity. Cell Rep 2024; 43:114379. [PMID: 38889006 PMCID: PMC11414414 DOI: 10.1016/j.celrep.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The protein phosphatase 2A (PP2A) regulatory subunit PPP2R2A is involved in the regulation of immune response. We report that lupus-prone mice with T cells deficient in PPP2R2A display less autoimmunity and nephritis. PPP2R2A deficiency promotes NAD+ biosynthesis through the nicotinamide riboside (NR)-directed salvage pathway in T cells. NR inhibits murine Th17 and promotes Treg cell differentiation, in vitro, by PΑRylating histone H1.2 and causing its reduced occupancy in the Foxp3 loci and increased occupancy in the Il17a loci, leading to increased Foxp3 and decreased Il17a transcription. NR treatment suppresses disease in MRL.lpr mice and restores NAD+-dependent poly [ADP-ribose] polymerase 1 (PARP1) activity in CD4 T cells from patients with systemic lupus erythematosus (SLE), while reducing interferon (IFN)-γ and interleukin (IL)-17 production. We conclude that PPP2R2A controls the level of NAD+ through the NR-directed salvage pathway and promotes systemic autoimmunity. Translationally, NR suppresses lupus nephritis in mice and limits the production of proinflammatory cytokines by SLE T cells.
Collapse
Affiliation(s)
- Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Marc Scherlinger
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Rheumatology Department, Strasbourg University Hospital of Hautepierre, Strasbourg, France
| | - Wei Li
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Wang R, Xu Q, Wu Z, Li J, Guo H, Liao T, Shi Y, Yuan L, Gao H, Yang R, Shi Z, Li F. The structural basis of the activation and inhibition of DSR2 NADase by phage proteins. Nat Commun 2024; 15:6185. [PMID: 39039073 PMCID: PMC11263360 DOI: 10.1038/s41467-024-50410-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024] Open
Abstract
DSR2, a Sir2 domain-containing protein, protects bacteria from phage infection by hydrolyzing NAD+. The enzymatic activity of DSR2 is triggered by the SPR phage tail tube protein (TTP), while suppressed by the SPbeta phage-encoded DSAD1 protein, enabling phages to evade the host defense. However, the molecular mechanisms of activation and inhibition of DSR2 remain elusive. Here, we report the cryo-EM structures of apo DSR2, DSR2-TTP-NAD+ and DSR2-DSAD1 complexes. DSR2 assembles into a head-to-head tetramer mediated by its Sir2 domain. The C-terminal helical regions of DSR2 constitute four partner-binding cavities with opened and closed conformation. Two TTP molecules bind to two of the four C-terminal cavities, inducing conformational change of Sir2 domain to activate DSR2. Furthermore, DSAD1 competes with the activator for binding to the C-terminal cavity of DSR2, effectively suppressing its enzymatic activity. Our results provide the mechanistic insights into the DSR2-mediated anti-phage defense system and DSAD1-dependent phage immune evasion.
Collapse
Affiliation(s)
- Ruiwen Wang
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qi Xu
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Zhuoxi Wu
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jialu Li
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Hao Guo
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tianzhui Liao
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuan Shi
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Ling Yuan
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haishan Gao
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| | - Rong Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Zhubing Shi
- Zhejiang Key Laboratory of Structural Biology, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Faxiang Li
- MOE Key Laboratory of Rare Pediatric Diseases, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Gusdon AM, Savarraj JPJ, Feng D, Starkman A, Li G, Bodanapally U, Zimmerman W, Ryan AS, Choi HA, Badjatia N. Identification of metabolites associated with preserved muscle volume after aneurysmal subarachnoid hemorrhage due to high protein supplementation and neuromuscular electrical stimulation. Sci Rep 2024; 14:15071. [PMID: 38956192 PMCID: PMC11219968 DOI: 10.1038/s41598-024-64666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The INSPIRE randomized clinical trial demonstrated that a high protein diet (HPRO) combined with neuromuscular electrical stimulation (NMES) attenuates muscle atrophy and may improve outcomes after aneurysmal subarachnoid hemorrhage We sought to identify specific metabolites mediating these effects. Blood samples were collected from subjects on admission prior to randomization to either standard of care (SOC; N = 12) or HPRO + NMES (N = 12) and at 7 days. Untargeted metabolomics were performed for each plasma sample. Sparse partial least squared discriminant analysis identified metabolites differentiating each group. Correlation coefficients were calculated between each metabolite and total protein per day and muscle volume. Multivariable models determined associations between metabolites and muscle volume. Unique metabolites (18) were identified differentiating SOC from HPRO + NMES. Of these, 9 had significant positive correlations with protein intake. In multivariable models, N-acetylleucine was significantly associated with preserved temporalis [OR 1.08 (95% CI 1.01, 1.16)] and quadricep [OR 1.08 (95% CI 1.02, 1.15)] muscle volume. Quinolinate was also significantly associated with preserved temporalis [OR 1.05 (95% CI 1.01, 1.09)] and quadricep [OR 1.04 (95% CI 1.00, 1.07)] muscle volume. N-acetylserine and β-hydroxyisovaleroylcarnitine were associated with preserved temporalis or quadricep volume. Metabolites defining HPRO + NMES had strong correlations with protein intake and were associated with preserved muscle volume.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Jude P J Savarraj
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Diana Feng
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Adam Starkman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guoyan Li
- Division of Gerontology, Geriatric, and Palliative Medicine, Department of Medicine, Geriatric Research, Education, and Clinical Center (GRECC), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Uttam Bodanapally
- Department of Radiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William Zimmerman
- Program in Trauma, Shock Trauma Neurocritical Care and Department of Neurology, University of Maryland School of Medicine, 22 S. Greene Street, G7K19, Baltimore, MD, 21201, USA
| | - Alice S Ryan
- Division of Gerontology, Geriatric, and Palliative Medicine, Department of Medicine, Geriatric Research, Education, and Clinical Center (GRECC), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Huimahn A Choi
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Neeraj Badjatia
- Program in Trauma, Shock Trauma Neurocritical Care and Department of Neurology, University of Maryland School of Medicine, 22 S. Greene Street, G7K19, Baltimore, MD, 21201, USA.
| |
Collapse
|
19
|
Stakheev AA, Kutukov RR, Taliansky ME, Zavriev SK. Investigating the Structure of the Components of the PolyADP-Ribosylation System in Fusarium Fungi and Evaluating the Expression Dynamics of Its Key Genes. Acta Naturae 2024; 16:83-92. [PMID: 39555176 PMCID: PMC11569842 DOI: 10.32607/actanaturae.27450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 11/19/2024] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) is the key enzyme in polyADP-ribosylation, one of the main post-translational modifications. This enzyme is abundant in eukaryotic organisms. However, information on the PARP structure and its functions in members of the Fungi kingdom is very limited. In this study, we performed a bioinformatic search for homologs of PARP and its antagonist, PARG, in the genomes of four Fusarium strains using their whole-genome sequences annotated and deposited in databases. The F. graminearum PH-1, F. proliferatum ET-1, and F. oxysporum Fo47 strains were shown to possess a single homolog of both PARP and PARG. In addition, the F. oxysporum f. sp. lycopersici strain 4287 contained four additional proteins comprising PARP catalytic domains whose structure was different from that of the remaining identified homologs. Partial nucleotide sequences encoding the catalytic domains of the PARP and PARG homologs were determined in 11 strains of 9 Fusarium species deposited in all-Russian collections, and the phylogenetic properties of the analyzed genes were evaluated. In the toxigenic F. graminearum strain, we demonstrated up-regulation of the gene encoding the PARP homolog upon culturing under conditions stimulating the production of the DON mycotoxin, as well as up-regulation of the gene encoding PARG at later stages of growth. These findings indirectly indicate involvement of the polyADP-ribosylation system in the regulation of the genes responsible for DON biosynthesis.
Collapse
Affiliation(s)
- A. A. Stakheev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| | - R. R. Kutukov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| | - M. E. Taliansky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| | - S. K. Zavriev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997 Russian Federation
| |
Collapse
|
20
|
Priyankha S, Prakash M. Evaluation of the efficacy of marine natural products against PARP-1/2 proteins in high-grade serous ovarian cancer: insights into MD and SMD simulations. J Biomol Struct Dyn 2024:1-15. [PMID: 38887043 DOI: 10.1080/07391102.2024.2335290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/20/2024] [Indexed: 06/20/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most malignant and ubiquitous phenotype of epithelial ovarian cancer. Originating in the fallopian tubes and rapidly spreading to the ovaries, this highly heterogeneous disease is a result of serous tubal intraepithelial carcinoma. The proteins known as poly(ADP-ribose) polymerase (PARP) aid in the development of HGSOC by repairing the cancer cells that proliferate and spread metastatically. By using molecular docking to screen 1100 marine natural products (MNPs) from different marine environments against PARP-1/2 proteins, prominent PARP inhibitors (PARPi) were identified. Four compounds, alisiaquinone A, alisiaquinone C, ascomindone D and (+)-zampanolide referred to as MNP-1, MNP-2, MNP-3 and MNP-4, respectively, were chosen based on their binding affinity towards PARP-1/2 proteins, and their bioavailability and drug-like qualities were accessed using ADMET analysis. To investigate the structural stability and dynamics of these complexes, molecular dynamics simulations were performed for 200 ns. These results were compared with the complexes of olaparib (OLA), a PARPi that has been approved by the FDA for the treatment of advanced ovarian cancer. We determined that MNP-4 exhibited stronger binding energies with PARP-1/2 proteins than OLA by using MM/PBSA calculations. Hotspot residues from PARP-1 (E883, M890, Y896, D899 and Y907) and PARP-2 (Y449, F450, A451, S457 and Y460) showed strong interactions with the compounds. To comprehend the unbinding mechanism of MNP-4 complexed with PARP-1/2, steered molecular dynamics (SMD) simulations were performed. We concluded from the free energy landscape (FEL) map that PARP-1/2 are well-stabilised when the compound MNP-4 is bound rather than being pulled away from its binding pockets. This finding provides significant evidence regarding PARPi, which could potentially be employed in the therapeutic treatment of HGSOC.
Collapse
Affiliation(s)
- Sridhar Priyankha
- Computational Chemistry Research Laboratory (CCRL), Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, India
| | | |
Collapse
|
21
|
Martinez ZS, Gutierrez DA, Valenzuela C, Seong CS, Llano M. Poly (ADP-ribose) polymerase-1 regulates HIV-1 replication in human CD4+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598467. [PMID: 38915699 PMCID: PMC11195250 DOI: 10.1101/2024.06.11.598467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The cellular enzyme poly (ADP-ribose) polymerase-1 (PARP-1) regulates multiple processes that are potentially implicated in HIV-1 infection. However, the role of PARP-1 in HIV-1 infection remains controversial, with reports indicating or excluding that PARP-1 influence early steps of the HIV-1 life cycle. Most of these studies have been conducted with Vesicular Stomatitis virus Glycoprotein G (VSV-G)-pseudotyped, single-round infection HIV-1; limiting our understanding of the role of PARP-1 in HIV-1 replication. Therefore, we evaluated the effect of PARP-1 deficiency or inhibition in HIV-1 replication in human CD4+ T cells. Our data showed that PARP-1 knockout increased viral replication in SUP-T1 cells. Similarly, a PARP-1 inhibitor that targets PARP-1 DNA-binding activity enhanced HIV-1 replication. In contrast, inhibitors affecting the catalytic activity of the enzyme were inactive. In correspondence with the pharmacological studies, mutagenesis analysis indicated that the DNA-binding domain was required for the PARP-1 anti-HIV-1 activity, but the poly-ADP-ribosylation activity was dispensable. Our results also demonstrated that PARP-1 acts at the production phase of the viral life cycle since HIV-1 produced in cells lacking PARP-1 was more infectious than control viruses. The effect of PARP-1 on HIV-1 infectivity required Env, as PARP-1 deficiency or inhibition did not modify the infectivity of Env-deleted, VSV-G-pseudotyped HIV-1. Furthermore, virion-associated Env was more abundant in sucrose cushion-purified virions produced in cells lacking the enzyme. However, PARP-1 did not affect Env expression or processing in the producer cells. In summary, our data indicate that PARP-1 antagonism enhances HIV-1 infectivity and increases levels of virion-associated Env. Importance Different cellular processes counteract viral replication. A better understanding of these interfering mechanisms will enhance our ability to control viral infections. We have discovered a novel, antagonist effect of the cellular enzyme poly (ADP-ribose) polymerase-1 (PARP-1) in HIV-1 replication. Our data indicate that PARP-1 deficiency or inhibition augment HIV-1 infectivity in human CD4+ T cells, the main HIV-1 target cell in vivo . Analysis of the mechanism of action suggested that PARP-1 antagonism increases in the virus the amounts of the viral protein mediating viral entry to the target cells. These findings identify for the first time PARP-1 as a host factor that regulates HIV-1 infectivity, and could be relevant to better understand HIV-1 transmission and to facilitate vaccine development.
Collapse
|
22
|
Amor-Guéret M. Loss of cytidine deaminase expression as a potential attempt to counteract the process of carcinogenesis by reducing basal PARP-1 activity and increasing tau levels. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167213. [PMID: 38714266 DOI: 10.1016/j.bbadis.2024.167213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024]
Abstract
Cytidine deaminase (CDA) is a pyrimidine salvage pathway enzyme that catalyzes the hydrolytic deamination of free cytidine and deoxycytidine to uridine and deoxyuridine, respectively. Our team discovered that CDA deficiency is associated with several aspects of genetic instability, such as increased sister chromatid exchange and ultrafine anaphase bridge frequencies. Based on these results, we sought (1) to determine how CDA deficiency contributes to genetic instability, (2) to explore the possible relationships between CDA deficiency and carcinogenesis, and (3) to develop a new anticancer treatment targeting CDA-deficient tumors. This review summarizes our major findings indicating that CDA deficiency is associated with a genetic instability that does not confer an increased cancer risk. In light of our results and published data, I propose a novel hypothesis that loss of CDA, by reducing basal PARP-1 activity and increasing Tau levels, may reflect an attempt to prevent, slow or reverse the process of carcinogenesis.
Collapse
Affiliation(s)
- Mounira Amor-Guéret
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France; CNRS UMR 3348, Centre Universitaire, 91405 Orsay, France; Université Paris-Saclay, Centre Universitaire, UMR 3348, 91405 Orsay, France.
| |
Collapse
|
23
|
Yue W, Li X, Zhan X, Wang L, Ma J, Bi M, Wang Q, Gu X, Xie B, Liu T, Guo H, Zhu X, Song C, Qiao J, Li M. PARP inhibitors suppress tumours via centrosome error-induced senescence independent of DNA damage response. EBioMedicine 2024; 103:105129. [PMID: 38640836 PMCID: PMC11052917 DOI: 10.1016/j.ebiom.2024.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) inhibitors have emerged as promising chemotherapeutic drugs primarily against BRCA1/2-associated tumours, known as synthetic lethality. However, recent clinical trials reported patients' survival benefits from PARP inhibitor treatments, irrelevant to homologous recombination deficiency. Therefore, revealing the therapeutic mechanism of PARP inhibitors beyond DNA damage repair is urgently needed, which can facilitate precision medicine. METHODS A CRISPR-based knock-in technology was used to establish stable BRCA1 mutant cancer cells. The effects of PARP inhibitors on BRCA1 mutant cancer cells were evaluated by biochemical and cell biological experiments. Finally, we validated its in vivo effects in xenograft and patient-derived xenograft (PDX) tumour mice. FINDINGS In this study, we uncovered that the majority of clinical BRCA1 mutations in breast cancers were in and near the middle of the gene, rather than in essential regions for DNA damage repair. Representative mutations such as R1085I and E1222Q caused transient extra spindle poles during mitosis in cancer cells. PAR, which is synthesized by PARP2 but not PARP1 at mitotic centrosomes, clustered these transient extra poles, independent of DNA damage response. Common PARP inhibitors could effectively suppress PARP2-synthesized PAR and induce cell senescence by abrogating the correction of mitotic extra-pole error. INTERPRETATION Our findings uncover an alternative mechanism by which PARP inhibitors efficiently suppress tumours, thereby pointing to a potential new therapeutic strategy for centrosome error-related tumours. FUNDING Funded by National Natural Science Foundation of China (NSFC) (T2225006, 82272948, 82103106), Beijing Municipal Natural Science Foundation (Key program Z220011), and the National Clinical Key Specialty Construction Program, P. R. China (2023).
Collapse
Affiliation(s)
- Wei Yue
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xinyu Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaolu Zhan
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Lei Wang
- Centre for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jihong Ma
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Meiyu Bi
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Qilong Wang
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xiaoyang Gu
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tong Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hongyan Guo
- National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Xin Zhu
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Chen Song
- Centre for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China; Peking-Tsinghua Centre for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China; National Clinical Research Centre for Obstetrics and Gynaecology (Peking University Third Hospital), Beijing, 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
24
|
Khamit A, Chakraborty P, Zahorán S, Villányi Z, Orvos H, Hermesz E. Stress-Induced Changes in Nucleocytoplasmic Localization of Crucial Factors in Gene Expression Regulation. Int J Mol Sci 2024; 25:3895. [PMID: 38612704 PMCID: PMC11012061 DOI: 10.3390/ijms25073895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
This study investigates the toxic effect of harmful materials, unfiltered by the placenta, on neonatal umbilical cord (UC) vessels, focusing on stress-induced adaptations in transcriptional and translational processes. It aims to analyze changes in pathways related to mRNA condensate formation, transcriptional regulation, and DNA damage response under maternal smoking-induced stress. UC vessels from neonates born to smoking (Sm) and nonsmoking mothers (Ctr) were examined. Immunofluorescence staining and confocal microscopy assessed the localization of key markers, including Transcription Complex Subunit 1 (CNOT1) and the largest subunit of RNA polymerase II enzyme (RPB1). Additionally, markers of DNA damage response, such as Poly(ADP-ribose) polymerase-1, were evaluated. In Sm samples, dissolution of CNOT1 granules in UC vessels was observed, potentially aiding stalled translation and enhancing transcription via RPB1 assembly and translocation. Control vessels showed predominant cytoplasmic RPB1 localization. Despite adaptive responses, Sm endothelial cells exhibited significant damage, indicated by markers like Poly(ADP-ribose) polymerase-1. Ex vivo metal treatment on control vessels mirrored Sm sample alterations, emphasizing marker roles in cell survival under toxic exposure. Maternal smoking induces specific molecular adaptations in UC vessels, affecting mRNA condensate formation, transcriptional regulation, and DNA damage response pathways. Understanding these intricate molecular mechanisms could inform interventions to improve neonatal health outcomes and mitigate adverse effects of toxic exposure during pregnancy.
Collapse
Affiliation(s)
- Ali Khamit
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (A.K.); (P.C.); (S.Z.); (Z.V.)
| | - Payal Chakraborty
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (A.K.); (P.C.); (S.Z.); (Z.V.)
| | - Szabolcs Zahorán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (A.K.); (P.C.); (S.Z.); (Z.V.)
| | - Zoltán Villányi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (A.K.); (P.C.); (S.Z.); (Z.V.)
| | - Hajnalka Orvos
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6701 Szeged, Hungary;
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (A.K.); (P.C.); (S.Z.); (Z.V.)
| |
Collapse
|
25
|
Gomathi R, Kohila S, Viswanathan R, Krishnapriya V, Appunu C, Kumar RA, Alagupalamuthirsolai M, Manimekalai R, Elayaraja K, Kaverinathan K. Comparative Proteomic Analysis of High-Temperature Response in Sugarcane (Saccharum spp.). SUGAR TECH 2024. [DOI: 10.1007/s12355-024-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/12/2024] [Indexed: 01/11/2025]
|
26
|
Chen R, Xie L, Fan Y, Hua X, Chung CY. Vesicular translocation of PARP-1 to cytoplasm causes ADP-ribosylation and disassembly of vimentin filaments during microglia activation induced by LPS. Front Cell Neurosci 2024; 18:1363154. [PMID: 38590714 PMCID: PMC10999663 DOI: 10.3389/fncel.2024.1363154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 04/10/2024] Open
Abstract
ADP-ribosylation plays a significant role in various biological processes including genomic stability maintenance, transcriptional regulation, energy metabolism, and cell death. Using macrodomain pull-down assay with microglia lysates and MALDI-TOF-MS analysis, we identified vimentin as a major protein highly ADP-ribosylated by the poly(ADP-ribose) polymerases-1 (PARP-1) in response to LPS. ABT-888, a potent inhibitor of PARP-1/2 blocks the disassembly and ADP-ribosylation of vimentin. PARP-1 is a highly abundant nuclear protein. Its nuclear functions in repairing DNA damages induced by various stress signals, such as inflammatory stresses, have been well studied. In contrast, limited studies have been done on the cytoplasmic role(s) of PARP-1. Our study focuses on the cytoplasmic role of PARP-1 during microglia activation. Using immunofluorescence microscopy and Western blotting, we showed that a significant amount of PARP-1 is present in the cytosol of microglia cells stimulated and activated by LPS. Live cell imaging showed the translocation of nuclear PARP-1-EGFP to the cytoplasm in vesicular structures upon LPS stimulation. ABT-888 and U0126 can block this translocation. Immunofluorescence staining with various organelle marker antibodies revealed that PARP-1 vesicles show colocalization with Lamin A/C, suggesting they might be derived from the nuclear envelope through nuclear envelope budding. In conclusion, we demonstrated that PARP-1 is translocated from the nucleus to cytoplasm via vesicles upon LPS stimulation and that cytoplasmic PARP-1 causes ADP-ribosylation and disassembly of vimentin filaments during microglia activation induced by LPS.
Collapse
Affiliation(s)
- Ruiqi Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lirui Xie
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xiangmei Hua
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Chang Y. Chung
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA, United States
| |
Collapse
|
27
|
Jia Y, Zhao J, Wang C, Meng J, Zhao L, Yang H, Zhao X. HBV DNA polymerase upregulates the transcription of PD-L1 and suppresses T cell activity in hepatocellular carcinoma. J Transl Med 2024; 22:272. [PMID: 38475878 PMCID: PMC10936085 DOI: 10.1186/s12967-024-05069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND In HBV-associated HCC, T cells often exhibit a state of functional exhaustion, which prevents the immune response from rejecting the tumor and allows HCC to progress. Moreover, polymerase-specific T cells exhibit more severe T-cell exhaustion compared to core-specific T cells. However, whether HBV DNA polymerase drives HBV-specific CD8+ T cell exhaustion in HBV-related HCC remains unclear. METHODS We constructed a Huh7 cell line stably expressing HA-HBV-DNA-Pol and applied co-culture systems to clarify its effect on immune cell function. We also examined how HBV-DNA-Pol modulated PD-L1 expression in HCC cells. In addition, HBV-DNA-Pol transgenic mice were used to elucidate the underlying mechanism of HBV-DNA-Pol/PD-L1 axis-induced T cell exhaustion. RESULTS Biochemical analysis showed that Huh7 cells overexpressing HBV-DNA-Pol inhibited the proliferation, activation, and cytokine secretion of Jurkat cells and that this effect was dependent on their direct contact. A similar inhibitory effect was observed in an HCC mouse model. PD-L1 was brought to our attention during screening. Our results showed that the overexpression of HBV-DNA-Pol upregulated PD-L1 mRNA and protein expression. PD-L1 antibody blockade reversed the inhibitory effect of Huh7 cells overexpressing HBV-DNA-Pol on Jurkat cells. Mechanistically, HBV-DNA-Pol interacts with PARP1, thereby inhibiting the nuclear translocation of PARP1 and further upregulating PD-L1 expression. CONCLUSIONS Our findings suggest that HBV-DNA-Pol can act as a regulator of PD-L1 in HCC, thereby directing anti-cancer immune evasion, which further provides a new idea for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Yan Jia
- Department of Laboratory Medicine, Tianjin Hospital, Tianjin, 300211, China
| | - Jianing Zhao
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050011, China
| | - Chunqing Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250014, China
| | - Jing Meng
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Liqing Zhao
- Department of Pediatrics, Zaozhuang Municipal Hospital, Zaozhuang, 277100, China
| | - Hongwei Yang
- Department of Laboratory Medicine, Tianjin Hospital, Tianjin, 300211, China
| | - Xiaoqing Zhao
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
28
|
Priyankha S, Rajapandian V, Palanisamy K, Esther Rubavathy SM, Thilagavathi R, Selvam C, Prakash M. Identification of indole-based natural compounds as inhibitors of PARP-1 against triple-negative breast cancer: a computational study. J Biomol Struct Dyn 2024; 42:2667-2680. [PMID: 37154583 DOI: 10.1080/07391102.2023.2208215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive kind of breast cancer known to mankind. It is a heterogeneous disease that is formed due to the missing estrogen, progesterone and human epidermal growth factor 2 receptors. Poly(ADP-ribose) polymerase-1 (PARP-1) protein helps in the development of TNBC by repairing the cancer cells, which proliferate and spread metastatically. To determine the potential PARP-1 inhibitors (PARPi), 0.2 million natural products from Universal Natural Product Database were screened using molecular docking and six hit compounds were selected based on their binding affinity towards PARP-1. The bio-availability and drug-like properties of these natural products were evaluated using ADMET analysis. Molecular dynamics simulations were conducted for these complexes for 200 ns to examine their structural stability and dynamic behaviour and further compared with the complex of talazoparib (TALA), an FDA-approved PARPi. Using MM/PBSA calculations, we conclude that the complexes HIT-3 and HIT-5 (-25.64 and -23.14 kcal/mol, respectively) show stronger binding energies with PARP-1 than TALA with PARP-1 (-10.74 kcal/mol). Strong interactions were observed between the compounds and hotspot residues, Asp770, Ala880, Tyr889, Tyr896, Ala898, Asp899 and Tyr907, of PARP-1 due to the existence of various types of non-covalent interactions between the compounds and PARP-1. This research offers critical information about PARPi, which could potentially be incorporated into the treatment of TNBC. Moreover, these findings were validated by comparing them with an FDA-approved PARPi.
Collapse
Affiliation(s)
- Sridhar Priyankha
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Varatharaj Rajapandian
- Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - Kandhan Palanisamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - S M Esther Rubavathy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
29
|
Andronikou C, Burdova K, Dibitetto D, Lieftink C, Malzer E, Kuiken HJ, Gogola E, Ray Chaudhuri A, Beijersbergen RL, Hanzlikova H, Jonkers J, Rottenberg S. PARG-deficient tumor cells have an increased dependence on EXO1/FEN1-mediated DNA repair. EMBO J 2024; 43:1015-1042. [PMID: 38360994 PMCID: PMC10943112 DOI: 10.1038/s44318-024-00043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Targeting poly(ADP-ribose) glycohydrolase (PARG) is currently explored as a therapeutic approach to treat various cancer types, but we have a poor understanding of the specific genetic vulnerabilities that would make cancer cells susceptible to such a tailored therapy. Moreover, the identification of such vulnerabilities is of interest for targeting BRCA2;p53-deficient tumors that have acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPi) through loss of PARG expression. Here, by performing whole-genome CRISPR/Cas9 drop-out screens, we identify various genes involved in DNA repair to be essential for the survival of PARG;BRCA2;p53-deficient cells. In particular, our findings reveal EXO1 and FEN1 as major synthetic lethal interactors of PARG loss. We provide evidence for compromised replication fork progression, DNA single-strand break repair, and Okazaki fragment processing in PARG;BRCA2;p53-deficient cells, alterations that exacerbate the effects of EXO1/FEN1 inhibition and become lethal in this context. Since this sensitivity is dependent on BRCA2 defects, we propose to target EXO1/FEN1 in PARPi-resistant tumors that have lost PARG activity. Moreover, EXO1/FEN1 targeting may be a useful strategy for enhancing the effect of PARG inhibitors in homologous recombination-deficient tumors.
Collapse
Affiliation(s)
- Christina Andronikou
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3088, Bern, Switzerland
| | - Kamila Burdova
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Diego Dibitetto
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3088, Bern, Switzerland
| | - Cor Lieftink
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- The Netherlands Cancer Institute Robotics and Screening Center, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Elke Malzer
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- The Netherlands Cancer Institute Robotics and Screening Center, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Hendrik J Kuiken
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- The Netherlands Cancer Institute Robotics and Screening Center, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Ewa Gogola
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Arnab Ray Chaudhuri
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015GD, Rotterdam, The Netherlands
| | - Roderick L Beijersbergen
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
- The Netherlands Cancer Institute Robotics and Screening Center, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Hana Hanzlikova
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland
- Laboratory of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
- Oncode Institute, Amsterdam, The Netherlands.
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, 3012, Bern, Switzerland.
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
- Cancer Therapy Resistance Cluster and Bern Center for Precision Medicine, Department for Biomedical Research, University of Bern, 3088, Bern, Switzerland.
| |
Collapse
|
30
|
Peng K, Anmangandla A, Jana S, Jin Y, Lin H. Iso-ADP-Ribose Fluorescence Polarization Probe for the Screening of RNF146 WWE Domain Inhibitors. ACS Chem Biol 2024; 19:300-307. [PMID: 38237916 PMCID: PMC10877565 DOI: 10.1021/acschembio.3c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/20/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Poly-ADP-ribosylation is an important protein post-translational modification with diverse biological consequences. After binding poly-ADP-ribose on axis inhibition protein 1 (AXIN1) through its WWE domain, RING finger protein 146 (RNF146) can ubiquitinate AXIN1 and promote its proteasomal degradation and thus the oncogenic WNT signaling. Therefore, inhibiting the RNF146 WWE domain is a potential antitumor strategy. However, due to a lack of suitable screening methods, no inhibitors for this domain have been reported. Here, we developed a fluorescence polarization (FP)-based competition assay for the screening of RNF146 WWE inhibitors. This assay relies on a fluorescently tagged iso-ADP-ribose tracer compound, TAMRA-isoADPr. We report the design and synthesis of this tracer compound and show that it is a high-affinity tracer for the RNF146 WWE domain. This provides a convenient assay and will facilitate the development of small-molecule inhibitors for the RNF146 WWE domain.
Collapse
Affiliation(s)
- Kewen Peng
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Ananya Anmangandla
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Sadhan Jana
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Yizhen Jin
- Graduate
Program of Biochemistry, Molecular and Cell Biology, Department of
Molecular Biology and Genetics, Cornell
University, Ithaca, New York 14853, United States
| | - Hening Lin
- Howard
Hughes Medical Institute, Department of Chemistry and Chemical Biology,
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
31
|
Rice J, Lautrup S, Fang EF. NAD + Boosting Strategies. Subcell Biochem 2024; 107:63-90. [PMID: 39693020 DOI: 10.1007/978-3-031-66768-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nicotinamide adenine dinucleotide (oxidized form, NAD+) serves as a co-substrate and co-enzyme in cells to execute its key roles in cell signalling pathways and energetic metabolism, arbitrating cell survival and death. It was discovered in 1906 by Arthur Harden and William John Young in yeast extract which could accelerate alcohol fermentation. NAD acts as an electron acceptor and cofactor throughout the processes of glycolysis, Tricarboxylic Acid Cycle (TCA), β oxidation, and oxidative phosphorylation (OXPHOS). NAD has two forms: NAD+ and NADH. NAD+ is the oxidising coenzyme that is reduced when it picks up electrons. NAD+ levels steadily decline with age, resulting in an increase in vulnerability to chronic illness and perturbed cellular metabolism. Boosting NAD+ levels in various model organisms have resulted in improvements in healthspan and lifespan extension. These results have prompted a search for means by which NAD+ levels in the body can be augmented by both internal and external means. The aim of this chapter is to provide an overview of NAD+, appraise clinical evidence of its importance and success in potentially extending health- and lifespan, as well as to explore NAD+ boosting strategies.
Collapse
Affiliation(s)
- Jared Rice
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
32
|
Gusdon AM, Savarraj JP, Feng D, Starkman A, Li G, Bodanapally U, Zimmerman WD, Ryan AS, Choi HA, Badjatia N. High-Protein Supplementation and Neuromuscular Electric Stimulation after Aneurysmal Subarachnoid Hemorrhage Increases Systemic Amino Acid and Oxidative Metabolism: A Plasma Metabolomics Approach. RESEARCH SQUARE 2023:rs.3.rs-3600439. [PMID: 38014126 PMCID: PMC10680941 DOI: 10.21203/rs.3.rs-3600439/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background The INSPIRE randomized clinical trial demonstrated that a high protein diet (HPRO) combined with neuromuscular electrical stimulation (NMES) attenuates muscle atrophy and may improve functional outcomes after aSAH. Using an untargeted metabolomics approach, we sought to identify specific metabolites mediating these effects. Methods Blood samples were collected from subjects on admission prior to randomization to either standard of care (SOC; N=12) or HPRO+NMES (N=12) and at 7 days as part of the INSPIRE protocol. Untargeted metabolomics were performed for each plasma sample. Paired fold changes were calculated for each metabolite among subjects in the HPRO+NMES group at baseline and 7 days after intervention. Changes in metabolites from baseline to 7 days were compared for the HPRO+NMES and SOC groups. Sparse partial least squared discriminant analysis (sPLS-DA) identified metabolites discriminating each group. Pearson's correlation coefficients were calculated between each metabolite and total protein per day, nitrogen balance, and muscle volume Multivariable models were developed to determine associations between each metabolite and muscle volume. Results A total of 18 unique metabolites were identified including pre and post treatment and differentiating SOC vs HPRO+NMES. Of these, 9 had significant positive correlations with protein intake: N-acetylserine (ρ=0.61, P =1.56x10 -3 ), N-acetylleucine (ρ=0.58, P =2.97x10 -3 ), β-hydroxyisovaleroylcarnitine (ρ=0.53, P =8.35x10 -3 ), tiglyl carnitine (ρ=0.48, P =0.0168), N-acetylisoleucine (ρ=0.48, P =0.0183), N-acetylthreonine (ρ=0.47, P =0.0218), N-acetylkynurenine (ρ=0.45, P =0.0263), N-acetylvaline (ρ=0.44, P =0.0306), and urea (ρ=0.43, P =0.0381). In multivariable regression models, N-acetylleucine was significantly associated with preserved temporalis [OR 1.08 (95%CI 1.01, 1.16)] and quadricep [OR 1.08 (95%CI 1.02, 1.15)] muscle volume. Quinolinate was also significantly associated with preserved temporalis [OR 1.05 (95%CI 1.01, 1.09)] and quadricep [OR 1.04 (95%CI 1.00, 1.07)] muscle volume. N-acetylserine, N-acetylcitrulline, and b-hydroxyisovaleroylcarnitine were also associated with preserved temporalis or quadricep volume. Conclusions Metabolites defining the HPRO+NMES intervention mainly consisted of amino acid derivatives. These metabolites had strong correlations with protein intake and were associated with preserved muscle volume.
Collapse
|
33
|
Soung YH, Chung J. Combination Treatment Strategies to Overcome PARP Inhibitor Resistance. Biomolecules 2023; 13:1480. [PMID: 37892162 PMCID: PMC10604269 DOI: 10.3390/biom13101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) enzymes have been shown to be essential for DNA repair pathways, including homologous recombination repair (HRR). Cancers with HRR defects (e.g., BRCA1 and BRCA2 mutations) are targets for PARP inhibitors (PARPis) based on the exploitation of "synthetic lethality". As a result, PARPis offer a promising treatment option for advanced ovarian and breast cancers with deficiencies in HRR. However, acquired resistance to PARPis has been reported for most tumors, and not all patients with BRCA1/2 mutations respond to PARPis. Therefore, the formulation of effective treatment strategies to overcome resistance to PARPis is urgently necessary. This review summarizes the molecular mechanism of therapeutic action and resistance to PARPis, in addition to emerging combination treatment options involving PARPis.
Collapse
Affiliation(s)
| | - Jun Chung
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
34
|
El Latif AA, Zahra AEA, Badr A, Elbialy ZI, Alghamdi AAA, Althobaiti NA, Assar DH, Abouzed TK. The potential role of upregulated PARP-1/RIPK1 expressions in amikacin-induced oxidative damage and nephrotoxicity in Wistar rats. Toxicol Res (Camb) 2023; 12:979-989. [PMID: 37915468 PMCID: PMC10615830 DOI: 10.1093/toxres/tfad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 09/09/2023] [Indexed: 11/03/2023] Open
Abstract
This study aimed to investigate the gene expression levels associated with nephrotoxic action of amikacin, as well as the post-treatment effect of diuretics on its nephrotoxic effects. Sixty male rats were divided equally into six groups, including the control group receiving saline intra-peritoneally (ip), and the five treated groups including therapeutic and double therapeutic dose groups, injected ip (15 and 30 mg/kg b.wt./day) respectively for seven days, and another two rat groups treated as therapeutic and double therapeutic dose groups then administered the diuretic orally for seven days and the last group received amikacin ip at a rate of 15 mg/kg/day for seven days, then given free access to water without diuretics for another seven days and was kept as a self-recovery group. Amikacin caused kidney injury, which was exacerbated by the double therapeutic dose, as evidenced by abnormal serum renal injury biomarkers, elevated renal MDA levels, inhibition of renal catalase and SOD enzyme activities, with renal degenerative and necrotic changes. Moreover, comet assays also revealed renal DNA damage. Interestingly, amikacin administration markedly elevated expression levels of the PARP-1, RIP1, TNF-α, IL-1β, and iNOS genes as compared to the control group. However, compared to the self-recovery group, post-amikacin diuretic treatment modulates amikacin-induced altered findings and alleviates amikacin nephrotoxic effects more efficiently. Our findings suggested the potential role of PARP-1 and RIPK1 expressions that influence the expression of proinflammatory cytokines such as IL-1β and TNF-α by exaggerating oxidative stress which may contribute to the pathogenesis of amikacin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Amera Abd El Latif
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abo Elnasr A Zahra
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - AlShimaa Badr
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Zizy I Elbialy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Abdullah A A Alghamdi
- Department of Biology, Faculty of Science, Albaha University, Kafrelsheikh University, El-Gish Street, Albaha 1988, Kingdom of Saudi Arabia
| | - Norah A Althobaiti
- Biology Department, College of Science and Humanities-Al Quwaiiyah, Shaqra University, Kafrelsheikh University, El-Gish Street, El-Gish Street, Al Quwaiiyah 19257, Kingdom of Saudi Arabia
| | - Doaa H Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh 33516, Egypt
| | - Tarek kamal Abouzed
- Biochemistry Department, Faculty of Veterinary Medicine, Kafrelsheikh University, El-Gish Street, Kafr El Sheikh, 33516, Egypt
| |
Collapse
|
35
|
Kim LJ, Chalmers TJ, Madawala R, Smith GC, Li C, Das A, Poon EWK, Wang J, Tucker SP, Sinclair DA, Quek LE, Wu LE. Host-microbiome interactions in nicotinamide mononucleotide (NMN) deamidation. FEBS Lett 2023; 597:2196-2220. [PMID: 37463842 DOI: 10.1002/1873-3468.14698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]
Abstract
The nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide mononucleotide (NMN) is a proposed therapy for age-related disease, whereby it is assumed that NMN is incorporated into NAD+ through the canonical recycling pathway. During oral delivery, NMN is exposed to the gut microbiome, which could modify the NAD+ metabolome through enzyme activities not present in the mammalian host. We show that orally delivered NMN can undergo deamidation and incorporation in mammalian tissue via the de novo pathway, which is reduced in animals treated with antibiotics to ablate the gut microbiome. Antibiotics increased the availability of NAD+ metabolites, suggesting the microbiome could be in competition with the host for dietary NAD+ precursors. These findings highlight new interactions between NMN and the gut microbiome.
Collapse
Affiliation(s)
- Lynn-Jee Kim
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | | | | | - Greg C Smith
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | - Catherine Li
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | - Abhirup Das
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| | | | - Jun Wang
- GeneHarbor (Hong Kong) Biotechnologies Limited, Hong Kong Science Park, China
- School of Life Sciences, The Chinese University of Hong Kong, China
| | | | - David A Sinclair
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
- Harvard Medical School, Boston, MA, USA
| | - Lake-Ee Quek
- School of Mathematics and Statistics, The University of Sydney, NSW, Australia
| | - Lindsay E Wu
- School of Biomedical Sciences, UNSW Sydney, NSW, Australia
| |
Collapse
|
36
|
Zhang Q, Duan Q, Gao Y, He P, Huang R, Huang H, Li Y, Ma G, Zhang Y, Nie K, Wang L. Cerebral Microvascular Injury Induced by Lag3-Dependent α-Synuclein Fibril Endocytosis Exacerbates Cognitive Impairment in a Mouse Model of α-Synucleinopathies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301903. [PMID: 37381656 PMCID: PMC10477873 DOI: 10.1002/advs.202301903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/26/2023] [Indexed: 06/30/2023]
Abstract
The pathological accumulation of α-synuclein (α-Syn) and the transmission of misfolded α-Syn underlie α-synucleinopathies. Increased plasma α-Syn levels are associated with cognitive impairment in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies, but it is still unknown whether the cognitive deficits in α-synucleinopathies have a common vascular pathological origin. Here, it is reported that combined injection of α-Syn preformed fibrils (PFFs) in the unilateral substantia nigra pars compacta, hippocampus, and cerebral cortex results in impaired spatial learning and memory abilities at 6 months post-injection and that this cognitive decline is related to cerebral microvascular injury. Moreover, insoluble α-Syn inclusions are found to form in primary mouse brain microvascular endothelial cells (BMVECs) through lymphocyte-activation gene 3 (Lag3)-dependent α-Syn PFFs endocytosis, causing poly(ADP-ribose)-driven cell death and reducing the expression of tight junction proteins in BMVECs. Knockout of Lag3 in vitro prevents α-Syn PFFs from entering BMVECs, thereby reducing the abovementioned response induced by α-Syn PFFs. Deletion of endothelial cell-specific Lag3 in vivo reverses the negative effects of α-Syn PFFs on cerebral microvessels and cognitive function. In short, this study reveals the effectiveness of targeting Lag3 to block the spread of α-Syn fibrils to endothelial cells in order to improve cognition.
Collapse
Affiliation(s)
- Qingxi Zhang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510100China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Qingrui Duan
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuyuan Gao
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Peikun He
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Rui Huang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Haifeng Huang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yanyi Li
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Guixian Ma
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Yuhu Zhang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Kun Nie
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| | - Lijuan Wang
- Department of NeurologyGuangdong Neuroscience InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
- Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative DiseasesGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhou510080China
| |
Collapse
|
37
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
38
|
Saeidi H, Bakrin IH, Raju CS, Ismail P, Saraf M, Khairul-Asri MG. Genetic aberrations of homologous recombination repair pathways in prostate cancer: The prognostic and therapeutic implications. Adv Med Sci 2023; 68:359-365. [PMID: 37757663 DOI: 10.1016/j.advms.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. Homologous recombination repair (HRR) gene defects have been identified in a significant proportion of metastatic castration-resistant PC (mCRPC) and are associated with an increased risk of PC and more aggressive PC. Importantly, it has been well-documented that poly ADP-ribose polymerase (PARP) inhibition in cells with HR deficiency (HRD) can cause cell death. This has been exploited for the targeted treatment of PC patients with HRD by PARP inhibitors. Moreover, it has been shown that platinum-based chemotherapy is more effective in mCRPC patients with HRR gene alterations. This review highlights the prognosis and therapeutic implications of HRR gene alterations in PC.
Collapse
Affiliation(s)
- Hamidreza Saeidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia.
| | - Ikmal Hisyam Bakrin
- Department of Pathology, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Patimah Ismail
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia
| | - Mohsen Saraf
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| | - Mohd Ghani Khairul-Asri
- Department of Urology, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
39
|
Deeksha W, Abhishek S, Giri J, Rajakumara E. Regulation of PARP1 and its apoptotic variant activity by single-stranded DNA. FEBS J 2023; 290:4533-4542. [PMID: 37246313 DOI: 10.1111/febs.16875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
PARP1 is a nuclear protein involved in the maintenance of genomic stability. It catalyses the formation of poly(ADP-ribose) (PAR) to recruit repair proteins at the site of DNA lesions, such as double-strand and single-strand breaks. In the process of DNA replication or repair, there could occur stretch of ssDNA, usually protected by ssDNA binding proteins, but when present in abundance can turn into DNA beaks and cause cell death. PARP1 is an extremely sensitive sensor of DNA breaks; however, the interaction of PARP1 with single-stranded DNA (ssDNA) remains unexplored. Here, we report that the two Zn-fingers, ZnF1 and ZnF2, of PARP1, mediate high-affinity recognition of ssDNA. Our studies suggest that although PAR and ssDNA are chemical analogues, they are recognized by a distinct set of domains of PARP1, yet PAR not only induces dislodging of ssDNA from PARP1 but also hampers the ssDNA-dependent PARP1 activity. It is noteworthy that PAR carrier apoptotic fragment PARP1ΔZnF1-2 gets cleaved from PARP1 to facilitate apoptosis, leaving behind the DNA-bound ZnF1-ZnF2PARP1 . Our studies demonstrate that the PARP1ΔZnF1-2 is competent for ssDNA-dependent stimulation only in the presence of another apoptotic fragment ZnF1-ZnF2PARP1 , suggesting the indispensability of DNA-bound ZnF1-ZnF2PARP1 dual domains for the same.
Collapse
Affiliation(s)
- Waghela Deeksha
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Suman Abhishek
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, India
| |
Collapse
|
40
|
Legrand AJ, Choul-li S, Villeret V, Aumercier M. Poly(ADP-ribose) Polyremase-1 (PARP-1) Inhibition: A Promising Therapeutic Strategy for ETS-Expressing Tumours. Int J Mol Sci 2023; 24:13454. [PMID: 37686260 PMCID: PMC10487777 DOI: 10.3390/ijms241713454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
ETS transcription factors are a highly conserved family of proteins involved in the progression of many cancers, such as breast and prostate carcinomas, Ewing's sarcoma, and leukaemias. This significant involvement can be explained by their roles at all stages of carcinogenesis progression. Generally, their expression in tumours is associated with a poor prognosis and an aggressive phenotype. Until now, no efficient therapeutic strategy had emerged to specifically target ETS-expressing tumours. Nevertheless, there is evidence that pharmacological inhibition of poly(ADP-ribose) polymerase-1 (PARP-1), a key DNA repair enzyme, specifically sensitises ETS-expressing cancer cells to DNA damage and limits tumour progression by leading some of the cancer cells to death. These effects result from a strong interplay between ETS transcription factors and the PARP-1 enzyme. This review summarises the existing knowledge of this molecular interaction and discusses the promising therapeutic applications.
Collapse
Affiliation(s)
- Arnaud J. Legrand
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Souhaila Choul-li
- Département de Biologie, Faculté des Sciences, Université Chouaib Doukkali, BP-20, El Jadida 24000, Morocco;
| | - Vincent Villeret
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| | - Marc Aumercier
- CNRS, EMR9002 Integrative Structural Biology, F-59000 Lille, France; (A.J.L.); (V.V.)
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Risk Factors and Molecular Deter-minants of Aging-Related Diseases, F-59000 Lille, France
| |
Collapse
|
41
|
Li Y, Bie J, Zhao L, Song C, Zhang T, Li M, Yang C, Luo J. SLC25A51 promotes tumor growth through sustaining mitochondria acetylation homeostasis and proline biogenesis. Cell Death Differ 2023; 30:1916-1930. [PMID: 37419986 PMCID: PMC10406869 DOI: 10.1038/s41418-023-01185-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
Solute carrier family 25 member 51 (SLC25A51) was recently identified as the mammalian mitochondrial NAD+ transporter essential for mitochondria functions. However, the role of SLC25A51 in human disease, such as cancer, remains undefined. Here, we report that SLC25A51 is upregulated in multiple cancers, which promotes cancer cells proliferation. Loss of SLC25A51 elevates the mitochondrial proteins acetylation levels due to SIRT3 dysfunctions, leading to the impairment of P5CS enzymatic activity, which is the key enzyme in proline biogenesis, and the reduction in proline contents. Notably, we find fludarabine phosphate, an FDA-approved drug, is able to bind with and inhibit SLC25A51 functions, causing mitochondrial NAD+ decrease and proteins hyperacetylation, which could further synergize with aspirin to reinforce the anti-tumor efficacy. Our study reveals that SLC25A51 is an attractive anti-cancer target, and provides a novel drug combination of fludarabine phosphate with aspirin as a potential cancer therapy strategy.
Collapse
Affiliation(s)
- Yutong Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Juntao Bie
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Long Zhao
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Chen Song
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Tianzhuo Zhang
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China
| | - Changjiang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China.
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
42
|
Zhuang Y, Haugrud AB, Schaefer MA, Messerli SM, Miskimins WK. Ability of metformin to deplete NAD+ contributes to cancer cell susceptibility to metformin cytotoxicity and is dependent on NAMPT expression. Front Oncol 2023; 13:1225220. [PMID: 37583931 PMCID: PMC10424729 DOI: 10.3389/fonc.2023.1225220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023] Open
Abstract
Background Nicotinamide adenine dinucleotide (NAD+) is vital for not only energy metabolism but also signaling pathways. A major source of NAD+ depletion is the activation of poly (ADP-ribose) polymerase (PARP) in response to DNA damage. We have previously demonstrated that metformin can cause both caspase-dependent cell death and PARP-dependent cell death in the MCF7 breast cancer cells but not in the MDA-MB-231 (231) breast cancer cells while in high-glucose media. We hypothesize that depletion of NAD+ in MCF7 cells via activation of PARP contributes to the cell death caused by metformin. Nicotinamide phosphoribosyltransferase (NAMPT), a key rate-limiting step in converting nicotinamide (vitamin B3) into NAD+, is essential for regenerating NAD+ for normal cellular processes. Evidence shows that overexpression of NAMPT is associated with tumorigenesis. We hypothesize that NAMPT expression may determine the extent to which cancer cells are sensitive to metformin. Results In this study, we found that metformin significantly decreases NAD+ levels over time, and that this could be delayed by PARP inhibitors. Pretreatment with NAD+ in MCF7 cells also prevents cell death and the enlargement of mitochondria and protects mitochondria from losing membrane potential caused by metformin. This leads to MCF7 cell resistance to metformin cytotoxicity in a manner similar to 231 cells. By studying the differences in NAD+ regulation in these two breast cancer cell lines, we demonstrate that NAMPT is expressed at higher levels in 231 cells than in MCF7 cells. When NAMPT is genetically repressed in 231 cells, they become much more sensitive to metformin-induced cell death. Conversely, overexpressing NAMPT in HEK-293 (293) cells causes the cells to be more resistant to metformin's growth inhibitory effects. The addition of a NAMPT activator also decreased the sensitivity of MCF7 cells to metformin, while the NAMPT activator, P7C3, protects against metformin-induced cytotoxicity. Conclusions Depletion of cellular NAD+ is a key aspect of sensitivity of cancer cells to the cytotoxic effects of metformin. NAMPT plays a key role in maintaining sufficient levels of NAD+, and cells that express elevated levels of NAMPT are resistant to killing by metformin.
Collapse
Affiliation(s)
- Yongxian Zhuang
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| | - Allison B. Haugrud
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| | - Meg A. Schaefer
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
- Sanford Program for Undergraduate Research (SPUR) Program, Sanford Research, Sioux Falls, SD, United States
| | - Shanta M. Messerli
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| | - W. Keith Miskimins
- Cancer Biology and Immunotherapies, Sanford Research, Sioux Falls, SD, United States
| |
Collapse
|
43
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
44
|
Wang C, Liu A, Chen J, Liu S, Wei W. Sensitive detection of PARP-1 activity by electrochemical impedance spectroscopy based on biomineralization. Anal Chim Acta 2023; 1249:340937. [PMID: 36868772 DOI: 10.1016/j.aca.2023.340937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Poly(ADP)ribose polymerase-1 (PARP-1) has attracted much attention as a tumor marker in recent years. Based on the large negative charge and hyperbranched structure of PARP-1 amplified products (PAR), many detection methods have been established. Herein, we proposed a label-free electrochemical impedance detection method based on the large amount of phosphate groups (PO43-) on the surface of PAR. Although EIS method has high sensitivity, it is not sensitive enough to discern PAR effectively. Therefore, biomineralization was incorporated to increase the resistance value (Rct) distinctly because of the poor electrical conductivity of CaP. During biomineralization process, plentiful Ca2+ was captured by PO43- of PAR through electrostatic interaction, resulting in an increasing Rct of modified ITO electrode. In contrast, when PRAP-1 was absent, only a little Ca2+ was adsorbed on the phosphate backbone of the activating dsDNA. As a result, the biomineralization effect was slight and only a negligible Rct change occurred. Experiment results showed that Rct was associated closely with the activity of PARP-1. There was a linear correlation between them when the activity value was in the range of 0.005-1.0 U. The calculated detection limit was 0.003 U. Results of real samples detection and the recovery experiments were satisfactory, indicating the method has an excellent application prospect.
Collapse
Affiliation(s)
- Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Anran Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jin Chen
- The Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, State Key Laboratory of Bioelectronics, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
45
|
Li H, Chatla S, Liu X, Vekariya U, Kim D, Walt M, Lian Z, Morton G, Feng Z, Yang D, Liu H, Reed K, Childers W, Yu X, Madzo J, Chitrala KN, Skorski T, Huang J. Haploinsufficiency of ZNF251 causes DNA-PKcs-dependent resistance to PARP inhibitors in BRCA1-mutated cancer cells. RESEARCH SQUARE 2023:rs.3.rs-2688694. [PMID: 37066268 PMCID: PMC10104263 DOI: 10.21203/rs.3.rs-2688694/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors represent a promising new class of agents that have demonstrated efficacy in treating various cancers, particularly those that carry BRCA1/2 mutations. The cancer associated BRCA1/2 mutations disrupt DNA double strand break (DSB) repair by homologous recombination (HR). PARP inhibitors (PARPis) have been applied to trigger synthetic lethality in BRCA1/2-mutated cancer cells by promoting the accumulation of toxic DSBs. Unfortunately, resistance to PARPis is common and can occur through multiple mechanisms, including the restoration of HR and/or the stabilization of replication forks. To gain a better understanding of the mechanisms underlying PARPi resistance, we conducted an unbiased CRISPR-pooled genome-wide library screen to identify new genes whose deficiency confers resistance to the PARPi olaparib. Our study revealed that ZNF251, a transcription factor, is a novel gene whose haploinsufficiency confers PARPi resistance in multiple breast and ovarian cancer lines harboring BRCA1 mutations. Mechanistically, we discovered that ZNF251 haploinsufficiency leads to constitutive stimulation of DNA-PKcs-dependent non-homologous end joining (NHEJ) repair of DSBs and DNA-PKcs-mediated fork protection in BRCA1-mutated cancer cells (BRCA1mut + ZNF251KD). Moreover, we demonstrated that DNA-PKcs inhibitors can restore PARPi sensitivity in BRCA1mut + ZNF251KD cells ex vivo and in vivo. Our findings provide important insights into the mechanisms underlying PARPi resistance and highlight the unexpected role of DNA-PKcs in this phenomenon.
Collapse
Affiliation(s)
- Huan Li
- Coriell Institue for Medical Research
| | | | - Xiaolei Liu
- University of Pennsylavania School of Medecine
| | | | | | | | | | | | - Zijie Feng
- University of Pennsylavania School of Medecine
| | - Dan Yang
- Coriell Institue for Medical Research
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Guo S, Zhang S, Zhuang Y, Xie F, Wang R, Kong X, Zhang Q, Feng Y, Gao H, Kong X, Liu T. Muscle PARP1 inhibition extends lifespan through AMPKα PARylation and activation in Drosophila. Proc Natl Acad Sci U S A 2023; 120:e2213857120. [PMID: 36947517 PMCID: PMC10068811 DOI: 10.1073/pnas.2213857120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/30/2023] [Indexed: 03/23/2023] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) has been reported to play an important role in longevity. Here, we showed that the knockdown of the PARP1 extended the lifespan of Drosophila, with particular emphasis on the skeletal muscle. The muscle-specific mutant Drosophila exhibited resistance to starvation and oxidative stress, as well as an increased ability to climb, with enhanced mitochondrial biogenesis and activity at an older age. Mechanistically, the inhibition of PARP1 increases the activity of AMP-activated protein kinase alpha (AMPKα) and mitochondrial turnover. PARP1 could interact with AMPKα and then regulate it via poly(ADP ribosyl)ation (PARylation) at residues E155 and E195. Double knockdown of PARP1 and AMPKα, specifically in muscle, could counteract the effects of PARP1 inhibition in Drosophila. Finally, we showed that increasing lifespan via maintaining mitochondrial network homeostasis required intact PTEN induced kinase 1 (PINK1). Taken together, these data indicate that the interplay between PARP1 and AMPKα can manipulate mitochondrial turnover, and be targeted to promote longevity.
Collapse
Affiliation(s)
- Shanshan Guo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Shuang Zhang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Yixiao Zhuang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Famin Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Ruwen Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, 200438, China
| | - Xingyu Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Qiongyue Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai200040, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai200438, China
| | - Yonghao Feng
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Huanqing Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Xingxing Kong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai200040, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai200438, China
| | - Tiemin Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai200438, China
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai200438, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai200032, P.R. China
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia010021, China
| |
Collapse
|
47
|
Veneziani AC, Scott C, Wakefield MJ, Tinker AV, Lheureux S. Fighting resistance: post-PARP inhibitor treatment strategies in ovarian cancer. Ther Adv Med Oncol 2023; 15:17588359231157644. [PMID: 36872947 PMCID: PMC9983116 DOI: 10.1177/17588359231157644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) represent a therapeutic milestone in the management of epithelial ovarian cancer. The concept of 'synthetic lethality' is exploited by PARPi in tumors with defects in DNA repair pathways, particularly homologous recombination deficiency. The use of PARPis has been increasing since its approval as maintenance therapy, particularly in the first-line setting. Therefore, resistance to PARPi is an emerging issue in clinical practice. It brings an urgent need to elucidate and identify the mechanisms of PARPi resistance. Ongoing studies address this challenge and investigate potential therapeutic strategies to prevent, overcome, or re-sensitize tumor cells to PARPi. This review aims to summarize the mechanisms of resistance to PARPi, discuss emerging strategies to treat patients post-PARPi progression, and discuss potential biomarkers of resistance.
Collapse
Affiliation(s)
- Ana C. Veneziani
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical
Research, Parkville, VIC, Australia
- Department of Medical Biology, University of
Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC,
Australia
- Sir Peter MacCallum Department of Oncology,
Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | | | - Stephanie Lheureux
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5B 2M9,
Canada
| |
Collapse
|
48
|
Liu L, Mondal AM, Liu X. Crosstalk of moderate ROS and PARP-1 contributes to sustainable proliferation of conditionally reprogrammed keratinocytes. J Biochem Mol Toxicol 2023; 37:e23262. [PMID: 36424367 PMCID: PMC10078201 DOI: 10.1002/jbt.23262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 10/02/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
Abstract
Conditionally reprogrammed cell (CRC) technique is a promising model for biomedical and toxicological research. In the present study, our data first demonstrated an increased level of PARP-1 in conditionally reprogrammed human foreskin keratinocytes (CR-HFKs). We then found that PARP inhibitor ABT-888 (ABT), reactive oxygen species (ROS) scavenger N-acetyl-l-cysteine (NAC), or combination (ABT + NAC) were able to inhibit cell proliferation, ROS, PARP-1, and ROS related protein, NRF2, and NOX1. Interestingly, knockdown of endogenous PARP-1 significantly inhibited cell proliferation, indicating that the increased PARP-1 expression was critical for CR. Importantly, we found that a moderate level of ROS contributed the cell proliferation and increased PARP-1 since knockdown of PARP-1 also inhibited the ROS. The similar inhibition of cell proliferation, ROS, and expression of PARP-1 and NRF2 proteins was observed when CR-HFKs were treated with hydroquinone (HQ), a key component from skin-lightening products. Moreover, the treatment of HQ plus treatment of ABT, NAC, or combination can further inhibit cell proliferation, ROS, expression of PARP-1, and NRF2 proteins. PARP-1 knockdown inhibited the population doubling (PDL) and treatment of HQ inhibited the PDL further, as well as the change of ROS. Finally, we discovered that pathways including cyclin D1, NRF2, Rb and pRb, CHK2, and p53, were involved in cell proliferation inhibition with HQ. Taken together, our findings demonstrated that crosstalk between ROS and PARP-1 involves in the cell proliferation in CR-HFKs, and that inhibition of CR-HFK proliferation with HQ is through modulating G1 cell cycle arrest.
Collapse
Affiliation(s)
- Linhua Liu
- Center for Cell Reprogramming, Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown, Washington, USA.,Department of Environmental and Occupational Health, Guangdong Medical University, Guangdong, Dongguan, China
| | - Abdul M Mondal
- Center for Cell Reprogramming, Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown, Washington, USA
| | - Xuefeng Liu
- Center for Cell Reprogramming, Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown, Washington, USA.,Wexner Medical Center, Department of Pathology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
49
|
Wu Y, Xu S, Cheng S, Yang J, Wang Y. Clinical application of PARP inhibitors in ovarian cancer: from molecular mechanisms to the current status. J Ovarian Res 2023; 16:6. [PMID: 36611214 PMCID: PMC9826575 DOI: 10.1186/s13048-023-01094-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
As a kind of gynecological tumor, ovarian cancer is not as common as cervical cancer and breast cancer, but its malignant degree is higher. Despite the increasingly mature treatment of ovarian cancer, the five-year survival rate of patients is still less than 50%. Based on the concept of synthetic lethality, poly (ADP- ribose) polymerase (PARP) inhibitors target tumor cells with defects in homologous recombination repair(HRR), the most significant being the target gene Breast cancer susceptibility genes(BRCA). PARP inhibitors capture PARP-1 protein at the site of DNA damage to destroy the original reaction, causing the accumulation of PARP-DNA nucleoprotein complexes, resulting in DNA double-strand breaks(DSBs) and cell death. PARP inhibitors have been approved for the treatment of ovarian cancer for several years and achieved good results. However, with the widespread use of PARP inhibitors, more and more attention has been paid to drug resistance and side effects. Therefore, further research is needed to understand the mechanism of PARP inhibitors, to be familiar with the adverse reactions of the drug, to explore the markers of its efficacy and prognosis, and to deal with its drug resistance. This review elaborates the use of PARP inhibitors in ovarian cancer.
Collapse
Affiliation(s)
- Yongsong Wu
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China ,grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shilin Xu
- grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Cheng
- grid.16821.3c0000 0004 0368 8293Obstetrics and Gynecology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jiani Yang
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China
| | - Yu Wang
- grid.24516.340000000123704535Department of Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai200092, China
| |
Collapse
|
50
|
Karim M, Iqbal T, Nawaz A, Yaku K, Nakagawa T. Deletion of Nmnat1 in Skeletal Muscle Leads to the Reduction of NAD + Levels but Has No Impact on Skeletal Muscle Morphology and Fiber Types. J Nutr Sci Vitaminol (Tokyo) 2023; 69:184-189. [PMID: 37394423 DOI: 10.3177/jnsv.69.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a coenzyme that mediates many redox reactions in energy metabolism. NAD+ is also a substrate for ADP-ribosylation and deacetylation by poly (ADP-ribose) polymerase and sirtuin, respectively. Nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) is a NAD+ biosynthesizing enzyme found in the nucleus. Recent research has shown that the maintaining NAD+ levels is critical for sustaining muscle functions both in physiological and pathological conditions. However, the role of Nmnat1 in skeletal muscle remains unexplored. In this study, we generated skeletal muscle-specific Nmnat1 knockout (M-Nmnat1 KO) mice and investigated its role in skeletal muscle. We found that NAD+ levels were significantly lower in the skeletal muscle of M-Nmnat1 KO mice than in control mice. M-Nmnat1 KO mice, in contrast, had similar body weight and normal muscle histology. Furthermore, the distribution of muscle fiber size and gene expressions of muscle fiber type gene expression were comparable in M-Nmnat1 KO and control mice. Finally, we investigated the role of Nmnat1 in muscle regeneration using cardiotoxin-induced muscle injury model, but muscle regeneration appeared almost normal in M-Nmnat1 KO mice. These findings imply that Nmnat1 has a redundancy in the pathophysiology of skeletal muscle.
Collapse
Affiliation(s)
- Mariam Karim
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama
| | - Tooba Iqbal
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama
| | - Keisuke Yaku
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama
| | - Takashi Nakagawa
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama
- Research Center for Pre-Disease Science, University of Toyama
| |
Collapse
|