1
|
Zhang Y, Ma W, Wan F. Hesperidin alleviates pulmonary fibrosis by regulating EI24-mediated autophagy. Future Sci OA 2025; 11:2483147. [PMID: 40155367 PMCID: PMC11959899 DOI: 10.1080/20565623.2025.2483147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/21/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Etoposide-induced protein 2.4 (EI24), an essential component of autophagy, is lowly expressed in pulmonary fibrosis. Hesperidin (Hes), a flavonoid, can regulate autophagy in various diseases. However, whether Hes can inhibit pulmonary fibrosis by mechanically regulating EI24-mediated autophagy has not been uncovered. METHODS RLE-6TN cells were treated with transforming growth factor β1 (TGF-β1) and rats were injected with bleomycin (BLM) to construct the pulmonary fibrosis model. The effect of Hes on pulmonary fibrosis was evaluated by cell counting kit-8, immunofluorescence, hematoxylin and eosin, masson trichome staining and western blotting. RESULTS Hes reduced cell viability of TGF-β1-induced RLE-6TN cells. Administration of Hes restored the decrease in autophagy marker levels in TGF-β1-induced RLE-6TN cells. Hes inhibited the transcriptional and translational levels of α-SMA, collagen I and fibronectin that were increased by TGF-β1 in RLE-6TN cells. Mechanically, Hes restored EI24 expression, and EI24 knockdown reversed the effect of Hes on the expressions of autophagy and fibrosis-related proteins. Additionally, Hes enhanced autophagy and fibrosis markers, which were worsened by EI24 knockdown in BLM-induced rats. CONCLUSION Hes activated autophagy by upregulating EI24, which improved pulmonary fibrosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cadre’s Ward, Affiliated Hospital of Guizhou Medical University, Guizhou, P.R. China
| | - Wen Ma
- Department of gerontology, Affiliated Hospital of Guizhou Medical University, Guizhou, P.R. China
| | - Fang Wan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guizhou Medical University, Guizhou, P.R. China
| |
Collapse
|
2
|
Sahnoon L, Bajbouj K, Mahboub B, Hamoudi R, Hamid Q. Targeting IL-13 and IL-4 in Asthma: Therapeutic Implications on Airway Remodeling in Severe Asthma. Clin Rev Allergy Immunol 2025; 68:44. [PMID: 40257546 PMCID: PMC12011922 DOI: 10.1007/s12016-025-09045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
Asthma is a chronic respiratory disorder affecting individuals across all age groups. It is characterized by airway inflammation and remodeling and leads to progressive airflow restriction. While corticosteroids remain a mainstay therapy, their efficacy is limited in severe asthma due to genetic and epigenetic alterations, as well as elevated pro-inflammatory cytokines interleukin-4 (IL-4), interleukin-13 (IL-13), and interleukin-5 (IL-5), which drive structural airway changes including subepithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia. This underscores the critical need for biologically targeted therapies. This review systematically examines the roles of IL-4 and IL-13, key drivers of type-2 inflammation, in airway remodeling and their potential as therapeutic targets. IL-4 orchestrates eosinophil recruitment, immunoglobulin class switching, and Th2 differentiation, whereas IL-13 directly modulates structural cells, including fibroblasts and epithelial cells, to promote mucus hypersecretion and extracellular matrix (ECM) deposition. Despite shared signaling pathways, IL-13 emerges as the dominant cytokine in remodeling processes including mucus hypersecretion, fibrosis and smooth muscle hypertrophy. While IL-4 primarily amplifies inflammatory cascades by driving IgE switching, promoting Th2 cell polarization that sustain cytokine release, and inducing chemokines to recruit eosinophils. In steroid-resistant severe asthma, biologics targeting IL-4/IL-13 show promise in reducing exacerbations and eosinophilic inflammation. However, their capacity to reverse established remodeling remains inconsistent, as clinical trials prioritize inflammatory biomarkers over long-term structural outcomes. This synthesis highlights critical gaps in understanding the durability of IL-4/IL-13 inhibition on airway structure and advocates for therapies combining biologics with remodeling-specific strategies. Through the integration of mechanistic insights and clinical evidence, this review emphasizes the need for long-term studies utilizing advanced imaging, histopathological techniques, and patient-reported outcomes to evaluate how IL-4/IL-13-targeted therapies alter airway remodeling and symptom burden, thereby informing more effective treatment approaches for severe, steroid-resistant asthma.
Collapse
Affiliation(s)
- Lina Sahnoon
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Bassam Mahboub
- Rashid Hospital, Dubai Health, 4545, Dubai, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Division of Surgery and Interventional Science, University College London, London, UK.
- Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah, United Arab Emirates.
| | - Qutayba Hamid
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
- Meakins-Christie Laboratories, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
3
|
Zhang Q, Luo X, Zheng Y, Zheng J, Wu X, Shi J. Breaking the scar barrier: The anti-fibrotic and hemodynamic benefits of total salvianolic acid in hypertrophic scars. Toxicol Appl Pharmacol 2025; 499:117339. [PMID: 40216314 DOI: 10.1016/j.taap.2025.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
Hypertrophic scars (HS) affect up to 70 % of individuals following deep dermal injuries, burns, or surgical procedures, leading to significant functional impairments and psychological distress. Despite their high prevalence, effective therapeutic options remain limited, and the underlying pathophysiology is not fully elucidated. This study integrates network pharmacology, molecular docking, and in vivo experimentation to investigate the therapeutic potential of total salvianolic acid (TSA) from Salvia miltiorrhiza in HS treatment. A systematic pharmacology approach identified 186 target proteins, highlighting TGF-β1, Smad3, IL-2, and IL-4 as key modulators of fibrosis and inflammation. Molecular docking confirmed high-affinity interactions between TSA's active components and these targets. TSA significantly reduced scar elevation, fibrosis, and collagen deposition in a rabbit ear hypertrophic scar model, restoring tissue architecture and improving hemorheological parameters. Histological and immunohistochemical analyses confirmed TSA's ability to suppress TGF-β/Smad signaling, downregulate inflammatory cytokines and normalize collagen dynamics. These findings provide compelling evidence that TSA is a multi-targeted, pharmacologically active compound with promising anti-fibrotic and microcirculatory benefits, paving the way for novel therapeutic strategies in HS management. This study establishes a scientific foundation for TSA-based interventions, with potential clinical implications in regenerative medicine and scar therapy.
Collapse
Affiliation(s)
- Qiaoju Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Xi Luo
- Foshan Traditional Chinese Medicine Hospital Affiliated to Guangzhou University of Chinese Medicine, Foshan 528000, Guangdong, China
| | - Yuwen Zheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Junqiao Zheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Xinying Wu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jun Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University of China, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangzhou 510006, China.
| |
Collapse
|
4
|
Bagheri L, Javanbakht M, Malekian S, Ghahderijani BH, Taghipour S, Tanha FD, Ranjkesh M, Cegolon L, Zhao S. Antifibrotic therapeutic strategies in systemic sclerosis: Critical role of the Wnt/β-catenin and TGF-β signal transduction pathways as potential targets. Eur J Pharmacol 2025:177607. [PMID: 40209848 DOI: 10.1016/j.ejphar.2025.177607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Systemic sclerosis (SSc) is a prototypic fibrosing disorder characterized by widespread fibrosis and immune dysregulation. Current evidence highlights the intricate cross-talk between the canonical Wnt/β-catenin signaling pathway and transforming growth factor-beta (TGF-β) signaling, both of which play fundamental roles in the pathogenesis of fibrosis. This review aims to elucidate the central role of the Wnt/β-catenin-TGF-β pathway and TGF-β signal transduction pathway in fibrotic diseases, focusing on SSc. We summarized evidence from cellular biology studies, animal model investigations, and clinical observations to provide a comprehensive view of the mechanisms by which these pathways cause pathological fibrosis. In addition, we explore the possibilities of antifibrotic therapeutic strategies against Wnt/β-catenin-TGF-β signaling to counteract fibrosis. We aim to delineate approaches towards effectively treating fibrosis in SSc by targeting these interconnected signaling pathways.
Collapse
Affiliation(s)
- Leyla Bagheri
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sheida Malekian
- Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sadra Taghipour
- Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Davari Tanha
- Department of Infertility, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Luca Cegolon
- Department of Medical, Surgical & Health Sciences, University of Trieste, 34128 Trieste, Italy; Public Health Department, University Health Agency Giuliano-Isontina (ASUGI), 34148 Trieste, Italy
| | - Shi Zhao
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
5
|
Costa V, Raimondi L, Scilabra SD, Pinto ML, Bellavia D, De Luca A, Guglielmi P, Cusanno A, Cattini L, Pulsatelli L, Pavarini M, Chiesa R, Giavaresi G. Effect of Hydrothermal Coatings of Magnesium AZ31 Alloy on Osteogenic Differentiation of hMSCs: From Gene to Protein Analysis. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1254. [PMID: 40141537 PMCID: PMC11944061 DOI: 10.3390/ma18061254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025]
Abstract
An Mg-based alloy device manufactured via a superplastic forming process (Mg-AZ31+SPF) and coated using a hydrothermal method (Mg AZ31+SPF+HT) was investigated as a method to increase mechanical and osteointegration capability. The cell viability and osteointegrative properties of alloy-derived Mg AZ31+SPF and Mg AZ31+SPF+HT extracts were investigated regarding their effect on human mesenchymal stem cells (hMSCs) (maintained in basal (BM) and osteogenic medium (OM)) after 7 and 14 days of treatment. The viability was analyzed through metabolic activity and double-strand DNA quantification, while the osteoinductive effects were evaluated through qRT-PCR, osteoimage, and BioPlex investigations. Finally, a preliminary liquid mass spectrometry analysis was conducted on the secretome of hMSCs. Biocompatibility analysis revealed no toxic effect on cells' viability or proliferation during the experimental period. A modulation effect was observed on the osteoblast pre-commitment genes of hMSCs treated with Mg-AZ31+SPF+HT in OM, which was supported by mineralization nodule analysis. A preliminary mass spectrometry investigation highlighted the modulation of protein clusters involved in extracellular exosomes, Hippo, and the lipid metabolism process. In conclusion, our results revealed that the Mg AZ31+SPF+HT extracts can modulate the canonical and non-canonical osteogenic process in vitro, suggesting their possible application in bone tissue engineering.
Collapse
Affiliation(s)
- Viviana Costa
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Lavinia Raimondi
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Simone Dario Scilabra
- Ri.MED Foundation, IRCCS ISMETT, Via Ernesto Tricomi 5, 90145 Palermo, Italy; (S.D.S.); (M.L.P.)
| | - Margot Lo Pinto
- Ri.MED Foundation, IRCCS ISMETT, Via Ernesto Tricomi 5, 90145 Palermo, Italy; (S.D.S.); (M.L.P.)
| | - Daniele Bellavia
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Angela De Luca
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| | - Pasquale Guglielmi
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy; (P.G.); (A.C.)
| | - Angela Cusanno
- Department of Mechanics, Mathematics and Management, Polytechnic University of Bari, 70125 Bari, Italy; (P.G.); (A.C.)
| | - Luca Cattini
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.C.); (L.P.)
| | - Lia Pulsatelli
- Laboratory of Immunorheumatology and Tissue Regeneration, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (L.C.); (L.P.)
| | - Matteo Pavarini
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, 20135 Milan, Italy; (M.P.); (R.C.)
| | - Roberto Chiesa
- Department of Chemistry, Materials and Chemical Engineering ‘G. Natta’, Politecnico di Milano, 20135 Milan, Italy; (M.P.); (R.C.)
| | - Gianluca Giavaresi
- CS-Surgical Sciences and Technologies-SS Omics Science Platform for Personalized Orthopedics, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.C.); (D.B.); (A.D.L.); (G.G.)
| |
Collapse
|
6
|
Lopez-Pleguezuelos C, Aguado-Barrera ME, Carballo-Castro A, Peleteiro P, Calvo-Crespo P, Taboada-Valladares B, Lobato-Busto R, Fuentes-Ríos O, Galego-Carro J, Coedo-Costa C, Gómez-Caamaño A, Vega A. Epigenome-wide analysis reveals potential biomarkers for radiation-induced toxicity risk in prostate cancer. Clin Epigenetics 2025; 17:43. [PMID: 40050897 PMCID: PMC11887099 DOI: 10.1186/s13148-025-01846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 02/17/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Prostate cancer is the second most common cancer globally, with radiation therapy (RT) being a key treatment for clinically localized and locally advanced cases. Given high survival rates, addressing long-term side effects of RT is crucial for preserving quality-of-life. Radiogenomics, the study of genetic variations affecting response to radiation, has primarily focussed on genomic biomarkers, while DNA methylation studies offer insights into RT responses. Although most research has centred on tumours, no epigenome-wide association studies have explored peripheral blood biomarkers of RT-induced toxicities in prostate cancer patients. Identifying such biomarkers could reveal molecular mechanisms underlying RT response and enable personalized treatment. METHODS We analysed 105 prostate cancer patients (52 cases and 53 controls). Cases developed grade ≥ 2 genitourinary and/or gastrointestinal late toxicity after 12 months of starting RT, whereas controls did not. An epigenome-wide association study of post-RT toxicities was performed using the Illumina MethylationEPIC BeadChip, adjusting for age and cell type composition. We constructed two methylation risk scores-one using differentially methylated positions (MRSsites) and another using differentially methylated regions (MRSregions)-as well as a Support Vector Machine-based methylation signature (SVMsites). We evaluated RT effects on biological age and stochastic epigenetic mutations within established radiation response pathways. Gene Ontology and pathway enrichment analyses were also performed. RESULTS Pre-RT methylation analysis identified 56 differentially methylated positions (adjusted p-value ≤ 0.05), and 6 differentially methylated regions (p-value ≤ 0.05) associated with the genes NTM, ACAP1, IL1RL2, VOOP1, AKR1E2, and an intergenic region on chromosome 13 related to Short/Long Interspersed Nuclear Elements. Both Methylation Risk Scores (MRSsites AUC = 0.87; MRSregions AUC = 0.89) and the 8-CpG Support Vector Machine signature (SVMsites AUC = 0.98) exhibited strong discriminatory accuracy in classifying patients in the discovery cohort. Gene ontology analysis revealed significant enrichment (adjusted p-value ≤ 0.05) of genes involved in DNA repair, inflammatory response, tissue repair, and oxidative stress response pathways. CONCLUSIONS Epigenetic biomarkers show potential for predicting severe long-term adverse effects of RT in prostate cancer patients. The identified methylation patterns provide valuable insights into toxicity mechanisms and may aid personalized treatment strategies. However, validation in independent cohorts is essential to confirm their predictive value and clinical applicability.
Collapse
Affiliation(s)
- Carlos Lopez-Pleguezuelos
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Miguel E Aguado-Barrera
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Carballo-Castro
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Paula Peleteiro
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Patricia Calvo-Crespo
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Begoña Taboada-Valladares
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Ramón Lobato-Busto
- Department of Medical Physics, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Olivia Fuentes-Ríos
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Javier Galego-Carro
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carla Coedo-Costa
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Radiation Oncology, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Ana Vega
- Genetics in Cancer and Rare Diseases Group, Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain.
- Fundación Pública Galega de Medicina Xenómica, Hospital Clínico Universitario de Santiago de Compostela, Servizo Galego de Saúde (SERGAS), Edificio de Consultas, Planta Menos 2, Choupana S/N, 15706, Santiago de Compostela, Spain.
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain.
| |
Collapse
|
7
|
Zhang W, Zhang X, Wang K, Liu Z, Zhang L, Liu S, He K, Wang H, Wang J, Wang Y, Wang Y, Yang Y, Wu H. Single-nucleus transcriptome profiling provides insights into the pathophysiology of adhesive arachnoiditis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167655. [PMID: 39755217 DOI: 10.1016/j.bbadis.2024.167655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 12/08/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Adhesive arachnoiditis (AA) is a rare form of chronic degenerative pathology associated with persistent inflammation in the arachnoid matter of the spinal cord. Despite the existing knowledge, the detailed pathological mechanisms underlying AA are not fully understood. This study aimed to elucidate through comprehensive single nuclei RNA sequencing (snRNA-seq) to delineate the transcriptomic landscape of AA. From six arachnoid membrane samples, a total of 52,886 cells met the quality control standards for analysis. The main cell populations identified with specific gene markers were as follows: fibroblasts, glial cells, microglial cells, endothelial cells, mural cells, plasma cells, and T cells. Downstream analysis of fibroblasts, glial cells, and microglial cells was performed. Notably, fibroblast subsets 1 and 3 demonstrated a strong association with AA. Among them, subcluster 3 demonstrated elevated expression of genes COL1A1, COL3A1, and FN1, indicative of enhanced Wnt/β-catenin and extracellular matrix (ECM) synthesis pathways. Subcluster 3 was predicted to progressively transform into subcluster 1. In subcluster 1, there was a significant upregulation of genes such as BMP and ALPL, signaling enhanced activation of calcification-related pathways. This was highly relevant to end-stage arachnoid ossification formation. After being activated, microglial cells transformed into inflammatory disease-associated microglial cells and continued to express high levels of chemokines CCL2, CCL4, IL-1β, and other inflammatory factors NAMPT, INPP5D and NLRP3. This might be the main reason why AA recurrence is frequently observed in patients. These insights enhance our understanding of the pathological progression of AA and may contribute to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Weikang Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiangyu Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Kai Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhenlei Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lei Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shaocheng Liu
- Beijing Mentougou District Hospital, Beijing 102300, China
| | - Kun He
- Department of Neurosurgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China; Department of Neurosurgery, China-Japan Friendship Hospital, Beijing 100029, China
| | - He Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Junyi Wang
- Beijing Science and Technology Innovation Group, Beijing 100101, China
| | - Yaobin Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yutian Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yuhua Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
8
|
Chen M, Song L, Zeng A. Harnessing nature's arsenal: Targeting the TGF-β/Smad Cascade with novel natural anti-fibrotic agents. Fitoterapia 2025; 181:106372. [PMID: 39778722 DOI: 10.1016/j.fitote.2024.106372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Hepatic fibrosis is a wound healing response that leads to excessive deposition of extracellular matrix (ECM) due to sustained liver injury. Hepatic stellate cells (HSCs) are key players in ECM synthesis, with the TGF-β/Smad signaling pathway being central to their activation. Despite advances in understanding the pathogenesis of hepatic fibrosis, effective anti-fibrotic therapies are still lacking. METHODS This treatise conducts a comprehensive review of the literature on the hepatoprotective effects of natural products, including natural medicine compounds, herbal extracts, and polysaccharides. The focus is on their ability to modulate the TGF-β pathway, which is critical in the activation of HSCs and ECM synthesis in hepatic fibrosis. RESULTS The review identifies a variety of natural products that have shown promise in inhibiting the TGF-β/Smad signaling cascade, thereby reducing the activation of HSCs and ECM accumulation. These findings highlight the potential of these natural products as therapeutic agents in the treatment of hepatic fibrosis. CONCLUSIONS The exploration of natural products as modulators of the TGF-β pathway presents a novel avenue for both clinical and preclinical research into hepatic fibrosis. Further investigation is warranted to fully understand the mechanisms of action and to develop these compounds into effective anti-fibrotic pharmaceuticals.
Collapse
Affiliation(s)
- Maohua Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine,Chengdu, Sichuan 610041, PR China; Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China. Chengdu, Sichuan 610072, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine,Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
9
|
Wang Y, Cui F, Yang Y, Liang H, Wu Y, Zhou A, Liu Y, Jiang Z, Peng J, Mu X. Evolutionary insights and expression patterns of sex-related gene families in the zig-zag eel Mastacembelus armatus. Comp Biochem Physiol A Mol Integr Physiol 2025; 301:111804. [PMID: 39756790 DOI: 10.1016/j.cbpa.2025.111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/28/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The zig-zag eel exhibits both sexual dimorphism and sex reversal, making it crucial to understand the mechanisms of sex determination and differentiation. Additionally, the wild populations of the zig-zag eel are significantly declining, emphasizing the need for urgent conservation efforts. In this study, we identified 7 Dmrt, 62 HMG-box, and 73 TGF-β family members in the zig-zag eel genome. Evolutionary analysis revealed that the HMG-box and TGF-β families in the zig-zag eel are primarily characterized by purifying selection. Furthermore, we identified 52 differentially expressed genes between males and females, with more male-biased genes than female-biased genes within these three gene families. ZzDmrt2a was highly expressed in the ovary, while ZzDmrt2b was highly expressed in the testis. Interestingly, Zzgdf9, located on the Y chromosome, was significantly expressed in the ovary. Our results highlight the complexity of sex differentiation mechanisms and underscores the importance of further research to elucidate the specific functions and regulatory networks of these sex-biased genes. Such insights could inform breeding strategies in aquaculture, contributing to the conservation and management of the zig-zag eel.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Fangyu Cui
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Shanghai Ocean University College of Fisheries and Life Science, Shanghai 201306, China
| | - Yexin Yang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiyan Liang
- Agricultural and Rural Bureau of Zengcheng District, Guangzhou 511300, China
| | - Yuli Wu
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510520, China
| | - Aiguo Zhou
- South China Agricultural University, Guangzhou 510642, China
| | - Yi Liu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhiyong Jiang
- Agro-Tech Extension Center of Guangdong Province, Guangzhou 510520, China
| | - Jintao Peng
- Guangzhou Heshenghui Agricultural Technology Co., Ltd., Guangzhou 511300, China
| | - Xidong Mu
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou 510380, China.
| |
Collapse
|
10
|
Fadl A, Leask A. CCN2: A potential contributor to gingival overgrowth. J Oral Biosci 2025; 67:100587. [PMID: 39521130 DOI: 10.1016/j.job.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Fibrotic responses in the gingiva are characterized by their hyperproliferative nature instead of scar tissue formation. Clinically, these conditions appear as "gingival overgrowth" (GO), which can be of drug-induced or genetic origin. Despite surgical removal, GO can recur. Therefore, non-invasive methods of treating GO are required. In other fibrotic systems, the matricellular protein CCN2 represents a potential therapeutic target. However, CCN2 has been relatively understudied in the context of GO. HIGHLIGHT Herein, we describe what is known regarding CCN2 expression in GO and gingival fibroblasts. Specifically, CCN2 is induced by agents that promote fibrogenesis in the oral cavity, such as transforming growth factor-β, and drugs that promote GO, such as cyclosporine, nifedipine, and phenytoin. CONCLUSION Although little is known regarding the possible function of CCN2 in GO, given the correlation between CCN2 expression and GO recurrence, we hope that this review will inspire further research on this topic.
Collapse
Affiliation(s)
- Asmaa Fadl
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK, S7H 2E5, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Rd, Saskatoon, SK, S7H 2E5, Canada.
| |
Collapse
|
11
|
Kılıç E, Çolakerol A, Temiz MZ, Yentur S, Başağa Y, Gonen ZB, Tavukcu HH, Ozsoy S, Muslumanoglu AY, Dursun M, Kadıoğlu A, Kandirali IE. Intracavernosal mesenchymal stem cell therapy in ischaemic priapism: an experimental study. Int Urol Nephrol 2025; 57:723-734. [PMID: 39443434 DOI: 10.1007/s11255-024-04248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The most common form of priapism is ischaemic and its prevalence in men has increased in recent years as a result of intracavernosal drug use. Currently, there is no approved specific treatment for ischaemic priapism other than cavernosal aspiration, which can only provide detumescence. This study aims to evaluate the efficacy of intracavernosal mesenchymal stem cell (MSC) therapy in an ischaemic priapism model. MATERIAL AND METHODS Thirty male Wistar albino rats were divided into three groups: sham (n = 6), priapism (n = 12) and priapism + MSC treatment (n = 12). The experimental groups were also divided into 1 and 12 h subgroups of ischaemic priapism. The experimental model was created using a vacuum erection device and constrictive tape technique, and intracavernosal MSC were applied immediately after the tape was removed. After 4 weeks, intracavernosal pressures (ICPs) and systemic mean arterial pressure (MAP) were measured. Penectomy was then performed to assess histopathological and molecular changes in the rats' penile tissues. RESULTS In the ischaemic priapism model, MSC therapy showed significant improvements in peak and mean ICPs and mean ICP/MAP ratio. Histopathological analysis showed significant increases in smooth-muscle/collagen ratio and e-NOS and n-NOS expression. Although there was a decrease in fibrosis, it was not significant. At the molecular level, there were significant decreases in TGF-beta and VEGF mRNA expression, whilst NGF and BDNF mRNA-expression levels showed significant increases with MSC therapy. In terms of ICPs, the therapy showed more significant improvements in short-term priapism. However, when looking at histopathological and molecular parameters, the therapy had positive effects on a wider range of parameters in the long-term priapism. CONCLUSION MSC treatment improved cavernosal physiology and had positive effects at the histopathological and molecular level in the ischaemic priapism model.
Collapse
Affiliation(s)
- Enes Kılıç
- Department of Urology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Aykut Çolakerol
- Department of Urology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Mustafa Zafer Temiz
- Department of Urology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Serhat Yentur
- Department of Urology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Yaşar Başağa
- Department of Urology, Nisantasi University, Istanbul, Turkey
| | - Zeynep Burcin Gonen
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry and Genome- Stem Cell Center, Erciyes University, Kayseri, Turkey
| | | | - Sule Ozsoy
- Department of Pathology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | | | - Murat Dursun
- Department of Urology, Faculty of Medicine, Section of Andrology, Istanbul University, Millet Cad. Istanbul Tıp Fakültesi, Cerrahi Monoblok, Kat:1, 34104, Fatih, Istanbul, Turkey
| | - Ateş Kadıoğlu
- Department of Urology, Faculty of Medicine, Section of Andrology, Istanbul University, Millet Cad. Istanbul Tıp Fakültesi, Cerrahi Monoblok, Kat:1, 34104, Fatih, Istanbul, Turkey.
| | | |
Collapse
|
12
|
Ma J, Sun Q, Chen Y, Li J, Chen S, Luo L. Exosomes containing miR-148a-3p derived from mesenchymal stem cells suppress epithelial-mesenchymal transition in lens epithelial cells. Stem Cells Transl Med 2025; 14:szae091. [PMID: 40036306 DOI: 10.1093/stcltm/szae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/02/2024] [Indexed: 03/06/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is responsible for the development of fibrotic cataracts, which contribute to severe visual impairment. Recent evidence has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) can attenuate EMT in several tissues. However, the effect of MSC-Exo on EMT in LECs (LECs-EMT) has not been determined. In this study, we isolated exosomes from human umbilical cord MSCs (hucMSC-Exo) and evaluated their effect on LECs-EMT both in vitro and in vivo. HucMSC-Exo application significantly suppressed the expression of mesenchymal cell-associated genes while increasing the expression of epithelial cell-associated genes. Cell proliferation and migration of LECs undergoing EMT were inhibited after hucMSC-Exo treatment. The volume of EMT plaques in mice with injury-induced anterior subcapsular cataract (ASC) was significantly reduced in the hucMSC-Exo-treated group. Furthermore, miR-148a-3p was abundant in hucMSC-Exo. After transfection with miR-148a-3p inhibitor, the anti-fibrotic effect of hucMSC-Exo was attenuated in LECs-EMT. A dual-luciferase reporter assay identified PRNP as a direct target gene of miR-148a-3p. Furthermore, we verified that hucMSC-Exo inhibited LECs-EMT through the miR-148a-3p/PRNP axis and the potential downstream ERK signaling pathway. Taken together, our work reveals the inhibitory effect of hucMSC-Exo on LECs-EMT and the underlying mechanism involved, which may provide potential therapeutic options for fibrotic cataracts.
Collapse
Affiliation(s)
- Jingyu Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People's Republic of China
| | - Qihang Sun
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Yijia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People's Republic of China
| | - Jinyan Li
- Department of Ophthalmology, The Key Laboratory of Advanced Interdisciplinary Studies Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, People's Republic of China
| | - Shuyi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People's Republic of China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong 510060, People's Republic of China
| |
Collapse
|
13
|
Sah J, Singh I. Role of Essential Oils and Antioxidants in the Treatment of Fibrosis. Curr Drug Res Rev 2025; 17:76-89. [PMID: 40183147 DOI: 10.2174/0125899775271616231205111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/14/2023] [Accepted: 11/06/2023] [Indexed: 04/05/2025]
Abstract
Fibrosis is the leading cause of many lethal diseases. It is characterized by the accumulation of extracellular matrix (ECM) components, which leads to damaged tissue functioning in the influenced organs. Essential oils are concentrated hydrophobic liquid having volatile compounds extracted from plant or plant parts while antioxidants are the compounds that help in scavenging free radicals and prevent reducing the oxidation processes. In this review, challenges that come during the treatment of fibrosis have been covered, mechanism of action of both essential oil and antioxidants is also outlined in this article. This review aimed to provide scientific fundamental and knowledge, ideas for the development and application of essential oils and antioxidants in the treatment of fibrosis.
Collapse
Affiliation(s)
- Jaishree Sah
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Indu Singh
- Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
14
|
Xue S, Bao W, Lyu J, Wang C, Zhang Y, Li H, Chen D, Lu Y. In vitro nephrotoxicity and structure-toxicity relationships of eight natural aristolactams. Toxicon 2025; 254:108214. [PMID: 39674407 DOI: 10.1016/j.toxicon.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The structural similarity between aristolactams (ALs) and aristolochic acids (AAs) raises constant concerns about the safety of ALs-containing plants. Natural ALs are distributed more extensively than AAs, leading to a higher risk of ALs exposure in daily consumption. This study aimed to evaluate and compare the in vitro nephrotoxicity on human renal tubular epithelial cells (HK-2 cells) of eight natural ALs with different substituents on the phenanthrene ring and amide ring, including aristolactam Ⅰ (AL Ⅰ), AL BⅡ, velutinam, AL AⅡ, sauristolactam, AL AⅠa, AL FⅠ and N-methyl piperolactam A. Their IC50 values of cell viability were tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of kidney injury molecule-1 (KIM-1), transforming growth factor-β1 (TGF-β1) and fibronectin (FN). The reactive oxygen species (ROS) assay was used to detect the intracellular oxidative stress level. The results showed that the eight ALs all had specific nephrotoxicity on HK-2 cells. Particularly, AL Ⅰ, AL BⅡ and velutinam exhibited more potent cytotoxicity on HK-2 cells (IC50 = 2.49-2.78 μM) than the other five ALs (IC50 = 12.33-43.84 μM). The structure-toxicity relationships indicated that both methylenedioxy (-OCH2O-) and methoxy (-OCH3) were positively contributing functional groups of ALs on nephrotoxicity, while the hydroxy group (-OH) and methyl substitution on nitrogen (N-CH3) accounted for a detrimental effect conversely. Consistent with this structure-toxicity relationship, the eight ALs increased KIM-1 levels in the same trend as their cytotoxicity at the same concentration of 2.5 μg/mL, associating with different levels of ROS generation. And the four most toxic ALs, AL Ⅰ, AL BⅡ, velutinam and AL AⅡ, could also induce fibrosis by increasing TGF-β1 and FN levels.
Collapse
Affiliation(s)
- Shiyu Xue
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weilian Bao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jiaren Lyu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Changyue Wang
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yunyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China; Institutes of Integrative Medicine, Fudan University, Shanghai, 201203, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
15
|
Li J, Zheng R, Shen Y, Zhuo Y, Lu L, Song J, Li J, Lai M, Zhu H, Hu M, Ma H, Li J. Jiawei Qi Gong Wan improves liver fibrosis and inflammation in PCOS mice via the Akt2-FoxO1 and YAP/TAZ signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156294. [PMID: 39616732 DOI: 10.1016/j.phymed.2024.156294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Metabolic disorders in polycystic ovary syndrome (PCOS) patients have attracted increasing attention, and nonalcoholic fatty liver disease (NAFLD) in particular has been the focus of much research due to its high incidence and potential harm in patients with PCOS. However, little is known about whether PCOS is associated with more severe NAFLD histopathology. Although Jiawei Qi Gong Wan (JQGW) is widely used clinically, its specific effects and mechanisms on the liver remain unclear. PURPOSE The aim of this study was to explore the mechanism of JQGW in improving metabolic abnormalities in the liver in PCOS mice in order to support the development of therapies to prevent PCOS complications. METHODS A mouse model of PCOS was established by subcutaneously implanting letrozole tubes. The effect of JQGW on liver metabolism in mice was observed by measuring biochemical indicators in serum. Liver morphological changes were observed using hematoxylin and eosin staining along with Sirius red staining, while Western blotting and qRT-PCR were used to quantify the expression of genes and proteins related to liver fibrosis and inflammation processes. Network pharmacology was used to analyze the key factors that JQGW may target in improving liver fibrosis in PCOS mice, and the results were verified by Western blotting of liver tissue from PCOS mice. RESULTS PCOS mice had obvious liver metabolic dysfunction, inflammation, and fibrosis, all of which could be reversed by JQGW. Network pharmacology functional enrichment revealed that the overlapping targeted genes were enriched mainly in insulin resistance-related pathways and androgen-related pathways. We verified related proteins and found that JQGW improved liver fibrosis and inflammation in PCOS mice mainly by regulating the Akt2-FoxO1 and YAP/TAZ signaling pathways. CONCLUSION JQGW can improve liver metabolic function in a letrozole-induced PCOS mouse model by inhibiting liver fibrosis and inflammation, and it acts mechanistically by regulating the Akt2-FoxO1 and YAP/TAZ signaling pathways. Our findings thus provide a valuable reference for the advancement of therapeutic strategies aimed at addressing PCOS patients with abnormal liver metabolism.
Collapse
Affiliation(s)
- Jie Li
- Department of Traditional Chinese Medicine, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Ruqun Zheng
- Department of Traditional Chinese Medicine, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yingyan Shen
- Department of Traditional Chinese Medicine, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yuxuan Zhuo
- Department of Traditional Chinese Medicine, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Lingjing Lu
- Department of Traditional Chinese Medicine, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinlong Song
- Department of Laboratory Medicine, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Maohua Lai
- Department of Traditional Chinese Medicine, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - He Zhu
- School of Public Health, Peking University, Beijing, China
| | - Min Hu
- Department of Traditional Chinese Medicine, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China.
| | - Juan Li
- Department of Traditional Chinese Medicine, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China.
| |
Collapse
|
16
|
Ye B, Yue M, Chen H, Sun C, Shao Y, Jin Q, Zhang C, Yu G. YAP/TAZ as master regulators in liver regeneration and disease: insights into mechanisms and therapeutic targets. Mol Biol Rep 2024; 52:78. [PMID: 39718664 DOI: 10.1007/s11033-024-10177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo pathway that regulate organ size, tissue homeostasis, and cancer development. YAP/TAZ play crucial regulatory roles in organ growth, cell proliferation, cell renewal, and regeneration. Mechanistically, YAP/TAZ influence the occurrence and progression of liver regeneration (LR) through various signaling pathways, including Notch, Wnt/β-catenin, TGF-β/Smad. While the activation of YAP/TAZ can promote the regeneration of damaged liver tissue, their mechanisms of action may differ under various LR conditions. Furthermore, excessive activation of YAP/TAZ may also lead to severe liver damage, manifesting as alcoholic hepatitis, liver fibrosis, and even liver cancer. Here, we review the role and mechanisms of YAP/TAZ in LR and liver disease, highlighting the potential for advancements in clinical diagnosis and treatment targeting YAP/TAZ in these contexts.
Collapse
Affiliation(s)
- Bingyu Ye
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Meijuan Yue
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hu Chen
- Anyang Food and Drug Inspection and Testing Center, Anyang, 455000, China
| | - Caifang Sun
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yongle Shao
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qinpeng Jin
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chunyan Zhang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
17
|
Kacprzak B, Stańczak M, Surmacz J, Hagner-Derengowska M. Biophysics of ACL Injuries. Orthop Rev (Pavia) 2024; 16:126041. [PMID: 39911284 PMCID: PMC11798646 DOI: 10.52965/001c.126041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 02/07/2025] Open
Abstract
Anterior Cruciate Ligament (ACL) injuries rank among the most prevalent and severe types of injuries, significantly impacting both athletes and non-athletes alike. These injuries not only result in immediate physical impairment, such as intense pain, substantial swelling, and a marked loss of mobility, but also carry long-term health consequences that can alter a person's quality of life. Chronic pain, persistent instability, and an increased risk of developing osteoarthritis are among the lasting effects that can follow an ACL injury. An in-depth understanding of the biophysics behind ACL injuries is paramount for devising effective prevention and treatment protocols. Biophysics, which combines principles from physics with biological systems, provides crucial insights into the mechanical and structural integrity of the ACL and its susceptibility to injury under various conditions. This systematic review aims to collate and synthesize the current knowledge surrounding the biophysical mechanisms that underlie ACL injuries.
Collapse
Affiliation(s)
| | - Mikołaj Stańczak
- AECC University College, Bournemouth, UK
- Rehab Performance, Lublin, Poland
| | | | | |
Collapse
|
18
|
Nepon H, Julien C, Petrecca S, Kalashnikov N, Safran T, Murphy A, Dionisopoulos T, Davison P, Vorstenbosch J. The cellular and molecular properties of capsule surrounding silicone implants in humans vary uniquely according to the tissue type adjacent to the implant. J Biomed Mater Res A 2024; 112:2055-2070. [PMID: 38864257 DOI: 10.1002/jbm.a.37762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/15/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
The foreign body reaction (FBR) to biomaterials results in fibrous encapsulation. Excessive capsule fibrosis (capsular contracture) is a major challenge to the long-term stability of implants. Clinical data suggests that the tissue type in contact with silicone breast implants alters susceptibility to developing capsular contracture; however, the tissue-specific inflammatory and fibrotic characteristics of capsule have not been well characterized at the cellular and molecular level. In this study, 60 breast implant capsule samples are collected from patients and stratified by the adjacent tissue type including subcutaneous tissue, glandular breast tissue, or muscle tissue. Capsule thickness, collagen organization, immune and fibrotic cellular populations, and expression of inflammatory and fibrotic markers is quantified with histological staining, immunohistochemistry, and real-time PCR. The findings suggest there are significant differences in M1-like macrophages, CD4+ T cells, CD26+ fibroblasts, and expression of IL-1β, IL-6, TGF-β, and collagen type 1 depending on the tissue type abutting the implant. Subglandular breast implant capsule displays a significant increase in inflammatory and fibrotic markers. These findings suggest that the tissue microenvironment contributes uniquely to the FBR. This data could provide new avenues for research and clinical applications to improve the site-specific biocompatibility and longevity of implantable devices.
Collapse
Affiliation(s)
- Hillary Nepon
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, Quebec, Canada
- Division of Surgical and Interventional Sciences, McGill University, Montreal General Hospital, Quebec, Canada
| | - Cedric Julien
- McGill University Hospital Centre Research Institute, Montreal General Hospital, Quebec, Canada
| | - Sarah Petrecca
- Faculty of Medicine and Health Sciences, McGill University, Quebec, Canada
| | - Nikita Kalashnikov
- Division of Surgical and Interventional Sciences, McGill University, Montreal General Hospital, Quebec, Canada
- Faculty of Medicine and Health Sciences, McGill University, Quebec, Canada
| | - Tyler Safran
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, Quebec, Canada
| | - Amanda Murphy
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, Quebec, Canada
| | - Tassos Dionisopoulos
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, Quebec, Canada
| | - Peter Davison
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, Quebec, Canada
| | - Joshua Vorstenbosch
- Division of Plastic & Reconstructive Surgery, McGill University, Montreal General Hospital, Quebec, Canada
- McGill University Hospital Centre Research Institute, Montreal General Hospital, Quebec, Canada
| |
Collapse
|
19
|
Ji J, Xiong C, Yang H, Jiang Z, Zhang Y, Wang X, Yu T, Li Q, Zhu S, Zhou Y. The aryl hydrocarbon receptor: A crucial mediator in ocular disease pathogenesis and therapeutic target. Exp Eye Res 2024; 249:110144. [PMID: 39486499 DOI: 10.1016/j.exer.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a pivotal nuclear receptor involved in mediating cellular responses to a wide range of environmental pollutants and endogenous ligands. AHR plays a central role in regulating essential physiological processes, including xenobiotic metabolism, immune response modulation, cell cycle control, tumorigenesis, and developmental events. Recent studies have identified AHR as a critical mediator and a potential therapeutic target in the pathogenesis of ocular diseases. This review provides a thorough analysis of the various functions of AHR signalling in the ocular environment, with a specific emphasis on its effects on the retina, retinal pigment epithelium (RPE), choroid, and cornea. We provide a detailed discussion on the molecular mechanisms through which AHR integrates environmental and endogenous signals, influencing the development and progression of age-related macular degeneration (AMD), retinitis pigmentosa, uveitis, and other major ocular disorders. Furthermore, we evaluate the therapeutic potential of modulating AHR activity through novel ligands and agonists as a strategy for treating eye diseases. Understanding the molecular mechanisms of AHR in ocular tissues may facilitate the development of AHR-targeted therapies, which is crucial for addressing the pressing clinical demand for novel treatment strategies in ocular diseases.
Collapse
Affiliation(s)
- Juanjuan Ji
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chanyu Xiong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huining Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianshu Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shikai Zhu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
20
|
Shen C, Jiang Y, Lin J, Guo Q, Fang D. METTL3 silencing inhibits ferroptosis to suppress ovarian fibrosis in PCOS by upregulating m6A modification of GPX4. J Mol Histol 2024; 55:1163-1175. [PMID: 39261364 DOI: 10.1007/s10735-024-10257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Methyltransferase-like 3 (METTL3) is extensively reported to be involved in organ fibrosis. Ovarian fibrosis is a main characteristic of polycystic ovary syndrome (PCOS). However, the reaction mechanism of METTL3 in PCOS is poorly investigated. This paper was intended to reveal the role and the mechanism of METTL3 in PCOS. Animal and cell models of PCOS were induced by dehydroepiandrosterone (DHEA). H&E staining was performed to detect the pathological alterations in ovary tissues. Masson staining, immunofluorescence, along with western blot measured fibrosis both in vitro and in vivo. To evaluate estrous cycle, vaginal smear was performed. Lipid peroxidation and ferroptosis were evaluated by MDA assay kits, GSH assay kits, immunohistochemistry, Prussian blue staining and western blot. qRT-PCR and western blot were adopted to estimate METTL3 and GPX4 expression. The m6A and hormone secretion levels were respectively assessed by m6A RNA Methylation Quantitative Kit and corresponding kits. The interaction between METTL3 and GPX4 was testified by immunoprecipitation. The fibrosis and ferroptosis were aggravated and m6A and METTL3 expression were increased in ovarian tissues of DHEA-induced PCOS mice. METTL3 silencing alleviated pathological changes, affected hormone secretion level, and repressed fibrosis, lipid peroxidation and ferroptosis in the ovarian tissues of PCOS mice. In vitro, DHEA stimulation increased m6A and METTL3 expression and induced ferroptosis and fibrosis. METTL3 knockdown promoted GPX4 expression in DHEA-induced granulosa cells by m6A modification and restrained DHEA-induced fibrosis, lipid peroxidation and ferroptosis in granulosa cells via elevating GPX4. METTL3 silence inhibited ovarian fibrosis in PCOS, which was mediated through suppressing ferroptosis by upregulating GPX4 in m6A-dependent manner.
Collapse
Affiliation(s)
- Chuan Shen
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yongmei Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiwei Guo
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dingzhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Section 3, Ren Min Nan Lu, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
21
|
Pan C, Wei H, Chen B, Wu L, Song J, Zhang Q, Wu X, Liang G, Chen W, Wang Y, Xie Y. Inhalation of itraconazole mitigates bleomycin-induced lung fibrosis via regulating SPP1 and C3 signaling pathway pivotal in the interaction between phagocytic macrophages and diseased fibroblasts. J Transl Med 2024; 22:1058. [PMID: 39587675 PMCID: PMC11587652 DOI: 10.1186/s12967-024-05895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) stands as a significant contributor to global mortality rates. Presently, there exists a dearth of effective anti-fibrotic treatments for this condition. While itraconazole (ITR) has exhibited potential in mitigating pulmonary fibrosis, its oral administration is hampered by unfavorable pharmacokinetics, which elevate the risk of adverse reactions, thus limiting its clinical utility. METHODS An inhalable formulation of ITR were engineered which aimed at enhancing its pulmonary dispersion. First, pharmacokinetics were conducted to investigate the blood concentration and tissue residue of ITR after inhalation administration. In addition, bleomycin induced mouse pulmonary fibrosis model was used to compare the therapeutic effects of ITR administered by inhalation and intragastric administration. Finally, single-cell RNA sequencing (scRNAseq) was used to explore the mechanism of ITR inhalation administration. RESULTS We found that a large amount of drugs accumulated in the lung tissue for a long time after inhalation administration, thus maximizing the therapeutic effect of drugs. Inhalation of ITR daily at for 21 days significantly attenuated bleomycin-induced lung fibrosis and inflammation in murine models. Additionally, our findings revealed that ITR inhalation diminished the proportion of diseased fibroblasts while promoting reparative fibroblast populations in the murine model. Furthermore, it effectively reversed the proportion of activated phagocytic macrophages. Mechanistically, ITR inhalation exerted its effects by regulating SPP1 and C3 signaling pathway pivotal in the interaction between phagocytic macrophages and diseased fibroblasts. CONCLUSIONS These insights into the molecular mechanisms underlying ITR's therapeutic effects on IPF underscore the favorable pharmacokinetic profile conferred by inhalation, thus presenting a promising formulation poised for clinical translation.
Collapse
Affiliation(s)
- Caizhe Pan
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Hao Wei
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
- School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Lei Wu
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Jiayao Song
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China
| | - Qing Zhang
- School of of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xinglong Wu
- School of of Computer Science and Engineering, Hubei Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan, 430205, China
| | | | - Wenhao Chen
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Yingshuo Wang
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| | - Yicheng Xie
- Department of Pulmonology and Orthopedic Surgery, Children's Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou, 310052, China.
| |
Collapse
|
22
|
Xiao Y, Martinez L, Zigmond Z, Woltmann D, Singer DV, Singer HA, Vazquez-Padron RI, Salman LH. Functions for platelet factor 4 (PF4/CXCL4) and its receptors in fibroblast-myofibroblast transition and fibrotic failure of arteriovenous fistulas (AVFs). J Vasc Access 2024; 25:1911-1924. [PMID: 37589266 PMCID: PMC10998683 DOI: 10.1177/11297298231192386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Over 60% of End Stage Renal Disease (ESRD) patients are relying on hemodialysis (HD) to survive, and the arteriovenous fistula (AVF) is the preferred vascular access method for HD. However approximately half of all newly created AVF fail to mature and cannot be used without a salvage procedure. We have recently demonstrated an association between AVF maturation failure and post-operative fibrosis, while our RNA-seq study also revealed that veins that ultimately failed during AVF maturation had elevated levels of platelet factor 4 (PF4/CXCL4). However, a link between these two findings was yet to be established. METHODS In this study, we investigated potential mechanisms between PF4 levels and fibrotic remodeling in veins. We compared the local expression of PF4 and fibrosis marker integrin β6 (ITGB6) in veins that successfully underwent maturation with that in veins that ultimately failed to mature. We also measured the changes of expression level of α-smooth muscle actin (αSMA/ACTA2) and collagen (Col1/COL1A1) in venous fibroblasts upon various treatments, such as PF4 pharmacological treatment, alteration of PF4 expression, and blocking of PF4 receptors. RESULTS We found that PF4 is expressed in veins and co-localizes with αSMA. In venous fibroblasts, PF4 stimulates expression of αSMA and Col1 via different pathways. The former requires integrins αvβ5 and α5β1, while chemokine receptor CXCR3 is needed for the latter. Interestingly, we also discovered that the expression of PF4 is associated with that of ITGB6, the β subunit of integrin αvβ6. This integrin is critical for the activation of the major fibrosis factor TGFβ, and overexpression of PF4 promotes activation of the TGFβ pathway. CONCLUSIONS These results indicate that upregulation of PF4 may cause venous fibrosis both directly by stimulating fibroblast differentiation and expression of extracellular matrix (ECM) molecules and indirectly by facilitating the activation of the TGFβ pathway.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zachary Zigmond
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Woltmann
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Diane V Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Loay H Salman
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology & Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
23
|
Xu L, Zhao Y, Zhang X, Gang X, Han J, Zhou T, Qi B, Song S, Ren R, Liang Y. Low Intraocular Pressure Induces Fibrotic Changes in the Trabecular Meshwork and Schlemm's Canal of Sprague Dawley Rats. Transl Vis Sci Technol 2024; 13:10. [PMID: 39374003 PMCID: PMC11463712 DOI: 10.1167/tvst.13.10.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/14/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose Continuous artificial aqueous humor drainage in the eyes of patients with glaucoma undergoing trabeculectomy likely exerts abnormal shear stress. However, it remains unknown how changes in intraocular pressure (IOP) can affect aqueous humor outflow (AHO). Methods Here, we induced and maintained low intraocular pressure (L-IOP) in healthy Sprague Dawley (SD) rats by puncturing their eyes using a tube (200-µm diameter) for 2 weeks. After the rats were euthanized, their eyes were removed, fixed, embedded, stained, and scanned to analyze the physiological and pathological changes in the trabecular meshwork (TM) and Schlemm's canal (SC). We measured SC parameters using ImageJ software and assessed the expression of various markers related to flow shear stress (KLF4), fibrosis (TGF-β1, TGF-β2, α-SMA, pSmad1/5, pSmad2/3, and fibronectin), cytoskeleton (integrin β1 and F-actin), diastolic function (nitric oxide synthase and endothelial nitric oxide synthase [eNOS]), apoptosis (cleaved caspase-3), and proliferation (Ki-67) using immunofluorescence or immunohistochemistry. Results L-IOP eyes showed a larger SC area, higher eNOS expression, and lower KLF4 and F-actin expression in the TM and SC (both P < 0.05) than control eyes. The aqueous humor of L-IOP eyes had a higher abundance of fibrotic proteins and apoptotic cells than that of control eyes, with significantly higher TGF-β1, α-SMA, fibronectin, and cleaved caspase-3 expression (all P < 0.05). Conclusions In conclusion, a persistence of L-IOP for 2 weeks may contribute to fibrosis in the TM and SC and might be detrimental to conventional AHO in SD rat eyes. Translational Relevance Clinicians should consider that aberrant shear force induced by aqueous humor fluctuation may damage AHO outflow channel when treating patients.
Collapse
Affiliation(s)
- Lijuan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Glaucoma Research Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yin Zhao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyao Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaorui Gang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jialing Han
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Binyan Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuning Song
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruiyi Ren
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Glaucoma Research Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanbo Liang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
- The Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Glaucoma Research Institute of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
24
|
Xu ZZ, Zhou J, Duan K, Li XT, Chang S, Huang W, Lu Q, Tao J, Xie WB. Blocking Sigmar1 exacerbates methamphetamine-induced hypertension. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167284. [PMID: 38851304 DOI: 10.1016/j.bbadis.2024.167284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
AIM Methamphetamine (METH) chronic exposure is an important risk factor for hypertension development. However, the mechanisms behind METH-induced hypertension remain unclear. Therefore, we aimed to reveal the potential mechanisms underlying METH-induced hypertension. METHODS AND RESULTS We structured the mouse hypertension model by METH, and observed that METH-treated mice have presented vascular remodeling (large-and small-size arteries) with collagen deposit around the vessel and increasing blood pressure (BP) and Sigma1 receptor (Sigmar1) in vascular tissue. We hypothesized that Sigmar1 is crucial in METH-induced hypertension and vascular remodeling. Sigmar1 knockout (KO) mice and antagonist (BD1047) pretreated mice exposed to METH for six-week showed higher BP and more collagen deposited around vessels than wild-type (WT) mice exposed to METH for six-week, in contrast, mice pretreated with Sigmar1 agonist (PRE-084) had unchanged BP and perivascular collagen despite the six-week METH exposure. Furthermore, we found that METH exposure induced vascular smooth muscle cells (VSMCs) and mesenchymal stem cells to differentiate into the myofibroblast-like cell and secrete collagen into surrounding vessels. Mechanically, Sigmar1 can suppress the COL1A1 expression by blocking the classical fibrotic TGF-β/Smad2/3 signaling pathway in METH-exposed VSMCs and mesenchymal stem cells. CONCLUSION Our results suggest that Sigmar1 is involved in METH-induced hypertension and vascular fibrosis by blocking the activation of the TGF-β/Smad2/3 signaling pathway. Accordingly, Sigmar1 may be a novel therapeutic target for METH-induced hypertension and vascular fibrosis.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Blood Pressure/drug effects
- Collagen/metabolism
- Disease Models, Animal
- Hypertension/chemically induced
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/genetics
- Mesenchymal Stem Cells/metabolism
- Methamphetamine/adverse effects
- Methamphetamine/toxicity
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/drug effects
- Receptors, sigma/metabolism
- Receptors, sigma/genetics
- Sigma-1 Receptor
- Signal Transduction/drug effects
- Vascular Remodeling/drug effects
Collapse
Affiliation(s)
- Zhen-Zhen Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jie Zhou
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Ke Duan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao-Ting Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Sheng Chang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wanshan Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Qiujun Lu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jing Tao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Wei-Bing Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
25
|
Wang X, Liu Q, Zhuang Z, Cheng J, Zhang W, Jiang Q, Guo Y, Li R, Lu X, Cui L, Weng J, Tang Y, Yue J, Gao S, Hong K, Qiao J, Jiang H, Guo J, Zhang Z. Decoding the pathogenesis of spermatogenic failure in cryptorchidism through single-cell transcriptomic profiling. Cell Rep Med 2024; 5:101709. [PMID: 39226895 PMCID: PMC11528238 DOI: 10.1016/j.xcrm.2024.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/20/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
Cryptorchidism, commonly known as undescended testis, affects 1%-9% of male newborns, posing infertility and testis tumor risks. Despite its prevalence, the detailed pathophysiology underlying male infertility within cryptorchidism remains unclear. Here, we profile and analyze 46,644 single-cell transcriptomes from individual testicular cells obtained from adult males diagnosed with cryptorchidism and healthy controls. Spermatogenesis compromise in cryptorchidism links primarily to spermatogonium self-renewal and differentiation dysfunctions. We illuminate the involvement of testicular somatic cells, including immune cells, thereby unveiling the activation and degranulation of mast cells in cryptorchidism. Mast cells are identified as contributors to interstitial fibrosis via transforming growth factor β1 (TGF-β1) and cathepsin G secretion. Furthermore, significantly increased levels of secretory proteins indicate mast cell activation and testicular fibrosis in the seminal plasma of individuals with cryptorchidism compared to controls. These insights serve as valuable translational references, enriching our comprehension of testicular pathogenesis and informing more precise diagnosis and targeted therapeutic strategies for cryptorchidism.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Ziyan Zhuang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Jianxing Cheng
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Wenxiu Zhang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Qiaoling Jiang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yifei Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Ran Li
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaojian Lu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Lina Cui
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China
| | - Jiaming Weng
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Yanlin Tang
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Jingwei Yue
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Songzhan Gao
- Department of Andrology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Hong
- Department of Urology, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing, China; Department of Urology, Institute of Urology, Peking University First Hospital, Beijing, China.
| | - Jingtao Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of the Chinese Academy of Sciences, Beijing, China.
| | - Zhe Zhang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China; Department of Urology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
26
|
Jin L, Zhao Y, Qian X, Pan L, Chen L, Feng J, Liu X, Lu X. LC-MS/MS-based metabolomics and proteomics reveal the intervention of Kangnian decoction on the postoperative intestinal adhesion of rats. Front Pharmacol 2024; 15:1382760. [PMID: 39351093 PMCID: PMC11439705 DOI: 10.3389/fphar.2024.1382760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Background Postoperative Intestinal Adhesions (PIAs) remain a significant complication of abdominal surgery that can cause pain, infertility, and a potentially lethal bowel obstruction. Kangnian (KN) decoction, a Traditional Chinese Medicine prescription, has been shown to be effective in treating PIAs. Nevertheless, its underlying mechanisms remain unclear. Objective This study aims to explore the therapeutic effects of KN decoction in a PIA rat model, as well as its potential mechanisms via metabolomics and proteomics analyses. Materials and methods 60 rats were randomly assigned to six groups: Normal Control (NC), PIA model, Dexamethasone, KN-Low, KN-Medium, and KN-High. The PIA model was created by abdominal surgery under anesthesia. Pathological damage was evaluated through H&E staining and adhesion grading of affected tissues. The levels of serum cytokines (IL-1β, IL-6, TNF-α, and TGF-1), Connective Tissue Growth Factor (CTGF), and Motilin (MTL) in adherent intestinal tissues were detected using ELISA kits. Untargeted metabolomics was used to investigate potential metabolic pathways of the KN decoction intervention in intestinal adhesions and to screen for differential biomarkers. The label-free quantitative proteomics technique was employed to detect Differentially Expressed Proteins and for biological function and pathway enrichment analyses. Results In PIA rats, KN decoction significantly improved the pathological injury associated with intestinal adhesions and effectively regulated the blood inflammation indicators. Furthermore, KN presented a favorable anti-fibrotic and protective effect against abdominal adhesions, effectively modifying gastrointestinal motility disorders in PIA rats. We identified 58 variables as potential biomarkers and discovered seven main pathological pathways that may be associated with PIAs. Proteomics analysis revealed 75 DEPs that were primarily involved in Valine, leucine, and isoleucine degradation, the MAPK signaling pathway, and retrograde endocannabinoid signaling. Conclusion This study proved that KN reduces intestinal mucosal injury, downregulates inflammatory factors, and alleviates intestinal adhesions, thus protecting the intestinal barrier function in PIA rats. The combination of proteomics and metabolomics provided a feasible approach for unraveling the therapeutic mechanism of KN decoction in PIAs.
Collapse
Affiliation(s)
- Liang Jin
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Zhao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojing Qian
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingyun Pan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingwen Feng
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinhua Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaotong Lu
- Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Olansen J, Aaron RK. Similar Pathophysiological Mechanisms Between Osteoarthritis and Vascular Disease. FRONT BIOSCI-LANDMRK 2024; 29:320. [PMID: 39344315 DOI: 10.31083/j.fbl2909320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024]
Abstract
Osteoarthritis (OA) is a prevalent, chronic joint disorder affecting millions of people worldwide, characterized by articular cartilage degradation, subchondral bone remodeling, synovial cytokine secretion, and osteophyte formation. OA primarily affects the hips, knees, hands, and spine. Patients with OA exhibit a higher prevalence of cardiovascular comorbidities and potentially important associations between OA and cardiovascular diseases have prompted investigations into potentially similar pathophysiological associations. This review explores the coexistence of atherosclerotic peripheral vascular disease (ASPVD) in OA patients, including evidence from a contemporary study suggesting associations between OA and arterial wall thickness and blood flow changes which are characteristic of early atherosclerosis, and which stimulate reactive pathology in endothelial cells. Observations from this study demonstrate elevated arterial flow volume and increased intima-media thickness in arteries ipsilateral to OA knees, suggesting a potential link between OA and arterial wall disease. We further explore the intricate relationship between the vascular system and skeletal health, highlighting bidirectional interactions among endothelial cells, inflammatory cells, and various bone cells. Mechanical endothelial cell dysfunction is discussed, emphasizing the impact of vessel wall material changes and endothelial cell responses to alterations in fluid shear stress. Inflammatory changes in OA and ASPVD are also explored, showcasing shared pathophysiological processes involving immune cell infiltration and pro-inflammatory cytokines. Additionally, the role of hypofibrinolysis in OA and ASPVD is discussed, highlighting similarities in elevations of the hypercoagulative and hypofibrinolytic factor, plasminogen activator inhibitor (PAI-1). The review suggests a provocative relationship among low-grade chronic inflammation, endothelial dysfunction, and hypofibrinolytic states in OA and ASPVD, warranting further investigation. In conclusion, this review provides an exploration of the possible associations between OA and ASPVD. While the ongoing study's findings and other reports are observational, they suggest shared pathophysiological processes and emphasize the need for further research to elucidate additional potentially correlative linkages between these conditions. Understanding common molecular pathways may pave a way for targeted interventions that address both OA and ASPVD.
Collapse
Affiliation(s)
- Jon Olansen
- Department of Orthopaedics, Warren Alpert Medical School, Brown University, RI 02905, USA
| | - Roy K Aaron
- Department of Orthopaedics, Warren Alpert Medical School, Brown University, RI 02905, USA
| |
Collapse
|
28
|
Phanish MK, Heidebrecht F, Jackson M, Rigo F, Dockrell MEC. Targeting alternative splicing of fibronectin in human renal proximal tubule epithelial cells with antisense oligonucleotides to reduce EDA+ fibronectin production and block an autocrine loop that drives renal fibrosis. Exp Cell Res 2024; 442:114186. [PMID: 39098465 DOI: 10.1016/j.yexcr.2024.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
TGFβ1 is a powerful regulator of fibrosis; secreted in a latent form, it becomes active after release from the latent complex. During tissue fibrosis, the EDA + isoform of cellular fibronectin is overexpressed. In pulmonary fibrosis it has been proposed that the fibronectin splice variant including an EDA domain (FN EDA+) activates latent TGFβ. Our work investigates the potential of blocking the 'splicing in' of EDA with antisense oligonucleotides to inhibit TGFβ1-induced EDA + fibronectin and to prevent the cascade of events initiated by TGFβ1 in human renal proximal tubule cells (PTEC). Human primary PTEC were treated with TGFβ1 for 48 h, medium removed and the cells transfected with RNase H-independent antisense oligonucleotides (ASO) designed to block EDA exon inclusion (ASO5). The efficacy of ASO to block EDA exon inclusion was assessed by EDA + fibronectin RNA and protein expression; the expression of TGFβ, αSMA (α smooth muscle actin), MMP2 (matrix metalloproteinse-2), MMP9 (matrix metalloproteinse-9), Collagen I, K Cadherin and connexin 43 was analysed. Targeting antisense oligonucleotides designed to block EDA exon inclusion in fibronectin pre mRNA were effective in reducing the amount of TGFβ1 -induced cellular EDA + fibronectin RNA and secreted EDA + fibronectin protein (assessed by western immunoblotting and immunocytochemistry) in human proximal tubule cells in an in vitro cell culture model. The effect was selective for EDA + exon with no effect on EDB + fibronectin RNA and total fibronectin mRNA. Exogenous TGFβ1 induced endogenous TGFβ, αSMA, MMP2, MMP9 and Col I mRNA. TGFβ1 treatment for 48h reduced the expression of K-Cadherin and increased the expression of connexin-43. These TGFβ1-induced pro-fibrotic changes were attenuated by ASO5 treatment. 48 h after the removal of exogenous TGFβ, further increases in αSMA, MMP2, MMP9 was observed; ASO5 significantly inhibited this subsequent increase. ASO5 treatment also significantly inhibited ability of the cell culture medium harvested at the end of the experiment (96h) to stimulate SMAD3 reporter cells. The role of endogenous TGFβ1 was confirmed by the use of a TGFβ receptor inhibitor. Our results demonstrate a critical role of FN EDA+ in a cycle of TGFβ driven pro-fibrotic responses in human PTEC and blocking its production with ASO technology offers a potential therapy to interrupt this vicious circle and hence limit the progression of renal fibrosis.
Collapse
Affiliation(s)
- Mysore Keshavmurthy Phanish
- SWT Institute for Renal Research, Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, London, UK; St Georges' University of London, London, UK.
| | - Felicia Heidebrecht
- SWT Institute for Renal Research, Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, London, UK
| | - Michaela Jackson
- IONIS Pharmaceuticals, 2855, Gazelle Ct, Carlsbad, CA 92010, USA
| | - Frank Rigo
- IONIS Pharmaceuticals, 2855, Gazelle Ct, Carlsbad, CA 92010, USA
| | - Mark Edward Carl Dockrell
- SWT Institute for Renal Research, Renal Unit, St Helier Hospital, Epsom and St Helier University Hospitals NHS Trust, London, UK; St Georges' University of London, London, UK.
| |
Collapse
|
29
|
Popp C, Miller W, Eide C, Tolar J, McGrath JA, Ebens CL. Beyond the Surface: A Narrative Review Examining the Systemic Impacts of Recessive Dystrophic Epidermolysis Bullosa. J Invest Dermatol 2024; 144:1943-1953. [PMID: 38613531 DOI: 10.1016/j.jid.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/09/2024] [Accepted: 03/02/2024] [Indexed: 04/15/2024]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic disease resulting from inadequate type VII collagen (C7). Although recurrent skin blisters and wounds are the most apparent disease features, the impact of C7 loss is not confined to the skin and mucous membranes. RDEB is a systemic disease marred by chronic inflammation, fibrotic changes, pain, itch, and anemia, significantly impacting QOL and survival. In this narrative review, we summarize these systemic features of RDEB and promising research avenues to address them.
Collapse
Affiliation(s)
- Courtney Popp
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - William Miller
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cindy Eide
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA
| | - John A McGrath
- St. John's Institute of Dermatology, Guy's Hospital, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Christen L Ebens
- Division of Blood and Marrow Transplant & Cellular Therapy, Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA; MHealth Fairview Masonic Children's Hospital, Minneapolis, Minnesota, USA.
| |
Collapse
|
30
|
Artone S, Ciafarone A, Augello FR, Lombardi F, Cifone MG, Palumbo P, Cinque B, Latella G. Evaluation of the Antifibrotic Effects of Drugs Commonly Used in Inflammatory Intestinal Diseases on In Vitro Intestinal Cellular Models. Int J Mol Sci 2024; 25:8862. [PMID: 39201548 PMCID: PMC11354868 DOI: 10.3390/ijms25168862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
The mechanism underlying intestinal fibrosis, the main complication of inflammatory bowel disease (IBD), is not yet fully understood, and there is no therapy to prevent or reverse fibrosis. We evaluated, in in vitro cellular models, the ability of different classes of drugs currently used in IBD to counteract two pivotal processes of intestinal fibrosis, the differentiation of intestinal fibroblasts to activated myofibroblasts using CCD-18Co cells, and the epithelial-to-mesenchymal transition (EMT) of intestinal epithelial cells using Caco-2 cells (IEC), both being processes induced by transforming growth factor-β1 (TGF-β1). The drugs tested included mesalamine, azathioprine, methotrexate, prednisone, methylprednisolone, budesonide, infliximab, and adalimumab. The expression of fibrosis and EMT markers (collagen-I, α-SMA, pSmad2/3, occludin) was assessed by Western blot analysis and by immunofluorescence. Of the drugs used, only prednisone, methylprednisolone, budesonide, and adalimumab were able to antagonize the pro-fibrotic effects induced by TGF-β1 on CCD-18Co cells, reducing the fibrosis marker expression. Methylprednisolone, budesonide, and adalimumab were also able to significantly counteract the TGF-β1-induced EMT process on Caco-2 IEC by increasing occludin and decreasing α-SMA expression. This is the first study that evaluates, using in vitro cellular models, the direct antifibrotic effects of drugs currently used in IBD, highlighting which drugs have potential antifibrotic effects.
Collapse
Affiliation(s)
- Serena Artone
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (S.A.); (A.C.); (F.R.A.); (F.L.); (M.G.C.); (P.P.); (B.C.)
- PhD School in Medicine and Public Health, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessia Ciafarone
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (S.A.); (A.C.); (F.R.A.); (F.L.); (M.G.C.); (P.P.); (B.C.)
- PhD School in Health & Environmental Sciences, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Rosaria Augello
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (S.A.); (A.C.); (F.R.A.); (F.L.); (M.G.C.); (P.P.); (B.C.)
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (S.A.); (A.C.); (F.R.A.); (F.L.); (M.G.C.); (P.P.); (B.C.)
| | - Maria Grazia Cifone
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (S.A.); (A.C.); (F.R.A.); (F.L.); (M.G.C.); (P.P.); (B.C.)
| | - Paola Palumbo
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (S.A.); (A.C.); (F.R.A.); (F.L.); (M.G.C.); (P.P.); (B.C.)
| | - Benedetta Cinque
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (S.A.); (A.C.); (F.R.A.); (F.L.); (M.G.C.); (P.P.); (B.C.)
| | - Giovanni Latella
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy; (S.A.); (A.C.); (F.R.A.); (F.L.); (M.G.C.); (P.P.); (B.C.)
- Unit of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Pompeo Spennati, Building Rita Levi Montalcini, Coppito, 67100 L’Aquila, Italy
| |
Collapse
|
31
|
Chen M, Peng J, Zhu G, Qian C, Xiao Z, Song X, Yu H, Huang R, Wang W, Zheng H, Yu Y. Long noncoding RNA MALAT1 as a ceRNA drives mouse fibroblast activation via the miR-335-3p/P2ry2 axis. PLoS One 2024; 19:e0308723. [PMID: 39133718 PMCID: PMC11318857 DOI: 10.1371/journal.pone.0308723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Fibrosis is a complex pathological process that can lead to the permanent loss of biological function, with P2ry2 playing a crucial role in this process. Long non-coding RNAs (lncRNAs) have been reported to play an critically important role in the fibrotic process. However, it remains unclear whether lncRNAs can regulate fibrosis through P2ry2. In this study, we detected the expression of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (lnc-MALAT1). We investigated the expression patterns of lnc-MALAT1 and P2ry2 in denervated skeletal muscle, a classical model of fibrosis. Additionally, we utilized a TGF-β-mediated fibrosis model in NIH/3T3 cells to examine the effects of lnc-MALAT1 and P2ry2 on fibroblast activation and the underlying regulatory mechanisms in vitro. Our results demonstrated that the expression levels of lnc-MALAT1 and P2ry2 were consistently elevated in denervated skeletal muscle, correlating with the degree of fibrosis. In vitro experiments confirmed the regulatory effect of lnc-MALAT1 on P2ry2. Furthermore, we identified miR-335-3p as a potential key molecule in the regulatory relationship of lnc-MALAT1/P2ry2. Dual luciferase reporter assays and AGO2-RIP verified the molecular sponging effect of lnc-MALAT1 on miR-335-3p. Additionally, we validated the regulation of the lnc-MALAT1/miR-335-3p/P2ry2 axis through experimental approaches. In conclusion, our study identified a crucial role of lnc-MALAT1/miR-335-3p/P2ry2 axis in fibroblast activation, providing a promising treatment option against the fibrosis.
Collapse
Affiliation(s)
- Mengjie Chen
- Department of Otolaryngology Head & Neck Surgery, The First Afflilated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Otolaryngology Head & Neck Surgery, Changhai Hospital of Navy Medical University, Shanghai, Shanghai, China
| | - Jieying Peng
- Department of Otolaryngology Head & Neck Surgery, Changhai Hospital of Navy Medical University, Shanghai, Shanghai, China
| | - Guanghao Zhu
- Department of Otolaryngology Head & Neck Surgery, Changhai Hospital of Navy Medical University, Shanghai, Shanghai, China
| | - Cunhui Qian
- Department of Otolaryngology Head & Neck Surgery, The First Afflilated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhi Xiao
- Department of Otolaryngology Head & Neck Surgery, The First Afflilated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xianmin Song
- Department of Otolaryngology Head & Neck Surgery, Changhai Hospital of Navy Medical University, Shanghai, Shanghai, China
| | - Haojun Yu
- Department of Otolaryngology Head & Neck Surgery, Changhai Hospital of Navy Medical University, Shanghai, Shanghai, China
| | - Rushi Huang
- Department of Otolaryngology Head & Neck Surgery, Changhai Hospital of Navy Medical University, Shanghai, Shanghai, China
| | - Wei Wang
- Department of Otolaryngology Head & Neck Surgery, Changhai Hospital of Navy Medical University, Shanghai, Shanghai, China
| | - Hongliang Zheng
- Department of Otolaryngology Head & Neck Surgery, Changhai Hospital of Navy Medical University, Shanghai, Shanghai, China
| | - Yafeng Yu
- Department of Otolaryngology Head & Neck Surgery, The First Afflilated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
32
|
Geng J, Zhang X, Zhang Y, Meng X, Sun J, Zhou B, Ma J. TGFβ2 mediates oxidative stress-induced epithelial-to-mesenchymal transition of bladder smooth muscle. In Vitro Cell Dev Biol Anim 2024; 60:793-804. [PMID: 38409639 PMCID: PMC11297077 DOI: 10.1007/s11626-024-00864-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Bladder outlet obstruction (BOO) is the primary clinical manifestation of benign prostatic hyperplasia, the most common urinary system disease in elderly men, and leads to associated lower urinary tract symptoms. Although BOO is reportedly associated with increased systemic oxidative stress (OS), the underlying mechanism remains unclear. The elucidation of this mechanism is the primary aim of this study. A Sprague-Dawley rat model of BOO was constructed and used for urodynamic monitoring. The bladder tissue of rats was collected and subjected to real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR), histological examination, and immunohistochemical staining. Through bioinformatics prediction, we found that transforming growth factor β2 (TGFβ2) expression was upregulated in rats with BOO compared with normal bladder tissue. In vitro analyses using primary bladder smooth muscle cells (BSMCs) revealed that hydrogen peroxide (H2O2) induced TGFβ2 expression. Moreover, H2O2 induced epithelial-to-mesenchymal transition (EMT) by reducing E-cadherin, an endothelial marker and CK-18, a cytokeratin maker, and increasing mesenchymal markers, including N-cadherin, vimentin, and α-smooth muscle actin (α-SMA) levels. The downregulation of TGFβ2 expression in BSMCs using siRNA technology alleviated H2O2-induced changes in EMT marker expression. The findings of the study indicate that TGFβ2 plays a crucial role in BOO by participating in OS-induced EMT in BSMCs.
Collapse
Affiliation(s)
- Jingwen Geng
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Xiaofan Zhang
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Yansong Zhang
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Xiaojia Meng
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Jinqi Sun
- Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Bo Zhou
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China
| | - Jun Ma
- Clinical Laboratory, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450014, Henan, China.
| |
Collapse
|
33
|
Zhang Q, Liu H, Liu C, Wang Y, Huang P, Wang X, Ma Y, Ma L, Ge R. Tibetan mesenchymal stem cell-derived exosomes alleviate pulmonary vascular remodeling in hypoxic pulmonary hypertension rats. Stem Cells 2024; 42:720-735. [PMID: 38717187 DOI: 10.1093/stmcls/sxae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 08/02/2024]
Abstract
Hypoxic pulmonary hypertension (HPH) is characterized by progressive pulmonary vasoconstriction, vascular remodeling, and right ventricular hypertrophy, causing right heart failure. This study aimed to investigate the therapeutic effects of exosomes from Tibetan umbilical cord mesenchymal stem cells on HPH via the TGF-β1/Smad2/3 pathway, comparing them with exosomes from Han Chinese individuals. An HPH rat model was established in vivo, and a hypoxia-induced injury in the rat pulmonary artery smooth muscle cells (rPASMCs) was simulated in vitro. Exosomes from human umbilical cord mesenchymal stem cells were administered to HPH model rats or added to cultured rPASMCs. The therapeutic effects of Tibetan-mesenchymal stem cell-derived exosomes (Tibetan-MSC-exo) and Han-mesenchymal stem cell-derived exosomes (Han-MSC-exo) on HPH were investigated through immunohistochemistry, western blotting, EdU, and Transwell assays. The results showed that Tibetan-MSC-exo significantly attenuated pulmonary vascular remodeling and right ventricular hypertrophy in HPH rats compared with Han-MSC-exo. Tibetan-MSC-exo demonstrated better inhibition of hypoxia-induced rPASMCs proliferation and migration. Transcriptome sequencing revealed upregulated genes (Nbl1, Id2, Smad6, and Ltbp1) related to the TGFβ pathway. Nbl1 knockdown enhanced hypoxia-induced rPASMCs proliferation and migration, reversing Tibetan-MSC-exo-induced downregulation of TGFβ1 and p-Smad2/3. Furthermore, TGFβ1 overexpression hindered the therapeutic effects of Tibetan-MSC-exo and Han-MSC-exo on hypoxic injury. These findings suggest that Tibetan-MSC-exo favors HPH treatment better than Han-MSC-exo, possibly through the modulation of the TGFβ1/Smad2/3 pathway via Nbl1.
Collapse
Affiliation(s)
- Qingqing Zhang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Qinghai University Affiliated Hospital, Xining 810001, People's Republic of China
| | - Hong Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Yuxiang Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Pan Huang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Xiaobo Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Yougang Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
- Laboratory for High Altitude Medicine of Qinghai Province, Xining 810001, People's Republic of China
| | - Rili Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining 810001, People's Republic of China
- Key Laboratory of High Altitude Medicine (Ministry of Education), Xining 810001, People's Republic of China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, People's Republic of China
| |
Collapse
|
34
|
Jiang Y, Chen Y, Fu J, Zhao R, Xu J, Liu Y. Bone morphogenetic protein 4 alleviates pulmonary fibrosis by regulating macrophages. Int Immunopharmacol 2024; 139:112530. [PMID: 39053231 DOI: 10.1016/j.intimp.2024.112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
Fibrosis is a pathological change mainly characterized by an increase of fibrous connective tissue and decrease of parenchymal cells. Its continuous progress may lead to the destruction of organ structure and function decline. An excess of alternatively activated M2 macrophages have been considered crucial candidates in the progression of fibrosis. Bone morphogenetic proteins (BMPs), a group of multifunctional growth factors, are essential for organ development and pathophysiological process, however, the roles that BMPs play in innate immune homeostasis in the development of fibrosis and the downstream signals have not been fully explored. In the current study, we firstly found that the expression of BMP4 was significantly down-regulated in human and mouse fibrosis samples. Then we investigated the effects of BMP4 on macrophage polarization in IL-4 environment and related molecular mechanisms, and found that BMP4 caused a decrease in polarized response towards M2, reflected in the expression of the markers Fizz1, Ym1 and Arg1, together with an inhibition in Stat6 phosphorylation. This relied on the Smad1/5/8 signaling, which had a crosstalk with Stat6. Moreover, the in vivo study showed that BMP4 treatment can reduce collagen deposition and delay the development of experimental pulmonary fibrosis in mice by inhibiting M2 macrophages through adoptive transfer experiment. These findings revealed a novel role of BMP4 in regulating macrophages, offering potential strategies for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Yingyi Chen
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Rui Zhao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, PR China.
| |
Collapse
|
35
|
Qiu C, Zhao Z, Xu C, Yuan R, Ha Y, Tu Q, Zhang H, Mu Z, Xin Q, Tian Y, Wang A, Wang H, Shi Y. Nebulized milk exosomes loaded with siTGF-β1 ameliorate pulmonary fibrosis by inhibiting EMT pathway and enhancing collagen permeability. J Nanobiotechnology 2024; 22:434. [PMID: 39044233 PMCID: PMC11267965 DOI: 10.1186/s12951-024-02721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
Pulmonary Fibrosis (PF) is a fatal disease in the interstitial lung associated with high mortality, morbidity, and poor prognosis. Transforming growth factor-β1 (TGF-β1) is a fibroblast-activating protein that promotes fibrous diseases. Herein, an inhalable system was first developed using milk exosomes (M-Exos) encapsulating siRNA against TGF-β1 (MsiTGF-β1), and their therapeutic potential for bleomycin (BLM)-induced PF was investigated. M-siTGF-β1 was introduced into the lungs of mice with PF through nebulization. The collagen penetration effect and lysosomal escape ability were verified in vitro. Inhaled MsiTGF-β1 notably alleviated inflammatory infiltration, attenuated extracellular matrix (ECM) deposition, and increased the survival rate of PF mice by 4.7-fold. M-siTGF-β1 protected lung tissue from BLM toxicity by efficiently delivering specific siRNA to the lungs, leading to TGF-β1 mRNA silencing and epithelial mesenchymal transition pathway inhibition. Therefore, M-siTGF-β1 offers a promising avenue for therapeutic intervention in fibrosis-related disorders.
Collapse
Affiliation(s)
- Chong Qiu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenyu Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Chenglin Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Ranran Yuan
- College of Life Science, Yantai University, Yantai, 264005, P.R. China
| | - Yuxuan Ha
- Ontario Virtual School, 4789 Yonge Street, Unit 705, Toronto, ON, M2N 0G3, Canada
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingchao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Houqian Zhang
- College of Life Science, Yantai University, Yantai, 264005, P.R. China
| | - Zhen Mu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Quanlin Xin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Yu Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China.
| | - Yanan Shi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Ministry of Education, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
36
|
Yalçıntaş YM, Duman H, López JMM, Portocarrero ACM, Lombardo M, Khallouki F, Koch W, Bordiga M, El-Seedi H, Raposo A, Alves JLDB, Karav S. Revealing the Potency of Growth Factors in Bovine Colostrum. Nutrients 2024; 16:2359. [PMID: 39064802 PMCID: PMC11279796 DOI: 10.3390/nu16142359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Colostrum is a nutritious milk synthesized by mammals during the postpartum period, and its rich bioactive components has led to a global increase in the consumption of bovine colostrum as a supplement. Bovine colostrum contains key components such as immunoglobulins, oligosaccharides, lactoferrin and lysozyme. It is a special supplement source due to its natural, high bioavailability and high concentrations of growth factors. Growth factors are critical to many physiological functions, and considering its presence in the colostrum, further research must be conducted on its safe application in many bodily disorders. Growth factors contribute to wound healing, muscle and bone development, and supporting growth in children. Additionally, the molecular mechanisms have been explored, highlighting the growth factors roles in cell proliferation, tissue regeneration, and the regulation of immune responses. These findings are crucial for understanding the potential health effects of bovine colostrum, ensuring its safe use, and forming a basis for future clinical applications. This review article examines the growth factors concentration in bovine colostrum, their benefits, clinical studies, and molecular mechanisms.
Collapse
Affiliation(s)
- Yalçın Mert Yalçıntaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (Y.M.Y.); (H.D.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (Y.M.Y.); (H.D.)
| | - Jose M. Miranda López
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (J.M.M.L.); (A.C.M.P.)
| | - Alicia C. Mondragón Portocarrero
- Laboratorio de Higiene Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Universidade de Santiago de Compostela, Campus Terra, 27002 Lugo, Spain; (J.M.M.L.); (A.C.M.P.)
| | - Mauro Lombardo
- Department for the Promotion of Human Science and Quality of Life, San Raffaele Open University, Via di Val Cannuta, 247, 00166 Rome, Italy;
| | - Farid Khallouki
- Team of Ethnopharmacology and Pharmacognosy, Biology Department, Faculty of Sciences and Techniques, Moulay Ismail University of Meknes, Errachidia 50050, Morocco;
| | - Wojciech Koch
- Chair and Department of Food and Nutrition, Faculty of Pharmacy, Medical University of Lublin, 4a Chodźki Str., 20-093 Lublin, Poland;
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy;
| | - Hesham El-Seedi
- Chemistry Department, Faculty of Science, Islamic University of Madinah, P.O. Box 170, Madinah 42351, Saudi Arabia;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Jose Luiz de Brito Alves
- Department of Nutrition, Health Science Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Canakkale 17000, Türkiye; (Y.M.Y.); (H.D.)
| |
Collapse
|
37
|
Guo L, Li K, Ma Y, Niu H, Li J, Shao X, Li N, Sun Y, Wang H. MicroRNA-322-5p targeting Smurf2 regulates the TGF-β/Smad pathway to protect cardiac function and inhibit myocardial infarction. Hum Cell 2024; 37:972-985. [PMID: 38656742 DOI: 10.1007/s13577-024-01062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Acute coronary artery blockage leads to acute myocardial infarction (AMI). Cardiomyocytes are terminally differentiated cells that rarely divide. Treatments preventing cardiomyocyte loss during AMI have a high therapeutic benefit. Accumulating evidence shows that microRNAs (miRNAs) may play an essential role in cardiovascular diseases. This study aims to explore the biological function and underlying regulatory molecular mechanism of miR-322-5p on myocardial infarction (MI). This study's miR-322-5p is downregulated in MI-injured hearts according to integrative bioinformatics and experimental analyses. In the MI rat model, miR-322-5p overexpression partially eliminated MI-induced changes in myocardial enzymes and oxidative stress markers, improved MI-caused impairment on cardiac functions, inhibited myocardial apoptosis, attenuated MI-caused alterations in TGF-β, p-Smad2, p-Smad4, and Smad7 protein levels. In oxygen-glucose deprivation (OGD)-injured H9c2 cells, miR-322-5p overexpression partially rescued OGD-inhibited cell viability and attenuated OGD-caused alterations in the TGF-β/Smad signaling. miR-322-5p directly targeted Smurf2 and inhibited Smurf2 expression. In OGD-injured H9c2 cells, Smurf2 knockdown exerted similar effects to miR-322-5p overexpression upon cell viability and TGF-β/Smad signaling; moreover, Smurf2 knockdown partially attenuated miR-322-5p inhibition effects on OGD-injured H9c2 cells. In conclusion, miR-322-5p is downregulated in MI rat heart and OGD-stimulated rat cardiomyocytes; the miR-322-5p/Smurf2 axis improves OGD-inhibited cardiomyocyte cell viability and MI-induced cardiac injuries and dysfunction through the TGF-β/Smad signaling.
Collapse
Affiliation(s)
- Liping Guo
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Ke Li
- Department of Cardiology, The People's Hospital of Suzhou, Suzhou New District, Suzhou, 215129, Jiangsu, China
| | - Yan Ma
- Department of General Practice, Taiyuan Central Hospital, Taiyuan, 030000, Shanxi, China
| | - Huaiming Niu
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Jun Li
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Xin Shao
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Na Li
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Yuehui Sun
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China
| | - Haixiong Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
38
|
Cheng WC, Chen PY, Zhang X, Chang YK, Tan KT, Lin TCC. 5,7,3',4'-Tetramethoxyflavone suppresses TGF-β1-induced activation of murine fibroblasts in vitro and ameliorates bleomycin-induced pulmonary fibrosis in mice. Immunopharmacol Immunotoxicol 2024:1-13. [PMID: 38951964 DOI: 10.1080/08923973.2024.2371150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE This study aimed to investigate the use of 5,7,3',4'-tetramethoxyflavone (TMF) to treat pulmonary fibrosis (PF), a chronic and fatal lung disease. In vitro and in vivo models were used to examine the impact of TMF on PF. METHODS NIH-3T3 (Mouse Embryonic Fibroblast) were exposed to transforming growth factor‑β1 (TGF-β1) and treated with or without TMF. Cell growth was assessed using the MTT method, and cell migration was evaluated with the scratch wound assay. Protein and messenger ribonucleic acid (mRNA) levels of extracellular matrix (ECM) genes were analyzed by western blotting and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Downstream molecules affected by TGF-β1 were examined by western blotting. In vivo, mice with bleomycin-induced PF were treated with TMF, and lung tissues were analyzed with staining techniques. RESULTS The in vitro results showed that TMF had no significant impact on cell growth or migration. However, it effectively inhibited myofibroblast activation and ECM production induced by TGF-β1 in NIH-3T3 cells. This inhibition was achieved by suppressing various signaling pathways, including Smad, mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/AKT (PI3K/AKT), and WNT/β-catenin. The in vivo experiments demonstrated the therapeutic potential of TMF in reducing PF induced by bleomycin in mice, and there was no significant liver or kidney toxicity observed. CONCLUSION These findings suggest that TMF has the potential to effectively inhibit myofibroblast activation and could be a promising treatment for PF. TMF achieves this inhibitory effect by targeting TGF-β1/Smad and non-Smad pathways.
Collapse
Affiliation(s)
- Wen-Chien Cheng
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Pei Ying Chen
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
| | - Xiang Zhang
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Department of Postbaccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kok-Tong Tan
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tim C C Lin
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
39
|
Lin CH, Shih CC. The Ethyl Acetate Extract of Phyllanthus emblica L. Alleviates Diabetic Nephropathy in a Murine Model of Diabetes. Int J Mol Sci 2024; 25:6686. [PMID: 38928391 PMCID: PMC11204328 DOI: 10.3390/ijms25126686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Oil-Gan is the fruit of the genus Phyllanthus emblica L. The fruits have excellent effects on health care and development values. There are many methods for the management of diabetic nephropathy (DN). However, there is a lack of effective drugs for treating DN throughout the disease course. The primary aim of this study was to examine the protective effects (including analyses of urine and blood, and inflammatory cytokine levels) and mechanisms of the ethyl acetate extract of P. emblica (EPE) on db/db mice, an animal model of diabetic nephropathy; the secondary aim was to examine the expression levels of p- protein kinase Cα (PKCα)/t-PKCα in the kidney and its downregulation of vascular endothelial growth factor (VEGF) and fibrosis gene transforming growth factor-β1 (TGF-β1) by Western blot analyses. Eight db/m mice were used as the control group. Forty db/db mice were randomly divided into five groups. Treatments included a vehicle, EPE1, EPE2, EPE3 (at doses of 100, 200, or 400 mg/kg EPE), or the comparative drug aminoguanidine for 8 weeks. After 8 weeks of treatment, the administration of EPE to db/db mice effectively controlled hyperglycemia and hyperinsulinemia by markedly lowering blood glucose, insulin, and glycosylated HbA1c levels. The administration of EPE to db/db mice decreased the levels of BUN and creatinine both in blood and urine and reduced urinary albumin excretion and the albumin creatine ratio (UACR) in urine. Moreover, EPE treatment decreased the blood levels of inflammatory cytokines, including kidney injury molecule-1 (KIM-1), C-reactive protein (CRP), and NLR family pyrin domain containing 3 (NLRP3). Our findings showed that EPE not only had antihyperglycemic effects but also improved renal function in db/db mice. A histological examination of the kidney by immunohistochemistry indicated that EPE can improve kidney function by ameliorating glomerular morphological damage following glomerular injury; alleviating proteinuria by upregulating the expression of nephrin, a biomarker of early glomerular damage; and inhibiting glomerular expansion and tubular fibrosis. Moreover, the administration of EPE to db/db mice increased the expression levels of p- PKCα/t-PKCα but decreased the expression levels of VEGF and renal fibrosis biomarkers (TGF-β1, collagen IV, p-Smad2, p-Smad3, and Smad4), as shown by Western blot analyses. These results implied that EPE as a supplement has a protective effect against renal dysfunction through the amelioration of insulin resistance as well as the suppression of nephritis and fibrosis in a DN model.
Collapse
Affiliation(s)
- Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Fengyuan District, Taichung City 42055, Taiwan;
| | - Chun-Ching Shih
- Department of Nursing, College of Nursing, Central Taiwan University of Science and Technology, No. 666 Buzih Road, Beitun District, Taichung City 406053, Taiwan
| |
Collapse
|
40
|
Sufiyan M, Kushwaha P, Ahmad M, Mandal P, Vishwakarma KK. Scaffold-Mediated Drug Delivery for Enhanced Wound Healing: A Review. AAPS PharmSciTech 2024; 25:137. [PMID: 38877197 DOI: 10.1208/s12249-024-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Wound healing is a complex physiological process involving coordinated cellular and molecular events aimed at restoring tissue integrity. Acute wounds typically progress through the sequential phases of hemostasis, inflammation, proliferation, and remodeling, while chronic wounds, such as venous leg ulcers and diabetic foot ulcers, often exhibit prolonged inflammation and impaired healing. Traditional wound dressings, while widely used, have limitations such poor moisture retention and biocompatibility. To address these challenges and improve patient outcomes, scaffold-mediated delivery systems have emerged as innovative approaches. They offer advantages in creating a conducive environment for wound healing by facilitating controlled and localized drug delivery. The manuscript explores scaffold-mediated delivery systems for wound healing applications, detailing the use of natural and synthetic polymers in scaffold fabrication. Additionally, various fabrication techniques are discussed for their potential in creating scaffolds with controlled drug release kinetics. Through a synthesis of experimental findings and current literature, this manuscript elucidates the promising potential of scaffold-mediated drug delivery in improving therapeutic outcomes and advancing wound care practices.
Collapse
Affiliation(s)
- Mohd Sufiyan
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Purba Mandal
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | | |
Collapse
|
41
|
Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci 2024; 25:6180. [PMID: 38892367 PMCID: PMC11173124 DOI: 10.3390/ijms25116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Under different pathophysiological conditions, endothelial cells lose endothelial phenotype and gain mesenchymal cell-like phenotype via a process known as endothelial-to-mesenchymal transition (EndMT). At the molecular level, endothelial cells lose the expression of endothelial cell-specific markers such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and gain the expression of mesenchymal cell markers such as α-smooth muscle actin, N-cadherin, vimentin, fibroblast specific protein-1, and collagens. EndMT is induced by numerous different pathways triggered and modulated by multiple different and often redundant mechanisms in a context-dependent manner depending on the pathophysiological status of the cell. EndMT plays an essential role in embryonic development, particularly in atrioventricular valve development; however, EndMT is also implicated in the pathogenesis of several genetically determined and acquired diseases, including malignant, cardiovascular, inflammatory, and fibrotic disorders. Among cardiovascular diseases, aberrant EndMT is reported in atherosclerosis, pulmonary hypertension, valvular disease, fibroelastosis, and cardiac fibrosis. Accordingly, understanding the mechanisms behind the cause and/or effect of EndMT to eventually target EndMT appears to be a promising strategy for treating aberrant EndMT-associated diseases. However, this approach is limited by a lack of precise functional and molecular pathways, causes and/or effects, and a lack of robust animal models and human data about EndMT in different diseases. Here, we review different mechanisms in EndMT and the role of EndMT in various cardiovascular diseases.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Kriti S. Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
42
|
Bonadio JD, Bashiri G, Halligan P, Kegel M, Ahmed F, Wang K. Delivery technologies for therapeutic targeting of fibronectin in autoimmunity and fibrosis applications. Adv Drug Deliv Rev 2024; 209:115303. [PMID: 38588958 PMCID: PMC11111362 DOI: 10.1016/j.addr.2024.115303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibronectin (FN) is a critical component of the extracellular matrix (ECM) contributing to various physiological processes, including tissue repair and immune response regulation. FN regulates various cellular functions such as adhesion, proliferation, migration, differentiation, and cytokine release. Alterations in FN expression, deposition, and molecular structure can profoundly impact its interaction with other ECM proteins, growth factors, cells, and associated signaling pathways, thus influencing the progress of diseases such as fibrosis and autoimmune disorders. Therefore, developing therapeutics that directly target FN or its interaction with cells and other ECM components can be an intriguing approach to address autoimmune and fibrosis pathogenesis.
Collapse
Affiliation(s)
- Jacob D Bonadio
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Ghazal Bashiri
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Patrick Halligan
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Michael Kegel
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Fatima Ahmed
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
43
|
Rodrigues-Díez R, Tejera-Muñoz A, Rodrigues-Diez RR. A new procedure to induce aortic aneurysms in mice. Methods Cell Biol 2024; 188:61-71. [PMID: 38880528 DOI: 10.1016/bs.mcb.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Aortic aneurysms (AAs) are a major public health challenge, featured by a progressive impairs in aortic wall integrity that drives to aortic dilation and, in end stage, to its rupture. Despite important advances in the surgical treatment of aortic aneurysms, there is currently no pharmacological intervention that prevents their development, reduces their expansion, or avoids their rupture. In addition to classic risk factors such age or gender, several heritable connective tissue disorders have been associated with AA developing, highlighting the role of extracellular matrix (ECM) genes alterations in the developing of AA. In this sense, we have recently demonstrated that global deletion of the cellular communicating network factor 2 (CCN2), previously known as connective tissue growth factor (CTGF) due to its role in the extracellular matrix formation, predisposes to early and lethal AAs development after Angiotensin II (Ang II) infusion in mice. Here, we detail the protocol to induce and detect AAs generation in inducible global CCN2 knockout mice after Ang II infusion which allow the characterization of CCN role in AA development and may help to the development of pharmacological target for AA treatment.
Collapse
Affiliation(s)
- Raquel Rodrigues-Díez
- Department of Physiology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| | - Antonio Tejera-Muñoz
- Research Support Unit, Hospital General Mancha Centro, Alcázar de San Juan, Spain; Health Research Institute of Castilla-La Mancha, IDISCAM, Tomelloso, Spain
| | - Raúl R Rodrigues-Diez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, Oviedo, Spain; Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
44
|
Ilg MM, Bustin SA, Ralph DJ, Cellek S. TGF-β1 induces formation of TSG-6-enriched extracellular vesicles in fibroblasts which can prevent myofibroblast transformation by modulating Erk1/2 phosphorylation. Sci Rep 2024; 14:12389. [PMID: 38811625 PMCID: PMC11136978 DOI: 10.1038/s41598-024-62123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Extracellular vesicles have emerged as important mediators of cell-to-cell communication in the pathophysiology of fibrotic diseases. One such disease is Peyronie's disease (PD), a fibrotic disorder of the penis caused by uncontrolled transformation of resident fibroblasts to alpha-smooth muscle actin positive myofibroblasts. These cells produce large amounts of extracellular matrix, leading to formation of a plaque in the penile tunica albuginea (TA), causing pain, penile curvature, and erectile dysfunction. We have used primary fibroblasts derived from the TA of PD patients to explore the role of transforming growth factor beta 1 (TGF-β1), a key signalling factor in this process. TGF-β1 treatment elicited a range of responses from the myofibroblasts: (i) they secreted extracellular vesicles (EVs) that were more numerous and differed in size and shape from those secreted by fibroblasts, (ii) these EVs prevented TGF-β1-induced transformation of fibroblasts in a manner that was dependent on vesicle uptake and (iii) they prevented phosphorylation of Erk1/2, a critical component in modulating fibrogenic phenotypic responses, but did not affect TGF-β1-induced Smad-signalling. We posit that this effect could be linked to enrichment of TSG-6 in myofibroblast-derived EVs. The ability of myofibroblast-derived vesicles to prevent further myofibroblast transformation may establish them as part of an anti-fibrotic negative feedback loop, with potential to be exploited for future therapeutic approaches.
Collapse
Affiliation(s)
- Marcus M Ilg
- Medical Technology Research Centre, HEMS, SoAH, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK
| | - Stephen A Bustin
- Medical Technology Research Centre, HEMS, SoAH, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK
| | - David J Ralph
- Medical Technology Research Centre, HEMS, SoAH, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK
- Urology Department, University College London, London, UK
| | - Selim Cellek
- Medical Technology Research Centre, HEMS, SoAH, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| |
Collapse
|
45
|
Gao Z, Xu M, Liu C, Gong K, Yu X, Lu K, Zhu J, Guan H, Zhu Q. Structural Modification and Optimisation of Hyperoside Oriented to Inhibit TGF-β-Induced EMT Activity in Alveolar Epithelial Cells. Pharmaceuticals (Basel) 2024; 17:584. [PMID: 38794154 PMCID: PMC11124421 DOI: 10.3390/ph17050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary fibrosis (PF) is a disease characterised by diffuse nonspecific alveolar inflammation with interstitial fibrosis, which clinically manifests as dyspnoea and a significant decline in lung function. Many studies have shown that the epithelial-mesenchymal transition (EMT) plays a pivotal role in the pathogenesis of pulmonary fibrosis. Based on our previous findings, hypericin (Hyp) can effectively inhibit the process of the EMT to attenuate lung fibrosis. Therefore, a series of hyperoside derivatives were synthesised via modifying the structure of hyperoside, and subsequently evaluated for A549 cytotoxicity. Among these, the pre-screening of eight derivatives inhibits the EMT. In this study, we evaluated the efficacy of Z6, the most promising hyperoside derivative, in reversing TGF-β1-induced EMTs and inhibiting the EMT-associated migration of A549 cells. After the treatment of A549 cells with Z6 for 48 h, RT-qPCR and Western blot results showed that Z6 inhibited TGF-β1-induced EMTs in epithelial cells by supressing morphological changes in A549 cells, up-regulating E-cadherin (p < 0.01, p < 0.001), and down-regulating Vimentin (p < 0.01, p < 0.001). This treatment significantly reduced the mobility of transforming growth factor β1 (TGF-β1)-stimulated cells (p < 0.001) as assessed by wound closure, while increasing the adhesion rate of A549 cells (p < 0.001). In conclusion, our results suggest that hyperoside derivatives, especially compound Z6, are promising as potential lead compounds for treating pulmonary fibrosis, and therefore deserve further investigation.
Collapse
Affiliation(s)
- Ziye Gao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Kai Gong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Kaihui Lu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Jiang Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
| | - Haixing Guan
- Experimental Center, Shandong Provincial Key Laboratory of Traditional Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.G.); (M.X.); (K.G.); (X.Y.); (K.L.); (J.Z.)
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
46
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
47
|
Gonzalez D, Cuenca X, Allende ML. Knockdown of tgfb1a partially improves ALS phenotype in a transient zebrafish model. Front Cell Neurosci 2024; 18:1384085. [PMID: 38644973 PMCID: PMC11032012 DOI: 10.3389/fncel.2024.1384085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) corresponds to a neurodegenerative disorder marked by the progressive degeneration of both upper and lower motor neurons located in the brain, brainstem, and spinal cord. ALS can be broadly categorized into two main types: sporadic ALS (sALS), which constitutes approximately 90% of all cases, and familial ALS (fALS), which represents the remaining 10% of cases. Transforming growth factor type-β (TGF-β) is a cytokine involved in various cellular processes and pathological contexts, including inflammation and fibrosis. Elevated levels of TGF-β have been observed in the plasma and cerebrospinal fluid (CSF) of both ALS patients and mouse models. In this perspective, we explore the impact of the TGF-β signaling pathway using a transient zebrafish model for ALS. Our findings reveal that the knockdown of tgfb1a lead to a partial prevention of motor axon abnormalities and locomotor deficits in a transient ALS zebrafish model at 48 h post-fertilization (hpf). In this context, we delve into the proposed distinct roles of TGF-β in the progression of ALS. Indeed, some evidence suggests a dual role for TGF-β in ALS progression. Initially, it seems to exert a neuroprotective effect in the early stages, but paradoxically, it may contribute to disease progression in later stages. Consequently, we suggest that the TGF-β signaling pathway emerges as an attractive therapeutic target for treating ALS. Nevertheless, further research is crucial to comprehensively understand the nuanced role of TGF-β in the pathological context.
Collapse
Affiliation(s)
- David Gonzalez
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
- Escuela de Terapia Ocupacional, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Xiomara Cuenca
- Escuela de Terapia Ocupacional, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago, Chile
| | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
48
|
Jiao M, Zhang Y, Song X, Xu B. The role and mechanism of TXNDC5 in disease progression. Front Immunol 2024; 15:1354952. [PMID: 38629066 PMCID: PMC11019510 DOI: 10.3389/fimmu.2024.1354952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Thioredoxin domain containing protein-5 (TXNDC5), also known as endothelial protein-disulfide isomerase (Endo-PDI), is confined to the endoplasmic reticulum through the structural endoplasmic reticulum retention signal (KDEL), is a member of the PDI protein family and is highly expressed in the hypoxic state. TXNDC5 can regulate the rate of disulfide bond formation, isomerization and degradation of target proteins through its function as a protein disulfide isomerase (PDI), thereby altering protein conformation, activity and improving protein stability. Several studies have shown that there is a significant correlation between TXNDC5 gene polymorphisms and genetic susceptibility to inflammatory diseases such as rheumatoid, fibrosis and tumors. In this paper, we detail the expression characteristics of TXNDC5 in a variety of diseases, summarize the mechanisms by which TXNDC5 promotes malignant disease progression, and summarize potential therapeutic strategies to target TXNDC5 for disease treatment.
Collapse
Affiliation(s)
- Mingxia Jiao
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yeyong Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Xie Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Xu
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong, China
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
49
|
Zhao M, Wang M, Chen X, Gao Y, Chen Q, Wang L, Bao Q, Sun D, Du W, Xu Y, Xie L, Jiang X, Zhang L, Peng L, Zhang B, Yao Y. Targeting progranulin alleviated silica particles-induced pulmonary inflammation and fibrosis via decreasing Il-6 and Tgf-β1/Smad. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133199. [PMID: 38103296 DOI: 10.1016/j.jhazmat.2023.133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/12/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Long term exposure to silica particles leads to various diseases, among which silicosis is of great concern. Silicosis is an interstitial lung disease caused by inhalation of silica particles in production environments. However, the mechanisms underlying silicosis remains unclear. Our previous studies revealed that progranulin (Pgrn) promoted the expression of pro-inflammatory factors in alveolar macrophages treated with silica particles and the secretion of extracellular matrix of pulmonary fibroblasts. Nevertheless, the role of Pgrn in silica particles-induced silicosis in vivo was unknown. This study found that silica particles increased Pgrn expression in silicosis patients. Pgrn deficiency reduced lung inflammation and fibrosis in silica particles-induced silicosis mouse models. Subsequently, based on transcriptional sequencing and interleukin (Il) -6 knockout mouse models, results demonstrated that Pgrn deficiency might decrease silicosis inflammation by reducing the production of Il-6, thereby modulating pulmonary fibrosis in the early stage of silicosis mouse models. Furthermore, another mechanism through which Pgrn deficiency reduced fibrosis in silicosis mouse models was the regulation of the transforming growth factor (Tgf) -β1/Smad signaling pathway. Conclusively, Pgrn contributed to silicosis inflammation and fibrosis induced by silica particles, indicating that Pgrn could be a promising therapeutic target.
Collapse
Affiliation(s)
- Manyu Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mengzhu Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xuxi Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Gao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Liqun Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qixue Bao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Donglei Sun
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Du
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yunyi Xu
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Linshen Xie
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Jiang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lijun Peng
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ben Zhang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Departments of Cardiology, Neurology, and Oncology, Hainan General Hospital and Hainan Affiliated Hospital, Hainan Medical University, Haikou 570311, China.
| | - Yuqin Yao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
50
|
Arakeri G, Rao Us V, Patil S, Kunigal S, Reddy R, Krishnan M, Hale B, Brennan PA. Evaluation of possible role of fluoride in pathogenesis of oral submucous fibrosis: A pilot study. J Oral Pathol Med 2024; 53:226-231. [PMID: 38417414 DOI: 10.1111/jop.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Oral submucous fibrosis (OSMF) is a potentially malignant disorder. Although areca nut chewing is an established risk factor, its low prevalence among nut chewers indicates additional factors likely facilitates pathogenesis. We recently demonstrated high fluoride levels in smokeless tobacco products and hypothesized a potential pathological role of fluoride in OSMF. Further exploring this novel role, this study compared fluoride levels in tissue, serum, and saliva samples from OSMF patients and healthy controls. METHODS The ethically approved study included 25 clinically confirmed OSMF patients and 25 healthy matched controls. OSMF cases underwent buccal mucosal incisional biopsy, while controls had buccal mucosa tissue sampling during third molar removal. Fasting venous blood and unstimulated saliva were collected. Fluoride levels were analysed using ion chromatography and expressed as median (IQR). RESULTS OSMF cases showed significantly higher fluoride concentrations compared with controls in tissue biopsies (30.1 vs. 0 mg/kg, p < 0.0001), serum (0.4 vs. 0 mg/L, p = 0.005) and saliva (1.3 vs. 0 mg/L, p < 0.0001). Majority (68%) of controls had undetectable fluoride levels across all samples. Tissue fluoride weakly correlated with OSMF severity (r = -0.158, p = 0.334). CONCLUSION The preliminary findings demonstrated increased tissue fluoride levels in OSMF patients compared with healthy controls. Along with a previous study showing high fluoride content in smokeless tobacco products, these findings provided early evidence suggesting fluoride could play a contributory role in OSMF pathogenesis. Further large-scale investigation is warranted to definitively establish whether the association between fluoride exposure and OSMF is indicative of causation.
Collapse
Affiliation(s)
- Gururaj Arakeri
- Department of Head and Neck Oncology, HCG Cancer Hospital, Bengaluru, India
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Chennai, India
- Department of Oral and Maxillofacial Surgery, HKDET Dental College and Hospital, Humnabad, India
| | - Vishal Rao Us
- Department of Head and Neck Oncology, HCG Cancer Hospital, Bengaluru, India
| | - Shekar Patil
- Department of Medical Oncology, HCG Cancer Hospital, Bengaluru, India
| | - Sateesh Kunigal
- Department of Head and Neck Oncology, HCG Cancer Hospital, Bengaluru, India
| | - Roopa Reddy
- Center for Incubation, Innovation, Research and Consultancy (CIIRC), Jyothy Institute of Technology, Bengaluru, India
| | - Murugesan Krishnan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Chennai, India
| | - Beverley Hale
- Institute of Allied Sciences, University of Chichester, Chichester, UK
| | - Peter A Brennan
- Department of Oral & Maxillofacial Surgery, Queen Alexandra Hospital, Portsmouth, UK
| |
Collapse
|