1
|
Rahman R, Selth LA. Cyclin-dependent kinases as mediators of aberrant transcription in prostate cancer. Transl Oncol 2025; 55:102378. [PMID: 40163908 PMCID: PMC11995790 DOI: 10.1016/j.tranon.2025.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Transcriptional control of gene expression is fundamental to all cellular processes. Conversely, transcriptional dysregulation is a hallmark of cancer. While this hallmark is a key driver of all malignancy-related process, it also represents a vulnerability that can be exploited therapeutically. Prostate cancer is a prime example of this phenomenon: it is characterised by aberrant transcription and treated with drugs that influence transcriptional pathways. Indeed, the primary oncogenic driver and therapeutic target of prostate cancer, the androgen receptor (AR), is a transcription factor. Moreover, a plethora of other transcriptional regulators, including transcriptional cyclin-dependent kinases (CDK7, CDK8 and CDK9), MYC and Bromodomain-containing protein 4 (BRD4), play prominent roles in disease progression. In this review, we focus on the roles of transcriptional CDKs in prostate cancer growth, metastasis and therapy resistance and discuss their interplay with AR, MYC and BRD4. Additionally, we explore recent advances in the therapeutic targeting of transcriptional CDKs and propose how these strategies could be effectively harnessed for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Razia Rahman
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia
| | - Luke A Selth
- Flinders University, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Adelaide, South Australia; Flinders University, Freemasons Centre for Male Health and Wellbeing, Adelaide, South Australia; Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
2
|
Doskey LC, Scholtz CR, Vail NR, Khanal S, Lee AL, Kandanur SGS, Hoell ZJ, Huehls AM, Issa MR, Kostallari E, Cao S, Reid JM, Shah VH, Malhi H, Pomerantz WCK. Efficacy and Toxicity Analysis of Selective BET Bromodomain Inhibitors in Models of Inflammatory Liver Disease. J Med Chem 2025; 68:8091-8105. [PMID: 40227166 DOI: 10.1021/acs.jmedchem.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
BET bromodomain inhibitors demonstrate significant promise as anti-inflammatory agents. However, clinical data demonstrated that nonselective BET bromodomain inhibitors led to significant dose-limiting toxicity in clinical settings. Here, we use three orally bioavailable inhibitors, 1-3, that are either BRD4-D1 selective or pan-D1-biased + BRD4-D2, for assessing their cellular and in vivo efficacy and safety profile compared to known BET inhibitors in two inflammatory disease models. Our results show that pan-D1-biased + BRD4-D2 inhibitor, 3, is as efficacious as pan-BET inhibitor, I-BET151, in reducing inflammation in both models, whereas pan-D2 inhibitors are less effective. BRD4-D1 selective inhibitors are also efficacious; however, inhibitors with improved cellular engagement will be necessary to better assess their effects. Finally, BRD4-D1 selective inhibitors are better tolerated in a preclinical thrombocytopenia model than 3, while gastrointestinal toxicity may be a BRD4-driven effect. These results highlight the importance of assessing specific BET bromodomain functions due to their diverse roles in disease models.
Collapse
Affiliation(s)
- Luke C Doskey
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Cole R Scholtz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nora R Vail
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Shalil Khanal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Amani L Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Zachariah J Hoell
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Amelia M Huehls
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota 55905, United States
| | - Mohamed R Issa
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota 55905, United States
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Sheng Cao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Joel M Reid
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota 55905, United States
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Wala J, Dalin S, Webster S, Shapira O, Busanovich J, Sarmashghi S, Beroukhim R, Bandopadhayay P, Rendo V. Recurrent breakpoints in the BRD4 locus reduce toxicity associated with gene amplification. CELL GENOMICS 2025; 5:100815. [PMID: 40112818 PMCID: PMC12008804 DOI: 10.1016/j.xgen.2025.100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/09/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025]
Abstract
Recent work by the ICGC-PCAWG consortium identified recurrent focal deletions in the BRD4 gene, decreasing expression despite increased copy number. We show that these focal deletions occur in the context of cyclin E1 amplification in breast, ovarian, and endometrial cancers, and serve to disrupt BRD4 regulatory regions and gene expression across isoforms. We analyze open reading frame screen data and find that overexpression of BRD4 long (BRD4-L) and short isoform BRD4-S(a) impairs cell growth across cell lines. We confirm these results in OVSAHO ovarian cancer cells, where the overexpression of BRD4 isoforms significantly reduces tumor growth. Next, we mimic BRD4 focal deletions using CRISPR-Cas9 technology and show that these focal deletions rescue ovarian cancer cells from toxicity associated with BRD4 overexpression, suggesting that BRD4 levels must be fine-tuned for cancer cell proliferation. Our study provides experimental evidence for the first recurrent deletion reducing toxicity in cancer, expanding the landscape of cancer progression mechanisms.
Collapse
Affiliation(s)
- Jeremiah Wala
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Simona Dalin
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sophie Webster
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ofer Shapira
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John Busanovich
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Rameen Beroukhim
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Veronica Rendo
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology, Genetics, and Pathology, Uppsala University, 75185 Uppsala, Sweden.
| |
Collapse
|
4
|
Olp MD, Bursch KL, Wynia-Smith SL, Nuñez R, Goetz CJ, Jackson V, Smith BC. Multivalent nucleosome scaffolding by bromodomain and extraterminal domain tandem bromodomains. J Biol Chem 2025; 301:108289. [PMID: 39938804 PMCID: PMC11930079 DOI: 10.1016/j.jbc.2025.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/29/2025] [Accepted: 02/01/2025] [Indexed: 02/14/2025] Open
Abstract
Promoter-promoter and enhancer-promoter interactions are enriched in histone acetylation and central to chromatin organization in active genetic regions. Bromodomains are epigenetic "readers" that recognize and bind histone acetylation. Bromodomains often exist in tandem or with other reader domains. Cellular knockdown of the bromodomain and extraterminal domain (BET) protein family disrupts chromatin organization, but the mechanisms through which BET proteins preserve chromatin structure are largely unknown. We hypothesize that BET proteins maintain overall chromatin structure by employing their tandem bromodomains to multivalently scaffold acetylated nucleosomes in an intranucleosomal or internucleosomal manner. To test this hypothesis biophysically, we used small-angle X-ray scattering, electron paramagnetic resonance, and Rosetta protein modeling to show that a disordered linker separates BET tandem bromodomain acetylation binding sites by 15 to 157 Å. Most of these modeled distances are sufficient to span the length of a nucleosome (>57 Å). Focusing on the BET family member BRD4, we employed bioluminescence resonance energy transfer and isothermal titration calorimetry to show that BRD4 bromodomain binding of multiple acetylation sites on a histone tail does not increase BRD4-histone tail affinity, suggesting that BET bromodomain intranucleosome binding is not biologically relevant. Using sucrose gradients and amplified luminescent proximity homogeneous (AlphaScreen) assays, we provide the first direct biophysical evidence that BET bromodomains can scaffold multiple acetylated nucleosomes. Taken together, our results demonstrate that BET bromodomains are capable of multivalent internucleosome scaffolding in vitro. The knowledge gained provides implications for how BET bromodomain-mediated acetylated internucleosome scaffolding may maintain cellular chromatin interactions in active genetic regions.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Karina L Bursch
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sarah L Wynia-Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Raymundo Nuñez
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Goetz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vaughn Jackson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian C Smith
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and Precision Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA; Program in Chemical Biology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
5
|
Zhang S, Roeder RG. Resistance of estrogen receptor function to BET bromodomain inhibition is mediated by transcriptional coactivator cooperativity. Nat Struct Mol Biol 2025; 32:98-112. [PMID: 39251822 DOI: 10.1038/s41594-024-01384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
The bromodomain and extraterminal domain (BET) family of proteins are critical chromatin readers that bind to acetylated histones through their bromodomains to activate transcription. Here, we reveal that bromodomain inhibition fails to repress oncogenic targets of estrogen receptor because of an intrinsic transcriptional mechanism. While bromodomains are necessary for the transcription of many genes, bromodomain-containing protein 4 (BRD4) binds to estrogen receptor binding sites and activates transcription of critical oncogenes such as MYC, independently of its bromodomains. BRD4 associates with the Mediator complex and disruption of Mediator reduces BRD4's enhancer occupancy. Profiling changes of the post-initiation RNA polymerase II (Pol II)-associated factors revealed that BET proteins regulate interactions between Pol II and elongation factors SPT5, SPT6 and the polymerase-associated factor 1 complex, which associate with BET proteins independently of their bromodomains and mediate their transcription elongation effect. Our findings highlight the importance of bromodomain-independent functions and interactions of BET proteins in the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Sicong Zhang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Teufelsbauer M, Stickler S, Eggerstorfer MT, Hammond DC, Hamilton G. BET-directed PROTACs in triple negative breast cancer cell lines MDA-MB-231 and MDA-MB-436. Breast Cancer Res Treat 2024; 208:89-101. [PMID: 38896334 PMCID: PMC11452555 DOI: 10.1007/s10549-024-07403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE This study aims to find whether the proliferation and migration of triple negative breast cancer (TNBC) cell lines can be reduced by treatment with bromodomain and extra-terminal domain (BET) inhibitor JQ1 and BET protein targeting chimeras (PROTACs) ARV-771 and MZ1. METHODS Cytotoxicity tests, scratch migration assays and western blot proteome profiler arrays for protein expression of cancer-related proteins were used to evaluate the impact of a BET-inhibitor and two BET-directed PROTACs on cell viability, migration and on protein expression. RESULTS JQ1 and the PROTACs MZ1 and ARV-771 significantly inhibited the growth and migration of the KRAS G13D-mutated MDA-MB-231 cells. In this cell line, the PROTACs suppressed the residual expression of ERBB2/HER2, 3 and 4 that are essential for the proliferation of breast cancer cells and this cell line proved sensitive to HER2 inhibitors. In contrast, the effects of the PROTACs on the protein expression of MDA-MB-436 cells mostly affected cytokines and their cognate receptors. CONCLUSION The degradation of BET-protein by PROTACs demonstrated significant anti-proliferative effects. The KRAS-mutated MDA-MB-231 cells belong to the low-HER2 expressing tumors that have a poorer prognosis compared to HER2-null patients. Since first oral PROTACs against tumor hormone receptors are in clinical trials, this mode of tumor therapy is expected to become an important therapeutic strategy in the future treatment of TNBC.
Collapse
Affiliation(s)
- Maryana Teufelsbauer
- Clinics of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Ma Z, Bolinger AA, Pinchuk IV, Tian B, Zhou J. BRD4 as an emerging epigenetic therapeutic target for inflammatory bowel disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:203-236. [PMID: 39521601 DOI: 10.1016/bs.apha.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder, mainly comprising two subtypes: ulcerative colitis (UC) and Crohn's disease (CD). IBD, featured by recurrent symptoms and significant morbidity, poses a significant threat to global health and has an adverse impact on quality of life. Currently, there is no curative therapy for IBD, and the available medications are only for managing the disease condition, likely owing to the insufficient understanding of the underlying pathophysiology processes involved in IBD, and the lack of safe and effective medicines. Thus, novel targeted therapies for IBD are urgently needed for better efficacy with an improved adverse event profile. As the most extensively studied member of bromodomain and extra terminal domain (BET) family proteins, bromodomain-containing protein 4 (BRD4) is emerging as a promising epigenetic therapeutic target for IBD. Pharmacological inhibition of BRD4 with selective small molecule inhibitors shows potent anti-inflammatory effects in both in vitro and different IBD mouse models. Herein, we summarize current knowledge in understanding the role of BRD4 in the pathogenesis and development of IBD, and the clinical landscape of developing BET/BRD4 inhibitors and emerging BRD4-targeted degraders as promising therapeutical alternatives. Challenges and opportunities, as well as future directions in drug discovery by targeting BRD4 are also briefly discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Irina V Pinchuk
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
8
|
Crowner A, Smith K, DeSmet M. Regulation of R-Loops in DNA Tumor Viruses. Pathogens 2024; 13:863. [PMID: 39452734 PMCID: PMC11510693 DOI: 10.3390/pathogens13100863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
R-loops are triple-stranded nucleic acid structures that occur when newly synthesized single-stranded RNA anneals to duplex DNA upon the collision of replication forks with transcription complexes. These RNA-DNA hybrids facilitate several transcriptional processes in the cell and have been described extensively in the literature. Recently, evidence has emerged that R-loops are key regulators of DNA tumor virus transcription and the replication of their lifecycle. Studies have demonstrated that R-loops on the Human Papillomavirus (HPV) genome must be resolved to maintain genome maintenance and avoid viral integration, a hallmark of HPV cancers. For Epstein-Barr virus (EBV), R-loops are formed at the oriLyt to establish lytic replication. Structural maintenance of chromosome proteins 5/6 (SMC5/6) bind to these viral R-loops to repress EBV lytic replication. Most viruses in the herpesvirales order, such as KSHV, contain R-loop-forming sequences. In this perspective, we will describe the current, although limited, literature demonstrating the importance of RNA-DNA hybrids to regulate DNA virus transcription. We will also detail potential new areas of R-loop research and how these viruses can be used as tools to study the growing field of R-loops.
Collapse
Affiliation(s)
- Anaiya Crowner
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Keely Smith
- Indiana University Simon Comprehensive Cancer Center American Cancer Society Post-Baccalaureate Diversity in Cancer Research Education Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marsha DeSmet
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Ma Z, Zhang C, Bolinger AA, Zhou J. An updated patent review of BRD4 degraders. Expert Opin Ther Pat 2024; 34:929-951. [PMID: 39219068 PMCID: PMC11427152 DOI: 10.1080/13543776.2024.2400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Bromodomain-containing protein 4 (BRD4), an important epigenetic reader, is closely associated with the pathogenesis and development of many diseases, including various cancers, inflammation, and infectious diseases. Targeting BRD4 inhibition or protein elimination with small molecules represents a promising therapeutic strategy, particularly for cancer therapy. AREAS COVERED The recent advances of patented BRD4 degraders were summarized. The challenges, opportunities, and future directions for developing novel potent and selective BRD4 degraders are also discussed. The patents of BRD4 degraders were searched using the SciFinder and Cortellis Drug Discovery Intelligence database. EXPERT OPINION BRD4 degraders exhibit superior efficacy and selectivity to BRD4 inhibitors, given their unique mechanism of protein degradation instead of protein inhibition. Excitingly, RNK05047 is now in phase I/II clinical trials, indicating that selective BRD4 protein degradation may offer a viable therapeutic strategy, particularly for cancer. Targeting BRD4 with small-molecule degraders provides a promising approach with the potential to overcome therapeutic resistance for treating various BRD4-associated diseases.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Cun Zhang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| |
Collapse
|
10
|
Kan Q, Peng Z, Wang K, Deng T, Zhou Z, Wu R, Yao C, Wang R. Vascular restenosis following paclitaxel-coated balloon therapy is attributable to NLRP3 activation and LIN9 upregulation. J Transl Med 2024; 22:871. [PMID: 39334121 PMCID: PMC11430030 DOI: 10.1186/s12967-024-05657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Lower limb arterial occlusive disease is treated with intraluminal devices, such as paclitaxel (PTX)-coated balloons (PCBs); however, post-procedural restenosis remains a significant challenge. NLRP3 activation is known to play a significant role in atherosclerosis, but its involvement in restenosis following PCB intervention remains to be investigated. We identified that NLRP3 was differentially expressed in lower-limb arterial tissues sourced from healthy controls and patients with arterial occlusive disease. Through cell experiments, we confirmed that PTX is involved in the activation of NLRP3. Subsequently, we demonstrated that NLRP3 activation promotes the proliferation and migration of vascular smooth muscle cell (VSMC), thereby reducing their sensitivity to PTX. NLRP3 activation also stimulates the secretion of the inflammatory cytokine interleukin IL-1β. RNA sequencing of IL-1β-treated VSMC revealed the upregulation of BRD4 and LIN9. Further mechanistic investigations confirmed that IL-1β facilitates BRD4 recruitment, leading to enhanced LIN9 expression. The transcription factor LIN9 binds to the promoter region of the cell-cycle regulator AURKA, thereby promoting its transcription and subsequently upregulating the expression of the cell proliferation-associated molecule FOXM1. These processes ultimately mediate the proliferation, migration, and PTX resistance of VSMC. Additionally, we discovered that JQ1 inhibited the overexpression of the above molecules, and exhibited a synergistic effect with PTX. Our conclusions were validated through in vivo experiments in Sprague-Dawley rats. Collectively, our findings provide insights into the molecular mechanisms underlying restenosis following PCB therapy, and suggest that the combined use of JQ1 and PTX devices may represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Qinghui Kan
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhanli Peng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kangjie Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tang Deng
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhihao Zhou
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ridong Wu
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Chen Yao
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Rui Wang
- Division of Vascular Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Zhang Z, Hu X, Sun Y, Lei L, Liu Z. Early inhibition of BRD4 facilitates iPSC reprogramming via accelerating rDNA dynamic expression. BMC Biol 2024; 22:195. [PMID: 39256730 PMCID: PMC11389306 DOI: 10.1186/s12915-024-01997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND iPSC reprogramming technology exhibits significant promise in the realms of clinical therapeutics, disease modeling, pharmaceutical drug discovery, and various other applications. However, the extensive utilization of this technology has encountered impediments in the form of inefficiency, prolonged procedures, and ambiguous biological processes. Consequently, in order to improve this technology, it is of great significance to delve into the underlying mechanisms involved in iPSC reprogramming. The BET protein BRD4 plays a crucial role in the late stage of reprogramming; however, its precise function in the early stage remains unclear. RESULTS Our study aims to investigate BRD4's role in the early stages of iPSC reprogramming. Our investigation reveals that early inhibition of BRD4 substantially enhances iPSC reprogramming, whereas its implementation during the middle-late stage impedes the process. During the reprogramming, ribosome DNA expression initially increases before decreasing and then gradually recovers. Early inhibition of BRD4 improved the decline and restoration of rDNA expression in the early and middle-late stages, respectively. Additionally, we uncovered the mechanism of BRD4's regulation of rDNA transcription throughout reprogramming. Specifically, BRD4 interacts with UBF and co-localizes to both the rDNA promoter and enhancer regions. Ultimately, BRD4 facilitates rDNA transcription by promoting the enrichment of histone H3 lysine 27 acetylation in the surrounding chromatin. Moreover, we also discovered that early inhibition of BRD4 facilitates cells' transition out of the somatic cell state and activate pluripotent genes. CONCLUSIONS In conclusion, our results demonstrate that early inhibition of BRD4 promotes sequential dynamic expression of rDNA, which improves iPSC reprogramming efficiency.
Collapse
Affiliation(s)
- Zhijing Zhang
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China
| | - Xinglin Hu
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Yuchen Sun
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, 157 Baojian Street, Nangang DistrictHeilongjiang Province 150086, Harbin, China.
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, 31 Mucai Street, Xiangfang DistrictHeilongjiang Province 150030, Harbin, China.
| |
Collapse
|
12
|
Ormsbee Golden BD, Gonzalez DV, Yochum GS, Coulter DW, Rizzino A. SOX2 represses c-MYC transcription by altering the co-activator landscape of the c-MYC super-enhancer and promoter regions. J Biol Chem 2024; 300:107642. [PMID: 39122009 PMCID: PMC11408076 DOI: 10.1016/j.jbc.2024.107642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Our previous studies determined that elevating SOX2 in a wide range of tumor cells leads to a reversible state of tumor growth arrest. Efforts to understand how tumor cell growth is inhibited led to the discovery of a SOX2:MYC axis that is responsible for downregulating c-MYC (MYC) when SOX2 is elevated. Although we had determined that elevating SOX2 downregulates MYC transcription, the mechanism responsible was not determined. Given the challenges of targeting MYC clinically, we set out to identify how elevating SOX2 downregulates MYC transcription. In this study, we focused on the MYC promoter region and an upstream region of the MYC locus that contains a MYC super-enhancer encompassing five MYC enhancers and which is associated with several cancers. Here we report that BRD4 and p300 associate with each of the MYC enhancers in the upstream MYC super-enhancer as well as the MYC promoter region and that elevating SOX2 decreases the recruitment of BRD4 and p300 to these sites. Additionally, we determined that elevating SOX2 leads to increases in the association of SOX2 and H3K27me3 within the MYC super-enhancer and the promoter region of MYC. Importantly, we conclude that the increases in SOX2 within the MYC super-enhancer precipitate a cascade of events that culminates in the repression of MYC transcription. Together, our studies identify a novel molecular mechanism able to regulate MYC transcription in two distinctly different tumor types and provide new mechanistic insights into the molecular interrelationships between two master regulators, SOX2 and MYC, widely involved in multiple cancers.
Collapse
Affiliation(s)
- Briana D Ormsbee Golden
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Daisy V Gonzalez
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Gregory S Yochum
- Department of Surgery & Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Donald W Coulter
- Hematology and Oncology Division, Department of Pediatrics, Nebraska Medical Center, Omaha, Nebraska, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
13
|
Cisneros WJ, Soliman SHA, Walter M, Simons LM, Cornish D, De Fabritiis S, Halle AW, Kim EY, Wolinsky SM, Lorenzo-Redondo R, Shilatifard A, Hultquist JF. Release of P-TEFb from the Super Elongation Complex promotes HIV-1 latency reversal. PLoS Pathog 2024; 20:e1012083. [PMID: 39259751 PMCID: PMC11419360 DOI: 10.1371/journal.ppat.1012083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 09/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV (PLWH) on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shimaa H. A. Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Miriam Walter
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Daphne Cornish
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Simone De Fabritiis
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ariel W. Halle
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
14
|
Wei Q, Gan C, Sun M, Xie Y, Liu H, Xue T, Deng C, Mo C, Ye T. BRD4: an effective target for organ fibrosis. Biomark Res 2024; 12:92. [PMID: 39215370 PMCID: PMC11365212 DOI: 10.1186/s40364-024-00641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Fibrosis is an excessive wound-healing response induced by repeated or chronic external stimuli to tissues, significantly impacting quality of life and primarily contributing to organ failure. Organ fibrosis is reported to cause 45% of all-cause mortality worldwide. Despite extensive efforts to develop new antifibrotic drugs, drug discovery has not kept pace with the clinical demand. Currently, only pirfenidone and nintedanib are approved by the FDA to treat pulmonary fibrotic illness, whereas there are currently no available antifibrotic drugs for hepatic, cardiac or renal fibrosis. The development of fibrosis is closely related to epigenetic alterations. The field of epigenetics primarily studies biological processes, including chromatin modifications, epigenetic readers, DNA transcription and RNA translation. The bromodomain and extra-terminal structural domain (BET) family, a class of epigenetic readers, specifically recognizes acetylated histone lysine residues and promotes the formation of transcriptional complexes. Bromodomain-containing protein 4 (BRD4) is one of the most well-researched proteins in the BET family. BRD4 is implicated in the expression of genes related to inflammation and pro-fibrosis during fibrosis. Inhibition of BRD4 has shown promising anti-fibrotic effects in preclinical studies; however, no BRD4 inhibitor has been approved for clinical use. This review introduces the structure and function of BET proteins, the research progress on BRD4 in organ fibrosis, and the inhibitors of BRD4 utilized in fibrosis. We emphasize the feasibility of targeting BRD4 as an anti-fibrotic strategy and discuss the therapeutic potential and challenges associated with BRD4 inhibitors in treating fibrotic diseases.
Collapse
Affiliation(s)
- Qun Wei
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cailing Gan
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Sun
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuting Xie
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyao Liu
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Taixiong Xue
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Conghui Deng
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Laboratory of Gastrointestinal Cancer and Liver Disease, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Ningxia Medical University, Yin Chuan, 640100, China.
| |
Collapse
|
15
|
Etoh K, Araki H, Koga T, Hino Y, Kuribayashi K, Hino S, Nakao M. Citrate metabolism controls the senescent microenvironment via the remodeling of pro-inflammatory enhancers. Cell Rep 2024; 43:114496. [PMID: 39043191 DOI: 10.1016/j.celrep.2024.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
The senescent microenvironment and aged cells per se contribute to tissue remodeling, chronic inflammation, and age-associated dysfunction. However, the metabolic and epigenomic bases of the senescence-associated secretory phenotype (SASP) remain largely unknown. Here, we show that ATP-citrate lyase (ACLY), a key enzyme in acetyl-coenzyme A (CoA) synthesis, is essential for the pro-inflammatory SASP, independent of persistent growth arrest in senescent cells. Citrate-derived acetyl-CoA facilitates the action of SASP gene enhancers. ACLY-dependent de novo enhancers augment the recruitment of the chromatin reader BRD4, which causes SASP activation. Consistently, specific inhibitions of the ACLY-BRD4 axis suppress the STAT1-mediated interferon response, creating the pro-inflammatory microenvironment in senescent cells and tissues. Our results demonstrate that ACLY-dependent citrate metabolism represents a selective target for controlling SASP designed to promote healthy aging.
Collapse
Affiliation(s)
- Kan Etoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hirotaka Araki
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Tomoaki Koga
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuko Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kanji Kuribayashi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
16
|
Zhang S, Roeder RG. Resistance of estrogen receptor function to BET bromodomain inhibition is mediated by transcriptional coactivator cooperativity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605008. [PMID: 39211208 PMCID: PMC11361192 DOI: 10.1101/2024.07.25.605008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The Bromodomain and Extra-Terminal Domain (BET) family of proteins are critical chromatin readers that bind to acetylated histones through their bromodomains to activate transcription. Here, we reveal that bromodomain inhibition fails to repress oncogenic targets of estrogen receptor due to an intrinsic transcriptional mechanism. While bromodomains are necessary for the transcription of many genes, BRD4 binds to estrogen receptor binding sites and activates transcription of critical oncogenes independently of its bromodomains. BRD4 associates with the Mediator complex and disruption of Mediator complex reduces BRD4's enhancer occupancy. Profiling changes in the post-initiation RNA polymerase II (Pol II)-associated factors revealed that BET proteins regulate interactions between Pol II and elongation factors SPT5, SPT6, and PAF1 complex, which associate with BET proteins independently of their bromodomains and mediate their transcription elongation effect. Our findings highlight the importance of bromodomain-independent functions and interactions of BET proteins in the development of future therapeutic strategies.
Collapse
|
17
|
Wu M, Guan G, Yin H, Niu Q. A Review of the Bromodomain and Extraterminal Domain Epigenetic Reader Proteins: Function on Virus Infection and Cancer. Viruses 2024; 16:1096. [PMID: 39066258 PMCID: PMC11281655 DOI: 10.3390/v16071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The BET (bromodomain and extraterminal domain) family of proteins, particularly BRD4 (bromodomain-containing protein 4), plays a crucial role in transcription regulation and epigenetic mechanisms, impacting key cellular processes such as proliferation, differentiation, and the DNA damage response. BRD4, the most studied member of this family, binds to acetylated lysines on both histones and non-histone proteins, thereby regulating gene expression and influencing diverse cellular functions such as the cell cycle, tumorigenesis, and immune responses to viral infections. Given BRD4's involvement in these fundamental processes, it is implicated in various diseases, including cancer and inflammation, making it a promising target for therapeutic development. This review comprehensively explores the roles of the BET family in gene transcription, DNA damage response, and viral infection, discussing the potential of targeted small-molecule compounds and highlighting BET proteins as promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
18
|
Strom AR, Eeftens JM, Polyachenko Y, Weaver CJ, Watanabe HF, Bracha D, Orlovsky ND, Jumper CC, Jacobs WM, Brangwynne CP. Interplay of condensation and chromatin binding underlies BRD4 targeting. Mol Biol Cell 2024; 35:ar88. [PMID: 38656803 PMCID: PMC11238092 DOI: 10.1091/mbc.e24-01-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Nuclear compartments form via biomolecular phase separation, mediated through multivalent properties of biomolecules concentrated within condensates. Certain compartments are associated with specific chromatin regions, including transcriptional initiation condensates, which are composed of transcription factors and transcriptional machinery, and form at acetylated regions including enhancer and promoter loci. While protein self-interactions, especially within low-complexity and intrinsically disordered regions, are known to mediate condensation, the role of substrate-binding interactions in regulating the formation and function of biomolecular condensates is underexplored. Here, utilizing live-cell experiments in parallel with coarse-grained simulations, we investigate how chromatin interaction of the transcriptional activator BRD4 modulates its condensate formation. We find that both kinetic and thermodynamic properties of BRD4 condensation are affected by chromatin binding: nucleation rate is sensitive to BRD4-chromatin interactions, providing an explanation for the selective formation of BRD4 condensates at acetylated chromatin regions, and thermodynamically, multivalent acetylated chromatin sites provide a platform for BRD4 clustering below the concentration required for off-chromatin condensation. This provides a molecular and physical explanation of the relationship between nuclear condensates and epigenetically modified chromatin that results in their mutual spatiotemporal regulation, suggesting that epigenetic modulation is an important mechanism by which the cell targets transcriptional condensates to specific chromatin loci.
Collapse
Affiliation(s)
- Amy R. Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Jorine M. Eeftens
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Radboud Institute for Molecular Life Sciences, Radboud University, 6525 XZ Nijmegen, Netherlands
| | - Yury Polyachenko
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Claire J. Weaver
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Molecular and Cellular Biology, Princeton University, Princeton, NJ 08544
| | | | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Department of Biotechnology and Food Engineering, Technion, Haifa 3200, Israel
| | - Natalia D. Orlovsky
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Biological and Biomedical Sciences Program, Harvard University, Boston, MA 02115
| | - Chanelle C. Jumper
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Nereid Therapeutics, Boston, MA
| | | | - Clifford P. Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
19
|
Yongprayoon V, Wattanakul N, Khomate W, Apithanangsiri N, Kasitipradit T, Nantajit D, Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review). Oncol Rep 2024; 51:74. [PMID: 38606512 DOI: 10.3892/or.2024.8733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain‑containing protein 4) is a chromatin‑associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo‑ and radiotherapy allowing de‑intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4‑targeted drugs for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Voraporn Yongprayoon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Napasporn Wattanakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Winnada Khomate
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nathakrit Apithanangsiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tarathip Kasitipradit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK
| |
Collapse
|
20
|
Rosenthal ZC, Fass DM, Payne NC, She A, Patnaik D, Hennig KM, Tesla R, Werthmann GC, Guhl C, Reis SA, Wang X, Chen Y, Placzek M, Williams NS, Hooker J, Herz J, Mazitschek R, Haggarty SJ. Epigenetic modulation through BET bromodomain inhibitors as a novel therapeutic strategy for progranulin-deficient frontotemporal dementia. Sci Rep 2024; 14:9064. [PMID: 38643236 PMCID: PMC11032351 DOI: 10.1038/s41598-024-59110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/08/2024] [Indexed: 04/22/2024] Open
Abstract
Frontotemporal dementia (FTD) is a debilitating neurodegenerative disorder with currently no disease-modifying treatment options available. Mutations in GRN are one of the most common genetic causes of FTD, near ubiquitously resulting in progranulin (PGRN) haploinsufficiency. Small molecules that can restore PGRN protein to healthy levels in individuals bearing a heterozygous GRN mutation may thus have therapeutic value. Here, we show that epigenetic modulation through bromodomain and extra-terminal domain (BET) inhibitors (BETi) potently enhance PGRN protein levels, both intracellularly and secreted forms, in human central nervous system (CNS)-relevant cell types, including in microglia-like cells. In terms of potential for disease modification, we show BETi treatment effectively restores PGRN levels in neural cells with a GRN mutation known to cause PGRN haploinsufficiency and FTD. We demonstrate that BETi can rapidly and durably enhance PGRN in neural progenitor cells (NPCs) in a manner dependent upon BET protein expression, suggesting a gain-of-function mechanism. We further describe a CNS-optimized BETi chemotype that potently engages endogenous BRD4 and enhances PGRN expression in neuronal cells. Our results reveal a new epigenetic target for treating PGRN-deficient forms of FTD and provide mechanistic insight to aid in translating this discovery into therapeutics.
Collapse
Affiliation(s)
- Zachary C Rosenthal
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - N Connor Payne
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Angela She
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Debasis Patnaik
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Krista M Hennig
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Tesla
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gordon C Werthmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - Surya A Reis
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Xiaoyu Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yueting Chen
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Placzek
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacob Hooker
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Precision Therapeutics Unit, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Cannon AC, Budagyan K, Uribe-Alvarez C, Kurimchak AM, Araiza-Olivera D, Cai KQ, Peri S, Zhou Y, Duncan JS, Chernoff J. Unique vulnerability of RAC1-mutant melanoma to combined inhibition of CDK9 and immune checkpoints. Oncogene 2024; 43:729-743. [PMID: 38243078 PMCID: PMC11157427 DOI: 10.1038/s41388-024-02947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024]
Abstract
RAC1P29S is the third most prevalent hotspot mutation in sun-exposed melanoma. RAC1 alterations in cancer are correlated with poor prognosis, resistance to standard chemotherapy, and insensitivity to targeted inhibitors. Although RAC1P29S mutations in melanoma and RAC1 alterations in several other cancers are increasingly evident, the RAC1-driven biological mechanisms contributing to tumorigenesis remain unclear. Lack of rigorous signaling analysis has prevented identification of alternative therapeutic targets for RAC1P29S-harboring melanomas. To investigate the RAC1P29S-driven effect on downstream molecular signaling pathways, we generated an inducible RAC1P29S expression melanocytic cell line and performed RNA-sequencing (RNA-seq) coupled with multiplexed kinase inhibitor beads and mass spectrometry (MIBs/MS) to establish enriched pathways from the genomic to proteomic level. Our proteogenomic analysis identified CDK9 as a potential new and specific target in RAC1P29S-mutant melanoma cells. In vitro, CDK9 inhibition impeded the proliferation of in RAC1P29S-mutant melanoma cells and increased surface expression of PD-L1 and MHC Class I proteins. In vivo, combining CDK9 inhibition with anti-PD-1 immune checkpoint blockade significantly inhibited tumor growth only in melanomas that expressed the RAC1P29S mutation. Collectively, these results establish CDK9 as a novel target in RAC1-driven melanoma that can further sensitize the tumor to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Alexa C Cannon
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Konstantin Budagyan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Drexel University College of Medicine, Philadelphia, PA, USA
| | - Cristina Uribe-Alvarez
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniela Araiza-Olivera
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Suraj Peri
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
- Merck, Bioinformatics Oncology Discovery, Boston, MA, USA
| | - Yan Zhou
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Cisneros WJ, Walter M, Soliman SH, Simons LM, Cornish D, Halle AW, Kim EY, Wolinsky SM, Shilatifard A, Hultquist JF. Release of P-TEFb from the Super Elongation Complex promotes HIV-1 latency reversal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582881. [PMID: 38464055 PMCID: PMC10925308 DOI: 10.1101/2024.03.01.582881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Miriam Walter
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shimaa H.A. Soliman
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daphne Cornish
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ariel W. Halle
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Steven M. Wolinsky
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Havey Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Hardtke HA, Zhang YJ. Collaborators or competitors: the communication between RNA polymerase II and the nucleosome during eukaryotic transcription. Crit Rev Biochem Mol Biol 2024; 59:1-19. [PMID: 38288999 PMCID: PMC11209794 DOI: 10.1080/10409238.2024.2306365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 04/22/2024]
Abstract
Decades of scientific research have been devoted to unraveling the intricacies of eukaryotic transcription since the groundbreaking discovery of eukaryotic RNA polymerases in the late 1960s. RNA polymerase II, the polymerase responsible for mRNA synthesis, has always attracted the most attention. Despite its structural resemblance to its bacterial counterpart, eukaryotic RNA polymerase II faces a unique challenge in progressing transcription due to the presence of nucleosomes that package DNA in the nuclei. In this review, we delve into the impact of RNA polymerase II and histone signaling on the progression of eukaryotic transcription. We explore the pivotal points of interactions that bridge the RNA polymerase II and histone signaling systems. Finally, we present an analysis of recent cryo-electron microscopy structures, which captured RNA polymerase II-nucleosome complexes at different stages of the transcription cycle. The combination of the signaling crosstalk and the direct visualization of RNA polymerase II-nucleosome complexes provides a deeper understanding of the communication between these two major players in eukaryotic transcription.
Collapse
Affiliation(s)
- Haley A. Hardtke
- Department of Molecular Biosciences, University of Texas, Austin
| | - Y. Jessie Zhang
- Department of Molecular Biosciences, University of Texas, Austin
| |
Collapse
|
24
|
Li X, Zheng C, Liu Y, Sun H, Qian Y, Fan H. Co-overexpression of BRD4 and CDK7 promotes cell proliferation and predicts poor prognosis in HCC. Heliyon 2024; 10:e24389. [PMID: 38293462 PMCID: PMC10826729 DOI: 10.1016/j.heliyon.2024.e24389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Aberrant expression of critical components of the trans-acting super-enhancers (SE) complex contributes to the continuous and robust transcription of oncogenes in human cancers. Small-molecule inhibitors targeting core-transcriptional components such as transcriptional bromodomain protein 4 (BRD4) and cyclin-dependent kinase 7 (CDK7) have been developed and are currently undergoing preclinical and clinical testing in several malignant cancers. By analysis of TCGA data and clinical specimens, we demonstrated that BRD4 and CDK7 were frequently overexpressed in human HCCs and were associated with the poor prognosis. Shorter survival and poorly differentiated histology were linked to high BRD4 or CDK7 expression levels. Interestingly, co-overexpression of BRD4 and CDK7 was a more unfavorable prognostic factor in HCC. Treatment with JQ1 or THZ1 alone exhibited an inhibitory impact on the proliferation of HCC cells, while JQ1 synergized with THZ1 showed a more pronounced suppression. Concurrently, a combined JQ1 and THZ1 treatment abolished the transcription of oncogenes ETV4, MYC, NFE2L2. Our study suggested that BRD4 and CDK7 coupled can be a valuable biomarker in HCC diagnosis and the combination of JQ1 and THZ1 can be a promising therapeutic treatment against HCC.
Collapse
Affiliation(s)
- Xinxiu Li
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Yue Liu
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Hui Sun
- School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yanyan Qian
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, School of Medicine, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Wang YK, Huang XS, Sun H, Ma MD, Yu HP, Hu W, Li ZY, Li Z, Luo RH, Tian RR, Xiao TF, Yang LM, Zheng YT, Li X. Novel Triazolopyridine-Based BRD4 Inhibitors as Potent HIV-1 Latency Reversing Agents. ACS Med Chem Lett 2024; 15:60-68. [PMID: 38229757 PMCID: PMC10789119 DOI: 10.1021/acsmedchemlett.3c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/18/2024] Open
Abstract
Bromodomain-containing protein 4 (BRD4) inhibitors have been proven to be a promising option for anti-HIV-1 latency therapeutics. We herein describe the design, synthesis, and anti-HIV-1 latency bioevaluation of triazolopyridine derivatives as BRD4 inhibitors. Among them, compound 13d displayed favorable HIV-1 reactivation and prominent safety profile without triggering abnormal immune activation. It exerted strong synergism when combined with the PKC activator prostratin and has the same BRD4-targeting latency mechanism as observed with JQ1, by stimulating Tat-dependent HIV-1 elongation. Besides, it neither affected the antiviral efficacies of antiviral drugs nor caused secondary infections to uninfected cells and the latency reversing potency of 13d, in turn, was not affected by different classes of antiviral drugs.
Collapse
Affiliation(s)
- Yan-Kai Wang
- School
of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy
of Medical Sciences, National Key Laboratory of Advanced Drug Delivery
System, Key Laboratory for Biotechnology Drugs of National Health
Commission (Shandong Academy of Medical Sciences), Key Lab for Rare
& Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Xu-Sheng Huang
- Key
Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory
of Animal Models and Human Disease Mechanisms of the Chinese Academy
of Science and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources
and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Sun
- School
of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy
of Medical Sciences, National Key Laboratory of Advanced Drug Delivery
System, Key Laboratory for Biotechnology Drugs of National Health
Commission (Shandong Academy of Medical Sciences), Key Lab for Rare
& Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| | - Meng-Di Ma
- Key
Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory
of Animal Models and Human Disease Mechanisms of the Chinese Academy
of Science and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources
and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai-Peng Yu
- Shandong
University, No. 72 Binhai Road, Qingdao 266237, China
| | - Wei Hu
- Shandong
University, No. 72 Binhai Road, Qingdao 266237, China
| | - Zhi-Yu Li
- Department
of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Department
of Chemistry & Biochemistry, Misher College of Arts and Sciences, University of the Sciences, 600 South 43rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Zhong Li
- Shandong
University, No. 72 Binhai Road, Qingdao 266237, China
| | - Rong-Hua Luo
- Key
Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory
of Animal Models and Human Disease Mechanisms of the Chinese Academy
of Science and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources
and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Ren-Rong Tian
- Key
Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory
of Animal Models and Human Disease Mechanisms of the Chinese Academy
of Science and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources
and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Tai-Fu Xiao
- Department
of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming
Medical University, Kunming 650101, Yunnan, China
| | - Liu-Meng Yang
- Key
Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory
of Animal Models and Human Disease Mechanisms of the Chinese Academy
of Science and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources
and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Yong-Tang Zheng
- Key
Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory
of Animal Models and Human Disease Mechanisms of the Chinese Academy
of Science and Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources
and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China
| | - Xun Li
- School
of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy
of Medical Sciences, National Key Laboratory of Advanced Drug Delivery
System, Key Laboratory for Biotechnology Drugs of National Health
Commission (Shandong Academy of Medical Sciences), Key Lab for Rare
& Uncommon Diseases of Shandong Province, Jinan 250117, Shandong, China
| |
Collapse
|
26
|
Gasimli K, Raab M, Mandal R, Krämer A, Peña-Llopis S, Tahmasbi Rad M, Becker S, Strebhardt K, Sanhaji M. Synergistic Sensitization of High-Grade Serous Ovarian Cancer Cells Lacking Caspase-8 Expression to Chemotherapeutics Using Combinations of Small-Molecule BRD4 and CDK9 Inhibitors. Cancers (Basel) 2023; 16:107. [PMID: 38201534 PMCID: PMC10778249 DOI: 10.3390/cancers16010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is one of the most lethal gynecological cancers worldwide, with approximately 70% of cases diagnosed in advanced stages. This late diagnosis results from the absence of early warning symptoms and is associated with an unfavorable prognosis. A standard treatment entails a combination of primary chemotherapy with platinum and taxane agents. Tumor recurrence following first-line chemotherapy with Carboplatin and Paclitaxel is detected in 80% of advanced ovarian cancer patients, with disease relapse occurring within 2 years of initial treatment. Platinum-resistant ovarian cancer is one of the biggest challenges in treating patients. Second-line treatments involve PARP or VEGF inhibitors. Identifying novel biomarkers and resistance mechanisms is critical to overcoming resistance, developing newer treatment strategies, and improving patient survival. In this study, we have determined that low Caspase-8 expression in ovarian cancer patients leads to poor prognosis. High-Grade Serous Ovarian Cancer (HGSOC) cells lacking Caspase-8 expression showed an altered composition of the RNA Polymerase II-containing transcriptional elongation complex leading to increased transcriptional activity. Caspase-8 knockout cells display increased BRD4 expression and CDK9 activity and reduced sensitivities to Carboplatin and Paclitaxel. Based on our work, we are proposing three potential therapeutic approaches to treat advanced ovarian cancer patients who exhibit low Caspase-8 expression and resistance to Carboplatin and/or Paclitaxel-combinations of (1) Carboplatin with small-molecule BRD4 inhibitors; (2) Paclitaxel with small-molecule BRD4 inhibitors, and (3) small-molecule BRD4 and CDK9 inhibitors. In addition, we are also proposing two predictive markers of chemoresistance-BRD4 and pCDK9.
Collapse
Affiliation(s)
- Khayal Gasimli
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Monika Raab
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Ranadip Mandal
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Andrea Krämer
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Samuel Peña-Llopis
- Translational Genomics, Department of Ophthalmology, University Hospital Essen, 45147 Essen, Germany;
- German Cancer Consortium (DKTK), 45147 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Morva Tahmasbi Rad
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Sven Becker
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| | - Klaus Strebhardt
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
| | - Mourad Sanhaji
- Department of Gynecology, University Hospital Frankfurt am Main, 60590 Frankfurt am Main, Germany; (K.G.); (M.R.); (R.M.); (A.K.)
| |
Collapse
|
27
|
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure. Viruses 2023; 15:2435. [PMID: 38140676 PMCID: PMC10747579 DOI: 10.3390/v15122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Antiretroviral therapy (ART) has brought the HIV/AIDS epidemic under control, but a curative strategy for viral eradication is still needed. The cessation of ART results in rapid viral rebound from latently infected CD4+ T cells, showing that control of viral replication alone does not fully restore immune function, nor does it eradicate viral reservoirs. With a better understanding of factors and mechanisms that promote viral latency, current approaches are primarily focused on the permanent silencing of latently infected cells ("block and lock") or reactivating HIV-1 gene expression in latently infected cells, in combination with immune restoration strategies to eliminate HIV infected cells from the host ("shock and kill"). In this review, we provide a summary of the current, most promising approaches for HIV-1 cure strategies, including an analysis of both latency-promoting agents (LPA) and latency-reversing agents (LRA) that have shown promise in vitro, ex vivo, and in human clinical trials to reduce the HIV-1 reservoir.
Collapse
Affiliation(s)
- Natasha N. Duggan
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Tatjana Dragic
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Sumit K. Chanda
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Lars Pache
- NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Freeman DB, Hopkins TD, Mikochik PJ, Vacca JP, Gao H, Naylor-Olsen A, Rudra S, Li H, Pop MS, Villagomez RA, Lee C, Li H, Zhou M, Saffran DC, Rioux N, Hood TR, Day MAL, McKeown MR, Lin CY, Bischofberger N, Trotter BW. Discovery of KB-0742, a Potent, Selective, Orally Bioavailable Small Molecule Inhibitor of CDK9 for MYC-Dependent Cancers. J Med Chem 2023; 66:15629-15647. [PMID: 37967851 PMCID: PMC10726352 DOI: 10.1021/acs.jmedchem.3c01233] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
Transcriptional deregulation is a hallmark of many cancers and is exemplified by genomic amplifications of the MYC family of oncogenes, which occur in at least 20% of all solid tumors in adults. Targeting of transcriptional cofactors and the transcriptional cyclin-dependent kinase (CDK9) has emerged as a therapeutic strategy to interdict deregulated transcriptional activity including oncogenic MYC. Here, we report the structural optimization of a small molecule microarray hit, prioritizing maintenance of CDK9 selectivity while improving on-target potency and overall physicochemical and pharmacokinetic (PK) properties. This led to the discovery of the potent, selective, orally bioavailable CDK9 inhibitor 28 (KB-0742). Compound 28 exhibits in vivo antitumor activity in mouse xenograft models and a projected human PK profile anticipated to enable efficacious oral dosing. Notably, 28 is currently being investigated in a phase 1/2 dose escalation and expansion clinical trial in patients with relapsed or refractory solid tumors.
Collapse
Affiliation(s)
- David B. Freeman
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Tamara D. Hopkins
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Peter J. Mikochik
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Joseph P. Vacca
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Hua Gao
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Adel Naylor-Olsen
- Naylor
Olsen Consulting, LLC, 3369 Saddle Wood Court, Lansdale, Pennsylvania 19446, United States
| | - Sonali Rudra
- TCG
Lifesciences Private Limited, Block BN, Plot 7, Salt-lake Electronics Complex, Sector V, Kolkata 700091, West Bengal, India
| | - Huixu Li
- WuXi
AppTec (Tianjin) Co., Ltd., 168 NanHai Road, 10th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Marius S. Pop
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Rosa A. Villagomez
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Christina Lee
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Heng Li
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Minyun Zhou
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Douglas C. Saffran
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Nathalie Rioux
- Certara
Strategic Consulting, 100 Overlook Center, Suite 101, Princeton, New Jersey 08540, United States
| | - Tressa R. Hood
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Melinda A. L. Day
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Michael R. McKeown
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Charles Y. Lin
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - Norbert Bischofberger
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| | - B. Wesley Trotter
- Kronos
Bio, Inc., 301 Binney
Street, 2nd Floor East, Cambridge, Massachusetts 02142, United States
- Kronos
Bio, Inc., 1300 So. El
Camino Real Suite 400, San Mateo, California 94402, United States
| |
Collapse
|
29
|
Nevi L, Pöllänen N, Penna F, Caretti G. Targeting Epigenetic Regulators with HDAC and BET Inhibitors to Modulate Muscle Wasting. Int J Mol Sci 2023; 24:16404. [PMID: 38003594 PMCID: PMC10671811 DOI: 10.3390/ijms242216404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Epigenetic changes contribute to the profound alteration in the transcriptional program associated with the onset and progression of muscle wasting in several pathological conditions. Although HDACs and their inhibitors have been extensively studied in the field of muscular dystrophies, the potential of epigenetic inhibitors has only been marginally explored in other disorders associated with muscle atrophy, such as in cancer cachexia and sarcopenia. BET inhibitors represent a novel class of recently developed epigenetic drugs that display beneficial effects in a variety of diseases beyond malignancies. Based on the preliminary in vitro and preclinical data, HDACs and BET proteins contribute to the pathogenesis of cancer cachexia and sarcopenia, modulating processes related to skeletal muscle mass maintenance and/or metabolism. Thus, epigenetic drugs targeting HDACs and BET proteins may emerge as promising strategies to reverse the catabolic phenotype associated with cachexia and sarcopenia. Further preclinical studies are warranted to delve deeper into the molecular mechanisms associated with the functions of HDACs and BET proteins in muscle atrophy and to establish whether their epigenetic inhibitors represent a prospective therapeutic avenue to alleviate muscle wasting.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Noora Pöllänen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | | |
Collapse
|
30
|
Aoi Y, Shilatifard A. Transcriptional elongation control in developmental gene expression, aging, and disease. Mol Cell 2023; 83:3972-3999. [PMID: 37922911 DOI: 10.1016/j.molcel.2023.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The elongation stage of transcription by RNA polymerase II (RNA Pol II) is central to the regulation of gene expression in response to developmental and environmental cues in metazoan. Dysregulated transcriptional elongation has been associated with developmental defects as well as disease and aging processes. Decades of genetic and biochemical studies have painstakingly identified and characterized an ensemble of factors that regulate RNA Pol II elongation. This review summarizes recent findings taking advantage of genetic engineering techniques that probe functions of elongation factors in vivo. We propose a revised model of elongation control in this accelerating field by reconciling contradictory results from the earlier biochemical evidence and the recent in vivo studies. We discuss how elongation factors regulate promoter-proximal RNA Pol II pause release, transcriptional elongation rate and processivity, RNA Pol II stability and RNA processing, and how perturbation of these processes is associated with developmental disorders, neurodegenerative disease, cancer, and aging.
Collapse
Affiliation(s)
- Yuki Aoi
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
31
|
Pecharromán I, Solé L, Álvarez‐Villanueva D, Lobo‐Jarne T, Alonso‐Marañón J, Bertran J, Guillén Y, Montoto Á, Martínez‐Iniesta M, García‐Hernández V, Giménez G, Salazar R, Santos C, Garrido M, Borràs E, Sabidó E, Bonfill‐Teixidor E, Iurlaro R, Seoane J, Villanueva A, Iglesias M, Bigas A, Espinosa L. IκB kinase-α coordinates BRD4 and JAK/STAT signaling to subvert DNA damage-based anticancer therapy. EMBO J 2023; 42:e114719. [PMID: 37737566 PMCID: PMC10620764 DOI: 10.15252/embj.2023114719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Activation of the IκB kinase (IKK) complex has recurrently been linked to colorectal cancer (CRC) initiation and progression. However, identification of downstream effectors other than NF-κB has remained elusive. Here, analysis of IKK-dependent substrates in CRC cells after UV treatment revealed that phosphorylation of BRD4 by IKK-α is required for its chromatin-binding at target genes upon DNA damage. Moreover, IKK-α induces the NF-κB-dependent transcription of the cytokine LIF, leading to STAT3 activation, association with BRD4 and recruitment to specific target genes. IKK-α abrogation results in defective BRD4 and STAT3 functions and consequently irreparable DNA damage and apoptotic cell death upon different stimuli. Simultaneous inhibition of BRAF-dependent IKK-α activity, BRD4, and the JAK/STAT pathway enhanced the therapeutic potential of 5-fluorouracil combined with irinotecan in CRC cells and is curative in a chemotherapy-resistant xenograft model. Finally, coordinated expression of LIF and IKK-α is a poor prognosis marker for CRC patients. Our data uncover a functional link between IKK-α, BRD4, and JAK/STAT signaling with clinical relevance.
Collapse
Affiliation(s)
- Irene Pecharromán
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Laura Solé
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Daniel Álvarez‐Villanueva
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
| | - Teresa Lobo‐Jarne
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Josune Alonso‐Marañón
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Joan Bertran
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Faculty of Science and TechnologyUniversity of Vic – Central University of CataloniaVicSpain
| | - Yolanda Guillén
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Ángela Montoto
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - María Martínez‐Iniesta
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
| | - Violeta García‐Hernández
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Gemma Giménez
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Ramon Salazar
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)‐CIBERONCL'Hospitalet de LlobregatBarcelonaSpain
| | - Cristina Santos
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)‐CIBERONCL'Hospitalet de LlobregatBarcelonaSpain
| | - Marta Garrido
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| | - Eva Borràs
- Proteomics Unit, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Proteomics UnitUniversitat Pompeu FabraBarcelonaSpain
| | - Eduard Sabidó
- Proteomics Unit, Centre for Genomic Regulation (CRG)Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Proteomics UnitUniversitat Pompeu FabraBarcelonaSpain
| | - Ester Bonfill‐Teixidor
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Raffaella Iurlaro
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
| | - Joan Seoane
- Vall d'Hebron Institute of Oncology (VHIO), CIBERONCVall d'Hebron University Hospital, Universitat Autònoma de BarcelonaBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL)L'Hospitalet del LlobregatBarcelonaSpain
- Xenopat S.L., Parc Cientific de Barcelona (PCB)BarcelonaSpain
| | - Mar Iglesias
- Department of Pathology, Institut Mar d'Investigacions Mèdiques, CIBERONCUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Anna Bigas
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
- Josep Carreras Leukemia Research InstituteBadalonaSpain
| | - Lluís Espinosa
- Cancer Research Program, Institut Mar d'Investigacions Mèdiques, CIBERONCHospital del MarBarcelonaSpain
| |
Collapse
|
32
|
Yang H, Sui P, Guo Y, Chen S, Maloof ME, Ge G, Nihozeko F, Delma CR, Zhu G, Zhang P, Ye Z, Medina EA, Ayad NG, Mesa R, Nimer SD, Chiang C, Xu M, Chen Y, Yang F. Loss of BRD4 induces cell senescence in HSC/HPCs by deregulating histone H3 clipping. EMBO Rep 2023; 24:e57032. [PMID: 37650863 PMCID: PMC10561362 DOI: 10.15252/embr.202357032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 09/01/2023] Open
Abstract
Bromodomain-containing protein 4 (BRD4) is overexpressed and functionally implicated in various myeloid malignancies. However, the role of BRD4 in normal hematopoiesis remains largely unknown. Here, utilizing an inducible Brd4 knockout mouse model, we find that deletion of Brd4 (Brd4Δ/Δ ) in the hematopoietic system impairs hematopoietic stem cell (HSC) self-renewal and differentiation, which associates with cell cycle arrest and senescence. ATAC-seq analysis shows increased chromatin accessibility in Brd4Δ/Δ hematopoietic stem/progenitor cells (HSC/HPCs). Genome-wide mapping with cleavage under target and release using nuclease (CUT&RUN) assays demonstrate that increased global enrichment of H3K122ac and H3K4me3 in Brd4Δ/Δ HSC/HPCs is associated with the upregulation of senescence-specific genes. Interestingly, Brd4 deletion increases clipped H3 (cH3) which correlates with the upregulation of senescence-specific genes and results in a higher frequency of senescent HSC/HPCs. Re-expression of BRD4 reduces cH3 levels and rescues the senescence rate in Brd4Δ/Δ HSC/HPCs. This study unveils an important role of BRD4 in HSC/HPC function by preventing H3 clipping and suppressing senescence gene expression.
Collapse
Affiliation(s)
- Hui Yang
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Pinpin Sui
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Ying Guo
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Shi Chen
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Marie E Maloof
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Guo Ge
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Francine Nihozeko
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Caroline R Delma
- Department of Pathology and Laboratory Medicine, Division of HematopathologyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Ganqian Zhu
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Peng Zhang
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Zhenqing Ye
- Department of Population Health SciencesUniversity of Texas Health San AntonioSan AntonioTXUSA
- Greehey Children's Cancer Research InstituteUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Edward A Medina
- Department of Pathology and Laboratory Medicine, Division of HematopathologyUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Nagi G Ayad
- Department of Oncology, Lombardi Comprehensive Cancer CenterGeorgetown UniversityWashingtonDCUSA
| | - Ruben Mesa
- Mays Cancer CenterUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer CenterUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Cheng‐Ming Chiang
- Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Mingjiang Xu
- Department of Molecular MedicineUniversity of Texas Health San AntonioSan AntonioTXUSA
- Mays Cancer CenterUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Yidong Chen
- Department of Population Health SciencesUniversity of Texas Health San AntonioSan AntonioTXUSA
- Greehey Children's Cancer Research InstituteUniversity of Texas Health San AntonioSan AntonioTXUSA
| | - Feng‐Chun Yang
- Department of Cell Systems and AnatomyUniversity of Texas Health San AntonioSan AntonioTXUSA
- Mays Cancer CenterUniversity of Texas Health San AntonioSan AntonioTXUSA
| |
Collapse
|
33
|
He H, Li J, Wang W, Cheng J, Zhou J, Li Q, Jin J, Chen L. The SIRT7-mediated deacetylation of CHD1L amplifies HIF-2α-dependent signal that drives renal cell carcinoma progression and sunitinib resistance. Cell Biosci 2023; 13:166. [PMID: 37691108 PMCID: PMC10493023 DOI: 10.1186/s13578-023-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Aberrant interplay between epigenetic reprogramming and hypoxia signaling contributes to renal cell carcinoma progression and drug resistance, which is an essential hallmark. How the chromatin remodelers enhance RCC malignancy remains to be poorly understood. We aimed to elucidate the roles of CHD1L in determining hypoxia signaling activation and sunitinib resistance. METHODS The qRT-PCR, western blotting, and immunohistochemistry technologies were used to detect CHD1L expressions. Lentivirus transfection was used to generate stable CHD1L-KD cells. The roles of SIRT7/CHD1L were evaluated by CCK-8, wound healing, transwell assays, xenograft models, and tail-vein metastasis models. Co-immunoprecipitation, Chromatin Immunoprecipitation (ChIP), and luciferase reporter assays were conducted to explore epigenetic regulations. RESULTS We screened and validated that CHD1L is up-regulated in RCC and correlates with poorer prognosis of patients. CHD1L overexpression notably enhances cell proliferation, migration, and self-renewal capacities in vitro and in vivo. Mechanistically, SIRT7 physically interacts with CHDL1 and mediates the deacetylation of CHD1L. Wild-type SIRT7, but not H187Y dead mutant, stabilizes CHD1L protein levels via attenuating its ubiquitination levels. SIRT7 is increased in RCC and correlates with hazardous RCC clinical characteristics. SIRT7 depends on CHD1L to exert its tumor-promoting functions. Accumulated CHD1L amplifies HIF-2α-driven transcriptional programs via interacting with HIF-2α. CHD1L recruits BRD4 and increases the RNA polymerase II S2P loading. CHD1L ablation notably abolishes HIF-2α binding and subsequent transcriptional activation. CHD1L overexpression mediates the sunitinib resistance via sustaining VEGFA and targeting CHD1L reverses this effect. Specific CHD1L inhibitor (CHD1Li) shows a synergistic effect with sunitinib and strengthens its pharmaceutical effect. CONCLUSIONS These results uncover a CHD1L-mediated epigenetic mechanism of HIF-2α activation and downstream sunitinib resistance. The SIRT7-CHD1L-HIF-2α axis is highlighted to predict RCC prognosis and endows potential targets.
Collapse
Affiliation(s)
- Hongchao He
- Department of Urology, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jie Li
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Wei Wang
- Department of Clinical Laboratory, Lianshui County People's Hospital, Huai'an, 223400, China
| | - Jie Cheng
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Jian Zhou
- Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Juan Jin
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang, China.
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
34
|
Zheng B, Gold S, Iwanaszko M, Howard BC, Wang L, Shilatifard A. Distinct layers of BRD4-PTEFb reveal bromodomain-independent function in transcriptional regulation. Mol Cell 2023; 83:2896-2910.e4. [PMID: 37442129 PMCID: PMC10527981 DOI: 10.1016/j.molcel.2023.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The BET family protein BRD4, which forms the CDK9-containing BRD4-PTEFb complex, is considered to be a master regulator of RNA polymerase II (Pol II) pause release. Because its tandem bromodomains interact with acetylated histone lysine residues, it has long been thought that BRD4 requires these bromodomains for its recruitment to chromatin and transcriptional regulatory function. Here, using rapid depletion and genetic complementation with domain deletion mutants, we demonstrate that BRD4 bromodomains are dispensable for Pol II pause release. A minimal, bromodomain-less C-terminal BRD4 fragment containing the PTEFb-interacting C-terminal motif (CTM) is instead both necessary and sufficient to mediate Pol II pause release in the absence of full-length BRD4. Although BRD4-PTEFb can associate with chromatin through acetyl recognition, our results indicate that a distinct, active BRD4-PTEFb population functions to regulate transcription independently of bromodomain-mediated chromatin association. These findings may enable more effective pharmaceutical modulation of BRD4-PTEFb activity.
Collapse
Affiliation(s)
- Bin Zheng
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarah Gold
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marta Iwanaszko
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin Charles Howard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lu Wang
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and the Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
Sun Z, Fan J, Dang Y, Zhao Y. Enhancer in cancer pathogenesis and treatment. Genet Mol Biol 2023; 46:e20220313. [PMID: 37548349 PMCID: PMC10405138 DOI: 10.1590/1678-4685-gmb-2022-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Enhancers are essential cis-acting regulatory elements that determine cell identity and tumor progression. Enhancer function is dependent on the physical interaction between the enhancer and its target promoter inside its local chromatin environment. Enhancer reprogramming is an important mechanism in cancer pathogenesis and can be driven by both cis and trans factors. Super enhancers are acquired at oncogenes in numerous cancer types and represent potential targets for cancer treatment. BET and CDK inhibitors act through mechanisms of enhancer function and have shown promising results in therapy for various types of cancer. Genome editing is another way to reprogram enhancers in cancer treatment. The relationship between enhancers and cancer has been revised by several authors in the past few years, which mainly focuses on the mechanisms by which enhancers can impact cancer. Here, we emphasize SE's role in cancer pathogenesis and the new therapies involving epigenetic regulators (BETi and CDKi). We suggest that understanding mechanisms of activity would aid clinical success for these anti-cancer agents.
Collapse
Affiliation(s)
- Zhuo Sun
- Xi’an Medical University, Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Weiyang District, Xi’an, Shaanxi, China
- Institute of Basic Medical Sciences, No.1 XinWang Rd, Weiyang District, Shaanxi, China
| | - Jinbo Fan
- Xi’an Medical University, Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Weiyang District, Xi’an, Shaanxi, China
| | - Yixiong Dang
- Xi’an Medical University, School of Public Health, Weiyang District, Xi’an, 710021 Shaanxi, China
| | - Yufeng Zhao
- Institute of Basic Medical Sciences, No.1 XinWang Rd, Weiyang District, Shaanxi, China
| |
Collapse
|
36
|
Zheng X, Diktonaite K, Qiu H. Epigenetic Reader Bromodomain-Containing Protein 4 in Aging-Related Vascular Pathologies and Diseases: Molecular Basis, Functional Relevance, and Clinical Potential. Biomolecules 2023; 13:1135. [PMID: 37509171 PMCID: PMC10376956 DOI: 10.3390/biom13071135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Aging is a key independent risk factor of various vascular diseases, for which the regulatory mechanisms remain largely unknown. Bromodomain-containing protein 4 (BRD4) is a member of the Bromodomain and Extra-Terminal domain (BET) family and is an epigenetic reader playing diverse roles in regulating transcriptional elongation, chromatin remodeling, DNA damage response, and alternative splicing in various cells and tissues. While BRD4 was initially recognized for its involvement in cancer progression, recent studies have revealed that the aberrant expression and impaired function of BRD4 were highly associated with aging-related vascular pathology, affecting multiple key biological processes in the vascular cells and tissues, providing new insights into the understanding of vascular pathophysiology and pathogenesis of vascular diseases. This review summarizes the recent advances in BRD4 biological function, and the progression of the studies related to BRD4 in aging-associated vascular pathologies and diseases, including atherosclerosis, aortic aneurism vascular neointima formation, pulmonary hypertension, and essential hypertension, providing updated information to advance our understanding of the epigenetic mechanisms in vascular diseases during aging and paving the way for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoxu Zheng
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.Z.); (K.D.)
| | - Kotryna Diktonaite
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.Z.); (K.D.)
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA; (X.Z.); (K.D.)
- Department of Internal Medicine, Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ 85004, USA
| |
Collapse
|
37
|
Cannon AC, Budagyan K, Uribe-Alvarez C, Kurimchak AM, Araiza-Olivera D, Cai KQ, Peri S, Zhou Y, Duncan JS, Chernoff J. Unique vulnerability of RAC1-mutant melanoma to combined inhibition of CDK9 and immune checkpoints. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546707. [PMID: 37425776 PMCID: PMC10327161 DOI: 10.1101/2023.06.27.546707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
RAC1P29S is the third most prevalent hotspot mutation in sun-exposed melanoma. RAC1 alterations in cancer are correlated with poor prognosis, resistance to standard chemotherapy, and insensitivity to targeted inhibitors. Although RAC1P29S mutations in melanoma and RAC1 alterations in several other cancers are increasingly evident, the RAC1-driven biological mechanisms contributing to tumorigenesis remain unclear. Lack of rigorous signaling analysis has prevented identification of alternative therapeutic targets for RAC1P29S-harboring melanomas. To investigate the RAC1P29S-driven effect on downstream molecular signaling pathways, we generated an inducible RAC1P29S expression melanocytic cell line and performed RNA-sequencing (RNA-seq) coupled with multiplexed kinase inhibitor beads and mass spectrometry (MIBs/MS) to establish enriched pathways from the genomic to proteomic level. Our proteogenomic analysis identified CDK9 as a potential new and specific target in RAC1P29S-mutant melanoma cells. In vitro, CDK9 inhibition impeded the proliferation of in RAC1P29S-mutant melanoma cells and increased surface expression of PD-L1 and MHC Class I proteins. In vivo, combining CDK9 inhibition with anti-PD-1 immune checkpoint blockade significantly inhibited tumor growth only in melanomas that expressed the RAC1P29S mutation. Collectively, these results establish CDK9 as a novel target in RAC1-driven melanoma that can further sensitize the tumor to anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Alexa C Cannon
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
- Drexel University College of Medicine, Philadelphia, PA
| | - Konstantin Budagyan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
- Drexel University College of Medicine, Philadelphia, PA
| | - Cristina Uribe-Alvarez
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Alison M Kurimchak
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Daniela Araiza-Olivera
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Kathy Q Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA
| | - Suraj Peri
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA
- Current Affiliation: Merck, Bioinformatics Oncology Discovery, Boston, MA
| | - Yan Zhou
- Biostatistics-Bioinformatics, Fox Chase Cancer Center, Philadelphia, PA
| | - James S Duncan
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| | - Jonathan Chernoff
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA
| |
Collapse
|
38
|
Yang X, Xu L, Yang L. Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2023; 256:115461. [PMID: 37156182 DOI: 10.1016/j.ejmech.2023.115461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) protein is the catalytic subunit of one of the histone methyltransferases. EZH2 catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) and further alters downstream target levels. EZH2 is upregulated in cancer tissues, wherein its levels correlate strongly with cancer genesis, progression, metastasis, and invasion. Consequently, it has emerged as a novel anticancer therapeutic target. Nonetheless, developing EZH2 inhibitors (EZH2i) has encountered numerous difficulties, such as pre-clinical drug resistance and poor therapeutic effect. The EZH2i synergistically suppresses cancers when used in combination with additional antitumor drugs, such as PARP inhibitors, HDAC inhibitors, BRD4 inhibitors, EZH1 inhibitors, and EHMT2 inhibitors. Typically, the use of dual inhibitors of two different targets mediated by one individual molecule has been recognized as the preferred approach for overcoming the limitations of EZH2 monotherapy. The present review discusses the theoretical basis for designing EZH2-based dual-target inhibitors, and also describes some in vitro and in vivo analysis results.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| |
Collapse
|
39
|
Duan W, Yu M, Chen J. BRD4: New Hope in the Battle Against Glioblastoma. Pharmacol Res 2023; 191:106767. [PMID: 37061146 DOI: 10.1016/j.phrs.2023.106767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
The BET family proteins, comprising BRD2, BRD3 and BRD4, represent epigenetic readers of acetylated histone marks that play pleiotropic roles in the tumorigenesis and growth of multiple human malignancies, including glioblastoma (GBM). A growing body of investigation has proven BET proteins as valuable therapeutic targets for cancer treatment. Recently, several BRD4 inhibitors and degraders have been reported to successfully suppress GBM in preclinical and clinical studies. However, the precise role and mechanism of BRD4 in the pathogenesis of GBM have not been fully elucidated or summarized. This review focuses on summarizing the roles and mechanisms of BRD4 in the context of the initiation and development of GBM. In addition, several BRD4 inhibitors have been evaluated for therapeutic purposes as monotherapy or in combination with chemotherapy, radiotherapy, and immune therapies. Here, we provide a critical appraisal of studies evaluating various BRD4 inhibitors and degraders as novel treatment strategies against GBM.
Collapse
Affiliation(s)
- Weichen Duan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Miao Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jiajia Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
40
|
Elsakrmy N, Cui H. R-Loops and R-Loop-Binding Proteins in Cancer Progression and Drug Resistance. Int J Mol Sci 2023; 24:ijms24087064. [PMID: 37108225 PMCID: PMC10138518 DOI: 10.3390/ijms24087064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
R-loops are three-stranded DNA/RNA hybrids that form by the annealing of the mRNA transcript to its coding template while displacing the non-coding strand. While R-loop formation regulates physiological genomic and mitochondrial transcription and DNA damage response, imbalanced R-loop formation can be a threat to the genomic integrity of the cell. As such, R-loop formation is a double-edged sword in cancer progression, and perturbed R-loop homeostasis is observed across various malignancies. Here, we discuss the interplay between R-loops and tumor suppressors and oncogenes, with a focus on BRCA1/2 and ATR. R-loop imbalances contribute to cancer propagation and the development of chemotherapy drug resistance. We explore how R-loop formation can cause cancer cell death in response to chemotherapeutics and be used to circumvent drug resistance. As R-loop formation is tightly linked to mRNA transcription, their formation is unavoidable in cancer cells and can thus be explored in novel cancer therapeutics.
Collapse
Affiliation(s)
- Noha Elsakrmy
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
41
|
Mandl A, Markowski MC, Carducci MA, Antonarakis ES. Role of bromodomain and extraterminal (BET) proteins in prostate cancer. Expert Opin Investig Drugs 2023; 32:213-228. [PMID: 36857796 DOI: 10.1080/13543784.2023.2186851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
INTRODUCTION The bromodomain and extraterminal (BET) family of proteins are epigenetic readers of acetylated histones and are critical activators of oncogenic networks across many cancers. Therapeutic targeting of BET proteins has been an attractive area of clinical development for metastatic castration-resistant prostate cancer. In recent years, many structurally diverse BET inhibitors have been discovered and tested. Preclinical studies have demonstrated significant antiproliferative activity of BET inhibitors against prostate cancer. However, their clinical success as monotherapies has been limited by treatment-associated toxicities, primary and acquired drug resistance, and a lack of predictive biomarkers of benefit. AREAS COVERED This review provides an overview of advancements in BET inhibitor design, preclinical research, and conclusions from clinical trials in prostate cancer. We speculate on incorporating BET inhibitors into combination regimens with other agents to improve the therapeutic index of BET inhibition in treating prostate cancer. EXPERT OPINION The therapeutic potential of BET inhibitors for prostate cancer has been demonstrated in preclinical studies. However, further research is needed to identify biomarkers that can predict sensitivity to BET inhibitors and to develop novel, highly selective inhibitors to reduce toxicities. Finally, BET inhibitors are likely to hold the most clinical potential in combination with other agents.
Collapse
Affiliation(s)
- Adel Mandl
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Mark C Markowski
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Michael A Carducci
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
42
|
Romine KA, MacPherson K, Cho HJ, Kosaka Y, Flynn PA, Byrd KH, Coy JL, Newman MT, Pandita R, Loo CP, Scott J, Adey AC, Lind EF. BET inhibitors rescue anti-PD1 resistance by enhancing TCF7 accessibility in leukemia-derived terminally exhausted CD8 + T cells. Leukemia 2023; 37:580-592. [PMID: 36681742 PMCID: PMC9991923 DOI: 10.1038/s41375-023-01808-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
Many acute myeloid leukemia (AML) patients exhibit hallmarks of immune exhaustion, such as increased myeloid-derived suppressor cells, suppressive regulatory T cells and dysfunctional T cells. Similarly, we have identified the same immune-related features, including exhausted CD8+ T cells (TEx) in a mouse model of AML. Here we show that inhibitors that target bromodomain and extra-terminal domain (BET) proteins affect tumor-intrinsic factors but also rescue T cell exhaustion and ICB resistance. Ex vivo treatment of cells from AML mice and AML patients with BET inhibitors (BETi) reversed CD8+ T cell exhaustion by restoring proliferative capacity and expansion of the more functional precursor-exhausted T cells. This reversal was enhanced by combined BETi and anti-PD1 treatment. BETi synergized with anti-PD1 in vivo, resulting in the reduction of circulating leukemia cells, enrichment of CD8+ T cells in the bone marrow, and increase in expression of Tcf7, Slamf6, and Cxcr5 in CD8+ T cells. Finally, we profiled the epigenomes of in vivo JQ1-treated AML-derived CD8+ T cells by single-cell ATAC-seq and found that JQ1 increases Tcf7 accessibility specifically in Tex cells, suggesting that BETi likely acts mechanistically by relieving repression of progenitor programs in Tex CD8+ T cells and maintaining a pool of anti-PD1 responsive CD8+ T cells.
Collapse
Affiliation(s)
- Kyle A Romine
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Kevin MacPherson
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Hyun-Jun Cho
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Yoko Kosaka
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Patrick A Flynn
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Kaelan H Byrd
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jesse L Coy
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Matthew T Newman
- School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ravina Pandita
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Christopher P Loo
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Jaime Scott
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Andrew C Adey
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
- Center for Early Detection Advanced Research, Oregon Health & Science University, Portland, OR, USA
| | - Evan F Lind
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
43
|
Eischer N, Arnold M, Mayer A. Emerging roles of BET proteins in transcription and co-transcriptional RNA processing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1734. [PMID: 35491403 DOI: 10.1002/wrna.1734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 01/31/2023]
Abstract
Transcription by RNA polymerase II (Pol II) gives rise to all nuclear protein-coding and a large set of non-coding RNAs, and is strictly regulated and coordinated with RNA processing. Bromodomain and extraterminal (BET) family proteins including BRD2, BRD3, and BRD4 have been implicated in the regulation of Pol II transcription in mammalian cells. However, only recent technological advances have allowed the analysis of direct functions of individual BET proteins with high precision in cells. These studies shed new light on the molecular mechanisms of transcription control by BET proteins challenging previous longstanding views. The most studied BET protein, BRD4, emerges as a master regulator of transcription elongation with roles also in coupling nascent transcription with RNA processing. In contrast, BRD2 is globally required for the formation of transcriptional boundaries to restrict enhancer activity to nearby genes. Although these recent findings suggest non-redundant functions of BRD4 and BRD2 in Pol II transcription, more research is needed for further clarification. Little is known about the roles of BRD3. Here, we illuminate experimental work that has initially linked BET proteins to Pol II transcription in mammalian cells, outline main methodological breakthroughs that have strongly advanced the understanding of BET protein functions, and discuss emerging roles of individual BET proteins in transcription and transcription-coupled RNA processing. Finally, we propose an updated model for the function of BRD4 in transcription and co-transcriptional RNA maturation. This article is categorized under: RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Nicole Eischer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mirjam Arnold
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Andreas Mayer
- Otto-Warburg-Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
44
|
Markouli M, Strepkos D, Piperi C. Impact of Histone Modifications and Their Therapeutic Targeting in Hematological Malignancies. Int J Mol Sci 2022; 23:13657. [PMID: 36362442 PMCID: PMC9654260 DOI: 10.3390/ijms232113657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Hematologic malignancies are a large and heterogeneous group of neoplasms characterized by complex pathogenetic mechanisms. The abnormal regulation of epigenetic mechanisms and specifically, histone modifications, has been demonstrated to play a central role in hematological cancer pathogenesis and progression. A variety of epigenetic enzymes that affect the state of histones have been detected as deregulated, being either over- or underexpressed, which induces changes in chromatin compaction and, subsequently, affects gene expression. Recent advances in the field of epigenetics have revealed novel therapeutic targets, with many epigenetic drugs being investigated in clinical trials. The present review focuses on the biological impact of histone modifications in the pathogenesis of hematologic malignancies, describing a wide range of therapeutic agents that have been discovered to target these alterations and are currently under investigation in clinical trials.
Collapse
Affiliation(s)
| | | | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.M.); (D.S.)
| |
Collapse
|
45
|
SETD6 Regulates E2-Dependent Human Papillomavirus Transcription. J Virol 2022; 96:e0129522. [PMID: 36300937 PMCID: PMC9682981 DOI: 10.1128/jvi.01295-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPV) cause cervical, anogenital, and oral cancers. Brd4 plays an important role in the HPV life cycle. SETD6 was recently shown to methylate Brd4. The current study demonstrates that methylation of Brd4 by SETD6 in HPV-episomal cells is required for the activation of viral transcription. This study illustrates a novel regulatory mechanism involving E2, Brd4, and SETD6 in the HPV life cycle and provides insight into the multiple roles of Brd4 in viral pathogenesis.
Collapse
|
46
|
Integrative analysis reveals histone demethylase LSD1 promotes RNA polymerase II pausing. iScience 2022; 25:105049. [PMID: 36124234 PMCID: PMC9482124 DOI: 10.1016/j.isci.2022.105049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is well-known for its role in decommissioning enhancers during mouse embryonic stem cell (ESC) differentiation. Its role in gene promoters remains poorly understood despite its widespread presence at these sites. Here, we report that LSD1 promotes RNA polymerase II (RNAPII) pausing, a rate-limiting step in transcription regulation, in ESCs. We found the knockdown of LSD1 preferentially affects genes with higher RNAPII pausing. Next, we demonstrate that the co-localization sites of LSD1 and MYC, a factor known to regulate pause-release, are enriched for other RNAPII pausing factors. We show that LSD1 and MYC directly interact and MYC recruitment to genes co-regulated with LSD1 is dependent on LSD1 but not vice versa. The co-regulated gene set is significantly enriched for housekeeping processes and depleted of transcription factors compared to those bound by LSD1 alone. Collectively, our integrative analysis reveals a pleiotropic role of LSD1 in promoting RNAPII pausing.
LSD1 promotes RNA polymerase II pausing in mouse embryonic stem cells LSD1 knockdown causes global reduction of RNAPII pausing Co-localized sites of LSD1 and MYC are enriched for RNAPII pausing and releasing factors MYC recruitment to co-regulated genes is dependent on LSD1 but not vice versa
Collapse
|
47
|
Tanemoto F, Nangaku M, Mimura I. Epigenetic memory contributing to the pathogenesis of AKI-to-CKD transition. Front Mol Biosci 2022; 9:1003227. [PMID: 36213117 PMCID: PMC9532834 DOI: 10.3389/fmolb.2022.1003227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Epigenetic memory, which refers to the ability of cells to retain and transmit epigenetic marks to their daughter cells, maintains unique gene expression patterns. Establishing programmed epigenetic memory at each stage of development is required for cell differentiation. Moreover, accumulating evidence shows that epigenetic memory acquired in response to environmental stimuli may be associated with diverse diseases. In the field of kidney diseases, the “memory” of acute kidney injury (AKI) leads to progression to chronic kidney disease (CKD); epidemiological studies show that patients who recover from AKI are at high risk of developing CKD. The underlying pathological processes include nephron loss, maladaptive epithelial repair, inflammation, and endothelial injury with vascular rarefaction. Further, epigenetic alterations may contribute as well to the pathophysiology of this AKI-to-CKD transition. Epigenetic changes induced by AKI, which can be recorded in cells, exert long-term effects as epigenetic memory. Considering the latest findings on the molecular basis of epigenetic memory and the pathophysiology of AKI-to-CKD transition, we propose here that epigenetic memory contributing to AKI-to-CKD transition can be classified according to the presence or absence of persistent changes in the associated regulation of gene expression, which we designate “driving” memory and “priming” memory, respectively. “Driving” memory, which persistently alters the regulation of gene expression, may contribute to disease progression by activating fibrogenic genes or inhibiting renoprotective genes. This process may be involved in generating the proinflammatory and profibrotic phenotypes of maladaptively repaired tubular cells after kidney injury. “Priming” memory is stored in seemingly successfully repaired tubular cells in the absence of detectable persistent phenotypic changes, which may enhance a subsequent transcriptional response to the second stimulus. This type of memory may contribute to AKI-to-CKD transition through the cumulative effects of enhanced expression of profibrotic genes required for wound repair after recurrent AKI. Further understanding of epigenetic memory will identify therapeutic targets of future epigenetic intervention to prevent AKI-to-CKD transition.
Collapse
|
48
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
49
|
A transcriptional cycling model recapitulates chromatin-dependent features of noisy inducible transcription. PLoS Comput Biol 2022; 18:e1010152. [PMID: 36084132 PMCID: PMC9491597 DOI: 10.1371/journal.pcbi.1010152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/21/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Activation of gene expression in response to environmental cues results in substantial phenotypic heterogeneity between cells that can impact a wide range of outcomes including differentiation, viral activation, and drug resistance. An important source of gene expression noise is transcriptional bursting, or the process by which transcripts are produced during infrequent bursts of promoter activity. Chromatin accessibility impacts transcriptional bursting by regulating the assembly of transcription factor and polymerase complexes on promoters, suggesting that the effect of an activating signal on transcriptional noise will depend on the initial chromatin state at the promoter. To explore this possibility, we simulated transcriptional activation using a transcriptional cycling model with three promoter states that represent chromatin remodeling, polymerase binding and pause release. We initiated this model over a large parameter range representing target genes with different chromatin environments, and found that, upon increasing the polymerase pause release rate to activate transcription, changes in gene expression noise varied significantly across initial promoter states. This model captured phenotypic differences in activation of latent HIV viruses integrated at different chromatin locations and mediated by the transcription factor NF-κB. Activating transcription in the model via increasing one or more of the transcript production rates, as occurs following NF-κB activation, reproduced experimentally measured transcript distributions for four different latent HIV viruses, as well as the bimodal pattern of HIV protein expression that leads to a subset of reactivated virus. Importantly, the parameter ‘activation path’ differentially affected gene expression noise, and ultimately viral activation, in line with experimental observations. This work demonstrates how upstream signaling pathways can be connected to biological processes that underlie transcriptional bursting, resulting in target gene-specific noise profiles following stimulation of a single upstream pathway. Many genes are transcribed in infrequent bursts of mRNA production through a process called transcriptional bursting, which contributes to variability in responses between cells. Heterogeneity in cell responses can have important biological impacts, such as whether a cell supports viral replication or responds to a drug, and thus there is an effort to describe this process with mathematical models to predict biological outcomes. Previous models described bursting as a transition between an “OFF” state or an “ON” state, an elegant and simple mathematical representation of complex molecular mechanisms, but one which failed to capture how upstream activation signals affected bursting. To address this, we added an additional promoter state to better reflect biological mechanisms underlying bursting. By fitting this model to variable activation of quiescent HIV infections in T cells, we showed that our model more accurately described viral expression variability across cells in response to an upstream stimulus. Our work highlights how mathematical models can be further developed to understand complex biological mechanisms and suggests ways to connect transcriptional bursting to upstream activation pathways.
Collapse
|
50
|
Spatiotemporal-resolved protein networks profiling with photoactivation dependent proximity labeling. Nat Commun 2022; 13:4906. [PMID: 35987950 PMCID: PMC9392063 DOI: 10.1038/s41467-022-32689-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/11/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractEnzymatic-based proximity labeling approaches based on activated esters or phenoxy radicals have been widely used for mapping subcellular proteome and protein interactors in living cells. However, activated esters are poorly reactive which leads to a wide labeling radius and phenoxy radicals generated by peroxide treatment may disturb redox-sensitive pathways. Herein, we report a photoactivation-dependent proximity labeling (PDPL) method designed by genetically attaching photosensitizer protein miniSOG to a protein of interest. Triggered by blue light and tunned by irradiation time, singlet oxygen is generated, thereafter enabling spatiotemporally-resolved aniline probe labeling of histidine residues. We demonstrate its high-fidelity through mapping of organelle-specific proteomes. Side-by-side comparison of PDPL with TurboID reveals more specific and deeper proteomic coverage by PDPL. We further apply PDPL to the disease-related transcriptional coactivator BRD4 and E3 ligase Parkin, and discover previously unknown interactors. Through over-expression screening, two unreported substrates Ssu72 and SNW1 are identified for Parkin, whose degradation processes are mediated by the ubiquitination-proteosome pathway.
Collapse
|