1
|
Borella F, Carosso M, Chiparo MP, Ferraioli D, Bertero L, Gallio N, Preti M, Cusato J, Valabrega G, Revelli A, Marozio L, Cosma S. Oncolytic Viruses in Ovarian Cancer: Where Do We Stand? A Narrative Review. Pathogens 2025; 14:140. [PMID: 40005517 PMCID: PMC11858389 DOI: 10.3390/pathogens14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Ovarian cancer (OC) remains the most lethal gynecologic malignancy with limited effective treatment options. Oncolytic viruses (OVs) have emerged as a promising therapeutic approach for cancer treatment, capable of selectively infecting and lysing cancer cells while stimulating anti-tumor immune responses. Preclinical studies have demonstrated significant tumor regression and prolonged survival in OC models using various OVs, such as herpes simplex. Early-phase clinical trials have shown a favorable safety profile, though the impact on patient survival has been modest. Current research focuses on combining OVs with other treatments like immune checkpoint inhibitors to enhance their efficacy. We provide a comprehensive overview of the current understanding and future directions for utilizing OVs in the management of OC.
Collapse
Affiliation(s)
- Fulvio Borella
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Marco Carosso
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Maria Pia Chiparo
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Domenico Ferraioli
- Department of Gynecology, Léon Bérard, Comprehensive Cancer Centre, 69008 Lyon, France;
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Niccolò Gallio
- Gynecology and Obstetrics 2U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (A.R.)
| | - Mario Preti
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy;
| | - Giorgio Valabrega
- Department of Oncology, University of Turin, Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy;
| | - Alberto Revelli
- Gynecology and Obstetrics 2U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (A.R.)
| | - Luca Marozio
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Stefano Cosma
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| |
Collapse
|
2
|
Xiao R, Jin H, Huang F, Huang B, Wang H, Wang YG. Oncolytic virotherapy for hepatocellular carcinoma: A potent immunotherapeutic landscape. World J Gastrointest Oncol 2024; 16:2867-2876. [PMID: 39072175 PMCID: PMC11271782 DOI: 10.4251/wjgo.v16.i7.2867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a systemic disease with augmented malignant degree, high mortality and poor prognosis. Since the establishment of the immune mechanism of tumor therapy, people have realized that immunotherapy is an effective means for improvement of HCC patient prognosis. Oncolytic virus is a novel immunotherapy drug, which kills tumor cells and exempts normal cells by directly lysing tumor and inducing anti-tumor immune response, and it has been extensively examined as an HCC therapy. This editorial discusses oncolytic viruses for the treatment of HCC, emphasizing viral immunotherapy strategies and clinical applications related to HCC.
Collapse
Affiliation(s)
- Rong Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hao Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Fang Huang
- Department of Pathology, Laboratory Medicine Center, Zhejiang Provincial Peoples’ Hospital, Peoples’ Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| | - Hui Wang
- Department of Oncology, Zhejiang Xiaoshan Hospital, Hangzhou 310018, Zhejiang Province, China
| | - Yi-Gang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang Province, China
| |
Collapse
|
3
|
Inoue K, Ito H, Iwai M, Tanaka M, Mori Y, Todo T. Neoadjuvant use of oncolytic herpes virus G47Δ prevents local recurrence after insufficient resection in tongue cancer models. Mol Ther Oncolytics 2023; 30:72-85. [PMID: 37583387 PMCID: PMC10423690 DOI: 10.1016/j.omto.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023] Open
Abstract
A complete resection of tongue cancer is often difficult. We investigate the usefulness of administering G47Δ (teserpaturev), a triple-mutated oncolytic herpes simplex virus type 1, prior to resection. G47Δ exhibits good cytopathic effects and replication capabilities in all head and neck cancer cell lines tested. In an orthotopic SCCVII tongue cancer model of C3H/He mice, an intratumoral inoculation with G47Δ significantly prolongs the survival. Further, mice with orthotopic tongue cancer received neoadjuvant G47Δ (or mock) therapy with or without "hemilateral" resection, the maximum extent avoiding surgical deaths. Neoadjuvant G47Δ and resection led to 10/10 survival (120 days), whereas the survivals for G47Δ alone and resection alone were 6/10 and 5/10, respectively: all control animals died by day 11. Furthermore, 100% survival was achieved with neoadjuvant G47Δ therapy even when the resection area was narrowed to "partial," providing insufficient resection margins, whereas hemilateral resection alone caused death by local recurrence in half of the animals. G47Δ therapy caused increased number of tumor-infiltrating CD8+ and CD4+ cells, increased F4/80+ cells within the residual tongues, and increased expression of immune-related genes in and around the tumor. These results imply that neoadjuvant use of G47Δ is useful for preventing local recurrence after tongue cancer surgery.
Collapse
Affiliation(s)
- Kosuke Inoue
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Oral and Maxillofacial Surgery, Jichi Medical University Hospital, Tochigi 329-0498, Japan
| | - Hirotaka Ito
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Project Division of Oncolytic Virus Development, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshiyuki Mori
- Department of Oral and Maxillofacial Surgery, Jichi Medical University Hospital, Tochigi 329-0498, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
4
|
Khalid Z, Coco S, Ullah N, Pulliero A, Cortese K, Varesano S, Orsi A, Izzotti A. Anticancer Activity of Measles-Mumps-Rubella MMR Vaccine Viruses against Glioblastoma. Cancers (Basel) 2023; 15:4304. [PMID: 37686579 PMCID: PMC10486717 DOI: 10.3390/cancers15174304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) have been utilized since 1990s for targeted cancer treatment. Our study examined the Measles-Mumps-Rubella (MMR) vaccine's cancer-killing potency against Glioblastoma (GBM), a therapy-resistant, aggressive cancer type. METHODOLOGY We used GBM cell lines, primary GBM cells, and normal mice microglial cells, to assess the MMR vaccine's efficacy through cell viability, cell cycle analysis, intracellular viral load via RT-PCR, and Transmission Electron Microscopy (TEM). RESULTS After 72 h of MMR treatment, GBM cell lines and primary GBM cells exhibited significant viability reduction compared to untreated cells. Conversely, normal microglial cells showed only minor changes in viability and morphology. Intracellular viral load tests indicated GBM cells' increased sensitivity to MMR viruses compared to normal cells. The cell cycle study also revealed measles and mumps viruses' crucial role in cytopathic effects, with the rubella virus causing cell cycle arrest. CONCLUSION Herein the reported results demonstrate the anti-cancer activity of the MMR vaccine against GBM cells. Accordingly, the MMR vaccine warrants further study as a potential new tool for GBM therapy and relapse prevention. Therapeutic potential of the MMR vaccine has been found to be promising in earlier studies as well.
Collapse
Affiliation(s)
- Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Simona Coco
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Nadir Ullah
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Alessandra Pulliero
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Serena Varesano
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Andrea Orsi
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
5
|
Pu Y, Zhou G, Zhao K, Chen Y, Shen S. Immunotherapy for Recurrent Glioma-From Bench to Bedside. Cancers (Basel) 2023; 15:3421. [PMID: 37444531 DOI: 10.3390/cancers15133421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is the most aggressive malignant tumor of the central nervous system, and most patients suffer from a recurrence. Unfortunately, recurrent glioma often becomes resistant to established chemotherapy and radiotherapy treatments. Immunotherapy, a rapidly developing anti-tumor therapy, has shown a potential value in treating recurrent glioma. Multiple immune strategies have been explored. The most-used ones are immune checkpoint blockade (ICB) antibodies, which are barely effective in monotherapy. However, when combined with other immunotherapy, especially with anti-angiogenesis antibodies, ICB has shown encouraging efficacy and enhanced anti-tumor immune response. Oncolytic viruses and CAR-T therapies have shown promising results in recurrent glioma through multiple mechanisms. Vaccination strategies and immune-cell-based immunotherapies are promising in some subgroups of patients, and multiple new tumor antigenic targets have been discovered. In this review, we discuss current applicable immunotherapies and related mechanisms for recurrent glioma, focusing on multiple preclinical models and clinical trials in the last 5 years. Through reviewing the current combination of immune strategies, we would like to provide substantive thoughts for further novel therapeutic regimes treating recurrent glioma.
Collapse
Affiliation(s)
- Yi Pu
- Laboratory of Mitochondria and Metabolism, Department of Burn and Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanyu Zhou
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kejia Zhao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shensi Shen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Kardani K, Sanchez Gil J, Rabkin SD. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front Cell Infect Microbiol 2023; 13:1206111. [PMID: 37325516 PMCID: PMC10264819 DOI: 10.3389/fcimb.2023.1206111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Glioblastoma (GBM) is one of the most lethal cancers, having a poor prognosis and a median survival of only about 15 months with standard treatment (surgery, radiation, and chemotherapy), which has not been significantly extended in decades. GBM demonstrates remarkable cellular heterogeneity, with glioblastoma stem-like cells (GSCs) at the apex. GSCs are a subpopulation of GBM cells that possess the ability to self-renew, differentiate, initiate tumor formation, and manipulate the tumor microenvironment (TME). GSCs are no longer considered a static population of cells with specific markers but are quite flexible phenotypically and in driving tumor heterogeneity and therapeutic resistance. In light of these features, they are a critical target for successful GBM therapy. Oncolytic viruses, in particular oncolytic herpes simplex viruses (oHSVs), have many attributes for therapy and are promising agents to target GSCs. oHSVs are genetically-engineered to selectively replicate in and kill cancer cells, including GSCs, but not normal cells. Moreover, oHSV can induce anti-tumor immune responses and synergize with other therapies, such as chemotherapy, DNA repair inhibitors, and immune checkpoint inhibitors, to potentiate treatment effects and reduce GSC populations that are partly responsible for chemo- and radio-resistance. Herein, we present an overview of GSCs, activity of different oHSVs, clinical trial results, and combination strategies to enhance efficacy, including therapeutic arming of oHSV. Throughout, the therapeutic focus will be on GSCs and studies specifically targeting these cells. Recent clinical trials and approval of oHSV G47Δ in Japan for patients with recurrent glioma demonstrate the efficacy and promise of oHSV therapy.
Collapse
Affiliation(s)
| | | | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
8
|
Sperring CP, Argenziano MG, Savage WM, Teasley DE, Upadhyayula PS, Winans NJ, Canoll P, Bruce JN. Convection-enhanced delivery of immunomodulatory therapy for high-grade glioma. Neurooncol Adv 2023; 5:vdad044. [PMID: 37215957 PMCID: PMC10195574 DOI: 10.1093/noajnl/vdad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The prognosis for glioblastoma has remained poor despite multimodal standard of care treatment, including temozolomide, radiation, and surgical resection. Further, the addition of immunotherapies, while promising in a number of other solid tumors, has overwhelmingly failed in the treatment of gliomas, in part due to the immunosuppressive microenvironment and poor drug penetrance to the brain. Local delivery of immunomodulatory therapies circumvents some of these challenges and has led to long-term remission in select patients. Many of these approaches utilize convection-enhanced delivery (CED) for immunological drug delivery, allowing high doses to be delivered directly to the brain parenchyma, avoiding systemic toxicity. Here, we review the literature encompassing immunotherapies delivered via CED-from preclinical model systems to clinical trials-and explore how their unique combination elicits an antitumor response by the immune system, decreases toxicity, and improves survival among select high-grade glioma patients.
Collapse
Affiliation(s)
- Colin P Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - William M Savage
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Damian E Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Nathan J Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center/NY-Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
9
|
Yamada T, Tateishi R, Iwai M, Tanaka M, Ijichi H, Sano M, Koike K, Todo T. Overcoming resistance of stroma-rich pancreatic cancer with focal adhesion kinase inhibitor combined with G47Δ and immune checkpoint inhibitors. Mol Ther Oncolytics 2022; 28:31-43. [PMID: 36619294 PMCID: PMC9801088 DOI: 10.1016/j.omto.2022.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease known for its dense tumor stroma. Focal adhesion kinase inhibitor (FAKi), a non-receptor type tyrosine kinase inhibitor, reduces the tumor stroma. G47Δ, a third-generation oncolytic herpes simplex virus type 1, destroys tumor cells selectively and induces antitumor immune responses. This study evaluates the efficacy of FAKi and G47Δ in PDAC models in combination with or without immune checkpoint inhibitors. G47Δ was effective in human PDAC cell lines in vitro and in subcutaneous as well as orthotopic tumor models. Transgenic mouse-derived #146 cells were used to generate subcutaneous PDAC tumors with rich stroma in immunocompetent mice. In this #146 tumor model, the efficacy of FAKi was synergistically augmented when combined with G47Δ, which reflected not only a decreased stromal content but also a significant shifting of the tumor microenvironment toward immune stimulation. In transgenic autochthonous PKF mice, a rare model that develops stroma-rich PDAC with a 100% penetrance and resembles human PDAC in various aspects, the prolongation of survival compared with FAKi alone was achieved only when FAKi was combined with G47Δ and immune checkpoint inhibitors. The FAKi combination therapy may be useful to overcome the treatment resistance of stroma-rich PDAC.
Collapse
Affiliation(s)
- Tomoharu Yamada
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan,Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makoto Sano
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan,Corresponding author Tomoki Todo, M.D., Ph.D., Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.
| |
Collapse
|
10
|
Todo T, Ino Y, Ohtsu H, Shibahara J, Tanaka M. A phase I/II study of triple-mutated oncolytic herpes virus G47∆ in patients with progressive glioblastoma. Nat Commun 2022; 13:4119. [PMID: 35864115 PMCID: PMC9304402 DOI: 10.1038/s41467-022-31262-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Here, we report the results of a phase I/II, single-arm study (UMIN-CTR Clinical Trial Registry UMIN000002661) assessing the safety (primary endpoint) of G47∆, a triple-mutated oncolytic herpes simplex virus type 1, in Japanese adults with recurrent/progressive glioblastoma despite radiation and temozolomide therapies. G47Δ was administered intratumorally at 3 × 108 pfu (low dose) or 1 × 109 pfu (set dose), twice to identical coordinates within 5–14 days. Thirteen patients completed treatment (low dose, n = 3; set dose, n = 10). Adverse events occurred in 12/13 patients. The most common G47Δ-related adverse events were fever, headache and vomiting. Secondary endpoint was the efficacy. Median overall survival was 7.3 (95%CI 6.2–15.2) months and the 1-year survival rate was 38.5%, both from the last G47∆ administration. Median progression-free survival was 8 (95%CI 7–34) days from the last G47∆ administration, mainly due to immediate enlargement of the contrast-enhanced area of the target lesion on MRI. Three patients survived >46 months. One complete response (low dose) and one partial response (set dose) were seen at 2 years. Based on biopsies, post-administration MRI features (injection site contrast-enhancement clearing and entire tumor enlargement) likely reflected tumor cell destruction via viral replication and lymphocyte infiltration towards tumor cells, the latter suggesting the mechanism for “immunoprogression” characteristic to this therapy. This study shows that G47Δ is safe for treating recurrent/progressive glioblastoma and warrants further clinical development. G47Δ is a third-generation, triple-mutated oncolytic HSV-1 that has demonstrated anti-tumor efficacy in preclinical studies. Here the authors report the results of a phase I/II study of G47Δ in patients with recurrent or progressive glioblastoma.
Collapse
Affiliation(s)
- Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. .,Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan.
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroshi Ohtsu
- Department of Data Science, National Center for Global Health and Medicine in Japan, Tokyo, Japan.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University School of Medicine, Tokyo, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, and Department of Surgical Neuro-Oncology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Neurosurgery, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
11
|
Hatta M, Kaibori M, Matsushima H, Yoshida T, Okumura T, Hayashi M, Yoshii K, Todo T, Sekimoto M. Efficacy of a third-generation oncolytic herpes simplex virus in refractory soft tissue sarcoma xenograft models. Mol Ther Oncolytics 2022; 25:225-235. [PMID: 35615265 PMCID: PMC9118137 DOI: 10.1016/j.omto.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Malignant soft tissue tumors, particularly highly malignant leiomyosarcomas, are resistant to chemotherapy and associated with a poor prognosis. T-01, a third-generation genetically modified herpes simplex virus type 1, replicates in tumor cells alone and exerts a cell-killing effect. The current study aimed to investigate the antitumor effect of T-01, which is a novel treatment for leiomyosarcoma. In vitro, six human cell lines and one mouse sarcoma cell line were assessed for T-01 cytotoxicity. In vivo, the efficacy of T-01 was examined in subcutaneously transplanted leiomyosarcoma (SK-LMS-1) cells and subcutaneously or intraperitoneally transplanted mouse sarcoma (CCRF S-180II) cells. Cytokines were assessed using ELISpot assay with splenocytes from the allogeneic models for immunological evaluation. T-01 showed cytotoxicity in all seven cell lines (p < 0.001). In the SK-LMS-1 xenotransplantation model, tumor growth was suppressed by T-01 administration (p = 0.02). In the CCRF S-180II subcutaneous tumor model, bilateral tumor growth was significantly suppressed in the T-01-treated group compared with the control group (p < 0.001). In the peritoneal dissemination model, T-01 treatment caused significant survival prolongation compared with the control (p < 0.01). In conclusion, third-generation genetically modified herpes simplex virus type 1 may be an effective novel therapy against refractory sarcomas.
Collapse
|
12
|
Hu H, Zhang S, Cai L, Duan H, Li Y, Yang J, Wang Y, Liu B, Dong S, Fang Z, Liu B. A novel cocktail therapy based on quintuplet combination of oncolytic herpes simplex virus-2 vectors armed with interleukin-12, interleukin-15, GM-CSF, PD1v, and IL-7 × CCL19 results in enhanced antitumor efficacy. Virol J 2022; 19:74. [PMID: 35459242 PMCID: PMC9034647 DOI: 10.1186/s12985-022-01795-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/03/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Selectively replicating herpes simplex virus-2 (HSV-2) vector is a promising treatment for cancer therapy. The insertion of multiple transgenes into the viral genome has been performed to improve its oncolytic activity. METHODS Herein, we simultaneously constructed five "armed" oncolytic viruses (OVs), designated oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19. These OVs delete the ICP34.5 and ICP47 genes with the insertion of transgenes into the deleted ICP34.5 locus. The anti-tumor efficacy in vivo was tested in the syngeneic 4T1 and CT26 tumor-bearing mice model. RESULTS The OVs showed comparable oncolytic capability in vitro. The combination therapy of oHSV2-IL12, -IL15, GM-CSF, -PD1v, and IL7 × CCL19 exhibited the highest tumor inhibition efficacy compared with the treatment of single OV or two OVs combination. CONCLUSIONS The OVs armed with different transgenes combination therapy also named 5-valent oHSV2 (also called cocktail therapy) might be an effective therapeutic strategy for solid tumors.
Collapse
Affiliation(s)
- Han Hu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Siqi Zhang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Linkang Cai
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Haixiao Duan
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yuying Li
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Junhan Yang
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Yang Wang
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Biao Liu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Shuang Dong
- Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhizheng Fang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China
| | - Binlei Liu
- National ''111'' Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China. .,Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, China.
| |
Collapse
|
13
|
DePalo DK, Tarhini A, Zager JS. The treatment of advanced melanoma: a review of systemic and local therapies in combination with immune checkpoint inhibitors in phase 1 and 2 clinical trials. Expert Opin Investig Drugs 2022; 31:95-104. [PMID: 34996314 DOI: 10.1080/13543784.2022.2027366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION While the incidence of melanoma continues to rise, the mortality of the disease appears to have stabilized. This may, in part, be due to the development and application of immune checkpoint inhibitors as standard of care in advanced melanoma. However, many patients do not respond to these therapies alone. Combining immune checkpoint inhibitors with other classes of therapeutics appears to be a promising direction to improve response and survival in advanced melanoma. AREAS COVERED This review article aims to discuss phase 1 and 2 clinical trials examining immune checkpoint inhibitors in combination therapy for the treatment of advanced, unresectable melanoma. In particular, these regimens include various kinase inhibitors, tumor-infiltrating lymphocytes, toll-like receptor agonists, cytokines, and oncolytic viral therapies. The combinations under discussion include both systemic and combination systemic/local therapies. EXPERT OPINION Drug combinations discussed here appear to be promising therapeutic regimens for advanced melanoma. Improved understanding of the mechanisms of primary, adaptive, and acquired resistance to immune checkpoint inhibitors may guide the development of future combination regimens.
Collapse
Affiliation(s)
- Danielle K DePalo
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Ahmad Tarhini
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
14
|
Chen XT, Dai SY, Zhan Y, Yang R, Chen DQ, Li Y, Zhou EQ, Dong R. Progress of oncolytic virotherapy for neuroblastoma. Front Pediatr 2022; 10:1055729. [PMID: 36467495 PMCID: PMC9716318 DOI: 10.3389/fped.2022.1055729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022] Open
Abstract
As a neuroendocrine tumor derived from the neural crest, neuroblastoma (NB) is the most common extracranial solid tumor in children. The prognosis in patients with low- and intermediate-risk NB is favorable while that in high-risk patients is often detrimental. However, the management of the considerably large proportion of high-risk patients remains challenging in clinical practice. Among various new approaches, oncolytic virus (OV) therapy offers great advantages in tumor treatment, especially for high-risk NB. Genetic modified OVs can target NB specifically without affecting normal tissue and avoid the widespread drug resistance issue in anticancer monotherapy. Meanwhile, its safety profile provides great potential in combination therapy with chemo-, radio-, and immunotherapy. The therapeutic efficacy of OV for NB is impressive from bench to bedside. The effectiveness and safety of OVs have been demonstrated and reported in studies on children with NB. Furthermore, clinical trials on some OVs (Celyvir, Pexa-Vec (JX-594) and Seneca Valley Virus (NTX-010)) have reported great results. This review summarizes the latest evidence in the therapeutic application of OVs in NB, including those generated in cell lines, animal models and clinical trials.
Collapse
Affiliation(s)
- Xiao-Tong Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Shu-Yang Dai
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - De-Qian Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - En-Qing Zhou
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
15
|
Yajima S, Sugawara K, Iwai M, Tanaka M, Seto Y, Todo T. Efficacy and safety of a third-generation oncolytic herpes virus G47Δ in models of human esophageal carcinoma. Mol Ther Oncolytics 2021; 23:402-411. [PMID: 34853811 PMCID: PMC8605086 DOI: 10.1016/j.omto.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Treatment options are limited for esophageal carcinoma (EC). G47Δ, a triple-mutated, conditionally replicating herpes simplex virus type 1 (HSV-1), exhibits enhanced killing of tumor cells with high safety features. Here, we studied the efficacy of G47Δ using preclinical models of human EC. In vitro, G47Δ showed efficient cytopathic effects and replication capabilities in all eight human esophageal cancer cell lines tested. In athymic mice harboring subcutaneous tumors of human EC (KYSE180, TE8, and OE19), two intratumoral injections with G47Δ significantly inhibited the tumor growth. To mimic the clinical treatment situations, we established an orthotopic EC model using luciferase-expressing TE8 cells (TE8-luc). An intratumoral injection with G47Δ markedly inhibited the growth of orthotopic TE8-luc tumors in athymic mice. Furthermore, we evaluated the safety of applying G47Δ to the esophagus in mice. A/J mice inoculated intraesophageally or administered orally with G47Δ (107 plaque-forming units [pfu]) survived for more than 2 months without remarkable symptoms, whereas the majority with wild-type HSV-1 (106 pfu) deteriorated within 10 days. PCR analyses showed that the G47Δ DNA was confined to the esophagus after intraesophageal inoculation and was not detected in major organs after oral administration. Our results provide a rationale for the clinical use of G47Δ for treating EC.
Collapse
Affiliation(s)
- Shoh Yajima
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Sugawara
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Uchihashi T, Nakahara H, Fukuhara H, Iwai M, Ito H, Sugauchi A, Tanaka M, Kogo M, Todo T. Oncolytic herpes virus G47Δ injected into tongue cancer swiftly traffics in lymphatics and suppresses metastasis. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:388-398. [PMID: 34553027 PMCID: PMC8430046 DOI: 10.1016/j.omto.2021.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023]
Abstract
The prognosis of oral squamous cell carcinoma (OSCC) largely depends on the control of lymph node metastases. We evaluate the therapeutic efficacy of G47Δ, a third-generation oncolytic herpes simplex virus type 1 (HSV-1), in mouse tongue cancer models. Intratumoral injection with G47Δ prolonged the survival in all orthotopic models investigated. In both athymic and immunocompetent models, G47Δ injected into the tongue cancer swiftly traffics to the draining cervical lymph nodes and suppresses lymph node metastases. In the immunocompetent KLN205-MUC1 model, in which the metastatic cascade that tongue cancer patients commonly experience is reproduced, intratumoral G47Δ injection even immediately prior to a tumor resection prolonged survival. Cervical lymph nodes 18 h after G47Δ treatment showed the presence of G47Δ infection and an increase in CD69-positive cells, indicating an immediate activation of T cells. Furthermore, G47Δ injected directly into enlarged metastatic lymph nodes significantly prolonged the survival at an advanced stage. Whereas intratumorally injected oncolytic HSV-1 does not readily circulate in the blood stream, G47Δ is shown to traffic in the lymphatics swiftly. The use of G47Δ can lead to entirely new treatment strategies for tongue cancer and other OSCC at all clinical stages.
Collapse
Affiliation(s)
- Toshihiro Uchihashi
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Hirokazu Nakahara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiroshi Fukuhara
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotaka Ito
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Akinari Sugauchi
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Mikihiko Kogo
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y, Todo T. Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:129-142. [PMID: 34514094 PMCID: PMC8413837 DOI: 10.1016/j.omto.2021.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/12/2021] [Indexed: 12/22/2022]
Abstract
Oncolytic virus therapy can increase the immunogenicity of tumors and remodel the immunosuppressive tumor microenvironment, leading to an increased antitumor response to immune-checkpoint inhibitors. Here, we investigated the therapeutic potential of G47Δ, a third-generation oncolytic herpes simplex virus type 1, in combination with immune-checkpoint inhibitors using various syngeneic murine subcutaneous tumor models. Intratumoral inoculations with G47Δ and systemic anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibody administration caused an enhanced antitumor activity when combined and worked synergistically. Conversely, the efficacy of G47Δ in combination with anti-programmed cell death protein-1 (PD-1) antibody was equivalent to that of the anti-PD-1 antibody alone in all murine models examined. The combination of intratumoral G47Δ and systemic anti-CTLA-4 antibody was shown to recruit effector T cells into the tumor efficiently while decreasing regulatory T cells. Furthermore, a wide range of gene signatures related to inflammation, lymphoid lineage, and T cell activation was highly upregulated with the combination therapy, suggesting the conversion of immune-insusceptible tumors to immune susceptible. The therapeutic effect proved tumor specific and long lasting. Immune cell subset depletion studies demonstrated that CD4+ T cells were required for synergistic curative activity. The results depict the dynamics of immune modulation of the tumor microenvironment and provide a clinical rationale for using G47Δ with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Kotaro Sugawara
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hirotaka Ito
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
18
|
Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In Situ Cancer Vaccination and Immunovirotherapy Using Oncolytic HSV. Viruses 2021; 13:v13091740. [PMID: 34578321 PMCID: PMC8473045 DOI: 10.3390/v13091740] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Herpes simplex virus (HSV) can be genetically altered to acquire oncolytic properties so that oncolytic HSV (oHSV) preferentially replicates in and kills cancer cells, while sparing normal cells, and inducing anti-tumor immune responses. Over the last three decades, a better understanding of HSV genes and functions, and improved genetic-engineering techniques led to the development of oHSV as a novel immunovirotherapy. The concept of in situ cancer vaccination (ISCV) was first introduced when oHSV was found to induce a specific systemic anti-tumor immune response with an abscopal effect on non-injected tumors, in the process of directly killing tumor cells. Thus, the use of oHSV for tumor vaccination in situ is antigen-agnostic. The research and development of oHSVs have moved rapidly, with the field of oncolytic viruses invigorated by the FDA/EMA approval of oHSV talimogene laherparepvec in 2015 for the treatment of advanced melanoma. Immunovirotherapy can be enhanced by arming oHSV with immunomodulatory transgenes and/or using them in combination with other chemotherapeutic and immunotherapeutic agents. This review offers an overview of the development of oHSV as an agent for ISCV against solid tumors, describing the multitude of different oHSVs and their efficacy in immunocompetent mouse models and in clinical trials.
Collapse
Affiliation(s)
- Nusrat Jahan
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Shanawaz M. Ghouse
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Robert L. Martuza
- Molecular Neurosurgery Laboratory and Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (N.J.); (S.M.G.); (R.L.M.)
| | - Samuel D. Rabkin
- Department of Neurosurgery, Massachusetts General Hospital, 185 Cambridge St., CPZN-3800, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
19
|
Hofman L, Lawler SE, Lamfers MLM. The Multifaceted Role of Macrophages in Oncolytic Virotherapy. Viruses 2021; 13:v13081570. [PMID: 34452439 PMCID: PMC8402704 DOI: 10.3390/v13081570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
One of the cancer hallmarks is immune evasion mediated by the tumour microenvironment (TME). Oncolytic virotherapy is a form of immunotherapy based on the application of oncolytic viruses (OVs) that selectively replicate in and induce the death of tumour cells. Virotherapy confers reciprocal interaction with the host’s immune system. The aim of this review is to explore the role of macrophage-mediated responses in oncolytic virotherapy efficacy. The approach was to study current scientific literature in this field in order to give a comprehensive overview of the interactions of OVs and macrophages and their effects on the TME. The innate immune system has a central influence on the TME; tumour-associated macrophages (TAMs) generally have immunosuppressive, tumour-supportive properties. In the context of oncolytic virotherapy, macrophages were initially thought to predominantly contribute to anti-viral responses, impeding viral spread. However, macrophages have now also been found to mediate transport of OV particles and, after TME infiltration, to be subjected to a phenotypic shift that renders them pro-inflammatory and tumour-suppressive. These TAMs can present tumour antigens leading to a systemic, durable, adaptive anti-tumour immune response. After phagocytosis, they can recirculate carrying tissue-derived proteins, which potentially enables the monitoring of OV replication in the TME. Their role in therapeutic efficacy is therefore multifaceted, but based on research applying relevant, immunocompetent tumour models, macrophages are considered to have a central function in anti-cancer activity. These novel insights hold important clinical implications. When optimised, oncolytic virotherapy, mediating multifactorial inhibition of cancer immune evasion, could contribute to improved patient survival.
Collapse
Affiliation(s)
- Laura Hofman
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
| | - Sean E. Lawler
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA;
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands;
- Correspondence: ; Tel.: +31-010-703-5993
| |
Collapse
|
20
|
Ma R, Lu T, Li Z, Teng KY, Mansour AG, Yu M, Tian L, Xu B, Ma S, Zhang J, Barr T, Peng Y, Caligiuri MA, Yu J. An Oncolytic Virus Expressing IL15/IL15Rα Combined with Off-the-Shelf EGFR-CAR NK Cells Targets Glioblastoma. Cancer Res 2021; 81:3635-3648. [PMID: 34006525 PMCID: PMC8562586 DOI: 10.1158/0008-5472.can-21-0035] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/31/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
IL15 is a pleiotropic cytokine with multiple roles that improve immune responses to tumor cells. Oncolytic viruses (OV) specifically lyse tumors and activate immune responses. Systemic administration of IL15 or its complex with the IL15Rα and chimeric antigen receptor (CAR) natural killer (NK) cells are currently being tested in the clinic. Here, we generated a herpes simplex 1-based OV-expressing human IL15/IL15Rα sushi domain fusion protein (named OV-IL15C), as well as off-the-shelf EGFR-CAR NK cells, and studied their monotherapy and combination efficacy in vitro and in multiple glioblastoma (GBM) mouse models. In vitro, soluble IL15/IL15Rα complex was secreted from OV-IL15C-infected GBM cells, which promoted GBM cytotoxicity and improved survival of NK and CD8+ T cells. Frozen, readily available off-the-shelf EGFR-CAR NK cells showed enhanced killing of tumor cells compared with empty vector-transduced NK cells. In vivo, OV-IL15C significantly inhibited tumor growth and prolonged survival of GBM-bearing mice in the presence of CD8+ T cells compared with parental OV. OV-IL15C plus EGFR-CAR NK cells synergistically suppressed tumor growth and significantly improved survival compared with either monotherapy, correlating with increased intracranial infiltration and activation of NK and CD8+ T cells and elevated persistence of CAR NK cells in an immunocompetent model. Collectively, OV-IL15C and off-the-shelf EGFR-CAR NK cells represent promising therapeutic strategies for GBM treatment to improve the clinical management of this devastating disease. SIGNIFICANCE: The combination of an oncolytic virus expressing the IL15/IL15Rα complex and frozen, ready-to-use EGFR-CAR NK cells elicits strong antitumor responses in glioblastoma.
Collapse
Affiliation(s)
- Rui Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, P.R. China
| | - Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Anthony G Mansour
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Melissa Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Lei Tian
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Bo Xu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, California
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, P.R. China.
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Centre, Los Angeles, California
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, California
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California.
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Centre, Los Angeles, California
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, California
| |
Collapse
|
21
|
Friedman GK, Johnston JM, Bag AK, Bernstock JD, Li R, Aban I, Kachurak K, Nan L, Kang KD, Totsch S, Schlappi C, Martin AM, Pastakia D, McNall-Knapp R, Farouk Sait S, Khakoo Y, Karajannis MA, Woodling K, Palmer JD, Osorio DS, Leonard J, Abdelbaki MS, Madan-Swain A, Atkinson TP, Whitley RJ, Fiveash JB, Markert JM, Gillespie GY. Oncolytic HSV-1 G207 Immunovirotherapy for Pediatric High-Grade Gliomas. N Engl J Med 2021; 384:1613-1622. [PMID: 33838625 PMCID: PMC8284840 DOI: 10.1056/nejmoa2024947] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Outcomes in children and adolescents with recurrent or progressive high-grade glioma are poor, with a historical median overall survival of 5.6 months. Pediatric high-grade gliomas are largely immunologically silent or "cold," with few tumor-infiltrating lymphocytes. Preclinically, pediatric brain tumors are highly sensitive to oncolytic virotherapy with genetically engineered herpes simplex virus type 1 (HSV-1) G207, which lacks genes essential for replication in normal brain tissue. METHODS We conducted a phase 1 trial of G207, which used a 3+3 design with four dose cohorts of children and adolescents with biopsy-confirmed recurrent or progressive supratentorial brain tumors. Patients underwent stereotactic placement of up to four intratumoral catheters. The following day, they received G207 (107 or 108 plaque-forming units) by controlled-rate infusion over a period of 6 hours. Cohorts 3 and 4 received radiation (5 Gy) to the gross tumor volume within 24 hours after G207 administration. Viral shedding from saliva, conjunctiva, and blood was assessed by culture and polymerase-chain-reaction assay. Matched pre- and post-treatment tissue samples were examined for tumor-infiltrating lymphocytes by immunohistologic analysis. RESULTS Twelve patients 7 to 18 years of age with high-grade glioma received G207. No dose-limiting toxic effects or serious adverse events were attributed to G207 by the investigators. Twenty grade 1 adverse events were possibly related to G207. No virus shedding was detected. Radiographic, neuropathological, or clinical responses were seen in 11 patients. The median overall survival was 12.2 months (95% confidence interval, 8.0 to 16.4); as of June 5, 2020, a total of 4 of 11 patients were still alive 18 months after G207 treatment. G207 markedly increased the number of tumor-infiltrating lymphocytes. CONCLUSIONS Intratumoral G207 alone and with radiation had an acceptable adverse-event profile with evidence of responses in patients with recurrent or progressive pediatric high-grade glioma. G207 converted immunologically "cold" tumors to "hot." (Supported by the Food and Drug Administration and others; ClinicalTrials.gov number, NCT02457845.).
Collapse
Affiliation(s)
- Gregory K Friedman
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - James M Johnston
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Asim K Bag
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Joshua D Bernstock
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Rong Li
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Inmaculada Aban
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Kara Kachurak
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Li Nan
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Kyung-Don Kang
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Stacie Totsch
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Charles Schlappi
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Allison M Martin
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Devang Pastakia
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Rene McNall-Knapp
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Sameer Farouk Sait
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Yasmin Khakoo
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Matthias A Karajannis
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Karina Woodling
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Joshua D Palmer
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Diana S Osorio
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Jeffrey Leonard
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Mohamed S Abdelbaki
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Avi Madan-Swain
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - T Prescott Atkinson
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Richard J Whitley
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - John B Fiveash
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - James M Markert
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - G Yancey Gillespie
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| |
Collapse
|
22
|
Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers (Basel) 2021; 13:cancers13061383. [PMID: 33803762 PMCID: PMC8003308 DOI: 10.3390/cancers13061383] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Talimogene laherparepvec (T-VEC; IMLYGIC®, Amgen Inc.) is the first oncolytic viral immunotherapy to be approved for the local treatment of unresectable metastatic stage IIIB/C–IVM1a melanoma. Its direct intratumoral injection aim to trigger local and systemic immunologic responses leading to tumor cell lysis, followed by release of tumor-derived antigens and subsequent activation of tumor-specific effector T-cells. Its approval has fueled the interest to study its possible sinergy with other immunotherapeutics in preclinical models as well as in clinical contextes. In fact, it has been shown that intratumoral administration of this immunostimulatory agent successfully synergizes with immune checkpoint inhibitors. The objectives of this review are to resume the current state of the art of T-VEC treatment when used in monotherapy or in combination with immune checkpoint inhibitors, describing the strong rationale of its development, the adverse events of interest and the clinical outcome in selected patient’s populations. Abstract Direct intralesional injection of specific or even generic agents, has been proposed over the years as cancer immunotherapy, in order to treat cutaneous or subcutaneous metastasis. Such treatments usually induce an effective control of disease in injected lesions, but only occasionally were able to demonstrate a systemic abscopal effect on distant metastases. The usual availability of tissue for basic and translational research is a plus in utilizing this approach, which has been used in primis for the treatment of locally advanced melanoma. Melanoma is an immunogenic tumor that could often spread superficially causing in-transit metastasis and involving draining lymph nodes, being an interesting model to study new drugs with different modality of administration from normal available routes. Talimogene laherperepvec (T-VEC) is an injectable modified oncolytic herpes virus being developed for intratumoral injection, that produces granulocyte-macrophage colony-stimulating factor (GM-CSF) and enhances local and systemic antitumor immune responses. After infection, selected viral replication happens in tumor cells leading to tumor cell lysis and activating a specific T-cell driven immune response. For this reason, a probable synergistic effect with immune checkpoints inhibition have been described. Pre-clinical studies in melanoma confirmed that T-VEC preferentially infects melanoma cells and exerts its antitumor activity through directly mediating cell death and by augmenting local and even distant immune responses. T-VEC has been assessed in monotherapy in Phase II and III clinical trials demonstrating a tolerable side-effect profile, a promising efficacy in both injected and uninjected lesions, but a mild effect at a systemic level. In fact, despite improved local disease control and a trend toward superior overall survival in respect to the comparator GM-CSF (which was injected subcutaneously daily for two weeks), responses as a single agent therapy have been uncommon in patients with visceral metastases. For this reason, T-VEC is currently being evaluated in combinations with other immune checkpoint inhibitors such as ipilimumab and pembrolizumab, with interesting confirmation of activity even systemically.
Collapse
|
23
|
Feist M, Zhu Z, Dai E, Ma C, Liu Z, Giehl E, Ravindranathan R, Kowalsky SJ, Obermajer N, Kammula US, Lee AJH, Lotze MT, Guo ZS, Bartlett DL. Oncolytic virus promotes tumor-reactive infiltrating lymphocytes for adoptive cell therapy. Cancer Gene Ther 2021; 28:98-111. [PMID: 32632271 PMCID: PMC9718357 DOI: 10.1038/s41417-020-0189-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/14/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
Adoptive cell therapy (ACT) using tumor-specific tumor-infiltrating lymphocytes (TILs) has demonstrated success in patients where tumor-antigen specific TILs can be harvested from the tumor, expanded, and re-infused in combination with a preparatory regimen and IL2. One major issue for non-immunogenic tumors has been that the isolated TILs lack tumor specificity and thus possess limited in vivo therapeutic function. An oncolytic virus (OV) mediates an immunogenic cell death for cancer cells, leading to elicitation and dramatic enhancement of tumor-specific TILs. We hypothesized that the tumor-specific TILs elicited and promoted by an OV would be a great source for ACT for solid cancer. In this study, we show that a local injection of oncolytic poxvirus in MC38 tumor with low immunogenicity in C57BL/6 mice, led to elicitation and accumulation of tumor-specific TILs in the tumor tissue. Our analyses indicated that IL2-armed OV-elicited TILs contain lower quantities of exhausted PD-1hiTim-3+ CD8+ T cells and regulatory T cells. The isolated TILs from IL2-expressing OV-treated tumor tissue retained high tumor specificity after expansion ex vivo. These TILs resulted in significant tumor regression and improved survival after adoptive transfer in mice with established MC38 tumor. Our study showcases the feasibility of using an OV to induce tumor-reactive TILs that can be expanded for ACT.
Collapse
Affiliation(s)
- Mathilde Feist
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Zhi Zhu
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Enyong Dai
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Oncology and Hematology, The Third Hospital of Jilin University, Changchun, Jilin, China
| | - Congrong Ma
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zuqiang Liu
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Esther Giehl
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, CCM/CVK, Charité - Universitaetsmedizin Berlin, Berlin, Germany
| | - Roshni Ravindranathan
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy J Kowalsky
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Natasa Obermajer
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Udai S Kammula
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Andrew J H Lee
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, and UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Allegheny Health Network-Cancer Institute, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
24
|
Dang N, Waer M, Sprangers B, Lin Y. Intratumoral immunotherapy with anti-PD-1 and TLR9 agonist induces systemic antitumor immunity without accelerating rejection of cardiac allografts. Am J Transplant 2021; 21:60-72. [PMID: 32506732 DOI: 10.1111/ajt.16105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 01/25/2023]
Abstract
Immune checkpoint inhibitors, such as programmed cell death 1 (PD-1) blockades, have revolutionized the field of cancer immunotherapy. However, there is a growing concern whether PD-1 inhibitors can be administered safely to transplant recipients with advanced cancer, as the T cells activated by checkpoint inhibitors may become reactive not only toward tumor antigens but also toward donor alloantigen, thereby resulting in allograft rejection. Here, immunotherapy with anti-PD-1/toll like receptor 9 agonist was administered to C57BL/6 mice bearing a cardiac allograft that were receiving maintenance immunosuppression or a PI4KIIIβ inhibitor-based tolerogenic regimen. Intratumoral (i.t.), but not systemic, immunotherapy promoted potent anti-tumor responses, but did not accelerate allograft rejection. This effect was associated with a pro-immunogenic effect induced by i.t. immunotherapy resulting in systemic cellular and humoral immune anti-tumor responses. Furthermore, when the tumor and cardiac allograft shared major histocompatibility complex (MHC) antigens, i.t. immunotherapy promoted immune responses directed against tumor and the cardiac allograft resulting in allograft rejection. The anti-tumor effect was compromised by maintenance immunosuppression with cyclosporin A, indicating that an optimal balance between enhanced anti-tumor immunity and decreased transplant immunoreactivity is critical. A clinically relevant approach could be to temporarily withdraw maintenance immunosuppression and/or replace it with a PI4KIIIβ inhibitor-based tolerance-inducing regimen to allow for effective immunotherapy to take place.
Collapse
Affiliation(s)
- Nana Dang
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mark Waer
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ben Sprangers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Yuan Lin
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Menotti L, Avitabile E. Herpes Simplex Virus Oncolytic Immunovirotherapy: The Blossoming Branch of Multimodal Therapy. Int J Mol Sci 2020; 21:ijms21218310. [PMID: 33167582 PMCID: PMC7664223 DOI: 10.3390/ijms21218310] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses are smart therapeutics against cancer due to their potential to replicate and produce the needed therapeutic dose in the tumor, and to their ability to self-exhaust upon tumor clearance. Oncolytic virotherapy strategies based on the herpes simplex virus are reaching their thirties, and a wide variety of approaches has been envisioned and tested in many different models, and on a range of tumor targets. This huge effort has culminated in the primacy of an oncolytic HSV (oHSV) being the first oncolytic virus to be approved by the FDA and EMA for clinical use, for the treatment of advanced melanoma. The path has just been opened; many more cancer types with poor prognosis await effective and innovative therapies, and oHSVs could provide a promising solution, especially as combination therapies and immunovirotherapies. In this review, we analyze the most recent advances in this field, and try to envision the future ahead of oHSVs.
Collapse
|
26
|
Neoadjuvant Use of Oncolytic Herpes Virus G47Δ Enhances the Antitumor Efficacy of Radiofrequency Ablation. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:535-545. [PMID: 32995479 PMCID: PMC7501409 DOI: 10.1016/j.omto.2020.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
G47Δ is a triple-mutated oncolytic herpes simplex virus type 1 designed to induce antitumor immune responses efficiently. We examine the usefulness of G47Δ as a neoadjuvant therapy for radiofrequency ablation (RFA), a standard local treatment for certain cancers such as liver cancer, but remote recurrences within the same organ often occur. In A/J mice harboring bilateral subcutaneous Neuro2a tumors, the left tumors were treated with G47Δ intratumoral injections followed by RFA. Whereas the RFA-treated tumors were all eradicated, the growth of the right tumors was evaluated and tumor-infiltrating lymphocytes were analyzed. The G47Δ+RFA treatment caused smaller volumes of right tumors, accompanied by increased CD8+/CD45+ T cells, compared with G47Δ monotherapy. After depletion of CD8+ T cells, the enhanced efficacy on the contralateral tumors was completely abolished. Neoadjuvant G47Δ led to rejection of rechallenged tumors, which was caused by efficient induction of specific antitumor immune responses shown by enzyme-linked immunospot (ELISPOT) assays. Treatment of tumor-harboring animals with an anti-programmed cell death 1 ligand 1 (PD-L1) antibody led to even greater efficacy on contralateral tumors. Our study indicates that the neoadjuvant use of G47Δ effectively enhances the efficacy of RFA via CD8+ T cell-dependent immunity that is further augmented by an immune checkpoint inhibitor.
Collapse
|
27
|
Sugawara K, Iwai M, Yajima S, Tanaka M, Yanagihara K, Seto Y, Todo T. Efficacy of a Third-Generation Oncolytic Herpes Virus G47Δ in Advanced Stage Models of Human Gastric Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:205-215. [PMID: 32346610 PMCID: PMC7178322 DOI: 10.1016/j.omto.2020.03.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
Advanced gastric cancer, especially scirrhous gastric cancer with peritoneal dissemination, remains refractory to conventional therapies. G47Δ, a third-generation oncolytic herpes simplex virus type 1, is an attractive novel therapeutic agent for solid cancer. In this study, we investigated the therapeutic potential of G47Δ for human gastric cancer. In vitro, G47Δ showed good cytopathic effects and replication capabilities in nine human gastric cancer cell lines tested. In vivo, intratumoral inoculations with G47Δ (2 × 105 or 1 × 106 plaque-forming units [PFU]) significantly inhibited the growth of subcutaneous tumors (MKN45, MKN74, and 44As3). To evaluate the efficacy of G47Δ for advanced-stage models of gastric cancer, we generated an orthotopic tumor model and peritoneal dissemination models of human scirrhous gastric cancer (MKN45-luc and 44As3Luc), which have features mimicking intractable scirrhous cancer patients. G47Δ (1 × 106 PFU) was constantly efficacious whether administered intratumorally or intraperitoneally in the clinically relevant models. Notably, G47Δ injected intraperitoneally readily distributed to, and selectively replicated in, disseminated tumors. Furthermore, flow cytometric analyses of tumor-infiltrating cells in subcutaneous tumors revealed that intratumoral G47Δ injections markedly decreased M2 macrophages while increasing M1 macrophages and natural killer (NK) cells. These findings indicate the usefulness of G47Δ for treating human gastric cancer, including scirrhous gastric cancer and the ones in advanced stages.
Collapse
Affiliation(s)
- Kotaro Sugawara
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Miwako Iwai
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Shoh Yajima
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.,Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Minoru Tanaka
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuyoshi Yanagihara
- Division of Biomarker Discovery, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
28
|
Efficacy of a third-generation oncolytic herpes simplex virus in neuroendocrine tumor xenograft models. Oncotarget 2019; 10:7132-7141. [PMID: 31903171 PMCID: PMC6935252 DOI: 10.18632/oncotarget.27391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND: Few chemotherapies are available for neuroendocrine tumors, especially for highly malignant neuroendocrine cancers. The third-generation oncolytic herpes simplex virus type 1 (HSV-1) T-01 selectively replicates in tumor cells and shows cytotoxicity against tumor cells without damaging surrounding normal tissues. We examined the antitumor effect of T-01 to explore novel treatments for patients with neuroendocrine tumors. METHODS: The cytotoxicity of T-01 was tested in two human and one murine neuroendocrine tumor cell lines in vitro. Mouse models with subcutaneously implanted human neuroendocrine tumor QGP1 cells were used to investigate T-01 efficacy in vivo. RESULTS: T-01 showed cytotoxicity against the three cell lines in vitro. In xenograft models, the growth of tumors derived from QGP1 cells was inhibited by T-01 compared with control group. Although weight loss of mice was observed with tumor growth in the control group, it was suppressed by T-01 administration. The antitumor effects of T-01 were dependent on virus concentration and frequency of administration. CONCLUSIONS: T-01 effectively inhibits tumor cell proliferation in a poorly differentiated NEC mouse model. These results suggest that the third-generation oncolytic HSV-1 may serve as a novel treatment for patients with neuroendocrine tumors.
Collapse
|
29
|
Abstract
Oncolytic virotherapy uses replication-competent virus as a means of treating cancer. Whereas this field has shown great promise as a viable treatment method, the limited spread of these viruses throughout the tumor microenvironment remains a major challenge. To overcome this issue, researchers have begun looking at syncytia formation as a novel method of increasing viral spread. Several naturally occurring fusogenic viruses have been shown to possess strong oncolytic potential and have since been studied to gain insight into how this process benefits oncolytic virotherapy. Whereas these naturally fusogenic viruses have been beneficial, there are still challenges associated with their regular use. Because of this, engineered/recombinant fusogenic viruses have also been created that enhance nonfusogenic oncolytic viruses with the beneficial property of syncytia formation. The purpose of this review is to examine the existing body of literature on syncytia formation in oncolytics and offer direction for potential future studies.
Collapse
Affiliation(s)
- Chase Burton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
30
|
Abstract
Intratumoral immunotherapies aim to trigger local and systemic immunologic responses via direct injection of immunostimulatory agents with the goal of tumor cell lysis, followed by release of tumor‐derived antigens and subsequent activation of tumor‐specific effector T cells. In 2019, a multitude of intratumoral immunotherapies with varied mechanisms of action, including nononcolytic viral therapies such as PV‐10 and toll‐like receptor 9 agonists and oncolytic viral therapies such as CAVATAK, Pexa‐Vec, and HF10, have been extensively evaluated in clinical trials and demonstrated promising antitumor activity with tolerable toxicities in melanoma and other solid tumor types. Talimogene laherparepvec (T‐VEC), a genetically modified herpes simplex virus type 1–based oncolytic immunotherapy, is the first oncolytic virus approved by the U.S. Food and Drug Administration for the treatment of unresectable melanoma recurrent after initial surgery. In patients with unresectable metastatic melanoma, T‐VEC demonstrated a superior durable response rate (continuous complete response or partial response lasting ≥6 months) over subcutaneous GM‐CSF (16.3% vs. 2.1%; p < .001). Responses were seen in both injected and uninjected lesions including visceral lesions, suggesting a systemic antitumor response. When combined with immune checkpoint inhibitors, T‐VEC significantly improved response rates compared with single agent; similar results were seen with combinations of checkpoint inhibitors and other intratumoral therapies such as CAVATAK, HF10, and TLR9 agonists. In this review, we highlight recent results from clinical trials of key intratumoral immunotherapies that are being evaluated in the clinic, with a focus on T‐VEC in the treatment of advanced melanoma as a model for future solid tumor indications. Implications for Practice This review provides oncologists with the latest information on the development of key intratumoral immunotherapies, particularly oncolytic viruses. Currently, T‐VEC is the only U.S. Food and Drug Administration (FDA)‐approved oncolytic immunotherapy. This article highlights the efficacy and safety data from clinical trials of T‐VEC both as monotherapy and in combination with immune checkpoint inhibitors. This review summarizes current knowledge on intratumoral therapies, a novel modality with increased utility in cancer treatment, and T‐VEC, the only U.S. FDA‐approved oncolytic viral therapy, for medical oncologists. This review evaluates approaches to incorporate T‐VEC into daily practice to offer the possibility of response in selected melanoma patients with manageable adverse events as compared with other available immunotherapies. This review highlights recent results from clinical trials of key intratumoral immunotherapies that are being evaluated in the clinic, with a focus on talimogene laherparepvec in the treatment of advanced melanoma as a model for future solid tumor indications.
Collapse
Affiliation(s)
- Omid Hamid
- The Angeles Clinic and Research InstituteLos AngelesCaliforniaUSA
| | | | - Igor Puzanov
- Roswell Park Comprehensive Cancer CenterBuffaloNew YorkUSA
| |
Collapse
|
31
|
Zhang H, Wang R, Yu Y, Liu J, Luo T, Fan F. Glioblastoma Treatment Modalities besides Surgery. J Cancer 2019; 10:4793-4806. [PMID: 31598150 PMCID: PMC6775524 DOI: 10.7150/jca.32475] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/04/2019] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is commonly known as the most aggressive primary CNS tumor in adults. The mean survival of it is 14 to 15 months, following the standard therapy from surgery, chemotherapy, to radiotherapy. Efforts in recent decades have brought many novel therapies to light, however, with limitations. In this paper, authors reviewed current treatments for GBM besides surgery. In the past decades, only radiotherapy, temozolomide (TMZ), and tumor treating field (TTF) were approved by FDA. Though promising in preclinical experiments, therapeutic effects of other novel treatments including BNCT, anti-angiogenic therapy, immunotherapy, epigenetic therapy, oncolytic virus therapy, and gene therapy are still either uncertain or discouraging in clinical results. In this review, we went through current clinical trials, underlying causes, and future therapy designs to present neurosurgeons and researchers a sketch of this field.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ruizhe Wang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yuanqiang Yu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jinfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Tianmeng Luo
- Department of Medical Affairs, Xiangya Hospital, Central South University, Chang Sha, Hunan Province, China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University Changsha, China
| |
Collapse
|
32
|
Suzuki S, Kofune H, Uozumi K, Yoshimitsu M, Arima N, Ishitsuka K, Ueno SI, Kosai KI. A survivin-responsive, conditionally replicating adenovirus induces potent cytocidal effects in adult T-cell leukemia/lymphoma. BMC Cancer 2019; 19:516. [PMID: 31142289 PMCID: PMC6542078 DOI: 10.1186/s12885-019-5730-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/17/2019] [Indexed: 02/08/2023] Open
Abstract
Background Adult T-cell leukemia/lymphoma (ATL) is a peripheral T-cell malignancy caused by long-term human T-cell leukemia virus type I (HTLV-1) infection. Survivin-responsive, conditionally replicating adenoviruses regulated by multiple tumor-specific factors (Surv.m-CRAs), in which the expression of the adenoviral early region 1A gene is regulated by the survivin (BIRC5) promoter, can be used to treat several cancers. As survivin is overexpressed in ATL, we examined the effects of Surv.m-CRAs on ATL-selective replication and survival. Methods We tested two ATL cell lines and four HTLV-1-infected T-cell lines. The cells were subjected to infection with either E1-deleted, replication-defective adenoviruses or Surv.m-CRAs at various multiplicities of infection. Results Strong activation of survivin promoter was observed in all six cell lines. Moreover, the expression of the coxsackie and adenovirus receptor (CAR), which is important for adenoviral infection, was high in the cell lines. In contrast, we observed the absence of survivin promoter activity and a low expression of CAR in activated peripheral blood lymphocytes (PBLs) from healthy subjects. Surv.m-CRAs actively replicated and induced cytocidal effects in five out of six cell lines; conversely, we observed minimal viral replication and no marked cytotoxicity in normal activated PBLs. Conclusions This is the first report demonstrating that Surv.m-CRAs constitute attractive potential anti-ATL agents.
Collapse
Affiliation(s)
- Shinsuke Suzuki
- Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan. .,Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan.
| | - Hiroki Kofune
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Kimiharu Uozumi
- Department of Medical Oncology, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Naomichi Arima
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Shin-Ichi Ueno
- Department of Clinical Oncology, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Ken-Ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
33
|
Li P, Wang J, Chen G, Zhang X, Lin D, Zhou Y, Yu Y, Liu W, Zhang D. Oncolytic activity of canine distemper virus in canine mammary tubular adenocarcinoma cells. Vet Comp Oncol 2019; 17:174-183. [PMID: 30756476 DOI: 10.1111/vco.12466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Canine distemper virus (CDV), bearing a close resemblance to measles virus, represents a promising candidate for oncolytic therapy; however, its application and underlying oncolytic mechanisms in canine mammary carcinoma cells remain to be explored. Here, we found that an attenuated canine distemper vaccine strain, CDV-L, efficiently infected and inhibited the growth of canine mammary tubular adenocarcinoma CIPp cells but not MDCK cells in vitro. Transcriptomic analysis of CDV-L-infected CIPp cells revealed substantially differentially expressed genes in apoptotic and NF-κB signalling pathways. Subsequent validations confirmed that CDV-L-induced apoptosis of CIPp cells through the caspase-8 and caspase-3 pathway. Identification of phosphorylated-IκBα, phosphorylated-p65 and the nuclear translocation of p65 confirmed the activation of the NF-κB signalling pathway. Inhibition of the NF-κB pathway abrogated CDV-L-induced cleaved-caspase-3 and cleaved-PARP. In a CIPp subcutaneous xenograft mouse model, intratumoural injections of CDV-L significantly restricted tumour growth without apparent pathology, and virus remained localized within the tumour. Taken altogether, these findings indicate that CDV-L exerts an antitumour effect in CIPp cells, and that apoptosis and the NF-κB pathway play essential roles in this process.
Collapse
Affiliation(s)
- Peiran Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Jigui Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Gaoxiang Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Xiaomei Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Degui Lin
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Yun Zhou
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Yongle Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Weiquan Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | - Di Zhang
- The Clinical Department, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
34
|
Tumour-specific triple-regulated oncolytic herpes virus to target glioma. Oncotarget 2017; 7:28658-69. [PMID: 27070093 PMCID: PMC5053753 DOI: 10.18632/oncotarget.8637] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/16/2016] [Indexed: 01/04/2023] Open
Abstract
Oncolytic herpes simplex virus type 1 (oHSV-1) therapy is an emerging treatment modality that selectively destroys cancer. Here we report use of a glioma specific HSV-1 amplicon virus (SU4-124 HSV-1) to selectively target tumour cells. To achieve transcriptional regulation of the SU4-124 HSV-1 virus, the promoter for the essential HSV-1 gene ICP4 was replaced with a tumour specific survivin promoter. Translational regulation was achieved by incorporating 5 copies of microRNA 124 target sequences into the 3'UTR of the ICP4 gene. Additionally, a 5'UTR of rat fibroblast growth factor -2 was added in front of the viral ICP4 gene open reading frame. Our results confirmed enhanced expression of survivin and eIF4E in different glioma cells and increased micro-RNA124 expression in normal human and mouse brain tissue. SU4-124 HSV-1 had an increased ICP4 expression and virus replication in different glioma cells compared to normal neuronal cells. SU4-124 HSV-1 exerted a strong antitumour effect against a panel of glioma cell lines. Intracranial injection of SU4-124 HSV-1 did not reveal any sign of toxicity on day 15 after the injection. Moreover, a significantly enhanced antitumour effect with the intratumourally injected SU4-124 HSV-1 virus was demonstrated in mice bearing human glioma U87 tumours, whereas viral DNA was almost undetectable in normal organs. Our study indicates that incorporation of multiple cancer-specific regulators in an HSV-1 system significantly enhances both cancer specificity and oncolytic activity.
Collapse
|
35
|
Parker Kerrigan BC, Shimizu Y, Andreeff M, Lang FF. Mesenchymal stromal cells for the delivery of oncolytic viruses in gliomas. Cytotherapy 2017; 19:445-457. [PMID: 28233640 DOI: 10.1016/j.jcyt.2017.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/24/2017] [Accepted: 02/06/2017] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) are a type of adult stem cell that has been exploited for the treatment of a variety of diseases, including cancer. In particular, MSCs have been studied extensively for their ability to treat glioblastoma (GBM), the most common and deadly form of brain cancer in adults. MSCs are attractive therapeutics because they can be obtained relatively easily from patients, are capable of being expanded numerically in vitro, can be easily engineered and are inherently capable of homing to tumors, making them ideal vehicles for delivering biological antitumoral agents. Oncolytic viruses are promising biological therapeutic agents that have been used in the treatment of GBMs, and MSCs are currently being explored as a means of delivering these viruses. Here we review the role of MSCs in the treatment of GBMs, focusing on the intersection of MSCs and oncolytic viruses.
Collapse
Affiliation(s)
- Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Yuzaburo Shimizu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
36
|
Speranza MC, Kasai K, Lawler SE. Preclinical Mouse Models for Analysis of the Therapeutic Potential of Engineered Oncolytic Herpes Viruses. ILAR J 2017; 57:63-72. [PMID: 27034396 DOI: 10.1093/ilar/ilw002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
After more than two decades of research and development, oncolytic herpes viruses (oHSVs) are moving into the spotlight due to recent encouraging clinical trial data. oHSV and other oncolytic viruses function through direct oncolytic cancer cell-killing mechanisms and by stimulating antitumor immunity. As further viruses are developed and optimized for the treatment of various types of cancer, appropriate predictive preclinical models will be of great utility. This review will discuss existing data in this area, focusing on the mouse tumor models that are commonly used.
Collapse
Affiliation(s)
- Maria-Carmela Speranza
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| | - Kazue Kasai
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| | - Sean E Lawler
- Maria-Carmela Speranza, PhD, is a post-doctoral fellow; Kazue Kasai, PhD, is a Research Specialist; and Sean E. Lawler, PhD, is an Assistant Professor in the Harvey Cushing Neurooncology Laboratories in the Department of Neurosurgery at Brigham and Women's Hospital, Harvard Medical School in Boston, Massachusetts
| |
Collapse
|
37
|
Holay N, Kim Y, Lee P, Gujar S. Sharpening the Edge for Precision Cancer Immunotherapy: Targeting Tumor Antigens through Oncolytic Vaccines. Front Immunol 2017; 8:800. [PMID: 28751892 PMCID: PMC5507961 DOI: 10.3389/fimmu.2017.00800] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy represents a promising, modern-age option for treatment of cancers. Among the many immunotherapies being developed, oncolytic viruses (OVs) are slowly moving to the forefront of potential clinical therapeutic agents, especially considering the fact that the first oncolytic virus was recently approved by the Food and Drug Administration for the treatment of melanoma. OVs were originally discovered for their ability to kill cancer cells, but they have emerged as unconventional cancer immunotherapeutics due to their ability to activate a long-term antitumor immune response. This immune response not only eliminates cancer cells but also offers potential for preventing cancer recurrence. A fundamental requirement for the generation of such a strong antitumor T cell response is the recognition of an immunogenic tumor antigen by the antitumor T cell. Several tumor antigens capable of activating these antitumor T cells have been identified and are now being expressed through genetically engineered OVs to potentiate antitumor immunity. With the emergence of novel technologies for identifying tumor antigens and immunogenic epitopes in a myriad of cancers, design of "oncolytic vaccines" expressing highly specific tumor antigens provides a great strategy for targeting tumors. Here, we highlight the various OVs engineered to target tumor antigens and discuss multiple studies and strategies used to develop oncolytic vaccine regimens. We also contend how, going forward, a combination of technologies for identifying novel immunogenic tumor antigens and rational design of oncolytic vaccines will pave the way for the next generation of clinically efficacious cancer immunotherapies.
Collapse
Affiliation(s)
- Namit Holay
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Patrick Lee
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Biology, Dalhousie University, Halifax, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
- *Correspondence: Shashi Gujar,
| |
Collapse
|
38
|
Titze MI, Frank J, Ehrhardt M, Smola S, Graf N, Lehr T. A generic viral dynamic model to systematically characterize the interaction between oncolytic virus kinetics and tumor growth. Eur J Pharm Sci 2016; 97:38-46. [PMID: 27825920 DOI: 10.1016/j.ejps.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 01/09/2023]
Abstract
Oncolytic viruses (OV) represent an encouraging new therapeutic concept for treatment of human cancers. OVs specifically replicate in tumor cells and initiate cell lysis whilst tumor cells act as endogenous bioreactors for virus amplification. This complex bidirectional interaction between tumor and oncolytic virus hampers the establishment of a straight dose-concentration-effect relation. We aimed to develop a generic mathematical pharmacokinetic/pharmacodynamics (PK/PD) model to characterize the relationship between tumor cell growth and kinetics of different OVs. U87 glioblastoma cell growth and titer of Newcastle disease virus (NDV), reovirus (RV) and parvovirus (PV) were systematically determined in vitro. PK/PD analyses were performed using non-linear mixed effects modeling. A viral dynamic model (VDM) with a common structure for the three different OVs was developed which simultaneously described tumor growth and virus replication. Virus specific parameters enabled a comparison of the kinetics and tumor killing efficacy of each OV. The long-term interactions of tumor cells with NDV and RV were simulated to predict tumor reoccurrence. Various treatment scenarios (single and multiple dosing with same OV, co-infection with different OVs and combination with hypothetical cytotoxic compounds) were simulated and ranked for efficacy using a newly developed treatment rating score. The developed VDM serves as flexible tool for the systematic cross-characterization of tumor-virus relationships and supports preselection of the most promising treatment regimens for follow-up in vivo analyses.
Collapse
Affiliation(s)
- Melanie I Titze
- Saarland University, Department of Clinical Pharmacy, Saarbrücken, Germany
| | - Julia Frank
- Saarland University, University Hospital Homburg, Department for Pediatric Oncology and Hematology, Homburg/Saar, Germany
| | - Michael Ehrhardt
- Saarland University, University Hospital Homburg, Department for Pediatric Oncology and Hematology, Homburg/Saar, Germany
| | - Sigrun Smola
- Saarland University, Institute of Virology, Homburg/Saar, Germany
| | - Norbert Graf
- Saarland University, University Hospital Homburg, Department for Pediatric Oncology and Hematology, Homburg/Saar, Germany
| | - Thorsten Lehr
- Saarland University, Department of Clinical Pharmacy, Saarbrücken, Germany.
| |
Collapse
|
39
|
Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci 2016; 107:1373-1379. [PMID: 27486853 PMCID: PMC5084676 DOI: 10.1111/cas.13027] [Citation(s) in RCA: 493] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/31/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
Oncolytic virus therapy is perhaps the next major breakthrough in cancer treatment following the success in immunotherapy using immune checkpoint inhibitors. Oncolytic viruses are defined as genetically engineered or naturally occurring viruses that selectively replicate in and kill cancer cells without harming the normal tissues. T‐Vec (talimogene laherparepvec), a second‐generation oncolytic herpes simplex virus type 1 (HSV‐1) armed with GM‐CSF, was recently approved as the first oncolytic virus drug in the USA and Europe. The phase III trial proved that local intralesional injections with T‐Vec in advanced malignant melanoma patients can not only suppress the growth of injected tumors but also act systemically and prolong overall survival. Other oncolytic viruses that are closing in on drug approval in North America and Europe include vaccinia virus JX‐594 (pexastimogene devacirepvec) for hepatocellular carcinoma, GM‐CSF‐expressing adenovirus CG0070 for bladder cancer, and Reolysin (pelareorep), a wild‐type variant of reovirus, for head and neck cancer. In Japan, a phase II clinical trial of G47∆, a third‐generation oncolytic HSV‐1, is ongoing in glioblastoma patients. G47∆ was recently designated as a “Sakigake” breakthrough therapy drug in Japan. This new system by the Japanese government should provide G47∆ with priority reviews and a fast‐track drug approval by the regulatory authorities. Whereas numerous oncolytic viruses have been subjected to clinical trials, the common feature that is expected to play a major role in prolonging the survival of cancer patients is an induction of specific antitumor immunity in the course of tumor‐specific viral replication. It appears that it will not be long before oncolytic virus therapy becomes a standard therapeutic option for all cancer patients.
Collapse
Affiliation(s)
- Hiroshi Fukuhara
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
40
|
Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: strength in numbers. J Leukoc Biol 2016; 100:275-90. [PMID: 27256570 PMCID: PMC6608090 DOI: 10.1189/jlb.5ri0116-013rr] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Immune-checkpoint blockade therapy with antibodies targeting CTLA-4 and PD-1 has revolutionized melanoma treatment by eliciting responses that can be remarkably durable and is now advancing to other malignancies. However, not all patients respond to immune-checkpoint inhibitors. Extensive preclinical evidence suggests that combining immune-checkpoint inhibitors with other anti-cancer treatments can greatly improve the therapeutic benefit. The first clinical success of the combinatorial approach to cancer immunotherapy was demonstrated using a dual-checkpoint blockade with CTLA-4 and PD-1 inhibitors, which resulted in accelerated FDA approval of this therapeutic regimen. In this review, we discuss the combinations of current and emerging immunotherapeutic agents in clinical and preclinical development and summarize the insights into potential mechanisms of synergistic anti-tumor activity gained from animal studies. These promising combinatorial partners for the immune-checkpoint blockade include therapeutics targeting additional inhibitory receptors of T cells, such as TIM-3, LAG-3, TIGIT, and BTLA, and agonists of T cell costimulatory receptors 4-1BB, OX40, and GITR, as well as agents that promote cancer cell recognition by the immune system, such as tumor vaccines, IDO inhibitors, and agonists of the CD40 receptor of APCs. We also review the therapeutic potential of regimens combining the immune-checkpoint blockade with therapeutic interventions that have been shown to enhance immunogenicity of cancer cells, including oncolytic viruses, RT, epigenetic therapy, and senescence-inducing therapy.
Collapse
Affiliation(s)
- Anna E Vilgelm
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Douglas B Johnson
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ann Richmond
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee, USA; Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| |
Collapse
|
41
|
Swift SL, Stojdl DF. Big Data Offers Novel Insights for Oncolytic Virus Immunotherapy. Viruses 2016; 8:v8020045. [PMID: 26861383 PMCID: PMC4776200 DOI: 10.3390/v8020045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/15/2016] [Accepted: 01/27/2016] [Indexed: 12/20/2022] Open
Abstract
Large-scale assays, such as microarrays, next-generation sequencing and various “omics” technologies, have explored multiple aspects of the immune response following virus infection, often from a public health perspective. Yet a lack of similar data exists for monitoring immune engagement during oncolytic virus immunotherapy (OVIT) in the cancer setting. Tracking immune signatures at the tumour site can create a snapshot or longitudinally analyse immune cell activation, infiltration and functionality within global populations or individual cells. Mapping immune changes over the course of oncolytic biotherapy—from initial infection to tumour stabilisation/regression through to long-term cure or escape/relapse—has the potential to generate important therapeutic insights around virus-host interactions. Further, correlating such immune signatures with specific tumour outcomes has significant value for guiding the development of novel oncolytic virus immunotherapy strategies. Here, we provide insights for OVIT from large-scale analyses of immune populations in the infection, vaccination and immunotherapy setting. We analyse several approaches to manipulating immune engagement during OVIT. We further explore immunocentric changes in the tumour tissue following immunotherapy, and compile several immune signatures of therapeutic success. Ultimately, we highlight clinically relevant large-scale approaches with the potential to strengthen future oncolytic strategies to optimally engage the immune system.
Collapse
Affiliation(s)
- Stephanie L Swift
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.
| | - David F Stojdl
- Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada.
- Department of Biology, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
- Department of Pediatrics, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
42
|
|
43
|
Friedman GK, Beierle EA, Gillespie GY, Markert JM, Waters AM, Chen CY, Denton NL, Haworth KB, Hutzen B, Leddon JL, Streby KA, Wang PY, Cripe TP. Pediatric cancer gone viral. Part II: potential clinical application of oncolytic herpes simplex virus-1 in children. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30018-3. [PMID: 26436134 PMCID: PMC4589754 DOI: 10.1038/mto.2015.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oncolytic engineered herpes simplex viruses (HSVs) possess many biologic and functional attributes that support their use in clinical trials in children with solid tumors. Tumor cells, in an effort to escape regulatory mechanisms that would impair their growth and progression, have removed many mechanisms that would have protected them from virus infection and eventual virus-mediated destruction. Viruses engineered to exploit this weakness, like mutant HSV, can be safely employed as tumor cell killers, since normal cells retain these antiviral strategies. Many preclinical studies and early phase trials in adults demonstrated that oncolytic HSV can be safely used and are highly effective in killing tumor cells that comprise pediatric malignancies, without generating the toxic side effects of nondiscriminatory chemotherapy or radiation therapy. A variety of engineered viruses have been developed and tested in numerous preclinical models of pediatric cancers and initial trials in patients are underway. In Part II of this review series, we examine the preclinical evidence to support the further advancement of oncolytic HSV in the pediatric population. We discuss clinical advances made to date in this emerging era of oncolytic virotherapy.
Collapse
Affiliation(s)
- Gregory K Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth A Beierle
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alicia M Waters
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chun-Yu Chen
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Nicholas L Denton
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Kellie B Haworth
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Brian Hutzen
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Jennifer L Leddon
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Keri A Streby
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Pin-Yi Wang
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Timothy P Cripe
- Division of Hematology/Oncology/Blood and Marrow Transplantation, Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA ; Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
44
|
Pediatric cancer gone viral. Part I: strategies for utilizing oncolytic herpes simplex virus-1 in children. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30017-1. [PMID: 26436135 PMCID: PMC4589755 DOI: 10.1038/mto.2015.15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Progress for improving outcomes in pediatric patients with solid tumors remains slow. In addition, currently available therapies are fraught with numerous side effects, often causing significant life-long morbidity for long-term survivors. The use of viruses to kill tumor cells based on their increased vulnerability to infection is gaining traction, with several viruses moving through early and advanced phase clinical testing. The prospect of increased efficacy and decreased toxicity with these agents is thus attractive for pediatric cancer. In part I of this two-part review, we focus on strategies for utilizing oncolytic engineered herpes simplex virus (HSV) to target pediatric malignancies. We discuss mechanisms of action, routes of delivery, and the role of preexisting immunity on antitumor efficacy. Challenges to maximizing oncolytic HSV in children are examined, and we highlight how these may be overcome through various arming strategies. We review the preclinical and clinical evidence demonstrating safety of a variety of oncolytic HSVs. In Part II, we focus on the antitumor efficacy of oncolytic HSV in pediatric tumor types, pediatric clinical advances made to date, and future prospects for utilizing HSV in pediatric patients with solid tumors.
Collapse
|
45
|
Kanai R, Rabkin SD. Combinatorial strategies for oncolytic herpes simplex virus therapy of brain tumors. CNS Oncol 2015; 2:129-42. [PMID: 23687568 DOI: 10.2217/cns.12.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses, such as the oncolytic herpes simplex virus (oHSV), are an exciting new therapeutic strategy for cancer as they are replication competent in tumor cells but not normal cells. In order to engender herpes simplex virus with oncolytic activity and make it safe for clinical application, mutations are engineered into the virus. Glioblastoma multiforme (GBM) is the most common and deadly primary brain tumor in adults. Despite many advances in therapy, overall survival has not been substantially improved over the last several decades. A number of different oHSVs have been tested as monotherapy in early-phase clinical trials for GBM and have demonstrated safety and anecdotal evidence of efficacy. However, strategies to improve efficacy are likely to be necessary to successfully treat GBM. Cancer treatment usually involves multimodal approaches, so the standard of care for GBM includes surgery, radiotherapy and chemotherapy. In preclinical GBM models, combinations of oHSV with other types of therapy have exhibited markedly improved activity over individual treatments alone. In this review, we will discuss the various combination strategies that have been employed with oHSV, including chemotherapy, small-molecule inhibitors, antiangiogenic agents, radiotherapy and expression of therapeutic transgenes. Effective combinations, especially synergistic ones, are clinically important not just for improved efficacy but also to permit lower and less-toxic doses and potentially overcome resistance.
Collapse
|
46
|
Workenhe ST, Verschoor ML, Mossman KL. The role of oncolytic virus immunotherapies to subvert cancer immune evasion. Future Oncol 2015; 11:675-89. [DOI: 10.2217/fon.14.254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ABSTRACT Despite huge economic and intellectual investments, developing effective cancer treatments continues to be an overarching challenge. Engineered oncolytic viruses (OVs) present self-amplifying immunotherapy platforms capable of preferential cytotoxicity to cancer cells and simultaneous activation of host anti-tumor immunity. In preclinical studies, OVs are showing potent therapeutic effects when used in combination with other immune therapy strategies. In the clinic, the immunotherapeutic effects of OVs are showing promising results. Here we review current strategies for engineering OVs, and present a perspective of future directions within a discussion of the current outcomes of combinatorial approaches with other cancer immunotherapy platforms.
Collapse
Affiliation(s)
- Samuel T Workenhe
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Meghan L Verschoor
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Karen L Mossman
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
47
|
Belcaid Z, Lamfers MLM, van Beusechem VW, Hoeben RC. Changing faces in virology: the dutch shift from oncogenic to oncolytic viruses. Hum Gene Ther 2014; 25:875-84. [PMID: 25141764 DOI: 10.1089/hum.2014.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Viruses have two opposing faces. On the one hand, they can cause harm and disease. A virus may manifest directly as a contagious disease with a clinical pathology of varying significance. A viral infection can also have delayed consequences, and in rare cases may cause cellular transformation and cancer. On the other hand, viruses may provide hope: hope for an efficacious treatment of serious disease. Examples of the latter are the use of viruses as a vaccine, as transfer vector for therapeutic genes in a gene therapy setting, or, more directly, as therapeutic anticancer agent in an oncolytic-virus therapy setting. Already there is evidence for antitumor activity of oncolytic viruses. The antitumor efficacy seems linked to their capacity to induce a tumor-directed immune response. Here, we will provide an overview on the development of oncolytic viruses and their clinical evaluation from the Dutch perspective.
Collapse
Affiliation(s)
- Zineb Belcaid
- 1 Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center , 3015 GE Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
48
|
Abstract
Cancer-permissive viruses or oncolytic viruses consist of either genetically engineered or naturally occurring strains that possess relatively selective replicative and/or infection abilities for cancer vs. normal cells (Chiocca, Nat Rev Cancer 2: 938-950, 2002). They can also be armed with additional anticancer cDNAs (e.g., cytokines, prodrug-activating, anti-angiogenesis genes, and others) to extend therapeutic effects (Kaur et al., Curr Gene Ther 9: 341-355, 2009). Herpes simplex virus type 1 (HSV-1) possesses several advantages as an oncolytic virus such as a rapid lytic cycle and a large capacity for insertion of heterologous DNA sequences (Wade-Martins et al., Nat Biotechnol, 19: 1067-1070, 2001). However, the technical nuances of genetic manipulation of the HSV-1 genome may still be relatively challenging. Here, we describe a system that has been durable and consistent in providing the ability to generate multiple recombinant HSV-1. The HsvQuik technology utilizes an HSV-1 genome cloned in a bacterial artificial chromosome to recombine heterologous cDNAs in a relatively rapid and reliable manner (Terada et al., Gene Ther 13: 705-714, 2006).
Collapse
Affiliation(s)
- Hiroshi Nakashima
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital/Dana-Farber Cancer Institute and Harvard Medical School, PBB3, 75 Francis St., Boston, MA, 02115, USA
| | | |
Collapse
|
49
|
Gaston DC, Odom CI, Li L, Markert JM, Roth JC, Cassady KA, Whitley RJ, Parker JN. Production of bioactive soluble interleukin-15 in complex with interleukin-15 receptor alpha from a conditionally-replicating oncolytic HSV-1. PLoS One 2013; 8:e81768. [PMID: 24312353 PMCID: PMC3842420 DOI: 10.1371/journal.pone.0081768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/16/2013] [Indexed: 12/27/2022] Open
Abstract
Oncolytic type-1 herpes simplex viruses (oHSVs) lacking the γ134.5 neurovirulence gene are being evaluated for treatment of a variety of malignancies. oHSVs replicate within and directly kill permissive cancer cells. To augment their anti-tumor activity, oHSVs have been engineered to express immunostimulatory molecules, including cytokines, to elicit tumor-specific immune responses. Interleukin-15 (IL-15) holds potential as an immunotherapeutic cytokine because it has been demonstrated to promote both natural killer (NK) cell-mediated and CD8(+) T cell-mediated cytotoxicity against cancer cells. The purpose of these studies was to engineer an oHSV producing bioactive IL-15. Two oHSVs were constructed encoding murine (m)IL-15 alone (J100) or with the mIL-15 receptor α (mIL-15Rα, J100D) to determine whether co-expression of these proteins is required for production of bioactive mIL-15 from oHSV. The following were demonstrated: i) both oHSVs retain replication competence and cytotoxicity in permissive tumor cell lines. ii) Enhanced production of mIL-15 was detected in cell lysates of neuro-2a cells following J100D infection as compared to J100 infection, suggesting that mIL-15Rα improved mIL-15 production. iii) Soluble mIL-15 in complex with mIL-15Rα was detected in supernates from J100D-infected, but not J100-infected, neuro-2a, GL261, and CT-2A cells. These cell lines vary in permissiveness to oHSV replication and cytotoxicity, demonstrating soluble mIL-15/IL-15Rα complex production from J100D was independent of direct oHSV effects. iv) The soluble mIL-15/IL-15Rα complex produced by J100D was bioactive, stimulating NK cells to proliferate and reduce the viability of syngeneic GL261 and CT-2A cells. v) J100 and J100D were aneurovirulent inasmuch as no neuropathologic effects were documented following direct inoculation into brains of CBA/J mice at up to 1x10(7) plaque forming units. The production of mIL-15/mIL-15Rα from multiple tumor lines, as well as the lack of neurovirulence, renders J100D suitable for investigating the combined effects of oHSV and mIL-15/IL-15Rα in various cancer models.
Collapse
Affiliation(s)
- David C Gaston
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America ; School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Bartlett DL, Liu Z, Sathaiah M, Ravindranathan R, Guo Z, He Y, Guo ZS. Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 2013; 12:103. [PMID: 24020520 PMCID: PMC3847443 DOI: 10.1186/1476-4598-12-103] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/06/2013] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) are tumor-selective, multi-mechanistic antitumor agents. They kill infected cancer and associated endothelial cells via direct oncolysis, and uninfected cells via tumor vasculature targeting and bystander effect. Multimodal immunogenic cell death (ICD) together with autophagy often induced by OVs not only presents potent danger signals to dendritic cells but also efficiently cross-present tumor-associated antigens from cancer cells to dendritic cells to T cells to induce adaptive antitumor immunity. With this favorable immune backdrop, genetic engineering of OVs and rational combinations further potentiate OVs as cancer vaccines. OVs armed with GM-CSF (such as T-VEC and Pexa-Vec) or other immunostimulatory genes, induce potent anti-tumor immunity in both animal models and human patients. Combination with other immunotherapy regimens improve overall therapeutic efficacy. Coadministration with a HDAC inhibitor inhibits innate immunity transiently to promote infection and spread of OVs, and significantly enhances anti-tumor immunity and improves the therapeutic index. Local administration or OV mediated-expression of ligands for Toll-like receptors can rescue the function of tumor-infiltrating CD8+ T cells inhibited by the immunosuppressive tumor microenvironment and thus enhances the antitumor effect. Combination with cyclophosphamide further induces ICD, depletes Treg, and thus potentiates antitumor immunity. In summary, OVs properly armed or in rational combinations are potent therapeutic cancer vaccines.
Collapse
Affiliation(s)
- David L Bartlett
- University of Pittsburgh Cancer Institute and Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|