1
|
Cui X, Wang Y, Lu H, Wang L, Xie X, Zhang S, Kovarik P, Li S, Liu S, Zhang Q, Yang J, Zhang C, Tian J, Liu Y, Zhang W. ZFP36 Regulates Vascular Smooth Muscle Contraction and Maintains Blood Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408811. [PMID: 39589932 PMCID: PMC11744710 DOI: 10.1002/advs.202408811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Hypertension remains a major risk factor for cardiovascular diseases, but the underlying mechanisms are not well understood. Zinc finger protein 36 (ZFP36) is an RNA-binding protein that regulates mRNA stability by binding to adenylate-uridylate-rich elements in the mRNA 3'-untranslated region. This study reveals that ZFP36 expression is highly elevated in the arteries of hypertensive patients and rodents. In cultured vascular smooth muscle cell (VSMC), angiotensin II (AngII) activates poly (ADP-ribose) polymerases1 (PARP1) to stimulate Zfp36 expression at the transcriptional level. VSMC-specific ZFP36 deletion reduces vessel contractility and blood pressure levels in mice. Mechanistically, ZFP36 regulates G protein-coupled receptors (GPCRs)-mediated increases in intracellular calcium levels through impairing the mRNA stability of regulator of G protein signaling 2 (RGS2). Moreover, the VSMC-specific ZFP36 deficiency attenuates AngII-induced hypertension and vascular remodeling in mice. AAV-mediated ZFP36 knockdown ameliorates spontaneous hypertension in rats. These findings elucidate that ZFP36 plays an important role in the regulation of smooth muscle contraction and blood pressure through modulating RGS2 expression. ZFP36 inhibition may represent a new therapeutic strategy for the treatment of hypertension.
Collapse
Affiliation(s)
- Xiuru Cui
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Yawei Wang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Hanlin Lu
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Lei Wang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Xianwei Xie
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Shenghao Zhang
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Pavel Kovarik
- Max Perutz LabsUniversity of ViennaVienna Biocenter (VBC), Dr. Bohr‐Gasse 9ViennaA‐1030Austria
| | - Shuijie Li
- Department of Biopharmaceutical SciencesCollege of PharmacyHarbin Medical UniversityHarbin150081China
| | - Shanshan Liu
- State Key Laboratory of Transvascular Implantation DevicesHeart Regeneration and Repair Key Laboratory of Zhejiang ProvinceDepartment of CardiologyThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009China
| | - Qunye Zhang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Jianmin Yang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Jinwei Tian
- Department of CardiologySecond Affiliated Hospital of Harbin Medical UniversityHeilongjiang Provincial Key Laboratory of Panvascular DiseaseThe Key Laboratory of Myocardial IschemiaMinistry of EducationHarbin150086China
| | - Yan Liu
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| | - Wencheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing TheoryKey Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesDepartment of CardiologyQilu Hospital of Shandong UniversityJinan250012China
| |
Collapse
|
2
|
Cao H. Bacterial endotoxin lipopolysaccharides regulate gene expression in human colon cancer cells. BMC Res Notes 2023; 16:216. [PMID: 37705049 PMCID: PMC10500902 DOI: 10.1186/s13104-023-06506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
OBJECTIVE Lipopolysaccharide (LPS) is a major cell wall component of gram-negative bacteria. Colon bacteria contribute to LPS which promotes colon cancer metastasis. The objective of this study was to survey the effect of LPS on cell viability and gene expression of 55 molecular targets in human colon cancer cells. RESULTS LPS did not affect the viability of COLO 225 cells under the culture conditions but affected the expression of a number of genes important in inflammatory responses and cancer development. LPS increased TTP family, GLUT family and DGAT1 mRNA levels but decreased DGAT2a and DGAT2b expression in the human colon cancer cells. LPS also increased COX2, CXCL1, ELK1, ICAM1, TNFSF10 and ZFAND5 but decreased BCL2L1, CYP19A1 and E2F1 mRNA levels in the colon cancer cells. These data suggest that LPS has profound effects on gene expression in human colon cancer cells.
Collapse
Affiliation(s)
- Heping Cao
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Allen Toussaint Boulevard, New Orleans, LA, 70124, USA.
| |
Collapse
|
3
|
Cicchetto AC, Jacobson EC, Sunshine H, Wilde BR, Krall AS, Jarrett KE, Sedgeman L, Turner M, Plath K, Iruela-Arispe ML, de Aguiar Vallim TQ, Christofk HR. ZFP36-mediated mRNA decay regulates metabolism. Cell Rep 2023; 42:112411. [PMID: 37086408 PMCID: PMC10332406 DOI: 10.1016/j.celrep.2023.112411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Cellular metabolism is tightly regulated by growth factor signaling, which promotes metabolic rewiring to support growth and proliferation. While growth factor-induced transcriptional and post-translational modes of metabolic regulation have been well defined, whether post-transcriptional mechanisms impacting mRNA stability regulate this process is less clear. Here, we present the ZFP36/L1/L2 family of RNA-binding proteins and mRNA decay factors as key drivers of metabolic regulation downstream of acute growth factor signaling. We quantitatively catalog metabolic enzyme and nutrient transporter mRNAs directly bound by ZFP36 following growth factor stimulation-many of which encode rate-limiting steps in metabolic pathways. Further, we show that ZFP36 directly promotes the mRNA decay of Enolase 2 (Eno2), altering Eno2 protein expression and enzymatic activity, and provide evidence of a ZFP36/Eno2 axis during VEGF-stimulated developmental retinal angiogenesis. Thus, ZFP36-mediated mRNA decay serves as an important mode of metabolic regulation downstream of growth factor signaling within dynamic cell and tissue states.
Collapse
Affiliation(s)
- Andrew C Cicchetto
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Elsie C Jacobson
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Hannah Sunshine
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Blake R Wilde
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Abigail S Krall
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Kelsey E Jarrett
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Leslie Sedgeman
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - M Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas Q de Aguiar Vallim
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA; Molecular Biology Institute, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Heather R Christofk
- Department of Biological Chemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Hong D, Jeong S. 3'UTR Diversity: Expanding Repertoire of RNA Alterations in Human mRNAs. Mol Cells 2023; 46:48-56. [PMID: 36697237 PMCID: PMC9880603 DOI: 10.14348/molcells.2023.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/27/2023] Open
Abstract
Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3' untranslated regions (3'UTRs) of the mRNA serve pivotal roles in posttranscriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3'UTR length variants. Alternative polyadenylation and alternative splicing are involved in diversifying 3'UTRs, which could act as a hidden layer of eukaryotic gene expression control. In this review, we summarize the functions and regulations of 3'UTRs and elaborate on the generation and functional consequences of 3'UTR diversity. Given that dynamic 3'UTR length control contributes to phenotypic complexity, dysregulated 3'UTR diversity might be relevant to disease development, including cancers. Thus, 3'UTR diversity in cancer could open exciting new research areas and provide avenues for novel cancer theragnostics.
Collapse
Affiliation(s)
- Dawon Hong
- Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School, Yongin 16892, Korea
| | - Sunjoo Jeong
- Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School, Yongin 16892, Korea
| |
Collapse
|
5
|
Cao H, Sethumadhavan K. Identification of Bcl2 as a Stably Expressed qPCR Reference Gene for Human Colon Cancer Cells Treated with Cottonseed-Derived Gossypol and Bioactive Extracts and Bacteria-Derived Lipopolysaccharides. Molecules 2022; 27:molecules27217560. [PMID: 36364387 PMCID: PMC9655230 DOI: 10.3390/molecules27217560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Cottonseed contains many bioactive molecules including plant polyphenols. Cottonseed value might be increased by providing high-value bioactive polyphenols for improving nutrition and health. However, there was a lack of molecular evidence for cottonseed bioactivity in mammalian cells. One widely used method for evaluating the bioactivity of natural products is quantitative real-time-PCR (qPCR). The selection of stably expressed internal reference genes is a crucial task of qPCR assay for data analysis. The rationale for reference gene selection is that a lower standard deviation of the cycle of threshold (Cq) among the treatments indicates a more stable expression of the gene. The objective of this study was to select reference genes in human colon cancer cells (COLO 205) treated with cottonseed-derived gossypol and bioactive extracts along with bacterial endotoxin lipopolysaccharides (LPS). SYBR Green qPCR was used to analyze the mRNA levels of a wide range of biomarkers involved in glucose transport, lipid biosynthesis, inflammatory response, and cancer development. qPCR data (10,560 Cq values) were generated from 55 genes analyzed from 64 treatments with triplicate per treatment for each gene. The data showed that B-cell lymphoma 2 (Bcl2) mRNA was the most stable among the 55 mRNAs analyzed in the human colon cancer cells. Glyceraldehyde 3 phosphate dehydrogenase (Gapdh) and ribosome protein L32 (Rpl32) mRNAs were not good qPCR references for the colon cancer cells. These observations were consistent regardless of the treatment comparison between gossypol and LPS, glanded and glandless seed extracts, seed coat and kernel extracts, or treatment for 8 and 24 h. These results suggest that Bcl2 is a preferable reference gene for qPCR assays in human colon cancer cells treated with cottonseed-derived gossypol and bioactive extracts as well as LPS. The extensive qPCR results firmly support the conclusion that the Bcl2 gene is stably expressed at the mRNA level in the human colon cancer cells regardless of the treatment, suggesting that Bcl2 gene expression is not regulated at the mRNA level but at the post-transcriptional level. These results should facilitate studies designated to evaluate bioactivity on gene expression regulation by cottonseed molecules and other natural and synthetic molecules for nutrition and health uses.
Collapse
|
6
|
Cottonseed extracts regulate gene expression in human colon cancer cells. Sci Rep 2022; 12:1039. [PMID: 35058516 PMCID: PMC8776848 DOI: 10.1038/s41598-022-05030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Cotton plant provides economically important fiber and cottonseed, but cottonseed contributes 20% of the crop value. Cottonseed value could be increased by providing high value bioactive compounds and polyphenolic extracts aimed at improving nutrition and preventing diseases because plant polyphenol extracts have been used as medicinal remedy for various diseases. The objective of this study was to investigate the effects of cottonseed extracts on cell viability and gene expression in human colon cancer cells. COLO 225 cells were treated with ethanol extracts from glanded and glandless cottonseed followed by MTT and qPCR assays. Cottonseed extracts showed minor effects on cell viability. qPCR assay analyzed 55 mRNAs involved in several pathways including DGAT, GLUT, TTP, IL, gossypol-regulated and TTP-mediated pathways. Using BCL2 mRNA as the internal reference, qPCR analysis showed minor effects of ethanol extracts from glanded seed coat and kernel and glandless seed coat on mRNA levels in the cells. However, glandless seed kernel extract significantly reduced mRNA levels of many genes involved in glucose transport, lipid biosynthesis and inflammation. The inhibitory effects of glandless kernel extract on gene expression may provide a useful opportunity for improving nutrition and healthcare associated with colon cancer. This in turn may provide the potential of increasing cottonseed value by using ethanol extract as a nutrition/health intervention agent.
Collapse
|
7
|
Lan YL, Zhang J. Modulation of untranslated region alternative polyadenylation in glioma tumorigenesis. Biomed Pharmacother 2021; 137:111416. [DOI: 10.1016/j.biopha.2021.111416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
|
8
|
Maheshvara regulates JAK/STAT signaling by interacting and stabilizing hopscotch transcripts which leads to apoptosis in Drosophila melanogaster. Cell Death Dis 2021; 12:363. [PMID: 33824299 PMCID: PMC8024297 DOI: 10.1038/s41419-021-03649-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/01/2023]
Abstract
Maheshvara (mahe), an RNA helicase that is widely conserved across taxa, regulates Notch signaling and neuronal development in Drosophila. In order to identify novel components regulated by mahe, transcriptome profiling of ectopic mahe was carried out and this revealed striking upregulation of JAK/STAT pathway components like upd1, upd2, upd3, and socs36E. Further, significant downregulation of the pathway components in mahe loss-of-function mutant as well as upon lowering the level of mahe by RNAi, supported and strengthened our transcriptome data. Parallelly, we observed that mahe, induced caspase-dependent apoptosis in photoreceptor neurons, and this phenotype was significantly modulated by JAK/STAT pathway components. RNA immunoprecipitation unveiled the presence of JAK/STAT tyrosine kinase hopscotch (hop) transcripts in the complex immunoprecipitated with Mahe, which ultimately resulted in stabilization and elevation of hop transcripts. Additionally, we also observed the surge in activity of downstream transcription factor Stat92E, which is indicative of activation of the JAK/STAT signaling, and this in turn led to apoptosis via upregulation of hid. Taken together, our data provide a novel regulation of JAK/STAT pathway by RNA helicase Maheshvara, which ultimately promotes apoptosis.
Collapse
|
9
|
Cao H, Sethumadhavan K, Cao F, Wang TTY. Gossypol decreased cell viability and down-regulated the expression of a number of genes in human colon cancer cells. Sci Rep 2021; 11:5922. [PMID: 33723275 PMCID: PMC7961146 DOI: 10.1038/s41598-021-84970-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Plant polyphenol gossypol has anticancer activities. This may increase cottonseed value by using gossypol as a health intervention agent. It is necessary to understand its molecular mechanisms before human consumption. The aim was to uncover the effects of gossypol on cell viability and gene expression in cancer cells. In this study, human colon cancer cells (COLO 225) were treated with gossypol. MTT assay showed significant inhibitory effect under high concentration and longtime treatment. We analyzed the expression of 55 genes at the mRNA level in the cells; many of them are regulated by gossypol or ZFP36/TTP in cancer cells. BCL2 mRNA was the most stable among the 55 mRNAs analyzed in human colon cancer cells. GAPDH and RPL32 mRNAs were not good qPCR references for the colon cancer cells. Gossypol decreased the mRNA levels of DGAT, GLUT, TTP, IL families and a number of previously reported genes. In particular, gossypol suppressed the expression of genes coding for CLAUDIN1, ELK1, FAS, GAPDH, IL2, IL8 and ZFAND5 mRNAs, but enhanced the expression of the gene coding for GLUT3 mRNA. The results showed that gossypol inhibited cell survival with decreased expression of a number of genes in the colon cancer cells.
Collapse
Affiliation(s)
- Heping Cao
- grid.507314.40000 0001 0668 8000United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 USA
| | - Kandan Sethumadhavan
- grid.507314.40000 0001 0668 8000United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 USA
| | - Fangping Cao
- grid.66741.320000 0001 1456 856XBeijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Thomas T. Y. Wang
- grid.508988.4United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, 10300 Baltimore Ave, Beltsville, MD 20705 USA
| |
Collapse
|
10
|
Peng H, Ning H, Wang Q, Lai J, Wei L, Stumpo DJ, Blackshear PJ, Fu M, Hou R, Hoft DF, Liu J. Tristetraprolin Regulates T H17 Cell Function and Ameliorates DSS-Induced Colitis in Mice. Front Immunol 2020; 11:1952. [PMID: 32922402 PMCID: PMC7457025 DOI: 10.3389/fimmu.2020.01952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
TH17 cells have been extensively investigated in inflammation, autoimmune diseases, and cancer. The precise molecular mechanisms for TH17 cell regulation, however, remain elusive, especially regulation at the post-transcriptional level. Tristetraprolin (TTP) is an RNA-binding protein important for degradation of the mRNAs encoding several proinflammatory cytokines. With newly generated T cell-specific TTP conditional knockout mice (CD4CreTTPf/f), we found that aging CD4CreTTPf/f mice displayed an increase of IL-17A in serum and spontaneously developed chronic skin inflammation along with increased effector TH17 cells in the affected skin. TTP inhibited TH17 cell development and function by promoting IL-17A mRNA degradation. In a DSS-induced colitis model, CD4CreTTPf/f mice displayed severe colitis and had more TH17 cells and serum IL-17A compared with wild-type mice. Furthermore, neutralization of IL-17A reduced the severity of colitis. Our results reveal a new mechanism for regulating TH17 function and TH17-mediated inflammation post-transcriptionally by TTP, suggests that TTP might be a novel therapeutic target for the treatment of TH17-mediated diseases.
Collapse
Affiliation(s)
- Hui Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Jinping Lai
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Lin Wei
- Department of Immunology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Deborah J. Stumpo
- National Institute of Environmental Health Sciences, Research Triangle, NC, United States
| | - Perry J. Blackshear
- National Institute of Environmental Health Sciences, Research Triangle, NC, United States
| | - Mingui Fu
- Shock/Trauma Research Center and Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
11
|
The Tristetraprolin Family of RNA-Binding Proteins in Cancer: Progress and Future Prospects. Cancers (Basel) 2020; 12:cancers12061539. [PMID: 32545247 PMCID: PMC7352335 DOI: 10.3390/cancers12061539] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
Post-transcriptional regulation of gene expression plays a key role in cellular proliferation, differentiation, migration, and apoptosis. Increasing evidence suggests dysregulated post-transcriptional gene expression as an important mechanism in the pathogenesis of cancer. The tristetraprolin family of RNA-binding proteins (RBPs), which include Zinc Finger Protein 36 (ZFP36; commonly referred to as tristetraprolin (TTP)), Zinc Finger Protein 36 like 1 (ZFP36L1), and Zinc Finger Protein 36 like 2 (ZFP36L2), play key roles in the post-transcriptional regulation of gene expression. Mechanistically, these proteins function by binding to the AU-rich elements within the 3′-untranslated regions of their target mRNAs and, in turn, increasing mRNA turnover. The TTP family RBPs are emerging as key regulators of multiple biological processes relevant to cancer and are aberrantly expressed in numerous human cancers. The TTP family RBPs have tumor-suppressive properties and are also associated with cancer prognosis, metastasis, and resistance to chemotherapy. Herein, we summarize the various hallmark molecular traits of cancers that are reported to be regulated by the TTP family RBPs. We emphasize the role of the TTP family RBPs in the regulation of trait-associated mRNA targets in relevant cancer types/cell lines. Finally, we highlight the potential of the TTP family RBPs as prognostic indicators and discuss the possibility of targeting these TTP family RBPs for therapeutic benefits.
Collapse
|
12
|
The Role of VEGFA, COX2, HUR and CUGBP2 in Predicting the Response to Neoadjuvant Therapy in Rectal Cancer Patients. ACTA ACUST UNITED AC 2020; 56:medicina56040192. [PMID: 32331433 PMCID: PMC7230171 DOI: 10.3390/medicina56040192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Background and objectives: The effectiveness of neoadjuvant therapy, which is commonly used for stage II-III rectal cancer (RC) treatment, is limited. Genes associated with the pathogenesis of RC could determine response to this treatment. Therefore, the aim of this study was to investigate the potential predictive value of VEGFA, COX2, HUR and CUGBP2 genes and the associations between post-treatment changes in gene expression and the efficacy of neoadjuvant therapy. Materials and Methods: Biopsies from RC and healthy rectal tissue of 28 RC patients were collected before neoadjuvant therapy and 6-8 weeks after neoadjuvant therapy. The expression levels of VEGFA, COX2, HUR, CUGBP2 genes were evaluated using a quantitative real-time polymerase chain reaction. Results: The results reveal a significantly higher expression of VEGFA, COX2 and HUR mRNA in RC tissue compared to healthy rectal tissue (p < 0.05), and elevated VEGFA gene expression in pre-treatment tissues was associated with a better response to neoadjuvant therapy based on T-stage downstaging (p < 0.05). The expression of VEGFA, HUR and CUGBP2 genes significantly decreased after neoadjuvant therapy (p < 0.05). Responders to treatment demonstrated a significantly stronger decrease of VEGFA and COX2 expression after neoadjuvant therapy than non-responders (p < 0.05). Conclusions: The findings of this study suggest that the pre-treatment VEGFA gene expression might have predictive value for the response to neoadjuvant therapy, while the post-treatment decrease in VEGFA and COX2 gene expression could indicate the effectiveness of neoadjuvant therapy in RC patients.
Collapse
|
13
|
Inhibitors of Oxidative Phosphorylation Modulate Astrocyte Inflammatory Responses through AMPK-Dependent Ptgs2 mRNA Stabilization. Cells 2019; 8:cells8101185. [PMID: 31581537 PMCID: PMC6829456 DOI: 10.3390/cells8101185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/07/2023] Open
Abstract
Inflammatory activation of astroglia adds to the pathology of various neurological diseases. Astrocytes respond to microglia-derived cytokines such as interleukin-1α (IL-1α) with enhanced inflammatory signaling. This provokes pro-inflammatory gene expression of, among others, the eicosanoid-generating enzyme prostaglandin endoperoxide synthase 2 (Ptgs2). Whereas metabolic regulation of innate immune cell inflammatory responses is intensely studied, pathways related to how metabolism modulates inflammatory signaling in astrocytes are underexplored. Here, we examined how mitochondrial oxidative phosphorylation affects inflammatory responses towards IL-1α and tumor necrosis factor α in neonatal rat astrocytes. Blocking respiratory complex I and III or adenosine triphosphate (ATP) synthase did not affect activation of inflammatory signaling by IL-1α, but did elicit differential effects on inflammatory gene mRNA expression. Remarkably, mRNA and protein expression of Ptgs2 by IL-1α was consistently up-regulated when oxidative phosphorylation was inhibited. The increase of Ptgs2 resulted from mRNA stabilization. Mitochondrial inhibitors also increased IL-1α-triggered secretion of eicosanoids, such as prostaglandin E2, prostaglandin F2α, and 6-keto-prostaglandin F1α, as assessed by liquid chromatography/mass spectrometry. Mechanistically, attenuating oxidative phosphorylation elevated adenosine monophosphate (AMP) and activated AMP-activated protein kinase (AMPK). AMPK silencing prevented Ptgs2 up-regulation by mitochondrial inhibitors, while AMPK activators recapitulated Ptgs2 mRNA stability regulation. Our data indicate modulation of astrocyte inflammatory responses by oxidative metabolism, with relevance towards eicosanoid production.
Collapse
|
14
|
Li XC, Song MF, Sun F, Tian FJ, Wang YM, Wang BY, Chen JH. Fragile X-related protein 1 (FXR1) regulates cyclooxygenase-2 (COX-2) expression at the maternal-fetal interface. Reprod Fertil Dev 2019; 30:1566-1574. [PMID: 29852926 DOI: 10.1071/rd18037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/25/2018] [Indexed: 01/11/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is regulated post-transcriptionally by the AU-rich element (ARE) in the 3'-untranslated region (UTR) of its mRNA. However, the mechanism of COX-2 induction in infertility has not been thoroughly elucidated to date. The aim of this study was to examine the association between COX-2 and fragile X-related protein 1 (FXR1) in trophoblasts. Using quantitative reverse transcription polymerase chain reaction, our results showed that FXR1 mRNA expression levels were significantly decreased in trophoblasts from recurrent miscarriage patients compared with healthy controls; conversely, COX-2 mRNA expression levels were increased in patient samples. We also observed that FXR1 was highly expressed in human placental villi during early pregnancy. Furthermore, we used western blotting and immunofluorescence to analyse the expression levels of FXR1 and COX-2 in HTR-8 cells that were treated with tumour necrosis factor α; we observed that the expression of COX-2 was clearly increased in HTR-8 cells treated with FXR1 small interfering RNA, whereas the expression of COX-2 was effectively decreased in HTR-8 cells with FXR1 overexpressed via a plasmid. Importantly, bioinformatics analysis identified FXR1 binding sites in the 3'-UTR region of COX-2 and firefly luciferase reporter assay analysis verified that FXR1 binds directly to the 3'-UTR region of COX-2. ELISA assays showed that overexpression of FXR1 enhanced vascular endothelial growth factor-A and interleukin-8 expression in HTR-8 cells, whereas conversely, knockdown of FXR1 effectively repressed these effects. In conclusion, the results of this study indicate that FXR1 is a novel COX-2 regulatory factor.
Collapse
Affiliation(s)
- Xiao-Cui Li
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Meng-Fan Song
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Feng Sun
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Fu-Ju Tian
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu-Mei Wang
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Bei-Ying Wang
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Jin-Hong Chen
- Department of Obstetrics and Gynaecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| |
Collapse
|
15
|
Saul MJ, Emmerich AC, Steinhilber D, Suess B. Regulation of Eicosanoid Pathways by MicroRNAs. Front Pharmacol 2019; 10:824. [PMID: 31379585 PMCID: PMC6659501 DOI: 10.3389/fphar.2019.00824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/26/2019] [Indexed: 01/07/2023] Open
Abstract
Over the last years, many microRNAs (miRNAs) have been identified that regulate the formation of bioactive lipid mediators such as prostanoids and leukotrienes. Many of these miRNAs are involved in complex regulatory circuits necessary for the fine-tuning of biological functions including inflammatory processes or cell growth. A better understanding of these networks will contribute to the development of novel therapeutic strategies for the treatment of inflammatory diseases and cancer. In this review, we provide an overview of the current knowledge of miRNA regulation in eicosanoid pathways with special focus on novel miRNA functions and regulatory circuits of leukotriene and prostaglandin biosynthesis.
Collapse
Affiliation(s)
- Meike J Saul
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Anne C Emmerich
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany.,Institute of Pharmaceutical Chemistry, Goethe Universität Frankfurt, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe Universität Frankfurt, Frankfurt, Germany
| | - Beatrix Suess
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
16
|
Legrand N, Dixon DA, Sobolewski C. AU-rich element-binding proteins in colorectal cancer. World J Gastrointest Oncol 2019; 11:71-90. [PMID: 30788036 PMCID: PMC6379757 DOI: 10.4251/wjgo.v11.i2.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 01/01/2019] [Indexed: 02/05/2023] Open
Abstract
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called “Adenylate-Uridylate-rich elements binding proteins” (AUBPs) control mRNA stability or translation through their binding to AU-rich elements enriched in the 3’UTRs of inflammation- and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules (also known as P-body/SG). Alterations in the expression and activities of AUBPs and P-body/SG assembly have been observed to occur with colorectal cancer (CRC) progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis. Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation, along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Microbiology, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Kansas City, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
17
|
Roles of Tristetraprolin in Tumorigenesis. Int J Mol Sci 2018; 19:ijms19113384. [PMID: 30380668 PMCID: PMC6274954 DOI: 10.3390/ijms19113384] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic loss or mutations in tumor suppressor genes promote tumorigenesis. The prospective tumor suppressor tristetraprolin (TTP) has been shown to negatively regulate tumorigenesis through destabilizing the messenger RNAs of critical genes implicated in both tumor onset and tumor progression. Regulation of TTP has therefore emerged as an important issue in tumorigenesis. Similar to other tumor suppressors, TTP expression is frequently downregualted in various human cancers, and its low expression is correlated with poor prognosis. Additionally, disruption in the regulation of TTP by various mechanisms results in the inactivation of TTP protein or altered TTP expression. A recent study showing alleviation of Myc-driven lymphomagenesis by the forced expression of TTP has shed light on new therapeutic avenues for cancer prevention and treatment through the restoration of TTP expression. In this review, we summarize key oncogenes subjected to the TTP-mediated mRNA degradation, and discuss how dysregulation of TTP can contribute to tumorigenesis. In addition, the control mechanism underlying TTP expression at the posttranscriptional and posttranslational levels will be discussed.
Collapse
|
18
|
Maeda S, Tomiyasu H, Tsuboi M, Inoue A, Ishihara G, Uchikai T, Chambers JK, Uchida K, Yonezawa T, Matsuki N. Comprehensive gene expression analysis of canine invasive urothelial bladder carcinoma by RNA-Seq. BMC Cancer 2018; 18:472. [PMID: 29699519 PMCID: PMC5921755 DOI: 10.1186/s12885-018-4409-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Invasive urothelial carcinoma (iUC) is a major cause of death in humans, and approximately 165,000 individuals succumb to this cancer annually worldwide. Comparative oncology using relevant animal models is necessary to improve our understanding of progression, diagnosis, and treatment of iUC. Companion canines are a preferred animal model of iUC due to spontaneous tumor development and similarity to human disease in terms of histopathology, metastatic behavior, and treatment response. However, the comprehensive molecular characterization of canine iUC is not well documented. In this study, we performed transcriptome analysis of tissue samples from canine iUC and normal bladders using an RNA sequencing (RNA-Seq) approach to identify key molecular pathways in canine iUC. METHODS Total RNA was extracted from bladder tissues of 11 dogs with iUC and five healthy dogs, and RNA-Seq was conducted. Ingenuity Pathway Analysis (IPA) was used to assign differentially expressed genes to known upstream regulators and functional networks. RESULTS Differential gene expression analysis of the RNA-Seq data revealed 2531 differentially expressed genes, comprising 1007 upregulated and 1524 downregulated genes, in canine iUC. IPA revealed that the most activated upstream regulator was PTGER2 (encoding the prostaglandin E2 receptor EP2), which is consistent with the therapeutic efficiency of cyclooxygenase inhibitors in canine iUC. Similar to human iUC, canine iUC exhibited upregulated ERBB2 and downregulated TP53 pathways. Biological functions associated with cancer, cell proliferation, and leukocyte migration were predicted to be activated, while muscle functions were predicted to be inhibited, indicating muscle-invasive tumor property. CONCLUSIONS Our data confirmed similarities in gene expression patterns between canine and human iUC and identified potential therapeutic targets (PTGER2, ERBB2, CCND1, Vegf, and EGFR), suggesting the value of naturally occurring canine iUC as a relevant animal model for human iUC.
Collapse
Affiliation(s)
- Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Hirotaka Tomiyasu
- Veterinary Medical Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaya Tsuboi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akiko Inoue
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Takao Uchikai
- Anicom Specialty Medical Institute Inc., Tokyo, Japan
| | - James K Chambers
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoaki Matsuki
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Pasini A, Brand OJ, Jenkins G, Knox AJ, Pang L. Suberanilohydroxamic acid prevents TGF-β1-induced COX-2 repression in human lung fibroblasts post-transcriptionally by TIA-1 downregulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:463-472. [PMID: 29555582 PMCID: PMC5910054 DOI: 10.1016/j.bbagrm.2018.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Accepted: 03/14/2018] [Indexed: 12/28/2022]
Abstract
Cyclooxygenase-2 (COX-2), with its main antifibrotic metabolite PGE2, is regarded as an antifibrotic gene. Repressed COX-2 expression and deficient PGE2 have been shown to contribute to the activation of lung fibroblasts and excessive deposition of collagen in pulmonary fibrosis. We have previously demonstrated that COX-2 expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) is epigenetically silenced and can be restored by epigenetic inhibitors. This study aimed to investigate whether COX-2 downregulation induced by the profibrotic cytokine transforming growth factor-β1 (TGF-β1) in normal lung fibroblasts could be prevented by epigenetic inhibitors. We found that COX-2 protein expression and PGE2 production were markedly reduced by TGF-β1 and this was prevented by the pan-histone deacetylase inhibitor suberanilohydroxamic acid (SAHA) and to a lesser extent by the DNA demethylating agent Decitabine (DAC), but not by the G9a histone methyltransferase (HMT) inhibitor BIX01294 or the EZH2 HMT inhibitor 3-deazaneplanocin A (DZNep). However, chromatin immunoprecipitation assay revealed that the effect of SAHA was unlikely mediated by histone modifications. Instead 3′-untranslated region (3′-UTR) luciferase reporter assay indicated the involvement of post-transcriptional mechanisms. This was supported by the downregulation by SAHA of the 3′-UTR mRNA binding protein TIA-1 (T-cell intracellular antigen-1), a negative regulator of COX-2 translation. Furthermore, TIA-1 knockdown by siRNA mimicked the effect of SAHA on COX-2 expression. These findings suggest SAHA can prevent TGF-β1-induced COX-2 repression in lung fibroblasts post-transcriptionally through a novel TIA-1-dependent mechanism and provide new insights into the mechanisms underlying its potential antifibrotic activity. Abbreviations Unlabelled Table SAHA | suberanilohydroxamic acid | TGF-β1 | transforming growth factor-β1 | COX-2 | cyclooxygenase-2 | TIA-1 | T-cell intracellular antigen-1 | PGE2 | prostaglandin E2 | IPF | idiopathic pulmonary fibrosis | DAC | Decitabine | HMT | histone methyltransferase | EZH2 | enhancer of zeste homolog 2 | DZNep | 3-deazaneplanocin A | 3′-UTR | 3′-untranslated region | α-SMA | α-smooth muscle actin | ECM | extracellular matrix | COL1 | collagen 1 | DNMT | DNA methyltransferase | HAT | histone acetyltransferase | HDAC | histone deacetylase | H3K9me3 | histone H3 lysine 9 trimethylation | ARE | AUUUA-rich element | HuR | human antigen R | ELAV1 | ELAV-like RNA binding protein 1 | TTP | Tristetraprolin | CUGBP2 | CUG triplet repeat, RNA binding protein 2 | F-NL | fibroblast from non-fibrotic lung | FCS | fetal calf serum |
The HDAC inhibitor SAHA upregulates the expression of the antifibrotic gene COX-2 post-transcriptionally. The mechanism relies on the downregulation of TIA-1, a negative regulator of COX-2 translation. SAHA has a therapeutic potential by preventing COX-2 repression induced by TGF-β1 in human lung fibroblasts.
Collapse
Affiliation(s)
- Alice Pasini
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom; Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via Venezia 52, 47521 Cesena, FC, Italy
| | - Oliver J Brand
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Gisli Jenkins
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Alan J Knox
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom
| | - Linhua Pang
- Division of Respiratory Medicine, University of Nottingham School of Medicine, City Hospital, Nottingham NG5 1PB, United Kingdom.
| |
Collapse
|
20
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
21
|
García-Mauriño SM, Rivero-Rodríguez F, Velázquez-Cruz A, Hernández-Vellisca M, Díaz-Quintana A, De la Rosa MA, Díaz-Moreno I. RNA Binding Protein Regulation and Cross-Talk in the Control of AU-rich mRNA Fate. Front Mol Biosci 2017; 4:71. [PMID: 29109951 PMCID: PMC5660096 DOI: 10.3389/fmolb.2017.00071] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023] Open
Abstract
mRNA metabolism is tightly orchestrated by highly-regulated RNA Binding Proteins (RBPs) that determine mRNA fate, thereby influencing multiple cellular functions across biological contexts. Here, we review the interplay between six well-known RBPs (TTP, AUF-1, KSRP, HuR, TIA-1, and TIAR) that recognize AU-rich elements (AREs) at the 3' untranslated regions of mRNAs, namely ARE-RBPs. Examples of the links between their cross-regulations and modulation of their targets are analyzed during mRNA processing, turnover, localization, and translational control. Furthermore, ARE recognition can be self-regulated by several factors that lead to the prevalence of one RBP over another. Consequently, we examine the factors that modulate the dynamics of those protein-RNA transient interactions to better understand the final consequences of the regulation mediated by ARE-RBPs. For instance, factors controlling the RBP isoforms, their conformational state or their post-translational modifications (PTMs) can strongly determine the fate of the protein-RNA complexes. Moreover, mRNA specific sequence and secondary structure or subtle environmental changes are also key determinants to take into account. To sum up, the whole understanding of such a fine tuned regulation is a challenge for future research and requires the integration of all the available structural and functional data by in vivo, in vitro and in silico approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| |
Collapse
|
22
|
Wang Q, Ning H, Peng H, Wei L, Hou R, Hoft DF, Liu J. Tristetraprolin inhibits macrophage IL-27-induced activation of antitumour cytotoxic T cell responses. Nat Commun 2017; 8:867. [PMID: 29021521 PMCID: PMC5636828 DOI: 10.1038/s41467-017-00892-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/02/2017] [Indexed: 01/04/2023] Open
Abstract
IFN-γ-producing cytotoxic T lymphocytes are essential for host defense against viral infection and cancer. Here we show that the RNA-binding tristetraprolin, encoded by Zfp36, is needed for CD8+ T-cell production of IFN-γ in vivo. When activated in vitro, however, IFN-γ production by naive wild type and tristetraprolin-deficient CD8+ T-cells is comparable. IL-27 is overproduced by tristetraprolin-deficient macrophages and increased systemically in tristetraprolin-deficient mice. Tristetraprolin suppresses IL-27 production by promoting p28 mRNA degradation. Importantly, deletion of IL-27 receptor WSX-1 in tristetraprolin-deficient mice (WSX-1/tristetraprolin double knockout) leads to a reduction in cytotoxic T lymphocyte numbers. Moreover, tumor growth is accelerated, not only in tristetraprolin-deficient mice after cytotoxic T lymphocyte depletion, but also in WSX-1/tristetraprolin double knockout mice, with substantial reduction in the number of tumor cytotoxic T lymphocytes. This study describes a regulatory pathway for IL-27 expression and cytotoxic T lymphocyte function mediated by tristetraprolin, contributing to regulation of antitumour immunity. IL-27 is one of a number of cytokines that can induce antitumour CD8+ T cell responses. Here the authors show that TTP, encoded by Zfp36, degrades p28 to inhibit IL-27 production by macrophages and is thereby a negative regulator of the antitumour response.
Collapse
Affiliation(s)
- Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Hui Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Lin Wei
- Department of Immunology, School of Basic Medicine, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, 1100S. Grand Boulevard, St. Louis, MO, 63104, USA.
| |
Collapse
|
23
|
Masamha CP, Wagner EJ. The contribution of alternative polyadenylation to the cancer phenotype. Carcinogenesis 2017; 39:2-10. [DOI: 10.1093/carcin/bgx096] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
|
24
|
Tang T, Scambler TE, Smallie T, Cunliffe HE, Ross EA, Rosner DR, O'Neil JD, Clark AR. Macrophage responses to lipopolysaccharide are modulated by a feedback loop involving prostaglandin E 2, dual specificity phosphatase 1 and tristetraprolin. Sci Rep 2017; 7:4350. [PMID: 28659609 PMCID: PMC5489520 DOI: 10.1038/s41598-017-04100-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/09/2017] [Indexed: 01/02/2023] Open
Abstract
In many different cell types, pro-inflammatory agonists induce the expression of cyclooxygenase 2 (COX-2), an enzyme that catalyzes rate-limiting steps in the conversion of arachidonic acid to a variety of lipid signaling molecules, including prostaglandin E2 (PGE2). PGE2 has key roles in many early inflammatory events, such as the changes of vascular function that promote or facilitate leukocyte recruitment to sites of inflammation. Depending on context, it also exerts many important anti-inflammatory effects, for example increasing the expression of the anti-inflammatory cytokine interleukin 10 (IL-10), and decreasing that of the pro-inflammatory cytokine tumor necrosis factor (TNF). The tight control of both biosynthesis of, and cellular responses to, PGE2 are critical for the precise orchestration of the initiation and resolution of inflammatory responses. Here we describe evidence of a negative feedback loop, in which PGE2 augments the expression of dual specificity phosphatase 1, impairs the activity of mitogen-activated protein kinase p38, increases the activity of the mRNA-destabilizing factor tristetraprolin, and thereby inhibits the expression of COX-2. The same feedback mechanism contributes to PGE2-mediated suppression of TNF release. Engagement of the DUSP1-TTP regulatory axis by PGE2 is likely to contribute to the switch between initiation and resolution phases of inflammation.
Collapse
Affiliation(s)
- Tina Tang
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Thomas E Scambler
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Tim Smallie
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Helen E Cunliffe
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Ewan A Ross
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Dalya R Rosner
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - John D O'Neil
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK
| | - Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2WB, UK.
| |
Collapse
|
25
|
Rumzhum NN, Ammit AJ. Cyclooxygenase 2: its regulation, role and impact in airway inflammation. Clin Exp Allergy 2016; 46:397-410. [PMID: 26685098 DOI: 10.1111/cea.12697] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cyclooxygenase 2 (COX-2: official gene symbol - PTGS2) has long been regarded as playing a pivotal role in the pathogenesis of airway inflammation in respiratory diseases including asthma. COX-2 can be rapidly and robustly expressed in response to a diverse range of pro-inflammatory cytokines and mediators. Thus, increased levels of COX-2 protein and prostanoid metabolites serve as key contributors to pathobiology in respiratory diseases typified by dysregulated inflammation. But COX-2 products may not be all bad: prostanoids can exert anti-inflammatory/bronchoprotective functions in airways in addition to their pro-inflammatory actions. Herein, we outline COX-2 regulation and review the diverse stimuli known to induce COX-2 in the context of airway inflammation. We discuss some of the positive and negative effects that COX-2/prostanoids can exert in in vitro and in vivo models of airway inflammation, and suggest that inhibiting COX-2 expression to repress airway inflammation may be too blunt an approach; because although it might reduce the unwanted effects of COX-2 activation, it may also negate the positive effects. Evidence suggests that prostanoids produced via COX-2 upregulation show diverse actions (and herein we focus on prostaglandin E2 as a key example); these can be either beneficial or deleterious and their impact on respiratory disease can be dictated by local concentration and specific interaction with individual receptors. We propose that understanding the regulation of COX-2 expression and associated receptor-mediated functional outcomes may reveal number of critical steps amenable to pharmacological intervention. These may prove invaluable in our quest towards future development of novel anti-inflammatory pharmacotherapeutic strategies for the treatment of airway diseases.
Collapse
Affiliation(s)
- N N Rumzhum
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - A J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Lamy S, Ben Saad A, Zgheib A, Annabi B. Olive oil compounds inhibit the paracrine regulation of TNF-α-induced endothelial cell migration through reduced glioblastoma cell cyclooxygenase-2 expression. J Nutr Biochem 2015; 27:136-45. [PMID: 26410343 DOI: 10.1016/j.jnutbio.2015.08.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 11/25/2022]
Abstract
The established causal relationship between the chronic inflammatory microenvironment, tumor development and cancer recurrence has provided leads for developing novel preventive strategies. Accumulating experimental, clinical and epidemiological data has provided support for the chemopreventive properties of olive oil compounds traditionally found within the Mediterranean diet. In this study, we investigated whether tyrosol (Tyr), hydroxytyrosol, oleuropein and oleic acid (OA), four compounds contained in extra virgin olive oil, can prevent tumor necrosis factor (TNF)-α-induced expression of cyclooxygenase (COX)-2 (an inflammation biomarker) in a human glioblastoma cell (U-87 MG) model. We found that Tyr and OA significantly inhibited TNF-α-induced COX-2 gene and protein expression, as well as PGE2 secretion. Both compounds also inhibited TNF-α-induced JNK and ERK phosphorylation, whereas only Tyr inhibited TNF-α-induced NF-κB phosphorylation. Paracrine-regulated migration of human brain microvascular endothelial cells (HBMECs) was assessed using growth factor-enriched conditioned media (CM) isolated from U-87 MG cells. We found that while PGE2 triggered HBMEC migration, the CM isolated from U-87 MG cells, where either COX-2 or NF-κB had been silenced or had been treated with Tyr or OA, exhibited decreased chemotactic properties. These observations demonstrate that olive oil compounds inhibit the effect of the chronic inflammatory microenvironment on glioblastoma progression through TNF-α actions and may be useful in cancer chemoprevention.
Collapse
Affiliation(s)
- Sylvie Lamy
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC, Canada H3C 3P8.
| | - Aroua Ben Saad
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC, Canada H3C 3P8.
| | - Alain Zgheib
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC, Canada H3C 3P8.
| | - Borhane Annabi
- Laboratoire d'Oncologie Moléculaire, Centre de Recherche BioMed, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC, Canada H3C 3P8.
| |
Collapse
|
27
|
Sobolewski C, Sanduja S, Blanco FF, Hu L, Dixon DA. Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells. Biomolecules 2015; 5:2035-55. [PMID: 26343742 PMCID: PMC4598787 DOI: 10.3390/biom5032035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/30/2015] [Accepted: 08/10/2015] [Indexed: 02/06/2023] Open
Abstract
The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA and sodium butyrate) promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells) and cervix carcinoma cells (HeLa). We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1). Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer.
Collapse
Affiliation(s)
- Cyril Sobolewski
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Sandhya Sanduja
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Fernando F Blanco
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Liangyan Hu
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Dan A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
28
|
Brennan-Laun SE, Ezelle HJ, Li XL, Hassel BA. RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting. J Interferon Cytokine Res 2015; 34:275-88. [PMID: 24697205 DOI: 10.1089/jir.2013.0147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RNase-L is a mediator of type 1 interferon-induced antiviral activity that has diverse and critical cellular roles, including the regulation of cell proliferation, differentiation, senescence and apoptosis, tumorigenesis, and the control of the innate immune response. Although RNase-L was originally shown to mediate the endonucleolytic cleavage of both viral and ribosomal RNAs in response to infection, more recent evidence indicates that RNase-L also functions in the regulation of cellular mRNAs as an important mechanism by which it exerts its diverse biological functions. Despite this growing body of work, many questions remain regarding the roles of mRNAs as RNase-L substrates. This review will survey known and putative mRNA substrates of RNase-L, propose mechanisms by which it may selectively cleave these transcripts, and postulate future clinical applications.
Collapse
Affiliation(s)
- Sarah E Brennan-Laun
- 1 Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland
| | | | | | | |
Collapse
|
29
|
Qiu LQ, Lai WS, Bradbury A, Zeldin DC, Blackshear PJ. Tristetraprolin (TTP) coordinately regulates primary and secondary cellular responses to proinflammatory stimuli. J Leukoc Biol 2015; 97:723-36. [PMID: 25657290 DOI: 10.1189/jlb.3a0214-106r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TTP is an anti-inflammatory protein that acts by binding to AREs in its target mRNAs, such as Tnf mRNA, and promoting their deadenylation and decay. TNF released from inflammatory cells can then stimulate gene expression in tissue cells, such as fibroblasts. To determine whether TTP could affect the decay of TNF-induced transcripts in fibroblasts, we exposed primary embryonic fibroblasts and stable fibroblast cell lines, derived from WT and TTP KO mice, to TNF. The decay rates of transcripts encoded by several early-response genes, including Cxcl1, Cxcl2, Ier3, Ptgs2, and Lif, were significantly slowed in TTP-deficient fibroblasts after TNF stimulation. These changes were associated with TTP-dependent increases in CXCL1, CXCL2, and IER3 protein levels. The TTP-susceptible transcripts contained multiple, conserved, closely spaced, potential TTP binding sites in their 3'-UTRs. WT TTP, but not a nonbinding TTP zinc finger mutant, bound to RNA probes that were based on the mRNA sequences of Cxcl1, Cxcl2, Ptgs2, and Lif. TTP-promoted decay of transcripts encoding chemokines and other proinflammatory mediators is thus a critical post-transcriptional regulatory mechanism in the response of secondary cells, such as fibroblasts, to TNF released from primary immune cells.
Collapse
Affiliation(s)
- Lian-Qun Qiu
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Wi S Lai
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Alyce Bradbury
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Darryl C Zeldin
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Perry J Blackshear
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
30
|
Miná VAL, Lacerda-Pinheiro SF, Maia LC, Pinheiro RFF, Meireles CB, de Souza SIR, Reis AOA, Bianco B, Rolim MLN. The influence of inflammatory cytokines in physiopathology of suicidal behavior. J Affect Disord 2015; 172:219-30. [PMID: 25451421 DOI: 10.1016/j.jad.2014.09.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 09/30/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND Based on the urgent need for reliable biomarkers in relation to suicide risk both for more accurate prediction as well as for new therapeutic opportunities, several researchers have been studied evidences of the potential participation of inflammatory processes in the brain, in particular cytokines, in suicide. The purpose of this review was to analyze the associations between inflammation markers and suicide. METHODS To achieve this goal, a systematic review of literature was conducted via electronic database Scopus using the Medical Subject Headings (MeSH) terms: "cytokines", "suicide" and "inflammation". Through this search it was found 54 articles. After analyzing them 15 met the eligibility criteria and were included in the final sample. RESULTS One of the most mentioned inflammatory markers was Interferon-α (IFN-α), a pro-inflammatory cytokine which has been shown to increase serum concentrations of pro-inflammatory cytokines such as interleukin (IL)-1, IL-6, tumor necrosis factor-a (TNF- α) and IFN-ϒ, which are factors increased suicide victims and attempters. In this line, IL-6 is not only found to be elevated in the cerebrospinal fluid of suicide attempters, even its levels in the peripheral blood have been proposed as a biological suicide marker. Another study stated that increased levels of IL-4 and IL-13 transcription in the orbitofrontal cortex of suicides suggest that these cytokines may affect neurobehavioral processes relevant to suicide. LIMITATIONS A lack of studies and great amount of cross-sectional studies. CONCLUSION Inflammation may play an important role in the pathophysiology of suicide, especially, levels of some specific inflammatory cytokines.
Collapse
Affiliation(s)
| | | | - L C Maia
- Federal University of Cariri, Brazil
| | | | | | - S I R de Souza
- Pos-graduation Program in Health Sciences, Faculty of Medicine of ABC, Brazil
| | - A O A Reis
- Pos-graduation Program in Public Health, University of São Paulo, Brazil
| | - B Bianco
- Pos-graduation Program in Health Sciences, Faculty of Medicine of ABC, Brazil
| | | |
Collapse
|
31
|
Kang S, Min A, Im SA, Song SH, Kim SG, Kim HA, Kim HJ, Oh DY, Jong HS, Kim TY, Bang YJ. TGF-β Suppresses COX-2 Expression by Tristetraprolin-Mediated RNA Destabilization in A549 Human Lung Cancer Cells. Cancer Res Treat 2014; 47:101-9. [PMID: 25544576 PMCID: PMC4296860 DOI: 10.4143/crt.2013.192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/18/2013] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Overexpression of cyclooxygenase 2 (COX-2) is thought to promote survival of transformed cells. Transforming growth factor β (TGF-β) exerts anti-proliferative effects on a broad range of epithelial cells. In the current study, we investigated whether TGF-β can regulate COX-2 expression in A549 human lung adenocarcinoma cells, which are TGF-β-responsive and overexpress COX-2. MATERIALS AND METHODS Western blotting, Northern blotting, and mRNA stability assays were performed to demonstrate that COX-2 protein and mRNA expression were suppressed by TGF-β. We also evaluated the effects of tristetraprolin (TTP) on COX-2 mRNA using RNA interference. RESULTS We demonstrated that COX-2 mRNA and protein expression were both significantly suppressed by TGF-β. An actinomycin D chase experiment demonstrated that COX-2 mRNA was more rapidly degraded in the presence of TGF-β, suggesting that TGF-β-induced inhibition of COX-2 expression is achieved via decreased mRNA stability. We also found that TGF-β rapidly and transiently induced the expression of TTP, a well-known mRNA destabilizing factor, before suppression of COX-2 mRNA expression was observed. Using RNA interference, we confirmed that increased TTP levels play a pivotal role in the destabilization of COX-2 mRNA by TGF-β. Furthermore, we showed that Smad3 is essential to TTP-dependent down-regulation of COX-2 expression in response to TGF-β. CONCLUSION The results of this study show that TGF-β down-regulated COX-2 expression via mRNA destabilization mediated by Smad3/TTP in A549 cells.
Collapse
Affiliation(s)
- Soyeong Kang
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Ahrum Min
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National University, Seoul, Korea ; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea ; Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Hyun Song
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Sang Gyun Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hyun-Ah Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hee-Jun Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea ; Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University, Seoul, Korea ; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Soon Jong
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Tae-You Kim
- Cancer Research Institute, Seoul National University, Seoul, Korea ; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea ; Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Yung-Jue Bang
- Cancer Research Institute, Seoul National University, Seoul, Korea ; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
32
|
Brennan-Laun SE, Li XL, Ezelle HJ, Venkataraman T, Blackshear PJ, Wilson GM, Hassel BA. RNase L attenuates mitogen-stimulated gene expression via transcriptional and post-transcriptional mechanisms to limit the proliferative response. J Biol Chem 2014; 289:33629-43. [PMID: 25301952 DOI: 10.1074/jbc.m114.589556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular response to mitogens is tightly regulated via transcriptional and post-transcriptional mechanisms to rapidly induce genes that promote proliferation and efficiently attenuate their expression to prevent malignant growth. RNase L is an endoribonuclease that mediates diverse antiproliferative activities, and tristetraprolin (TTP) is a mitogen-induced RNA-binding protein that directs the decay of proliferation-stimulatory mRNAs. In light of their roles as endogenous proliferative constraints, we examined the mechanisms and functional interactions of RNase L and TTP to attenuate a mitogenic response. Mitogen stimulation of RNase L-deficient cells significantly increased TTP transcription and the induction of other mitogen-induced mRNAs. This regulation corresponded with elevated expression of serum-response factor (SRF), a master regulator of mitogen-induced transcription. RNase L destabilized the SRF transcript and formed a complex with SRF mRNA in cells providing a mechanism by which RNase L down-regulates SRF-induced genes. TTP and RNase L proteins interacted in cells suggesting that RNase L is directed to cleave TTP-bound RNAs as a mechanism of substrate specificity. Consistent with their concerted function in RNA turnover, the absence of either RNase L or TTP stabilized SRF mRNA, and a subset of established TTP targets was also regulated by RNase L. RNase L deficiency enhanced mitogen-induced proliferation demonstrating its functional role in limiting the mitogenic response. Our findings support a model of feedback regulation in which RNase L and TTP target SRF mRNA and SRF-induced transcripts. Accordingly, meta-analysis revealed an enrichment of RNase L and TTP targets among SRF-regulated genes suggesting that the RNase L/TTP axis represents a viable target to inhibit SRF-driven proliferation in neoplastic diseases.
Collapse
Affiliation(s)
- Sarah E Brennan-Laun
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and
| | - Xiao-Ling Li
- the Genetics Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Heather J Ezelle
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and the Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| | | | - Perry J Blackshear
- the Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Gerald M Wilson
- From the Marlene and Stewart Greenebaum Cancer Center, Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Bret A Hassel
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and the Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| |
Collapse
|
33
|
Müller S, Rycak L, Afonso-Grunz F, Winter P, Zawada AM, Damrath E, Scheider J, Schmäh J, Koch I, Kahl G, Rotter B. APADB: a database for alternative polyadenylation and microRNA regulation events. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau076. [PMID: 25052703 PMCID: PMC4105710 DOI: 10.1093/database/bau076] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3′ untranslated region (3′UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3′UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3′ end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3′ end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3′UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL:http://tools.genxpro.net/apadb/
Collapse
Affiliation(s)
- Sören Müller
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, GermanyPlant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| | - Lukas Rycak
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| | - Fabian Afonso-Grunz
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, GermanyPlant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| | - Peter Winter
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| | - Adam M Zawada
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| | - Ewa Damrath
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| | - Jessica Scheider
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| | - Juliane Schmäh
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| | - Ina Koch
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| | - Günter Kahl
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| | - Björn Rotter
- Plant Molecular Biology, Molecular BioSciences, University of Frankfurt am Main, Marie-Curie-Street 9, D-60439 Frankfurt, Germany, GenXPro GmbH, Frankfurt Innovation Center Biotechnology, Altenhöferallee 3, D-60438 Frankfurt, Germany, Molecular Bioinformatics Group, Faculty of Computer Science and Mathematics, Cluster of Excellence Frankfurt "Macromolecular Complexes", Institute of Computer Science, Robert-Mayer-Strasse 11-15, D-60325 Frankfurt am Main, Germany, Department of Internal Medicine IV; Saarland University Medical Center, Kirrberger Strasse, D-66421 Homburg/Saar, Germany, Experimental Neurology, Department of Neurology, Goethe University Medical School, Heinrich, Hoffmann Strasse 7, D-60528 Frankfurt am Main, Germany, Institute for Ecology, Evolution and Diversity, Aquatic Ecotoxicology, University of Frankfurt am Main, Max-von-Laue-Str. 13, D-60438 Frankfurt, Germany and Department of Pediatrics, University Hospital Schleswig-Holstein, Schwanenweg 20, D-24105 Kiel, Germany
| |
Collapse
|
34
|
Xiao J, Gao H, Jin Y, Zhao Z, Guo J, Liu Z, Zhao Z. The abnormal expressions of tristetraprolin and the VEGF family in uraemic rats with peritoneal dialysis. Mol Cell Biochem 2014; 392:229-38. [PMID: 24696420 DOI: 10.1007/s11010-014-2033-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/14/2014] [Indexed: 01/01/2023]
Abstract
The effect of peritoneal dialysis (PD) with high-glucose dialysis fluid on the VEGF family, tristetraprolin (TTP), angiogenesis and lymphangiogenesis was investigated. Forty male SD rats were randomised into five groups: normal group, sham operation group, uraemia group, PD 2-week group and PD4-week group. After 4 weeks of PD, microvessel density (MVD) and lymphatic vessel density (LVD) were measured. The expressions of both the VEGF family and TTP were detected. Compared with the normal group, the mRNA expression levels of the VEGF family were significantly increased in the uraemia group (P < 0.05), and also in the PD 2-week group and PD4-week group (P < 0.05) compared with uraemia group. The mRNAs of VEGF-A and VEGF-C in 4-week PD group likewise were significantly increased compared with the 2-week PD group. However, the mRNA expression of TTP was significantly decreased in the uraemia group compared with the normal group (P < 0.05), and also in the PD group compared with the uraemia group (P < 0.05). Compared with the normal group, the protein expressions of TTP were significantly decreased in the uraemia group (P < 0.05), and also in the PD group compared with the uraemia group (P < 0.05). Compared with the normal group, the MVD and LVD counts were gradually increased in the PD group, which was associated with PD time. In addition, the expression of TTP gradually decreased over PD time. High-glucose PD fluid and uraemic circumstance resulted in the abnormal expression of TTP and the VEGF family in a PD time-dependent manner; this may lead to UFF through angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, No.1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Gu L, Ning H, Qian X, Huang Q, Hou R, Almourani R, Fu M, Blackshear PJ, Liu J. Suppression of IL-12 production by tristetraprolin through blocking NF-kcyB nuclear translocation. THE JOURNAL OF IMMUNOLOGY 2013; 191:3922-30. [PMID: 23997224 DOI: 10.4049/jimmunol.1300126] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tristetraprolin (TTP), an mRNA-binding protein, plays a significant role in regulating the expression of adenylate-uridylate-rich elements containing mRNAs. Mice deficient of TTP (TTP(-/-)) develop a systemic autoimmune inflammatory syndrome characterized by cachexia, conjunctivitis, and dermatitis. IL-12 plays a crucial role in immune defense against infectious and malignant diseases. In this study, we found increased production of IL-12 during endotoxic shock and enhanced Th1 cells in TTP knockout mice. The levels of IL-12 p70 and p40 protein as well as p40 and p35 mRNA were also increased in activated macrophages deficient of TTP. In line with these findings, overexpression of TTP suppressed IL-12 p35 and p40 expression at the mRNA and promoter level, whereas it surprisingly had little effects on their mRNA stability. Our data showed that the inhibitory effects of TTP on p35 gene transcription were completely rescued by overexpression of NF-кB p65 and c-Rel but not by the p50 in activated macrophages. Our data further indicated that TTP acquired its inhibition on IL-12 expression through blocking nuclear translocation of NF-кB p65 and c-Rel while enhancing p50 upon stimulation. In summary, our study reveals a novel pathway through which TTP suppresses IL-12 production in macrophages, resulting in suppression of Th1 cell differentiation. This study may provide us with therapeutic targets for treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Ling Gu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
An J, Zhu X, Wang H, Jin X. A dynamic interplay between alternative polyadenylation and microRNA regulation: implications for cancer (Review). Int J Oncol 2013; 43:995-1001. [PMID: 23913120 DOI: 10.3892/ijo.2013.2047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/18/2013] [Indexed: 12/15/2022] Open
Abstract
Alternative polyadenylation and microRNA regulation are both mechanisms of post-transcriptional regulation of gene expression. Alternative polyadenylation often results in mRNA isoforms with the same coding sequence but different lengths of 3' UTRs, while microRNAs regulate gene expression by binding to specific mRNA 3' UTRs. In this sense, different isoforms of an mRNA may be differentially regulated by microRNAs, sometimes resulting in cellular proliferation and this mechanism is being speculated on as a potential cause for cancer development.
Collapse
Affiliation(s)
- Jindan An
- Key Laboratory of Cancer Prevention and Treatment of Heilongjiang Province, Mudanjiang Medical University, Mudanjiang, P.R. China
| | | | | | | |
Collapse
|
37
|
Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:666-79. [PMID: 23428348 PMCID: PMC3752887 DOI: 10.1016/j.bbagrm.2013.02.003] [Citation(s) in RCA: 303] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
Changes in mRNA stability and translation are critical control points in the regulation of gene expression, particularly genes encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenosine and uridine (AU)-rich elements (ARE), often located in the 3' untranslated regions (3'UTR) of mRNAs, are known to target transcripts for rapid decay. They are also involved in the regulation of mRNA stability and translation in response to extracellular cues. This review focuses on one of the best characterized ARE binding proteins, tristetraprolin (TTP), the founding member of a small family of CCCH tandem zinc finger proteins. In this survey, we have reviewed the current status of TTP interactions with mRNA and proteins, and discussed current thinking about TTP's mechanism of action to promote mRNA decay. We also review the proposed regulation of TTP's functions by phosphorylation. Finally, we have discussed emerging evidence for TTP operating as a translational regulator. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Seth A. Brooks
- Veterans Affairs Medical Center, White River Junction, Vermont, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
38
|
MSK1 and MSK2 inhibit lipopolysaccharide-induced prostaglandin production via an interleukin-10 feedback loop. Mol Cell Biol 2013; 33:1456-67. [PMID: 23382072 DOI: 10.1128/mcb.01690-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Prostaglandin production is catalyzed by cyclooxygenase 2 (cox-2). We demonstrate here that MSK1 and MSK2 (MSK1/2) can exert control on the induction of cox-2 mRNA by Toll-like receptor (TLR) agonists. In the initial phase of cox-2 induction, MSK1/2 knockout macrophages confirmed a role for MSK in the positive regulation of transcription. However, at later time points both lipopolysaccharide (LPS)-induced prostaglandin and cox-2 protein levels were increased in MSK1/2 knockout. Further analysis found that while MSKs promoted cox-2 mRNA transcription, following longer LPS stimulation MSKs also promoted degradation of cox-2 mRNA. This was found to be the result of an interleukin 10 (IL-10) feedback mechanism, with endogenously produced IL-10 promoting cox-2 degradation. The ability of IL-10 to do this was dependent on the mRNA binding protein TTP through a p38/MK2-mediated mechanism. As MSKs regulate IL-10 production in response to LPS, MSK1/2 knockout results in reduced IL-10 secretion and therefore reduced feedback from IL-10 on cox-2 mRNA stability. Following LPS stimulation, this increased mRNA stability correlated to an elevated induction of both of cox-2 protein and prostaglandin secretion in MSK1/2 knockout macrophages relative to that in wild-type cells. This was not restricted to isolated macrophages, as a similar effect of MSK1/2 knockout was seen on plasma prostaglandin E2 (PGE2) levels following intraperitoneal injection of LPS.
Collapse
|
39
|
Dixon DA, Blanco FF, Bruno A, Patrignani P. Mechanistic aspects of COX-2 expression in colorectal neoplasia. Recent Results Cancer Res 2013; 191:7-37. [PMID: 22893198 DOI: 10.1007/978-3-642-30331-9_2] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cyclooxygenase-2 (COX-2) enzyme catalyzes the rate-limiting step of prostaglandin formation in pathogenic states and a large amount of evidence has demonstrated constitutive COX-2 expression to be a contributing factor promoting colorectal cancer (CRC). Various genetic, epigenetic, and inflammatory pathways have been identified to be involved in the etiology and development of CRC. Alteration in these pathways can influence COX-2 expression at multiple stages of colon carcinogenesis allowing for elevated prostanoid biosynthesis to occur in the tumor microenvironment. In normal cells, COX-2 expression levels are potently regulated at the post-transcriptional level through various RNA sequence elements present within the mRNA 3' untranslated region (3'UTR). A conserved AU-rich element (ARE) functions to target COX-2 mRNA for rapid decay and translational inhibition through association with various RNA-binding proteins to influence the fate of COX-2 mRNA. Specific microRNAs (miRNAs) bind regions within the COX-2 3'UTR and control COX-2 expression. In this chapter, we discuss novel insights in the mechanisms of altered post-transcriptional regulation of COX-2 in CRC and how this knowledge may be used to develop novel strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
- Dan A Dixon
- Department of Cancer Biology, University of Kansas Medical Center, Kansas, KS 66106, USA.
| | | | | | | |
Collapse
|
40
|
Sun Y, Fu Y, Li Y, Xu A. Genome-wide alternative polyadenylation in animals: insights from high-throughput technologies. J Mol Cell Biol 2012; 4:352-61. [DOI: 10.1093/jmcb/mjs041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
41
|
Masuda K, Kuwano Y, Nishida K, Rokutan K. General RBP expression in human tissues as a function of age. Ageing Res Rev 2012; 11:423-31. [PMID: 22326651 DOI: 10.1016/j.arr.2012.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Gene expression patterns vary dramatically in a tissue-specific and age-dependent manner. RNA-binding proteins that regulate mRNA turnover and/or translation (TTR-RBPs) critically affect the subsets of expressed proteins. Although many proteins implicated in age-related processes are encoded by mRNAs that are targets of TTR-RBPs, very little is known regarding the tissue- and age-dependent expression of TTR-RBPs in humans. Recent analysis of TTR-RBPs expression using human tissue microarray has provided us interesting insight into their possibly physiologic roles as a function of age. This analysis has also revealed striking discrepancies between the levels of TTR-RBPs in senescent human diploid fibroblasts (HDFs), widely used as an in vitro model of aging, and the levels of TTR-RBPs in tissues from individuals of advancing age. In this article, we will review our knowledge of human TTR-RBP expression in different tissues as a function of age.
Collapse
|
42
|
Iwaki S, Yamamura S, Asai M, Sobel BE, Fujii S. Posttranscriptional regulation of expression of plasminogen activator inhibitor type-1 by sphingosine 1-phosphate in HepG2 liver cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1132-41. [PMID: 22819712 DOI: 10.1016/j.bbagrm.2012.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/02/2012] [Accepted: 07/11/2012] [Indexed: 11/26/2022]
Abstract
Altered expression of plasminogen activator inhibitor type-1 (PAI-1), a major physiologic inhibitor of fibrinolysis, is implicated in the progression of atherosclerosis. Sphingosine 1-phosphate (S1P) regulates expression of diverse genes and alters expression of PAI-1 in several types of cells. However, the nature of posttranscriptional regulation of expression of PAI-1 by S1P has not yet been thoroughly elucidated. The present study was undertaken to determine whether S1P has important effects on the posttranscriptional regulation of PAI-1 expression. To evaluate this possibility, we determined promoter activity, mRNA levels, 3'-untranslated region (UTR) activity, and protein levels of PAI-1 in HepG2 cells. S1P increased PAI-1 promoter activity and the expression of PAI-1 mRNA within 4h of exposure. It decreased the expression of PAI-1 mRNA and the accumulation of PAI-1 protein into the media in 24h. Human PAI-1 mRNA exists in two subspecies (3.2 and 2.2kb). S1P decreased the baseline luciferase activity of the 1kb fragment of the 3' terminus (+2177 to 3176nt) of the 3'-UTR of the 3.2kb PAI-1 mRNA [3'-UTR (+2177-3176)]. S1P decreased expression of PAI-1 protein, presumably by regulating PAI-1 expression at the posttranscriptional level thereby affecting mRNA stability. SERPINE1 mRNA binding protein (SERBP1) and ARE3 in the 3'-UTR were involved in the posttranscriptional regulation by S1P. Our data suggest that S1P can destabilize 3.2kb PAI-1 mRNA through specific effects on the 3'-UTR. These effects appear to involve SERBP1 leading to decreased expression of PAI-1 protein.
Collapse
Affiliation(s)
- Soichiro Iwaki
- Department of Molecular and Cellular Pathobiology and Therapeutics, Nagoya City University, Nagoya, Japan
| | | | | | | | | |
Collapse
|
43
|
Huotari N, Hömmö T, Taimi V, Nieminen R, Moilanen E, Korhonen R. Regulation of tristetraprolin expression by mitogen-activated protein kinase phosphatase-1. APMIS 2012; 120:988-99. [DOI: 10.1111/j.1600-0463.2012.02927.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/01/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Noora Huotari
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Tuija Hömmö
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Ville Taimi
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Riku Korhonen
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| |
Collapse
|
44
|
Matoulkova E, Michalova E, Vojtesek B, Hrstka R. The role of the 3' untranslated region in post-transcriptional regulation of protein expression in mammalian cells. RNA Biol 2012; 9:563-76. [PMID: 22614827 DOI: 10.4161/rna.20231] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The untranslated regions (UTRs) at the 3'end of mRNA transcripts contain important sequences that influence the fate of mRNA and thus proteosynthesis. In this review, we summarize the information known to date about 3'end processing, sequence characteristics including related binding proteins and the role of 3'UTRs in several selected signaling pathways to delineate their importance in the regulatory processes in mammalian cells. In addition to reviewing recent advances in the more well known aspects, such as cleavage and polyadenylation processes that influence mRNA stability and location, we concentrate on some newly emerging concepts of the role of the 3'UTR, including alternative polyadenylation sites in relation to proliferation and differentiation and the recognition of the multi-functional properties of non-coding RNAs, including miRNAs that commonly target the 3'UTR. The emerging picture is of a highly complex set of regulatory systems that include autoregulation, cooperativity and competition to fine tune proteosynthesis in context-dependent manners.
Collapse
|
45
|
Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:42-57. [PMID: 21278925 DOI: 10.1002/wrna.28] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenylate- and uridylate-rich element (ARE) motifs are cis-acting elements present in the 3′ untranslated region of mRNA transcripts that encode many inflammation- and cancer-associated genes. The TIS11 family of RNA-binding proteins, composed of tristetraprolin (TTP) and butyrate response factors 1 and 2 (BRF-1 and -2), plays a critical role in regulating the expression of ARE-containing mRNAs. Through their ability to bind and target ARE-containing mRNAs for rapid degradation, this class of RNA-binding proteins serves a fundamental role in limiting the expression of a number of critical genes, thereby exerting anti-inflammatory and anti-cancer effects. Regulation of TIS11 family members occurs on a number of levels through cellular signaling events to control their transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TIS11 members' ability to promote ARE-mediated mRNA decay along with decay-independent functions. This review summarizes our current understanding of posttranscriptional regulation of ARE-containing gene expression by TIS11 family members and discusses their role in maintaining normal physiological processes and the pathological consequences in their absence.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC, USA
| | | | | |
Collapse
|
46
|
Jin WJ, Chen CF, Liao HY, Gong LL, Yuan XH, Zhao BB, Zhang D, Feng X, Liu JJ, Wang Y, Chen GF, Yan HP, He YW. Downregulation of the AU-rich RNA-binding protein ZFP36 in chronic HBV patients: implications for anti-inflammatory therapy. PLoS One 2012; 7:e33356. [PMID: 22428029 PMCID: PMC3302862 DOI: 10.1371/journal.pone.0033356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 12/12/2022] Open
Abstract
Inflammation caused by chronic hepatitis B virus (HBV) infection is associated with the development of cirrhosis and hepatocellular carcinoma; however, the mechanisms by which HBV infection induces inflammation and inflammatory cytokine production remain largely unknown. We analyzed the gene expression patterns of lymphocytes from chronic HBV-infected patients and found that the expression of ZFP36, an AU-rich element (ARE)-binding protein, was dramatically reduced in CD4(+) and CD8(+) T lymphocytes from chronic HBV patients. ZFP36 expression was also reduced in CD14(+) monocytes and in total PBMCs from chronic HBV patients. To investigate the functional consequences of reduced ZFP36 expression, we knocked down ZFP36 in PBMCs from healthy donors using siRNA. siRNA-mediated silencing of ZFP36 resulted in dramatically increased expression of multiple inflammatory cytokines, most of which were also increased in the plasma of chronic HBV patients. Furthermore, we found that IL-8 and RANTES induced ZFP36 downregulation, and this effect was mediated through protein kinase C. Importantly, we found that HBsAg stimulated PBMCs to express IL-8 and RANTES, resulting in decreased ZFP36 expression. Our results suggest that an inflammatory feedback loop involving HBsAg, ZFP36, and inflammatory cytokines may play a critical role in the pathogenesis of chronic HBV and further indicate that ZFP36 may be an important target for anti-inflammatory therapy during chronic HBV infection.
Collapse
Affiliation(s)
- Wen-Jing Jin
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Cai-Feng Chen
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Hui-Yu Liao
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - Lu-Lu Gong
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Xiao-Hui Yuan
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Bin-Bin Zhao
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Ding Zhang
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Xia Feng
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - Jing-Jun Liu
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Yu Wang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guo-Feng Chen
- Fibrosis Noninvasive Diagnosis and Treatment Center, 302 Hospital, Beijing, China
| | - Hui-Ping Yan
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - You-Wen He
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
47
|
Mahat DB, Brennan-Laun SE, Fialcowitz-White EJ, Kishor A, Ross CR, Pozharskaya T, Rawn JD, Blackshear PJ, Hassel BA, Wilson GM. Coordinated expression of tristetraprolin post-transcriptionally attenuates mitogenic induction of the oncogenic Ser/Thr kinase Pim-1. PLoS One 2012; 7:e33194. [PMID: 22413002 PMCID: PMC3297641 DOI: 10.1371/journal.pone.0033194] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 02/06/2012] [Indexed: 12/27/2022] Open
Abstract
The serine/threonine kinase Pim-1 directs selected signaling events that promote cell growth and survival and is overexpressed in diverse human cancers. Pim-1 expression is tightly controlled through multiple mechanisms, including regulation of mRNA turnover. In several cultured cell models, mitogenic stimulation rapidly induced and stabilized PIM1 mRNA, however, vigorous destabilization 4-6 hours later helped restore basal expression levels. Acceleration of PIM1 mRNA turnover coincided with accumulation of tristetraprolin (TTP), an mRNA-destabilizing protein that targets transcripts containing AU-rich elements. TTP binds PIM1 mRNA in cells, and suppresses its expression by accelerating mRNA decay. Reporter mRNA decay assays localized the TTP-regulated mRNA decay element to a discrete AU-rich sequence in the distal 3'-untranslated region that binds TTP. These data suggest that coordinated stimulation of TTP and PIM1 expression limits the magnitude and duration of PIM1 mRNA accumulation by accelerating its degradation as TTP protein levels increase. Consistent with this model, PIM1 and TTP mRNA levels were well correlated across selected human tissue panels, and PIM1 mRNA was induced to significantly higher levels in mitogen-stimulated fibroblasts from TTP-deficient mice. Together, these data support a model whereby induction of TTP mediates a negative feedback circuit to limit expression of selected mitogen-activated genes.
Collapse
Affiliation(s)
- Dig B. Mahat
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah E. Brennan-Laun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth J. Fialcowitz-White
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Aparna Kishor
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Christina R. Ross
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tatyana Pozharskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - J. David Rawn
- Department of Chemistry, Towson University, Baltimore, Maryland, United States of America
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, NIEHS-NIH, Research Triangle Park, North Carolina, United States of America
| | - Bret A. Hassel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gerald M. Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
48
|
Rossi A, Coccia M, Trotta E, Angelini M, Santoro MG. Regulation of cyclooxygenase-2 expression by heat: a novel aspect of heat shock factor 1 function in human cells. PLoS One 2012; 7:e31304. [PMID: 22347460 PMCID: PMC3275557 DOI: 10.1371/journal.pone.0031304] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022] Open
Abstract
The heat-shock response, a fundamental defense mechanism against proteotoxic stress, is regulated by a family of heat-shock transcription factors (HSF). In humans HSF1 is considered the central regulator of heat-induced transcriptional responses. The main targets for HSF1 are specific promoter elements (HSE) located upstream of heat-shock genes encoding cytoprotective heat-shock proteins (HSP) with chaperone function. In addition to its cytoprotective function, HSF1 was recently hypothesized to play a more complex role, regulating the expression of non-HSP genes; however, the non-canonical role of HSF1 is still poorly understood. Herein we report that heat-stress promotes the expression of cyclooxygenase-2 (COX-2), a key regulator of inflammation controlling prostanoid and thromboxane synthesis, resulting in the production of high levels of prostaglandin-E(2) in human cells. We show that heat-induced COX-2 expression is regulated at the transcriptional level via HSF1-mediated signaling and identify, by in-vitro reporter gene activity assay and deletion-mutant constructs analysis, the COX-2 heat-responsive promoter region and a new distal cis-acting HSE located at position -2495 from the transcription start site. As shown by ChIP analysis, HSF1 is recruited to the COX-2 promoter rapidly after heat treatment; by using shRNA-mediated HSF1 suppression and HSE-deletion from the COX-2 promoter, we demonstrate that HSF1 plays a central role in the transcriptional control of COX-2 by heat. Finally, COX-2 transcription is also induced at febrile temperatures in endothelial cells, suggesting that HSF1-dependent COX-2 expression could contribute to increasing blood prostaglandin levels during fever. The results identify COX-2 as a human non-classical heat-responsive gene, unveiling a new aspect of HSF1 function.
Collapse
Affiliation(s)
- Antonio Rossi
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Marta Coccia
- Institute of Translational Pharmacology, CNR, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Edoardo Trotta
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Mara Angelini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - M. Gabriella Santoro
- Institute of Translational Pharmacology, CNR, Rome, Italy
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- * E-mail:
| |
Collapse
|
49
|
Agra Andrieu N, Motiño O, Mayoral R, Llorente Izquierdo C, Fernández-Alvarez A, Boscá L, Casado M, Martín-Sanz P. Cyclooxygenase-2 is a target of microRNA-16 in human hepatoma cells. PLoS One 2012; 7:e50935. [PMID: 23226427 PMCID: PMC3511388 DOI: 10.1371/journal.pone.0050935] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/26/2012] [Indexed: 02/07/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) expression has been detected in human hepatoma cell lines and in human hepatocellular carcinoma (HCC); however, the contribution of COX-2 to the development of HCC remains controversial. COX-2 expression is higher in the non-tumoral tissue and inversely correlates with the differentiation grade of the tumor. COX-2 expression depends on the interplay between different cellular pathways involving both transcriptional and post-transcriptional regulation. The aim of this work was to assess whether COX-2 could be regulated by microRNAs in human hepatoma cell lines and in human HCC specimens since these molecules contribute to the regulation of genes implicated in cell growth and differentiation. Our results show that miR-16 silences COX-2 expression in hepatoma cells by two mechanisms: a) by binding directly to the microRNA response element (MRE) in the COX-2 3'-UTR promoting translational suppression of COX-2 mRNA; b) by decreasing the levels of the RNA-binding protein Human Antigen R (HuR). Furthermore, ectopic expression of miR-16 inhibits cell proliferation, promotes cell apoptosis and suppresses the ability of hepatoma cells to develop tumors in nude mice, partially through targeting COX-2. Moreover a reduced miR-16 expression tends to correlate to high levels of COX-2 protein in liver from patients affected by HCC. Our data show an important role for miR-16 as a post-transcriptional regulator of COX-2 in HCC and suggest the potential therapeutic application of miR-16 in those HCC with a high COX-2 expression.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Base Sequence
- Biopsy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Down-Regulation
- ELAV Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mice
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Molecular Sequence Data
- Protein Biosynthesis/genetics
- Protein Stability
- RNA Stability/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Noelia Agra Andrieu
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
| | - Omar Motiño
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
| | - Rafael Mayoral
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Cristina Llorente Izquierdo
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
| | - Ana Fernández-Alvarez
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, (Centro Mixto Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- * E-mail:
| |
Collapse
|
50
|
Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA. The role of tristetraprolin in cancer and inflammation. Front Biosci (Landmark Ed) 2012; 17:174-88. [PMID: 22201737 DOI: 10.2741/3920] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Messenger RNA decay is a critical mechanism to control the expression of many inflammation- and cancer-associated genes. These transcripts are targeted for rapid degradation through AU-rich element (ARE) motifs present in the mRNA 3' untranslated region (3'UTR). Tristetraprolin (TTP) is an RNA-binding protein that plays a significant role in regulating the expression of ARE-containing mRNAs. Through its ability to bind AREs and target the bound mRNA for rapid degradation, TTP can limit the expression of a number of critical genes frequently overexpressed in inflammation and cancer. Regulation of TTP occurs on multiple levels through cellular signaling events to control transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TTP's ability to promote ARE-mediated mRNA decay along with decay-independent functions of TTP. This review summarizes the current understanding of post-transcriptional regulation of ARE-containing gene expression by TTP and discusses its role in maintaining homeostasis and the pathological consequences of losing TTP expression.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203, USA
| | | | | | | | | |
Collapse
|