1
|
Liao J, Liu J, Zhou Y, Shi L, Chen YJ, Guo S, Zhang CY, Liu XY, Tao WQ, Xiang JJ, Yang-Lei, Liu G, Wang W, Kuang L, Ran LY. L1CAM + extracellular vesicles derived from the serum of adolescents with major depressive disorder induce depression-like phenotypes in adolescent mice. J Affect Disord 2025; 375:180-191. [PMID: 39842672 DOI: 10.1016/j.jad.2025.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/31/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND It has been reported that L1 cell adhesion molecule (L1CAM) antibody can capture neuron-derived extracellular vesicles (NDEVs) derived from peripheral blood. This antibody is significantly associated with occurrence of adult psychiatric disorders. However, the role and mechanism of L1CAM+ EVs (L1+ EVs) in adolescent with major depressive disorder (AMDD) is not well understood. This research aimed to explore the function and potential mechanism of L1+ EVs and miRNAs genes in AMDD. METHODS L1+ EVs derived from the serum of AMDD and healthy controls (HC) were transplanted into adolescent mice via tail vein. Their effects were explored using behavioral tests, hippocampal Nissl staining, and whole genome mRNA sequencing. MiRNAs expression in L1+ EVs was evaluated by whole-genome sequencing and qRT-PCR. Bioinformatics analysis was employed to explore the possible pathogenic molecular mechanisms of these miRNAs in AMDD. RESULTS Transplantation of L1+ EVs from AMDD induced depression-like behavior and hippocampal neuronal damage in adolescent mice and aberrant expression of 298 mRNA genes. The molecular signals related to MDD were enriched in the top pathways of the differentially expressed genes. Compared with HC, miR-375-3p and miR-200a-3p were upregulated in L1+ EVs from AMDD, miR-375-3p was also increased in the hippocampus of AMDD serum L1+ EVs-recipient mice. Bioinformatics analysis revealed that miR-375-3p might modulate the network of molecules associated with the MAPK pathway via protein interaction involving hippocampal differential genes Cadm2, Cacna2d1, and Casz1. CONCLUSION MiR-375-3p might contribute to L1+ EVs-induced AMDD. L1+ EVs miR-375-3p and miR-200a-3p could potentially serve as potential biomarkers for AMDD.
Collapse
Affiliation(s)
- Jing Liao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jie Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Yang Zhou
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Lei Shi
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yu-Jia Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Shan Guo
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Chen-Yu Zhang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Xin-Yi Liu
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wan-Qing Tao
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Jiao-Jiao Xiang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China
| | - Yang-Lei
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Gang Liu
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Wo Wang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China
| | - Li Kuang
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400016, China.
| | - Liu-Yi Ran
- Mental Health Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China; Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, NO.55, University Town Middle Road, Shapingba District, Chongqing 401331, China.
| |
Collapse
|
2
|
Qian L, Chen P, Zhang S, Wang Z, Guo Y, Koutouratsas V, Fleishman JS, Huang C, Zhang S. The uptake of extracellular vesicles: Research progress in cancer drug resistance and beyond. Drug Resist Updat 2025; 79:101209. [PMID: 39893749 DOI: 10.1016/j.drup.2025.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous vesicles released by donor cells that can be taken up by recipient cells, thus inducing cellular phenotype changes. Since their discovery decades ago, roles of EVs in modulating initiation, growth, survival and metastasis of cancer have been revealed. Recent studies from multifaceted perspectives have further detailed the contribution of EVs to cancer drug resistance; however, the role of EV uptake in conferring drug resistance seems to be overlooked. In this comprehensive review, we update the EV subtypes and approaches for determining EV uptake. The biological basis of EV uptake is systematically summarized. Moreover, we focus on the diverse uptake mechanisms by which EVs carry out the intracellular delivery of functional molecules and drug resistance signaling. Furthermore, we highlight how EV uptake confers drug resistance and identify potential strategies for targeting EV uptake to overcome drug resistance. Finally, we discuss the research gap on the role of EV uptake in promoting drug resistance. This updated knowledge provides a new avenue to overcome cancer drug resistance by targeting EV uptake.
Collapse
Affiliation(s)
- Luomeng Qian
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Pangzhou Chen
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Zhenglu Wang
- Department of Pathology, Tianjin Key Laboratory for Organ Transplantation, Tianjin First Centre Hospital, Tianjin 300192, China
| | - Yuan Guo
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Vasili Koutouratsas
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chuanqiang Huang
- Department of Breast Surgery, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan 528200, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Ge YY, Xia XC, Wu AQ, Ma CY, Yu LH, Zhou JY. Identifying adipocyte-derived exosomal miRNAs as potential novel prognostic markers for radiotherapy of esophageal squamous cell carcinoma. World J Gastrointest Oncol 2025; 17:98808. [PMID: 39958561 PMCID: PMC11756016 DOI: 10.4251/wjgo.v17.i2.98808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/27/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Radiation resistance limits radiotherapy efficacy in esophageal squamous cell carcinoma (ESCC). The tumor microenvironment, particularly adipocytes, plays a role in promoting cancer progression. Extracellular vesicles and microRNAs (miRNAs) regulate gene expression and hold prognostic potential for esophageal carcinoma. Elucidating radioresistance mechanisms and identifying radiosensitization targets can help enhance radiotherapy efficacy for esophageal cancer. AIM To investigate the potential role of miRNAs derived from adipocyte exosomes as prognostic markers for radiotherapy efficacy in ESCC. METHODS Free adipocytes were isolated from human thoracic adipose tissue. A co-culture model of adipocytes and ESCC cells was established to observe colony formation and cell survival post-irradiation. ESCC cell apoptosis was assessed by flow cytometry. Western Blot and immunofluorescence assays were performed to evaluate DNA damage in ESCC cells post-irradiation. Adipocyte-derived exosomes were isolated by ultracentrifugation and identified by electron microscopy. A similar set of experiments was performed on ESCC cells to analyze cell survival, apoptosis, and DNA damage post-radiation exposure. Exosomes from adipose tissue and serum exosomes from ESCC patients pre- and post-radiotherapy were subjected to high-throughput miRNA-sequencing and validated using real-time quantitative polymerase chain reaction. The correlation between potential target miRNAs and the short-term prognosis of radiotherapy in ESCC was evaluated by receiver operating characteristic curve analysis. RESULTS Co-culturing adipocytes with ESCC cells enhanced radioresistance, as evidenced by increased colony formation. Adipocyte co-culture reduced ESCC cell apoptosis and DNA damage post-radiation. Adipocyte-derived exosomes similarly conferred radioresistance in ESCC cells, decreasing apoptosis and DNA damage post-irradiation. High-throughput miRNA-sequencing identified miR-660-5p in serum and adipose tissue exosomes. Patients with high expression of serum exosome miR-660-5p showed poor prognosis after radiotherapy. CONCLUSION Adipocyte-derived exosomal miR-660-5p is a potential biomarker for evaluating radiotherapy efficacy in ESCC.
Collapse
Affiliation(s)
- Yang-Yang Ge
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Radiotherapy, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu Province, China
| | - Xiao-Chun Xia
- Department of Radiotherapy, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu Province, China
| | - An-Qing Wu
- School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, Jiangsu Province, China
| | - Chen-Ying Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Ling-Hui Yu
- Department of Brachytherapy, The Affiliated Tumor Hospital of Nantong University, Nantong 226361, Jiangsu Province, China
| | - Ju-Ying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
4
|
Aggio JB, Vedam VV, Nisimura LM, da Silva RV, Lovo-Martins MI, Borges BS, Mörking PA, Batista M, Marchini FK, Yamada-Ogatta SF, Pinge-Filho P, Goldenberg S, Eger I, Wowk PF. Trypanosomatid Extracellular Vesicles as Potential Immunogens for Chagas Disease. Int J Mol Sci 2025; 26:1544. [PMID: 40004010 PMCID: PMC11855489 DOI: 10.3390/ijms26041544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Chagas disease remains a significant public health concern, with limited treatment options and an urgent need for novel preventive strategies. Extracellular vesicles (EVs) from Trypanosoma cruzi have been shown to modulate host immune responses, often favoring parasite persistence. In this study, we characterized EVs derived from the non-pathogenic trypanosomatids Trypanosoma rangeli and Phytomonas serpens and evaluated their potential as immunogens capable of inducing cross-protection against T. cruzi infection. Isolated EVs were characterized by Nanoparticle Tracking Analysis (NTA) and electron microscopy. A comparative proteomic analysis of EVs was performed using Mass Spectrometry-Based Proteomic Analysis (LC-MS/MS). The effects of EVs on immunomodulation and T. cruzi infection were assessed through in vitro and in vivo assays, using peripheral blood mononuclear cells (PBMCs) and BALB/c mice. The proteomic analysis identified shared proteins between the EVs of T. rangeli, P. serpens, and T. cruzi, including immunogenic candidates such as calpain-like cysteine peptidase and elongation factor 2. In vitro, pre-stimulation with the T. rangeli EVs reduced infection rates of the host cells by T. cruzi. In vivo, immunization with the EVs from T. rangeli and P. serpens led to a significant reduction in parasitemia in the BALB/c mice challenged with T. cruzi, though this did not translate into improved survival compared to controls. Interestingly, the EVs from T. cruzi also reduced parasitemia but did not confer protection against mortality. These findings suggest that while non-pathogenic trypanosomatid EVs exhibit potential immunogenic properties and can reduce parasitic load, their efficacy in preventing disease progression remains limited. Further research is needed to explore the mechanisms underlying these effects and to optimize EV-based strategies for protective immunity against Chagas disease.
Collapse
Affiliation(s)
- Juliana Bernardi Aggio
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Verônica Vitória Vedam
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
- Laboratório de Biologia Celular e Protozoologia, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Líndice Mitie Nisimura
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
- Grupo de Imunologia Molecular, Celular e Inteligência Artificial, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil
| | - Rosiane Valeriano da Silva
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
- Laboratório de Imunopatologia Experimental, Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Maria Izabel Lovo-Martins
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
- Laboratório de Imunopatologia Experimental, Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Beatriz Santana Borges
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Patrícia Alves Mörking
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Michel Batista
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Fabricio Klerynton Marchini
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Sueli Fumie Yamada-Ogatta
- Laboratório de Biologia Molecular de Microrganismos, Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Phileno Pinge-Filho
- Laboratório de Imunopatologia Experimental, Departamento de Imunologia, Parasitologia e Patologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86057-970, Brazil;
| | - Samuel Goldenberg
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
| | - Iriane Eger
- Laboratório de Biologia Celular e Protozoologia, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, Brazil
| | - Pryscilla Fanini Wowk
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil; (J.B.A.); (V.V.V.); (L.M.N.); (R.V.d.S.); (M.I.L.-M.); (B.S.B.); (P.A.M.); (S.G.)
- Grupo de Imunologia Molecular, Celular e Inteligência Artificial, Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ-PR), Curitiba 81350-010, Brazil
| |
Collapse
|
5
|
Wang J, Wang X, Luo H, Xie Y, Cao H, Mao L, Liu T, Yue Y, Qian H. Extracellular vesicles in Helicobacter pylori-mediated diseases: mechanisms and therapeutic potential. Cell Commun Signal 2025; 23:79. [PMID: 39934861 DOI: 10.1186/s12964-025-02074-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Extracellular vesicles (EVs) are relevant elements for cell-to-cell communication and are considered crucial in host-pathogen interactions by transferring molecules between the pathogen and the host during infections. These structures participate in various physiological and pathological processes and are considered promising candidates as disease markers, therapeutic reagents, and drug carriers. Both H. pylori and the host epithelial cells infected by H. pylori secrete EVs, which contribute to inflammation and the development of disease phenotypes. However, many aspects of the cellular and molecular biology of EV functions remain incompletely understood due to methodological challenges in studying these small structures. This review also highlights the roles of EVs derived from H. pylori-infected cells in the pathogenesis of gastric and extragastric diseases. Understanding the specific functions of these EVs during H. pylori infections, whether are advantageous to the host or the pathogen, may help the development new therapeutic approaches to prevent disease.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Xiuping Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Hao Luo
- Department of Clinical Laboratory, The Second People's Hospital of Kunshan, Suzhou, Jiangsu, 215300, China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210003, China
| | - Lingxiang Mao
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Tingting Liu
- Science and Technology Talent Department, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Yushan Yue
- Department of Rehabilitative Medicine, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhengjiang, Jiangsu, 212013, China.
| |
Collapse
|
6
|
Clarissa EM, Karmacharya M, Choi H, Kumar S, Cho YK. Nature Inspired Delivery Vehicles for CRISPR-Based Genome Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409353. [PMID: 39901476 DOI: 10.1002/smll.202409353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/16/2025] [Indexed: 02/05/2025]
Abstract
The advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing technologies has opened up groundbreaking possibilities for treating a wide spectrum of genetic disorders and diseases. However, the success of these technologies relies heavily on the development of efficient and safe delivery systems. Among the most promising approaches are natural and synthetic nanocarrier-mediated delivery systems, including viral vectors, extracellular vesicles (EVs), engineered cellular membrane particles, liposomes, and various nanoparticles. These carriers enhance the efficacy of the CRISPR system by providing a unique combination of efficiency, specificity, and reduced immunogenicity. Synthetic carriers such as liposomes and nanoparticles facilitate CRISPR delivery with high reproducibility and customizable functions. Viral vectors, renowned for their high transduction efficiency and broad tropism, serve as powerful vehicles for delivering CRISPR components to various cell types. EVs, as natural carriers of RNA and proteins, offer a stealth mechanism to evade immune detection, allowing for the targeted delivery of genome editors with minimal off-target effects. Engineered cellular membrane particles further improve delivery by simulating the cellular environment, enhancing uptake, and minimizing immune response. This review explores the innovative integration of CRISPR genome editors with various nanocarrier systems, focusing on recent advancements, applications, and future directions in therapeutic genome editing.
Collapse
Affiliation(s)
- Elizabeth Maria Clarissa
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Hyunmin Choi
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sumit Kumar
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Algorithmic and Robotized Synthesis, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
7
|
Ho J, Sukati S, Taylor T, Carter S, Fuller B, Marmo A, Sorge C, D'Orazio J, Butterfield DA, Bondada S, Weiss H, St Clair DK, Chaiswing L. Extracellular vesicles released by ALL patients contain HNE-adducted proteins: Implications of collateral damage. Free Radic Biol Med 2025; 227:312-321. [PMID: 39643137 PMCID: PMC11786608 DOI: 10.1016/j.freeradbiomed.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Off-target neuronal injury is a serious side-effect observed in cancer survivors. It has previously been shown that pediatric acute lymphoblastic leukemia (ALL) survivors have a decline in neurocognition compared to healthy age-matched counterparts. Elevated oxidative stress has been documented to be a mediator in off-target tissue damage in cancer survivors. Early detection of oxidative stress markers may provide an opportunity to prevent off-target tissue damage. Extracellular vesicles (EVs) have surfaced as a potential diagnostic tool due to molecular cargo they contain. We investigated the potential for EVs to be a sensitive indicator of oxidative stress and off-target tissue damage by isolating EVs from pediatric ALL patients throughout their first 2 months of treatment. EVs were measured throughout the collection points for: 1) number of EV particles generated using nanoparticle tracking analysis (NTA); 2) markers of neurons (NeuN), astrocyte activation (GFAP), neuronal stability (BDNF), 3) markers of pre-B cell ALL (CD19 and CD22); and) 4-hydroxy-2-nonenal (HNE) adducted proteins. HNE protein adductions were measured in the patient sera and CSF. Pro-inflammatory cytokine levels were also measured in patient sera because of their contribution to oxidative stress and neuronal injury. Our results: 1) demonstrate EVs are a sensitive indicator of oxidative damage; 2) suggest EVs as a marker of a decline in neuronal stability; and 3) show the presence of leukemia has a greater contribution to pro-inflammatory cytokine production in the patient's serum than the cancer treatment. Specifically, we observed a significant decrease in cytokine levels (e.g., TNF-α, IL-1β, IL-6, and IL-8) following the initiation of treatment, highlighting the influence of leukemia burden on systemic inflammation. The results support the utilization of EVs as a sensitive marker of oxidative stress and off-target tissue damage.
Collapse
Affiliation(s)
- Jenni Ho
- Department of Toxicology and Cancer Biology, University of Kentucky, USA; Markey Cancer Center, University of Kentucky, USA
| | - Suriyan Sukati
- Department of Medical Technology, Walailak University, Thailand
| | - Tamara Taylor
- Department of Pediatrics, University of Kentucky, USA
| | - Sherry Carter
- Department of Pediatrics, University of Kentucky, USA
| | | | - Amy Marmo
- Department of Pediatrics, University of Kentucky, USA
| | - Caryn Sorge
- Department of Pediatrics, University of Kentucky, USA
| | - John D'Orazio
- Markey Cancer Center, University of Kentucky, USA; Department of Pediatrics, University of Kentucky, USA
| | - D Allan Butterfield
- Markey Cancer Center, University of Kentucky, USA; Department of Chemistry, University of Kentucky, USA
| | - Subbarao Bondada
- Markey Cancer Center, University of Kentucky, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, USA
| | - Heidi Weiss
- Markey Cancer Center, University of Kentucky, USA; Department of Surgery and Biostatistics, University of Kentucky, USA
| | - Daret K St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, USA; Markey Cancer Center, University of Kentucky, USA
| | - Luksana Chaiswing
- Department of Toxicology and Cancer Biology, University of Kentucky, USA; Markey Cancer Center, University of Kentucky, USA.
| |
Collapse
|
8
|
Cleary JA, Kumar A, Craft S, Deep G. Neuron-derived extracellular vesicles as a liquid biopsy for brain insulin dysregulation in Alzheimer's disease and related disorders. Alzheimers Dement 2025; 21:e14497. [PMID: 39822132 PMCID: PMC11848159 DOI: 10.1002/alz.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) have emerged as novel blood-based biomarkers for various pathologies. The development of methods to enrich cell-specific EVs from biofluids has enabled us to monitor difficult-to-access organs, such as the brain, in real time without disrupting their function, thus serving as liquid biopsy. Burgeoning evidence indicates that the contents of neuron-derived EVs (NDEs) in blood reveal dynamic alterations that occur during neurodegenerative pathogenesis, including Alzheimer's disease (AD), reflecting a disease-specific molecular signature. Among these AD-specific molecular changes is brain insulin-signaling dysregulation, which cannot be assessed clinically in a living patient and remains an unexplained co-occurrence during AD pathogenesis. This review is focused on delineating how NDEs in the blood may begin to close the gap between identifying molecular changes associated with brain insulin dysregulation reliably in living patients and its connection to AD. This approach could lead to the identification of novel early and less-invasive diagnostic molecular biomarkers for AD. HIGHLIGHTS: Neuron-derived extracellular vesicles (NDEs) could be isolated from peripheral blood. NDEs in blood reflect the molecular signature of Alzheimer's disease (AD). Brain insulin-signaling dysregulation plays a critical role in AD. NDEs in blood could predict brain insulin-signaling dysregulation. NDEs offer novel early and less-invasive diagnostic biomarkers for AD.
Collapse
Affiliation(s)
- Jacob Alexander Cleary
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Ashish Kumar
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Suzanne Craft
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Gagan Deep
- Department of Internal Medicine‐Gerontology and Geriatric MedicineWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Sticht Center for Healthy Aging and Alzheimer's PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
- Atrium Health Wake Forest Baptist Comprehensive Cancer CenterWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
9
|
Hong X, Cai L, Li L, Zheng D, Lin J, Liang Z, Fu W, Liang D, Zeng T, Sun K, Wang W, Chen S, Ren M, Yan L. Keratinocyte-derived small extracellular vesicles delay diabetic wound healing by triggering fibroblasts autophagy. Arch Physiol Biochem 2025; 131:11-23. [PMID: 38828847 DOI: 10.1080/13813455.2024.2358020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/16/2024] [Indexed: 06/05/2024]
Abstract
Keratinocyte and fibroblast dysfunctions contribute to delayed healing of diabetic wounds. Small extracellular vesicles (sEV) are key mediators of intercellular communication and are involved in the pathogenesis of several diseases. Recent findings suggest that sEV derived from high-glucose-treated keratinocyte (HaCaT-HG-sEV) can transport LINC01435 to inhibit tube formation and migration of HUVECs, thereby delaying wound healing. This study aimed to elucidate sEV-related communication mechanisms between keratinocytes and fibroblasts during diabetic wound healing. HaCaT-HG-sEV treatment and LINC01435 overexpression significantly decreased fibroblast collagen level and migration ability but significantly increased fibroblast autophagy. However, treatment with an autophagy inhibitor suppressed LINC01435 overexpression-induced decrease in collagen levels in fibroblasts. In diabetic mice, HaCaT-HG-sEV treatment decreased collagen levels and increased the expression of the autophagy-related proteins Beclin-1 and LC3 at the wound site, thereby delaying wound healing. Conclusively, LINC01435 in keratinocyte-derived sEV activates fibroblast autophagy and reduces fibroblast collagen synthesis, leading to impaired diabetic wound healing.
Collapse
Affiliation(s)
- Xiaosi Hong
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Leiqin Cai
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lanlan Li
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dinghao Zheng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianghong Lin
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuoxian Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wan Fu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Diefei Liang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingting Zeng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kan Sun
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Endocrinology, Shenshan Medical center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sifan Chen
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Ju C, Liu R, Ma Y, Dong H, Xu R, Hu H, Hao D. Targeted microbiota dysbiosis repair: An important approach to health management after spinal cord injury. Ageing Res Rev 2025; 104:102648. [PMID: 39725357 DOI: 10.1016/j.arr.2024.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Current research primarily focuses on the pathological mechanisms of spinal cord injury (SCI), seeking to promote spinal cord repair and restore motorial and sensory functions by elucidating mechanisms of cell death or axonal regeneration. However, SCI is almost irreversible, and patients often struggle to regain mobility or self-care abilities after injuries. Consequently, there has been significant interest in modulating systemic symptoms following SCI to improve patients' quality of life. Neuron axonal disconnection and substantial apoptotic events following SCI result in signal transmission loss, profoundly impacting various organ and systems, including the gastrointestinal tract. Dysbiosis can lead to severe bowel dysfunction in patients, substantially lowering their quality of life and significantly reducing life expectancy of them. Therefore, researches focusing on the restoration of the gut microbiota hold promise for potential therapeutic strategies aimed at rehabilitation after SCI. In this paper, we explore the regulatory roles that dietary fiber, short-chain fatty acids (SCFAs), probiotics, and microbiota transplantation play in patients with SCI, summarize the potential mechanisms of post-SCI dysbiosis, and discuss possible strategies to enhance long-term survival of SCI patients. We aim to provide potential insights for future research aimed at ameliorating dysbiosis in SCI patients.
Collapse
Affiliation(s)
- Cheng Ju
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Yanming Ma
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Hui Dong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Ruiqing Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Huimin Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
11
|
Wang J, Tang H, Tian J, Xie Y, Wu Y. Extracellular vesicles of ADSCs inhibit ischemic stroke-induced pyroptosis through Gbp3 regulation: A role for the NLRP3/GSDMD signaling pathway. Int Immunopharmacol 2025; 146:113881. [PMID: 39721455 DOI: 10.1016/j.intimp.2024.113881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/04/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Mounting data indicates that extracellular vesicles (EVs) have the potential to improve the injury after a stroke. Pyroptosis is a recently identified kind of programmed cell death that initiates an inflammatory reaction. We aimed to ascertain the therapeutic implications and possible molecular processes of EVs obtained from adipose-derived stem cells (ADSCs) in inhibiting pyroptosis in ischemic stroke. METHODS The investigation employed transient middle cerebral artery occlusion (tMCAO) rat model and a BV2 of oxygen-glucose deprivation/reoxygenation (OGD/R) to ascertain ADSCs-EVs implications on inflammation and pyroptosis as assessed by neurological deficit scores, TTC staining, IHC, HE, CCK8, WB, ELISA, and immunofluorescence. RNA-Seq was performed on BV2 cells in the control, OGD/R, and OGD/R + ADSCs-EVs groups. Using sequencing data analysis, in the OGD/R group, we screened the upregulated genes regulated by EVs, overlapped with 74 pyroptosis-related genes, and identified Guanylate-binding protein 2 (Gbp2) and Guanylate-binding protein 3 (Gbp3) as key genes. Following the validation of the sequencing results in vivo and in vitro, Gbp3 was selected for further study. To test its regulatory effects on inflammation and pyroptosis, Gbp3 was knocked down and overexpressed in vitro. RESULTS The administration of ADSCs-EVs resulted in a significant reduction in neurological involvement scores and reduced infarct volume in rats with tMCAO. They were also protective against BV-2 cells after OGD/R. In vivo and in vitro, ADSCs-EVs inhibited inflammatory response and pyroptosis after stroke. The outcomes of the RNA-Seq data analysis manifested that the protective implications of EVs after stroke are mediated by the modulation of inflammation-related mechanisms. Moreover, treatment with EVs led to a significant reduction in Gbp3 expression in post-ischemic brain tissue and cells. When Gbp3 was knocked down, the expression of inflammatory molecules and proteins linked to pyroptosis had a significant decline. When Gbp3 was overexpressed, the opposite results were obtained. CONCLUSIONS ADSCs-EVs modulate the NLRP3/GSDMD signaling pathway via Gbp3 to attenuate the inflammatory response and reduce pyroptosis that occurs after stroke.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jianan Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yibo Xie
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yun Wu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
12
|
Pei J, Qiu H, Wang W, Wang Y, Wang M, Wang D, Li J, Qin Y. The Contribution and Perspectives of Proteomics to Epithelial Ovarian Cancer. Proteomics Clin Appl 2025:e202300220. [PMID: 39865556 DOI: 10.1002/prca.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy which mainly consists of serous, mucinous, clear cell, and endometrioid subtypes. Due to the lack of classic symptoms at an early stage, EOC usually presented as advanced tumors with local and/or distant metastasis. Although a large portion of EOC was initially platinum-sensitive, most patients would acquire resistance to common chemotherapeutic agents. These aforementioned issues lead to a challenge for clinical treatments and unsatisfying outcomes. Previous studies have demonstrated the genetic features of EOC are hard to target and the alterations at DNA and RNA levels are not fully represented at the protein expression profiles which made it more complex. In recent years, a panel of studies attempted to explore the key proteins involved in the development and progression of EOC using high-throughput proteomic technologies. We herein summarized them to provide a full view of this topic. Trial Registration: ClinicalTrials.gov identifier: NCT046698990.
Collapse
Affiliation(s)
- Jiayu Pei
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Haifeng Qiu
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Wenjia Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yulu Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Min Wang
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Dian Wang
- Department of Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanru Qin
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
13
|
Roh YH, Morales RT, Huynh E, Chintapula U, Reynolds DE, Agosto‐Nieves RJ, Oh D, Seiner AJ, Lim J, Rodell CB, Ko J. Squeezable Hydrogel Microparticles for Single Extracellular Vesicle Protein Profiling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407809. [PMID: 39468876 PMCID: PMC11707585 DOI: 10.1002/smll.202407809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs) are promising for molecular diagnostics, but current analyses are limited by the rarity and compositional heterogeneity of EV protein expression. Therefore, single EV profiling methods require high sensitivity, multiplexing, and throughput to address these issues. Here a single EV analysis technique that utilizes squeezable methacrylated hyaluronic acid hydrogel microparticles (MHPs) is described as a scaffold to immobilize EVs and perform an integrated rolling circle amplification (RCA) assay for an ultra-sensitive and multiplex analysis of single EV proteins. EVs are prepared into MHPs in a high-throughput manner with droplet microfluidics and optimally labeled with antibody-oligonucleotide conjugates in MHPs without steric limitations. By designing MHPs with high compressibility, single EV protein signals are amplified as RCA products that can be aligned on the same plane by physically squeezing MHPs and visualized with low magnification. This method provides a simple and scalable single EV imaging analysis pipeline for identifying multiplex marker expression patterns from single EVs. For validation, the single EV heterogeneity of highly expressed cancer cell markers is profiled across different cancer cell lines. These findings exemplify squeezable MHPs as a robust platform with high sensitivity, multiplexing, and scalability for resolving single EV heterogeneity and advancing molecular assay technologies.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | | | - Emily Huynh
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Uday Chintapula
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - David E. Reynolds
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | | | - Daniel Oh
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Akari J. Seiner
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Jianhua Lim
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Christopher B. Rodell
- School of Biomedical EngineeringScience and Health SystemsDrexel UniversityPhiladelphiaPA19104USA
| | - Jina Ko
- Department of Pathology and Laboratory MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
14
|
Nakatsutsumi K, Choi W, Johnston W, Pool K, Park DJ, Weaver JL, Coimbra R, Eliceiri B, Costantini TW. Lung contusion complicated by pneumonia worsens lung injury via the inflammatory effect of alveolar small extracellular vesicles on macrophages and epithelial cells. J Trauma Acute Care Surg 2025; 98:55-63. [PMID: 39621452 DOI: 10.1097/ta.0000000000004499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
BACKGROUND Lung contusion (LC) complicated by pneumonia is associated with a higher risk of acute lung injury (ALI) mediated by activation of immune cells and injury to the lung epithelium. Small extracellular vesicles (sEVs) are essential mediators of cellular crosstalk; however, their role in the development of postinjury ALI remains unclear. We hypothesized that LC complicated by pneumonia increases the pro-inflammatory effect of alveolar sEVs on macrophages and the cytotoxicity of alveolar sEVs to pulmonary epithelial cells, worsening the severity of ALI. METHODS Studies in C57BL/6 mice were designed with four groups: sham, LC, Pneumonia (Pneu), and LC + Pneu. Lung contusion was induced by a cortical controlled impactor, while pneumonia was conducted by intratracheal injection of 10 5 cfu Pseudomonas aeruginosa . Bronchoalveolar lavage fluid (BAL) was harvested 24 hours postinfection, and sEVs were purified by centrifugation and size exclusion chromatography. To evaluate the effect of alveolar sEV on cells, sEVs from each group were cocultured with macrophages (RAW 264.7) to assess cytokine release and lung epithelial cells (MLE 12) to assess epithelial cytotoxicity. RESULTS The LC + Pneu group severely injured lungs histologically and increased the susceptibility to the bacteria. The LC + Pneu group showed higher concentrations of proteins, macrophage inflammatory protein 1-alpha (MIP1α), and intercellular adhesion molecule 1 (ICAM-1) in BAL. MIP1α and ICAM-1 expression in the macrophages increased after incubation with sEVs from the LC + Pneu group. Moreover, the sEVs demonstrated higher cytotoxicity to epithelial cells and increased apoptosis in epithelial cells after incubation with sEVs from the LC + Pneu group. CONCLUSION Lung contusion complicated by pneumonia increased the pro-inflammatory effect of alveolar sEVs on macrophages and the cytotoxicity of alveolar sEVs to pulmonary epithelial cells, worsening the severity of ALI. These results demonstrate the potential importance of alveolar sEVs in lung inflammation following a bacterial infection after trauma.
Collapse
Affiliation(s)
- Keita Nakatsutsumi
- From the Division of Trauma, Surgical Critical Care, Burns and Acute Care Surgery, Department of Surgery (K.N., W.C., W.J., K.P., D.P., J.W., B.E., T.C.), UC San Diego School of Medicine, San Diego; Comparative Effectiveness and Clinical Outcomes Research Center (R.C.), Riverside University Health System, Loma Linda University School of Medicine, Riverside, California; and Trauma and Acute Critical Care Center (K.N.), Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hirigoyen U, Guilbaud C, Krejbich M, Fouet M, Fresquet J, Arnaud B, Com E, Pineau C, Cadiou G, Burlaud-Gaillard J, Erbs P, Fradin D, Labarrière N, Fonteneau JF, Petithomme T, Boisgerault N. Oncolytic viruses alter the biogenesis of tumor extracellular vesicles and influence their immunogenicity. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200887. [PMID: 39492948 PMCID: PMC11530755 DOI: 10.1016/j.omton.2024.200887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/19/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication in the tumor microenvironment. Tumor EVs are commonly associated with metastasis, immunosuppression or drug resistance. Viral infections usually increase EV secretion, but little is known about the effect of oncolytic viruses (OVs) on tumor EVs. Here, we investigated the impact of oncolytic vesicular stomatitis virus (VSV) and vaccinia virus on EVs secreted by human melanoma and thoracic cancer cells. We found that OV infection increases the production of EVs by tumor cells. These EVs contain proteins of viral origin, such as VSV-G, thus creating a continuum of particles sharing markers of both canonical EVs and viruses. As such, the presence of VSV-G on EVs improves the transfer of their protein content to cell types commonly found in the tumor microenvironment. A proteomic analysis also revealed that EVs-OV secreted during VSV infection are enriched in immunity-related proteins. Finally, CD8+ T cells incubated with EVs-OV from infected cells display slightly enhanced cytotoxic functions. Taken together, these data suggest that OVs enhance the communication mediated by tumor EVs, which could participate in the therapeutic efficacy of OVs. These results also provide rationale for engineering OVs to exploit EVs and disseminate therapeutic proteins within the tumor microenvironment.
Collapse
Affiliation(s)
- Ugo Hirigoyen
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Coraly Guilbaud
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Morgane Krejbich
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Morgane Fouet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Judith Fresquet
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Bastien Arnaud
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, 35000 Rennes, France
- University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, 35000 Rennes, France
| | - Emmanuelle Com
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, 35000 Rennes, France
- University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, 35000 Rennes, France
| | - Charles Pineau
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) – UMR_S 1085, 35000 Rennes, France
- University Rennes, CNRS, Inserm, Biosit UAR 3480 US_S 018, Protim core facility, 35000 Rennes, France
| | - Gwenann Cadiou
- LabEx IGO, Nantes Université, 44000 Nantes, France
- Nantes Université, Inserm UMR 1302, CNRS EMR 6001, Université d’Angers, INCIT, 44000 Nantes, France
| | - Julien Burlaud-Gaillard
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, 37000 Tours, France
| | | | - Delphine Fradin
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Nathalie Labarrière
- LabEx IGO, Nantes Université, 44000 Nantes, France
- Nantes Université, Inserm UMR 1302, CNRS EMR 6001, Université d’Angers, INCIT, 44000 Nantes, France
| | - Jean-François Fonteneau
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| | - Tacien Petithomme
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
- Nantes Université, CHU Nantes, 44000 Nantes, France
| | - Nicolas Boisgerault
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, 44000 Nantes, France
- LabEx IGO, Nantes Université, 44000 Nantes, France
| |
Collapse
|
16
|
Wang L, Zhang X, Yang Z, Wang B, Gong H, Zhang K, Lin Y, Sun M. Extracellular vesicles: biological mechanisms and emerging therapeutic opportunities in neurodegenerative diseases. Transl Neurodegener 2024; 13:60. [PMID: 39643909 PMCID: PMC11622582 DOI: 10.1186/s40035-024-00453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles originating from different cells within the brain. The pathophysiological role of EVs in neurodegenerative diseases is progressively acknowledged. This field has advanced from basic biological research to essential clinical significance. The capacity to selectively enrich specific subsets of EVs from biofluids via distinctive surface markers has opened new avenues for molecular understandings across various tissues and organs, notably in the brain. In recent years, brain-derived EVs have been extensively investigated as biomarkers, therapeutic targets, and drug-delivery vehicles for neurodegenerative diseases. This review provides a brief overview of the characteristics and physiological functions of the various classes of EVs, focusing on the biological mechanisms by which various types of brain-derived EVs mediate the occurrence and development of neurodegenerative diseases. Concurrently, novel therapeutic approaches and challenges for the use of EVs as delivery vehicles are delineated.
Collapse
Affiliation(s)
- Ling Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoyan Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ziyi Yang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Binquan Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hongyang Gong
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Ke Zhang
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yi Lin
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Mingkuan Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
17
|
Gilboa T, Ter-Ovanesyan D, Wang SC, Whiteman S, Kannarkat GT, Church GM, Chen-Plotkin AS, Walt DR. Measurement of α-synuclein as protein cargo in plasma extracellular vesicles. Proc Natl Acad Sci U S A 2024; 121:e2408949121. [PMID: 39475636 PMCID: PMC11551346 DOI: 10.1073/pnas.2408949121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
Extracellular vesicles (EVs) are released by all cells and hold great promise as a class of biomarkers. This promise has led to increased interest in measuring EV proteins from both total EVs as well as brain-derived EVs in plasma. However, measuring cargo proteins in EVs has been challenging because EVs are present at low levels, and EV isolation methods are imperfect at separating EVs from free proteins. Thus, knowing whether a protein measured after EV isolation is truly inside EVs is difficult. In this study, we developed methods to measure whether a protein is inside EVs and quantify the ratio of a protein in EVs relative to total plasma. To achieve this, we combined a high-yield size-exclusion chromatography protocol with an optimized protease protection assay and Single Molecule Array (Simoa) digital enzyme-linked immunoassays (ELISAs) for ultrasensitive measurement of proteins inside EVs. We applied these methods to analyze α-synuclein and confirmed that a small fraction of the total plasma α-synuclein is inside EVs. Additionally, we developed a highly sensitive Simoa assay for phosphorylated α-synuclein (phosphorylated at the Ser129 residue). We found enrichment in the phosphorylated α-synuclein to total α-synuclein ratio inside EVs relative to outside EVs. Finally, we applied the methods we developed to measure total and phosphorylated α-synuclein inside EVs from Parkinson's disease and Lewy body dementia patient samples. This work provides a framework for determining the levels of proteins in EVs and represents an important step in the development of EV diagnostics for diseases of the brain, as well as other organs.
Collapse
Affiliation(s)
- Tal Gilboa
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Dmitry Ter-Ovanesyan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
| | - Shih-Chin Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Sara Whiteman
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
| | - George T. Kannarkat
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Alice S. Chen-Plotkin
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA19104
| | - David R. Walt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
18
|
Hong Q, Zhu S, Yu Y, Ren Y, Jin L, Wang H, Zhang H, Guo K. The emerging role of mtDNA release in sepsis: Current evidence and potential therapeutic targets. J Cell Physiol 2024; 239:e31331. [PMID: 38888012 DOI: 10.1002/jcp.31331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Sepsis is a systemic inflammatory reaction caused by infection, and severe sepsis can develop into septic shock, eventually leading to multiorgan dysfunction and even death. In recent years, studies have shown that mitochondrial damage is closely related to the occurrence and development of sepsis. Recent years have seen a surge in concern over mitochondrial DNA (mtDNA), as anomalies in this material can lead to cellular dysfunction, disruption of aerobic respiration, and even death of the cell. In this review, we discuss the latest findings on the mechanisms of mitochondrial damage and the molecular mechanisms controlling mitochondrial mtDNA release. We also explored the connection between mtDNA misplacement and inflammatory activation. Additionally, we propose potential therapeutic targets of mtDNA for sepsis treatment.
Collapse
Affiliation(s)
- Qianya Hong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yun Ren
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Lin Jin
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Huilin Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| |
Collapse
|
19
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
20
|
Cricri G, Gobbini A, Bruno S, Bellucci L, Tassinari S, Caicci F, Tamburello C, Nittoli T, Paraboschi I, Berrettini A, Grifantini R, Bussolati B, Morello W, Montini G, Collino F. Modeling a biofluid-derived extracellular vesicle surface signature to differentiate pediatric idiopathic nephrotic syndrome clinical subgroups. Sci Rep 2024; 14:25765. [PMID: 39468184 PMCID: PMC11519447 DOI: 10.1038/s41598-024-76727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Idiopathic Nephrotic Syndrome (INS) is a common childhood glomerular disease requiring intense immunosuppressive drug treatments. Prediction of treatment response and the occurrence of relapses remains challenging. Biofluid-derived extracellular vesicles (EVs) may serve as novel liquid biopsies for INS classification and monitoring. Our cohort was composed of 105 INS children at different clinical time points (onset, relapse, and persistent proteinuria, remission, respectively), and 19 healthy controls. The expression of 37 surface EV surface markers was evaluated by flow cytometry in serum (n = 83) and urine (n = 74) from INS children (mean age = 10.1, 58% males) at different time points. Urine EVs (n = 7) and serum EVs (n = 11) from age-matched healthy children (mean age = 7.8, 94% males) were also analyzed. Tetraspanin expression in urine EVs was enhanced during active disease phase in respect to the remission group and positively correlates with proteinuria levels. Unsupervised clustering analysis identified an INS signature of 8 markers related to immunity and angiogenesis/adhesion processes. The CD41b, CD29, and CD105 showed the best diagnostic scores separating the INS active phase from the healthy condition. Interestingly, combining urinary and serum EV markers from the same patient improved the precision of clinical staging separation. Three urinary biomarkers (CD19, CD44, and CD8) were able to classify INS based on steroid sensitivity. Biofluid EVs offer a non-invasive tool for INS clinical subclassification and "personalized" interventions.
Collapse
Affiliation(s)
- Giulia Cricri
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Gobbini
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Linda Bellucci
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Sarah Tassinari
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Chiara Tamburello
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Teresa Nittoli
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Paraboschi
- Pediatric Urology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Alfredo Berrettini
- Pediatric Urology Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Renata Grifantini
- Istituto Nazionale Genetica Molecolare (INGM), Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, Milan, Italy
| | | | - William Morello
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - Giovanni Montini
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Federica Collino
- Laboratory of Translational Research in Paediatric Nephro-Urology, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.
- Paediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy.
| |
Collapse
|
21
|
Zhu B, Xiang K, Li T, Li X, Shi F. The signature of extracellular vesicles in hypoxic breast cancer and their therapeutic engineering. Cell Commun Signal 2024; 22:512. [PMID: 39434182 PMCID: PMC11492701 DOI: 10.1186/s12964-024-01870-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Breast cancer (BC) currently ranks second in the global cancer incidence rate. Hypoxia is a common phenomenon in BC. Under hypoxic conditions, cells in the tumor microenvironment (TME) secrete numerous extracellular vesicles (EVs) to achieve intercellular communication and alter the metabolism of primary and metastatic tumors that shape the TME. In addition, emerging studies have indicated that hypoxia can promote resistance to tumor treatment. Engineered EVs are expected to become carriers for cancer treatment due to their high biocompatibility, low immunogenicity, high drug delivery efficiency, and ease of modification. In this review, we summarize the mechanisms of EVs in the primary TME and distant metastasis of BC under hypoxic conditions. Additionally, we highlight the potential applications of engineered EVs in mitigating the malignant phenotypes of BC cells under hypoxia.
Collapse
Affiliation(s)
- Baiheng Zhu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Kehao Xiang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Tanghua Li
- The First Clinical Medical School, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xin Li
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Fujun Shi
- Department of Breast Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
22
|
Torres Iglesias G, López-Molina M, Botella L, Laso-García F, Chamorro B, Fernández-Fournier M, Puertas I, Bravo SB, Alonso-López E, Díez-Tejedor E, Gutiérrez-Fernández M, Otero-Ortega L. Differential Protein Expression in Extracellular Vesicles Defines Treatment Responders and Non-Responders in Multiple Sclerosis. Int J Mol Sci 2024; 25:10761. [PMID: 39409091 PMCID: PMC11477160 DOI: 10.3390/ijms251910761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple sclerosis (MS) remains the leading cause of neurological disability among young adults worldwide, underscoring the urgent need to define the best therapeutic strategy. Recent advances in proteomics have deepened our understanding of treatment mechanisms and revealed promising biomarkers for predicting therapeutic outcomes. This study focuses on the identification of a protein profile of circulating extracellular vesicles (EVs) derived from neurons, oligodendrocytes, and B and T cells able to differentiate treatment responders and non-responders in 80 patients with MS. In the patients who responded to treatment, T cell-derived EVs were enriched in LV151, a protein involved in the promotion of anti-inflammatory cytokines, whereas Bcell-derived EVs showed elevated PSMD6 and PTPRC, related to immunoproteasome function. Oligodendrocyte- and neuron-derived EVs showed upregulated CO6A1 and COEA1, involved in extracellular matrix reorganisation, as well as LAMA5, NonO, SPNT, and NCAM, which are critical for brain repair. In contrast, non-responders showed higher levels of PSMD7 and PRS10 from B cell-derived EVs, associated with DNA damage, and increased levels of PERM and PERL from T cell-derived EVs, linked to nuclear factor kappa B activation and drug-resistant proteins such as HS90A and RASK. These findings highlight a distinct panel of proteins in EVs that could serve as an early indicator of treatment efficacy in MS.
Collapse
Affiliation(s)
- Gabriel Torres Iglesias
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - MariPaz López-Molina
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Lucía Botella
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Fernando Laso-García
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Beatriz Chamorro
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Mireya Fernández-Fournier
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Inmaculada Puertas
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Susana B. Bravo
- Proteomics Unit, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Elisa Alonso-López
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Exuperio Díez-Tejedor
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| | - Laura Otero-Ortega
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Universidad Autónoma de Madrid), 28046 Madrid, Spain; (G.T.I.); (M.L.-M.); (L.B.); (F.L.-G.); (B.C.); (M.F.-F.); (I.P.); (E.A.-L.); (E.D.-T.); (M.G.-F.)
| |
Collapse
|
23
|
Garza AP, Wider-Eberspächer E, Morton L, van Ham M, Pállinger É, Buzás EI, Jänsch L, Dunay IR. Proteomic analysis of plasma-derived extracellular vesicles: pre- and postprandial comparisons. Sci Rep 2024; 14:23032. [PMID: 39363010 PMCID: PMC11450010 DOI: 10.1038/s41598-024-74228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
Extracellular vesicles (EVs) are key in intercellular communication, carrying biomolecules like nucleic acids, lipids, and proteins. This study investigated postprandial characteristics and proteomic profiles of blood-derived EVs in healthy individuals. Twelve participants fasted overnight before baseline assessments. After consuming a controlled isocaloric meal, EVs were isolated for proteomic and flow cytometric analysis. Plasma triacylglyceride levels confirmed fasting completion, while protein concentrations in plasma and EVs were monitored for postprandial stability. Proteomic analysis identified upregulated proteins related to transport mechanisms and epithelial/endothelial functions postprandially, indicating potential roles in physiological responses to nutritional intake. Enrichment analyses revealed vesicle-related pathways and immune system processes. Flow cytometry showed increased expression of CD324 on CD9+CD63+CD81+ large extracellular vesicles postprandially, suggesting an epithelial origin. These findings offer valuable insights into postprandial EV dynamics and their potential physiological significance, highlighting the need for stringent fasting guidelines in EV studies to account for postprandial effects on EV composition and function.
Collapse
Affiliation(s)
- Alejandra P Garza
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Elisa Wider-Eberspächer
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Lorena Morton
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany
| | - Marco van Ham
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- HCEMM SU Extracellular Vesicle Research Group, Budapest, Hungary
- HUN-REN-SU Translational Extracellular Vesicle Research Group, Budapest, Hungary
| | - Lothar Jänsch
- Cellular Proteome Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Medical Faculty, Otto-Von-Guericke University, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany.
| |
Collapse
|
24
|
Yu M, Cai Z, Zhang J, Zhang Y, Fu J, Cui X. Aberrant NSUN2-mediated m5C modification of exosomal LncRNA MALAT1 induced RANKL-mediated bone destruction in multiple myeloma. Commun Biol 2024; 7:1249. [PMID: 39358426 PMCID: PMC11446919 DOI: 10.1038/s42003-024-06918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
The impact of exosome-mediated crosstalk between multiple myeloma (MM) cells and osteoclasts (OCs) on bone lesions remains to be investigated. Here, we identified NSUN2 and YBX1-mediated m5C modifications upregulated LncRNA MALAT1 expression in MM cells, which could be transported to OCs via exosomes and promote bone lesions. Methodologically, RNA-seq was carried out to detect the cargoes of exosomes. TRAP staining and WB were used to evaluate osteoclastogenesis in vitro. Micro-CT and bone histomorphometric analyses were performed to identify bone destruction in vivo. RNA pull-down, RIP, MeRIP, and luciferase reporter assays were used to test the interactions between molecules. The clinical features of MALAT1, NSUN2 and YBX1 were verified through public datasets and clinicopathological data analyses. Mechanistically, MALAT1 was the highest expressed lncRNA in U266 exosomes and could be transported to RAW264.7 cells. MALAT1 could enhance the differentiation of RAW264.7 cells into OCs by stimulating RANKL expression and its downstream AKT and MAPKs signaling pathways via a ceRNA mechanism. Additionally, MALAT1 could be modified by NSUN2, an m5C methyltransferase, which in turn stabilized MALAT1 through the "reader" YBX1. Clinical studies indicated a notable positive correlation between MALAT1, NSUN2, YBX1 levels and bone destruction features, as well as with RANKL expression.
Collapse
Affiliation(s)
- Manya Yu
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Jinan, 250014, China
| | - Zhiguo Cai
- Department of Quality Control, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250014, China
| | - Jie Zhang
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250014, China
| | - Yanyu Zhang
- Department of Hematology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 100091, Beijing, China
| | - Jiaqi Fu
- The First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, No. 16369 Jingshi Road, Jinan, 250014, China
| | - Xing Cui
- Department of Oncology and Hematology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250001, China.
| |
Collapse
|
25
|
Zhu Y, Zhao J, Ding H, Qiu M, Xue L, Ge D, Wen G, Ren H, Li P, Wang J. Applications of plant-derived extracellular vesicles in medicine. MedComm (Beijing) 2024; 5:e741. [PMID: 39309692 PMCID: PMC11413507 DOI: 10.1002/mco2.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) are promising therapeutic agents owing to their natural abundance, accessibility, and unique biological properties. This review provides a comprehensive exploration of the therapeutic potential of plant-derived EVs and emphasizes their anti-inflammatory, antimicrobial, and tumor-inhibitory effects. Here, we discussed the advancements in isolation and purification techniques, such as ultracentrifugation and size-exclusion chromatography, which are critical for maintaining the functional integrity of these nanovesicles. Next, we investigated the diverse administration routes of EVs and carefully weighed their respective advantages and challenges related to bioavailability and patient compliance. Moreover, we elucidated the multifaceted mechanisms of action of plant-derived EVs, including their roles in anti-inflammation, antioxidation, antitumor activity, and modulation of gut microbiota. We also discussed the impact of EVs on specific diseases such as cancer and inflammatory bowel disease, highlighting the importance of addressing current challenges related to production scalability, regulatory compliance, and immunogenicity. Finally, we proposed future research directions for optimizing EV extraction and developing targeted delivery systems. Through these efforts, we envision the seamless integration of plant-derived EVs into mainstream medicine, offering safe and potent therapeutic alternatives across various medical disciplines.
Collapse
Affiliation(s)
- Yawen Zhu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Junqi Zhao
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haoran Ding
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Dongxue Ge
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Peng Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
26
|
Brandes F, Keiler AM, Kirchner B, Borrmann M, Billaud JN, Reithmair M, Klein M, Campolongo P, Thieme D, Pfaffl MW, Schelling G, Meidert AS. Extracellular Vesicles and Endocannabinoid Signaling in Patients with COVID-19. Cannabis Cannabinoid Res 2024; 9:1326-1338. [PMID: 37713293 DOI: 10.1089/can.2023.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Introduction: Endocannabinoids in COVID-19 have immunomodulatory and anti-inflammatory properties but the functional role and the regulation of endocannabinoid signaling in this pandemic disorder is controversial. To exercise their biologic function, endocannabinoids need to travel across the intercellular space and within the blood stream to reach their target cells. How the lipophilic endocannabinoids are transported in the vascular system and how these hydrophobic compounds cross cell membranes is still unclear. Extracellular vesicles (EVs) are released and incorporated by many cell types including immune cells. EVs are small lipid-membrane covered particles and contain RNA, lipids and proteins. They play an important role in intercellular communication by transporting these signaling molecules from their cells of origin to specific target cells. EVs may represent ideal transport vehicles for lipophilic signaling molecules like endocannabinoids and this effect could also be evident in COVID-19. Materials and Methods: We measured the endocannabinoids anandamide, 2-AG, SEA, PEA and OEA in patients with COVID-19 in EVs and plasma. RNA sequencing of microRNAs (miRNAs) derived from EVs (EV-miRNAs) and mRNA transcripts from blood cells was used for the construction of signaling networks reflecting endocannabinoid and miRNA communication by EVs to target immune cells. Results: With the exception of anandamide, endocannabinoid concentrations were significantly enriched in EVs in comparison to plasma and increased with disease severity. No enrichment in EVs was seen for the more hydrophilic steroid hormones cortisol and testosterone. High EV-endocannabinoid concentrations were associated with downregulation of CNR2 (CB2) by upregulated EV-miRNA miR-146a-5p and upregulation of MGLL by downregulated EV-miR-199a-5p and EV-miR-370-5p suggesting counterregulatory effects. In contrast, low EV-levels of anandamide were associated with upregulation of CNR1 by downregulation of EV-miR-30c-5p and miR-26a-5p along with inhibition of FAAH. Immunologically active molecules in immune cells regulated by endocannabinoid signaling included VEGFA, GNAI2, IGF1, BDNF, IGF1R and CREB1 and CCND1 among others. Discussion and Conclusions: EVs carry immunologically functional endocannabinoids in COVID-19 along with miRNAs which may regulate the expression of mRNA transcripts involved in the regulation of endocannabinoid signaling and metabolism. This mechanism could fine-tune and adapt endocannabinoid effects in recipient cells in relationship to the present biological context.
Collapse
Affiliation(s)
- Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Melanie Borrmann
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Klein
- Department of Neurology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology «V. Erspamer», Sapienza University of Rome, Rome, Italy
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry, Kreischa, Germany
| | - Michael W Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Agnes S Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
27
|
Iversen KF. Mechanisms of resistance to daratumumab in patients with multiple myeloma. Basic Clin Pharmacol Toxicol 2024; 135:401-408. [PMID: 39183578 DOI: 10.1111/bcpt.14054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
Multiple myeloma (MM) is an incurable cancer in the bone marrow. The treatment of MM has developed significantly during the last 20 years, which has resulted in increased survival. Daratumumab is the first CD38 antibody approved for the treatment of MM. It has improved the treatment of MM even further. This is an evaluation of the modes of action of daratumumab and a description of the development of resistance with a focus on inhibitory checkpoint receptors on CD8+ T-cells, complement activation and extracellular vesicles.
Collapse
Affiliation(s)
- Katrine Fladeland Iversen
- Institute of Regional Health Science, University of Southern Denmark, and Department of Internal Medicine, Section of Hematology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| |
Collapse
|
28
|
Wilimski R, Budzianowski J, Łomiak M, Olasińska-Wiśniewska A, Pieniak K, Jędrzejczyk S, Domaszk O, Chudzik M, Filipiak KJ, Hiczkiewicz J, Faron W, Urbanowicz T, Jemielity M, Grygier M, Grabowski M, Kuśmierczyk M, Rymuza B, Huczek Z, Kochman J, van der Pol E, Nieuwland R, Gąsecka A. Extracellular Vesicles to Predict Outcomes After Transcatheter Aortic Valve Implantation - a Prospective, Multicenter Cohort Study. J Cardiovasc Transl Res 2024; 17:992-1003. [PMID: 38807003 PMCID: PMC11519094 DOI: 10.1007/s12265-024-10521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION Transcatheter aortic valve implantation (TAVI) is an established treatment for aortic stenosis (AS) in patients at intermediate and high surgical risk. Circulating extracellular vesicles (EVs) are nanoparticles involved in cardiovascular diseases. We aimed to (i) determine the effect of TAVI on plasma concentrations of five EV subtypes and (ii) evaluate the predictive value of EVs for post-TAVI outcomes. METHODS Blood samples were collected 1 day before TAVI and at hospital discharge. Concentrations of EVs were evaluated using flow cytometry. RESULTS Concentration of leukocytes EVs decreased after TAVI, compared to the measurement before (p = 0.008). Among 123 patients discharged from the hospital, 19.5% experienced MACCE during the median of 10.3 months. Increased pre-TAVI concentration of phosphatidylserine-exposing EVs was an independent predictor of MACCE in multivariable analysis (OR 5.313, 95% CI 1.164-24.258, p = 0.031). CONCLUSIONS Patients with increased pre-TAVI concentration of procoagulant, PS-exposing EVs have over fivefold higher odds of adverse outcomes.
Collapse
Affiliation(s)
- Radosław Wilimski
- Department of Cardiac Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Jan Budzianowski
- Club 30", Polish Cardiac Society, Warsaw, Poland
- Department of Interventional Cardiology and Cardiac Surgery, University of Zielona Góra, Collegium Medicum, 65-046, Zielona Góra, Poland
- Department of Cardiology, Nowa Sól Multidisciplinary Hospital, 67-100, Nowa Sól, Poland
| | - Michał Łomiak
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Olasińska-Wiśniewska
- Club 30", Polish Cardiac Society, Warsaw, Poland
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Pieniak
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Szymon Jędrzejczyk
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Olaf Domaszk
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Chudzik
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof J Filipiak
- Department of Hypertensiology, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, Warsaw, Poland
| | - Jarosław Hiczkiewicz
- Department of Interventional Cardiology and Cardiac Surgery, University of Zielona Góra, Collegium Medicum, 65-046, Zielona Góra, Poland
- Department of Cardiology, Nowa Sól Multidisciplinary Hospital, 67-100, Nowa Sól, Poland
| | - Wojciech Faron
- Department of Cardiology, Nowa Sól Multidisciplinary Hospital, 67-100, Nowa Sól, Poland
| | - Tomasz Urbanowicz
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marek Grygier
- Chair and 1st Department of Cardiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Marcin Grabowski
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | | | - Bartosz Rymuza
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Zenon Huczek
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Janusz Kochman
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Edwin van der Pol
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Amsterdam, The Netherlands
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Aleksandra Gąsecka
- Club 30", Polish Cardiac Society, Warsaw, Poland.
- 1St Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland.
- Laboratory of Experimental Clinical Chemistry & Amsterdam Vesicle Center, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Di Bella MA, Taverna S. Extracellular Vesicles: Diagnostic and Therapeutic Applications in Cancer. BIOLOGY 2024; 13:716. [PMID: 39336143 PMCID: PMC11446462 DOI: 10.3390/biology13090716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
In recent years, knowledge of cell-released extracellular vesicle (EV) functions has undergone rapid growth. EVs are membrane vesicles loaded with proteins, nucleic acids, lipids, and bioactive molecules. Once released into the extracellular space, EVs are delivered to target cells that may go through modifications in physiological or pathological conditions. EVs are nano shuttles with a crucial role in promoting short- and long-distance cell-cell communication. Comprehension of the mechanism that regulates this process is a benefit for both medicine and basic science. Currently, EVs attract immense interest in precision and nanomedicine for their potential use in diagnosis, prognosis, and therapies. This review reports the latest advances in EV studies, focusing on the nature and features of EVs and on conventional and emerging methodologies used for their separation, characterization, and visualization. By searching an extended portion of the relevant literature, this work aims to give a summary of advances in nanomedical applications of EVs. Moreover, concerns that require further studies before translation to clinical applications are discussed.
Collapse
Affiliation(s)
- Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
30
|
Svenningsen P, Maslauskiene R, Palarasah Y, Bumblyte IA, Tepel M. Urinary Extracellular Vesicles for Non-Invasive Quantification of Principal Cell Damage in Kidney Transplant Recipients. Biomolecules 2024; 14:1124. [PMID: 39334890 PMCID: PMC11430813 DOI: 10.3390/biom14091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/30/2024] Open
Abstract
The objective of the present study was to compare principal cell-specific aquaporin-2 (AQP2) abundances in urinary extracellular vesicles (uEVs) on the first postoperative day in deceased-donor kidney transplant recipients without and with acute kidney injury. We measured uEV markers (CD9 and CD63) and the abundances of proximal tubular sodium-glucose transporter 2, distal tubular sodium/chloride cotransporter, and principal cell-specific aquaporin-2 using Western blotting of urine. uEV-AQP2 levels were normalized to living donor controls. The validation cohort consisted of 82 deceased-donor kidney transplant recipients who had a median age of 50 years (IQR 43 to 57 years). A total of 32% of recipients had acute kidney injury. The median uEV-AQP2 was significantly higher in recipients with acute kidney injury compared to immediate allograft function (2.05; IQR 0.87 to 2.83; vs. 0.81; IQR 0.44 to 1.78; p < 0.01). The Youden index indicated a uEV-AQP2 threshold of 2.00. Stratifying uEV-AQP2 into quartiles showed that recipients with higher uEV-AQP2 levels had higher rates of acute kidney injury (Cochran-Armitage, p = 0.001). The discovery cohort showed elevated CD9, CD63, and uEV-AQP2 levels in urine from recipients with acute kidney injury compared to immediate allograft function. We were able to quantify the damage of principal cells after kidney transplant to predict acute kidney injury using uEV-AQP2.
Collapse
Affiliation(s)
- Per Svenningsen
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (P.S.)
| | - Rima Maslauskiene
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.M.); (I.A.B.)
| | - Yaseelan Palarasah
- Department of Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark; (P.S.)
| | - Inga A. Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (R.M.); (I.A.B.)
| | - Martin Tepel
- Department of Nephrology, Odense University Hospital, 5000 Odense, Denmark
| |
Collapse
|
31
|
Zhou L, Li S, Ren J, Wang D, Yu R, Zhao Y, Zhang Q, Xiao X. Circulating exosomal circRNA-miRNA-mRNA network in a familial partial lipodystrophy type 3 family with a novel PPARG frameshift mutation c.418dup. Am J Physiol Endocrinol Metab 2024; 327:E357-E370. [PMID: 39017680 DOI: 10.1152/ajpendo.00094.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/01/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
Familial partial lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-yr-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the seventh amino acid, significantly expanding the genetic landscape of FPLD3. By performing next-generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers compared with the healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose- and lipid metabolism-related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, early growth response-1 (EGR1), a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and 1-acylglycerol-3-phosphate O-acyltransferase 3 (AGPAT3), which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.NEW & NOTEWORTHY Through the establishment of a ceRNA regulatory networks in a novel PPARG frameshift mutation c.418dup-induced FPLD3 pedigree, this study reveals that circ_0001597 may contribute to the pathophysiology of FPLD3 by sequestering miR-671-5p to regulate the expression of EGR1 and AGPAT3, pivotal genes situated in the triglyceride (TG) synthesis and lipolysis pathways. Current findings expand our molecular understanding of adipose tissue dysfunction, providing potential blood biomarkers and therapeutic avenues for lipodystrophy and associated metabolic complications.
Collapse
Affiliation(s)
- Liyuan Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Ruiqi Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yuxing Zhao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
32
|
Gangadaran P, Khan F, Rajendran RL, Onkar A, Goenka A, Ahn BC. Unveiling Invisible Extracellular Vesicles: Cutting-Edge Technologies for Their in Vivo Visualization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2009. [PMID: 39439198 DOI: 10.1002/wnan.2009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/11/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs), nanosized lipid bilayer vesicles released by nearly all types of cells, play pivotal roles as intercellular signaling mediators with diverse biological activities. Their adaptability has attracted interest in exploring their role as disease biomarker theranostics. However, the in vivo biodistribution and pharmacokinetic profiles of EVs, particularly following administration into living subjects, remain unclear. Thus, in vivo imaging is vital to enhance our understanding of the homing and retention patterns, blood and tissue half-life, and excretion pathways of exogenous EVs, thereby advancing real-time monitoring within biological systems and their therapeutic applications. This review examines state-of-the-art methods including EV labeling with various agents, including optical imaging, magnetic resonance imaging, and nuclear imaging. The strengths and weaknesses of each technique are comprehensively explored, emphasizing their clinical translation. Despite the potential of EVs as cancer theranostics, achieving a thorough understanding of their in vivo behavior is challenging. This review highlights the urgency of addressing current questions in the biology and therapeutic applications of EVs. It underscores the need for continued research to unravel the complexities surrounding EVs and their potential clinical implications. By identifying these challenges, this review contributes to ongoing efforts to optimize EV imaging techniques for clinical use. Ultimately, bridging the gap between research advancements and clinical applications will facilitate the integration of EV-based theranostics, marking a crucial step toward harnessing the full potential of EVs in medical practice.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Fatima Khan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| |
Collapse
|
33
|
Sun J, Yang F, Zheng Y, Huang C, Fan X, Yang L. Pathogenesis and interaction of neutrophils and extracellular vesicles in noncancer liver diseases. Int Immunopharmacol 2024; 137:112442. [PMID: 38889508 DOI: 10.1016/j.intimp.2024.112442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Liver disease ranks as the eleventh leading cause of mortality, leading to approximately 2 million deaths annually worldwide. Neutrophils are a type of immune cell that are abundant in peripheral blood and play a vital role in innate immunity by quickly reaching the site of liver injury. They exert their influence on liver diseases through autocrine, paracrine, and immunomodulatory mechanisms. Extracellular vesicles, phospholipid bilayer vesicles, transport a variety of substances, such as proteins, nucleic acids, lipids, and pathogenic factors, for intercellular communication. They regulate cell communication and perform their functions by delivering biological information. Current research has revealed the involvement of the interaction between neutrophils and extracellular vesicles in the pathogenesis of liver disease. Moreover, more research has focused on targeting neutrophils as a therapeutic strategy to attenuate disease progression. Therefore, this article summarizes the roles of neutrophils, extracellular vesicles, and their interactions in noncancerous liver diseases.
Collapse
Affiliation(s)
- Jie Sun
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China; Medical College, Tibet University, Lhasa, China
| | - Fan Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyi Zheng
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Fan
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| | - Li Yang
- Department of Gastroenterology and Hepatology and Laboratory of Gastrointestinal Cancer and Liver Disease, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
34
|
Wang JQ, Liang J, Wang JL, Shan F, Cao Y, Zhou X, Yan CY, Xia QR, Liu YR. Evaluation of plasma-derived extracellular vesicles miRNAs and their connection with hippocampal mRNAs in alcohol use disorder. Life Sci 2024; 351:122820. [PMID: 38857652 DOI: 10.1016/j.lfs.2024.122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Alcohol use disorder (AUD) is a common mental illness with high morbidity and disability. The discovery of laboratory biomarkers has progressed slowly, resulting in suboptimal diagnosis and treatment of AUD. This study aimed to identify promising biomarkers, as well as the potential miRNA-mRNA networks associated with AUD pathogenesis. RNA sequencing was performed on plasma-derived small extracellular vesicles (sEVs) from AUD patients and healthy controls (HCs) to harvest miRNAs expression profiles. Machine learning (ML) models were built to screen characteristic miRNAs, whose target mRNAs were analyzed using TargetScan, miRanda and miRDB databases. Gene Expression Omnibus (GEO) datasets (GSE181804 and GSE180722) providing postmortem hippocampal gene expression profiles of AUD subjects were mined. A total of 247 differentially expressed (DE) plasma-derived sEVs miRNAs and 122 DE hippocampal mRNAs were obtained. Then, 22 overlapping sEVs miRNAs with high importance scores were gained by intersecting 5 ML models. As a result, we established a putative sEVs miRNA-hippocampal mRNA network that can effectively distinguish AUD patients from HCs. In conclusion, we proposed 5 AUD-representative sEVs miRNAs (hsa-miR-144-5p, hsa-miR-182-5p, hsa-miR-142-5p, hsa-miR-7-5p, and hsa-miR-15b-5p) that may participate in the pathogenesis of AUD by modulating downstream target hippocampal genes. These findings may provide novel insights into the diagnosis and treatment of AUD.
Collapse
Affiliation(s)
- Jie-Quan Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China; Anhui Clinical Research Center for Mental Disorders, Hefei 230000, China
| | - Jun Liang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China; Anhui Clinical Research Center for Mental Disorders, Hefei 230000, China
| | - Jin-Liang Wang
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China; Anhui Clinical Research Center for Mental Disorders, Hefei 230000, China
| | - Feng Shan
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China; Anhui Clinical Research Center for Mental Disorders, Hefei 230000, China
| | - Yin Cao
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China; Anhui Clinical Research Center for Mental Disorders, Hefei 230000, China
| | - Xuan Zhou
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China; Anhui Clinical Research Center for Mental Disorders, Hefei 230000, China
| | - Chun-Yu Yan
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China; Anhui Clinical Research Center for Mental Disorders, Hefei 230000, China
| | - Qing-Rong Xia
- Department of Pharmacy, Affiliated Psychological Hospital of Anhui Medical University, Hefei 230000, China; Psychopharmacology Research Laboratory, Anhui Mental Health Center, Hefei 230000, China; Department of Pharmacy, Hefei Fourth People's Hospital, Hefei 230000, China; Anhui Clinical Research Center for Mental Disorders, Hefei 230000, China.
| | - Ya-Ru Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230001, China.
| |
Collapse
|
35
|
Röhrborn K, Krueger M, Kalusa M, Fietz SA, Ewe A, Aigner A, Stumvoll M, Kovacs P, Blüher M, Schamarek I, Rohde-Zimmermann K. The Concentration of Salivary Extracellular Vesicles Is Related to Obesity. Nutrients 2024; 16:2633. [PMID: 39203770 PMCID: PMC11356876 DOI: 10.3390/nu16162633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND AND AIMS Saliva is essential for the proper dilution and distribution of taste molecules on the tongue. It harbors extracellular vesicles (EVs), which mediate cell-cell communication. Changes in the composition of salivary EVs may arise under obese conditions and may potentially be involved in taste sensation and dysregulated eating behavior. Therefore, this study addresses the relationship between the size and concentration of salivary EVs and metabolic shifts in obesity or factors of taste sensation. MATERIALS AND METHODS A total of 119 participants in the Obese Taste Bud (OTB) Study were included, who performed a standardized taste test, underwent taste bud density assessment, and were phenotypically characterized for anthropometrics, blood- and saliva adipokine levels, and various metabolic factors. Utilizing size exclusion chromatography followed by ultrafiltration, EVs were extracted from 2 mL of actively secreted saliva. EVs were characterized using nanoparticle tracking analyses, Western blot, and scanning transmission electron microscopy. Finally, group comparisons and bivariate correlation analyses were conducted. RESULTS Among the total cohort, the median size of salivary EVs was 190.05 nm, and the overall concentration ranged from 1.4 × 107 to 1.76 × 109 per mL of saliva. The size range and concentration of EVs per mL are negatively correlated (p = 0.0002, r = -0.264). Comparing lean participants (mean rank of 45.98) with those presenting obesity (mean rank of 34.46), a significant difference in the salivary EV content was observed (p = 0.029). Body weight, BMI, arm and calf circumferences, as well as the percentage of body fat were all negatively related to the concentration of EVs in all study participants (all p < 0.05, r > -0.2). No associations were found between the EV parameters and taste perception but serum alkaline phosphatase levels were negatively correlated (p = 0.007, r = -0.284) and adiponectin serum levels were positively correlated to the EV concentration (p = 0.036, r = 0.208). CONCLUSION The current study provides evidence for the relation between salivary EVs and anthropometric as well as metabolic parameters of obesity. This can provide the basis for further research on the cargo of salivary EVs and how they may influence taste sensation, and may elucidate their potential connection to altered eating habits in obesity.
Collapse
Affiliation(s)
- Kristin Röhrborn
- Helmholtz-Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig AöR, 04103 Leipzig, Germany; (K.R.)
| | - Martin Krueger
- Institute of Anatomy, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Mirjam Kalusa
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Simone A. Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04103 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz-Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig AöR, 04103 Leipzig, Germany; (K.R.)
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany
| | - Peter Kovacs
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Helmholtz-Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig AöR, 04103 Leipzig, Germany; (K.R.)
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany
| | - Imke Schamarek
- Department of Medicine III, Division of Endocrinology, Nephrology and Rheumatology, University of Leipzig, 04103 Leipzig, Germany
| | - Kerstin Rohde-Zimmermann
- Helmholtz-Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University of Leipzig and the University Hospital Leipzig AöR, 04103 Leipzig, Germany; (K.R.)
| |
Collapse
|
36
|
Min L, Bu F, Meng J, Liu X, Guo Q, Zhao L, Li Z, Li X, Zhu S, Zhang S. Circulating small extracellular vesicle RNA profiling for the detection of T1a stage colorectal cancer and precancerous advanced adenoma. eLife 2024; 12:RP88675. [PMID: 39121006 PMCID: PMC11315448 DOI: 10.7554/elife.88675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
It takes more than 20 years for normal colorectal mucosa to develop into metastatic carcinoma. The long time window provides a golden opportunity for early detection to terminate the malignant progression. Here, we aim to enable liquid biopsy of T1a stage colorectal cancer (CRC) and precancerous advanced adenoma (AA) by profiling circulating small extracellular vesicle (sEV)-derived RNAs. We exhibited a full RNA landscape for the circulating sEVs isolated from 60 participants. A total of 58,333 annotated RNAs were detected from plasma sEVs, among which 1,615 and 888 sEV-RNAs were found differentially expressed in plasma from T1a stage CRC and AA compared to normal controls (NC). Then we further categorized these sEV-RNAs into six modules by a weighted gene coexpression network analysis and constructed a 60-gene t-SNE model consisting of the top 10 RNAs of each module that could well distinguish T1a stage CRC/AA from NC samples. Some sEV-RNAs were also identified as indicators of specific endoscopic and morphological features of different colorectal lesions. The top-ranked biomarkers were further verified by RT-qPCR, proving that these candidate sEV-RNAs successfully identified T1a stage CRC/AA from NC in another cohort of 124 participants. Finally, we adopted different algorithms to improve the performance of RT-qPCR-based models and successfully constructed an optimized classifier with 79.3% specificity and 99.0% sensitivity. In conclusion, circulating sEVs of T1a stage CRC and AA patients have distinct RNA profiles, which successfully enable the detection of both T1a stage CRC and AA via liquid biopsy.
Collapse
Affiliation(s)
- Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
| | - Fanqin Bu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Jingxin Meng
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingChina
| | | | - Qingdong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | | | - Zhi Li
- Echo Biotech Co., LtdBeijingChina
| | - Xiangji Li
- Department of Retroperitoneal Tumor Surgery, International Hospital, Peking UniversityBeijingChina
| | - Shengtao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive DiseaseBeijingChina
| |
Collapse
|
37
|
Stastna M. The Role of Proteomics in Identification of Key Proteins of Bacterial Cells with Focus on Probiotic Bacteria. Int J Mol Sci 2024; 25:8564. [PMID: 39201251 PMCID: PMC11354107 DOI: 10.3390/ijms25168564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Probiotics can affect human health, keep the balance between beneficial and pathogenic bacteria, and their colonizing abilities enable the enhancement of the epithelial barrier, preventing the invasion of pathogens. Health benefits of probiotics were related to allergy, depression, eczema, cancer, obesity, inflammatory diseases, viral infections, and immune regulation. Probiotic bacterial cells contain various proteins that function as effector molecules, and explaining their roles in probiotic actions is a key to developing efficient and targeted treatments for various disorders. Systematic proteomic studies of probiotic proteins (probioproteomics) can provide information about the type of proteins involved, their expression levels, and the pathological changes. Advanced proteomic methods with mass spectrometry instrumentation and bioinformatics can point out potential candidates of next-generation probiotics that are regulated under pharmaceutical frameworks. In addition, the application of proteomics with other omics methods creates a powerful tool that can expand our understanding about diverse probiotic functionality. In this review, proteomic strategies for identification/quantitation of the proteins in probiotic bacteria were overviewed. The types of probiotic proteins investigated by proteomics were described, such as intracellular proteins, surface proteins, secreted proteins, and the proteins of extracellular vesicles. Examples of pathological conditions in which probiotic bacteria played crucial roles were discussed.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveri 97, 602 00 Brno, Czech Republic
| |
Collapse
|
38
|
Jin J, Cui Y, Niu H, Lin Y, Wu X, Qi X, Bai K, Zhang Y, Wang Y, Bu H. NSCLC Extracellular Vesicles Containing miR-374a-5p Promote Leptomeningeal Metastasis by Influencing Blood‒Brain Barrier Permeability. Mol Cancer Res 2024; 22:699-710. [PMID: 38639925 PMCID: PMC11294816 DOI: 10.1158/1541-7786.mcr-24-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Leptomeningeal metastasis (LM) is a devastating complication of advanced non-small cell lung cancer (NSCLC). Its diagnosis and monitoring can be challenging. Recently, extracellular vesicle (EV) miRNAs have become a new noninvasive diagnostic biomarker. The purpose of this study was to examine the clinical value and role of EV miRNAs in NSCLC-LM. Next-generation sequencing analysis revealed that miRNAs with differential expression of EVs in sera of patients with NSCLC with LM and non-LM were detected to identify biological markers for the diagnosis of LM. Cellular and in vivo experiments were conducted to explore the pathogenesis of EV miRNA promoting LM in NSCLC. In the present study, we first demonstrated that the serum level of EV-associated miR-374a-5p in patients with LM of lung cancer was much higher than that in patients without LM and was correlated with the survival time of patients with LM. Further studies showed that EV miR-374a-5p efficiently destroys tight junctions and the integrity of the cerebral microvascular endothelial cell barrier, resulting in increased blood-brain barrier permeability. Mechanistically, miR-374a-5p regulates the distribution of ZO1 and occludin in endothelial cells by targeting γ-adducin, increasing vascular permeability and promoting LM. Implications: These results suggest that serum NSCLC-derived EV miR-374a-5p is involved in premetastatic niche formation by regulating the permeability of the blood-brain barrier to promote NSCLC-LM and can be used as a blood biomarker for the diagnosis and prognosis of NSCLC-LM.
Collapse
Affiliation(s)
- Jie Jin
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Beijing Institute of Biotechnology, Beijing, PR China.
- Xiong’an Xuanwu Hospital, Baoding, PR China.
| | - Yumeng Cui
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Huicong Niu
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, PR China.
| | - Yanli Lin
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Xiaojie Wu
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Xuejiao Qi
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Kaixuan Bai
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Yu Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| | - Youliang Wang
- Beijing Institute of Biotechnology, Beijing, PR China.
| | - Hui Bu
- The Second Hospital of Hebei Medical University, Shijiazhuang, PR China.
- Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, PR China.
| |
Collapse
|
39
|
Jan N, Bostanudin MF, Moutraji SA, Kremesh S, Kamal Z, Hanif MF. Unleashing the biomimetic targeting potential of platelet-derived nanocarriers on atherosclerosis. Colloids Surf B Biointerfaces 2024; 240:113979. [PMID: 38823339 DOI: 10.1016/j.colsurfb.2024.113979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
Atherosclerosis, the primary mechanism underlying the development of many cardiovascular illnesses, continues to be one of the leading causes of mortality worldwide. Platelet (PLT), which are essential for maintaining body homeostasis, have been strongly linked to the onset of atherosclerosis at various stages due to their inherent tendency to bind to atherosclerotic lesions and show an affinity for plaques. Therefore, mimicking PLT's innate adhesive features may be necessary to effectively target plaques. PLT-derived nanocarriers have emerged as a promising biomimetic targeting strategy for treating atherosclerosis due to their numerous advantages. These advantages include excellent biocompatibility, minimal macrophage phagocytosis, prolonged circulation time, targeting capability for impaired vascular sites, and suitability as carriers for anti-atherosclerotic drugs. Herein, we discuss the role of PLT in atherogenesis and propose the design of nanocarriers based on PLT-membrane coating and PLT-derived vesicles. These nanocarriers can target multiple biological elements relevant to plaque development. The review also emphasizes the current challenges and future research directions for the effective utilization of PLT-derived nanocarriers in treating atherosclerosis.
Collapse
Affiliation(s)
- Nasrullah Jan
- Department of Pharmacy, The University of Chenab, Gujrat 50700, Punjab, Pakistan.
| | - Mohammad F Bostanudin
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedq A Moutraji
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Sedra Kremesh
- College of Pharmacy, Al Ain University, Abu Dhabi 112612, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Zul Kamal
- Department of Pharmacy, Shaheed Benazir Bhutto University, Dir Upper 18000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Bahawalpur College of Pharmacy, BMDC Complex Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
40
|
Hu M, Shen X, Zhou L. Role of Extracellular Vesicle-Derived Noncoding RNAs in Diabetic Kidney Disease. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:303-312. [PMID: 39131883 PMCID: PMC11309761 DOI: 10.1159/000539024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/18/2024] [Indexed: 08/13/2024]
Abstract
Background Diabetic kidney disease (DKD), a metabolism-related syndrome characterized by abnormal glomerular filtration rate, proteinuria, and renal microangiopathy, is one of the most common forms of chronic kidney disease, whereas extracellular vesicles (EVs) have been recently evidenced as a novel cell communication player in DKD occurrence and progress via releasing various bioactive molecules, including proteins, lipids, and especially RNA, among which noncoding RNAs (including miRNAs, lncRNAs, and circRNAs) are the major regulators. However, the functional relevance of EV-derived ncRNAs in DKD is to be elucidated. Summary Studies have reported that EV-derived ncRNAs regulate gene expression via a diverse range of regulatory mechanisms, contributing to diverse phenotypes related to DKD progression. Furthermore, there are already many potential clinical diagnostic and therapeutic studies based on these ncRNAs, which can be expected to have potential applications in clinical practice for EV-derived ncRNAs. Key Messages In the current review, we summarized the mechanistic role of EVs in DKD according to biological function classifications, including inflammation and oxidative stress, epithelial-mesenchymal transition, cell death, and extracellular matrix deposition. In addition, we comprehensively discussed the potential applications of EV-derived ncRNAs as diagnostic biomarkers and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Miao Hu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiahong Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
41
|
Lin J, Lu W, Huang B, Yang W, Wang X. The role of tissue-derived extracellular vesicles in tumor microenvironment. Tissue Cell 2024; 89:102470. [PMID: 39002287 DOI: 10.1016/j.tice.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The tumor microenvironment (TME) is a highly heterogeneous ecosystem that plays critical roles in the initiation, progression, invasion, and metastasis of cancers. Extracellular vesicles (EVs), as emerging components of the host-tumor communication, are lipid-bilayer membrane structures that are secreted by most cell types into TEM and increasingly recognized as critical elements that regulate the interaction between tumor cells and their surroundings. They contain a variety of bioactive molecules, such as proteins, nucleic acids, and lipids, and participate in various pathophysiological processes while regulating intercellular communication. While many studies have focused on the EVs derived from different body fluids or cell culture supernatants, the direct isolation of tissue-derived EVs (Ti-EVs) has garnered more attention due to the advantages of tissue specificity and accurate reflection of tissue microenvironment. In this review, we summarize the protocol for isolating Ti-EVs from different tissue interstitium, discuss the role of tumor-derived and adipose tissue-derived Ti-EVs in regulating TME. In addition, we sum up the latest application of Ti-EVs as potential biomarkers for cancer diseases.
Collapse
Affiliation(s)
- Jin Lin
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wan Lu
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Medical Genetics Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiming Yang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
42
|
Din MAU, Wan A, Chu Y, Zhou J, Yan Y, Xu Z. Therapeutic role of extracellular vesicles from human umbilical cord mesenchymal stem cells and their wide therapeutic implications in inflammatory bowel disease and other inflammatory disorder. Front Med (Lausanne) 2024; 11:1406547. [PMID: 39139783 PMCID: PMC11319305 DOI: 10.3389/fmed.2024.1406547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
The chronic immune-mediated inflammatory condition known as inflammatory bowel disease (IBD) significantly affects the gastrointestinal system. While the precise etiology of IBD remains elusive, extensive research suggests that a range of pathophysiological pathways and immunopathological mechanisms may significantly contribute as potential factors. Mesenchymal stem cells (MSCs) have shown significant potential in the development of novel therapeutic approaches for various medical conditions. However, some MSCs have been found to exhibit tumorigenic characteristics, which limit their potential for medical treatments. The extracellular vesicles (EVs), paracrine factors play a crucial role in the therapeutic benefits conferred by MSCs. The EVs consist of proteins, microRNAs, and lipids, and are instrumental in facilitating intercellular communication. Due to the ease of maintenance, and decreased immunogenicity, tumorigenicity the EVs have become a new and exciting option for whole cell treatment. This review comprehensively assesses recent preclinical research on human umbilical cord mesenchymal stem cell (hUC-MSC)-derived EVs as a potential IBD therapy. It comprehensively addresses key aspects of various conditions, including diabetes, cancer, dermal injuries, neurological disorders, cardiovascular issues, liver and kidney diseases, and bone-related afflictions.
Collapse
Affiliation(s)
- Muhammad Azhar Ud Din
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine Jiangsu University, Zhenjiang, China
| | | | - Ying Chu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Zhiliang Xu
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| |
Collapse
|
43
|
Dussault S, Desjarlais M, Raguema N, Boilard E, Chemtob S, Rivard A. Selective Enrichment of Angiomirs in Extracellular Vesicles Released from Ischemic Skeletal Muscles: Potential Role in Angiogenesis and Neovascularization. Cells 2024; 13:1243. [PMID: 39120274 PMCID: PMC11312235 DOI: 10.3390/cells13151243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRs) regulate physiological and pathological processes, including ischemia-induced angiogenesis and neovascularization. They can be transferred between cells by extracellular vesicles (EVs). However, the specific miRs that are packaged in EVs released from skeletal muscles, and how this process is modulated by ischemia, remain to be determined. We used a mouse model of hindlimb ischemia and next generation sequencing (NGS) to perform a complete profiling of miR expression and determine the effect of ischemia in skeletal muscles, and in EVs of different sizes (microvesicles (MVs) and exosomes) released from these muscles. Ischemia significantly modulated miR expression in whole muscles and EVs, increasing the levels of several miRs that can have pro-angiogenic effects (angiomiRs). We found that specific angiomiRs are selectively enriched in MVs and/or exosomes in response to ischemia. In silico approaches indicate that these miRs modulate pathways that play key roles in angiogenesis and neovascularization, including HIF1/VEGF signaling, regulation of actin cytoskeleton and focal adhesion, NOTCH, PI3K/AKT, RAS/MAPK, JAK/STAT, TGFb/SMAD signaling and the NO/cGMP/PKG pathway. Thus, we show for the first time that angiomiRs are selectively enriched in MVs and exosomes released from ischemic muscles. These angiomiRs could be targeted in order to improve the angiogenic function of EVs for potential novel therapeutic applications in patients with severe ischemic vascular diseases.
Collapse
Affiliation(s)
- Sylvie Dussault
- Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM) Research Center, Montréal, QC H2X 0A9, Canada; (S.D.); (N.R.)
| | - Michel Desjarlais
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada; (M.D.); (S.C.)
| | - Nozha Raguema
- Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM) Research Center, Montréal, QC H2X 0A9, Canada; (S.D.); (N.R.)
| | - Eric Boilard
- Department of Infectious Diseases and Immunity, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Sylvain Chemtob
- Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada; (M.D.); (S.C.)
| | - Alain Rivard
- Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM) Research Center, Montréal, QC H2X 0A9, Canada; (S.D.); (N.R.)
| |
Collapse
|
44
|
Yuntao F, Jinjun L, Hua Fen L, Huiyu C, Dishiwen L, Zhen C, Wang Y, Wang X, Ke Y, Yanni C, Kexin G, Zhibin P, Mei Y, Zhao Q. Atrial fibroblast-derived exosomal miR-21 upregulate myocardial KCa3.1 via the PI3K-Akt pathway during rapid pacing. Heliyon 2024; 10:e33059. [PMID: 39040331 PMCID: PMC11260968 DOI: 10.1016/j.heliyon.2024.e33059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Background Fibroblast-derived exosomes can regulate the electrical remodeling of cardiomyocytes, and the intermediate-conductance calcium-activated potassium channel (KCa3.1) is important in atrial electrical remodeling. However, the underlying molecular mechanisms remain unclear. This study aimed to investigate the regulation of cardiac electrophysiology by exosomes linked to KCa3.1. Methods Atrial myocytes (AMs) and atrial fibroblasts were isolated from Sprague-Dawley suckling rats and cultured individually. The cellular atrial fibrillation (AF) model was established via electrical stimulation (1.0 v/cm, 10 Hz), and fibroblast-derived exosomes were isolated via ultracentrifugation. Exosomes were co-cultured with AMs to investigate their influences on KCa3.1 and the underlying mechanisms. Nanoparticle tracking analysis and transmission electron microscopy were used to measure exosome particle sizes and concentrations. Whole-cell patch clamp was applied to record the current density of KCa3.1 and action potential duration (APD). The expression of miR-21-5p was detected by reverse-transcription polymerase chain reaction (RT-PCR). Western blotting or immunofluorescence was used to measure the expression of exosomal markers, Akt phosphorylation, and KCa3.1. Results Rapid pacing promoted the secretion of exosomes from atrial fibroblasts and miR-21-5p expression in atrial fibroblasts and exosomes. KCa3.1 protein expression and current density significantly increased, and APD50 and APD90 were sharply shortened after rapid pacing in AMs. TRAM-34 (KCa3.1 blocker) extended APD and reduced susceptibility to AF. KCa3.1 and P-AKT expressions were amplified after co-culturing AMs with exosomes secreted by atrial fibroblasts. In contrast, the increase in KCa3.1 expression was reversed after the cells were co-cultured with exosomes secreted by atrial fibroblasts that were transfected with miR-21-5p inhibitors or after the use of LY294002, a PI3K/Akt pathway inhibitor. Conclusions Rapid pacing promoted the secretion of exosomes from fibroblasts, and miR-21-5p was upregulated in exosomes. Moreover, the miR-21-5p-enriched exosomes upregulated KCa3.1 expression in AMs via the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Fu Yuntao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liang Jinjun
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liu Hua Fen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Chen Huiyu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liu Dishiwen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cao Zhen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Youcheng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xuewen Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuanjia Ke
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Cheng Yanni
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Guo Kexin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | | | - Yang Mei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
45
|
Chen YM, Tang KT, Liu HJ, Huang ST, Liao TL. tRF-His-GTG-1 enhances NETs formation and interferon-α production in lupus by extracellular vesicle. Cell Commun Signal 2024; 22:354. [PMID: 38972975 PMCID: PMC11229248 DOI: 10.1186/s12964-024-01730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/29/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Hyperactive neutrophil extracellular traps (NETs) formation plays a crucial role in active severe systemic lupus erythematosus (SLE). However, what triggers the imbalance in dysregulated NETs formation in SLE is elusive. Transfer RNA-derived small RNAs (tsRNAs) are novel non-coding RNAs, which participate in various cellular processes. We explore the role of tsRNAs on NETs formation in SLE. METHODS We analyzed the levels of NETs DNA and platelet-derived extracellular vesicles (pEVs) from 50 SLE patients and 20 healthy control subjects. The effects of pEVs on NETs formation were evaluated by using immunofluorescence assay and myeloperoxidase-DNA PicoGreen assay. The regulatory mechanism of pEVs on NETs formation and inflammatory cytokines production were investigated using an in vitro cell-based assay. RESULTS Increased circulating NETs DNA and pEVs were shown in SLE patients and were associated with disease activity (P < 0.005). We demonstrated that SLE patient-derived immune complexes (ICs) induced platelet activation, followed by pEVs release. ICs-triggered NETs formation was significantly enhanced in the presence of pEVs through Toll-like receptor (TLR) 8 activation. Increased levels of tRF-His-GTG-1 in pEVs and neutrophils of SLE patients were associated with disease activity. tRF-His-GTG-1 interacted with TLR8 to prime p47phox phosphorylation in neutrophils, resulting in reactive oxygen species production and NETs formation. Additionally, tRF-His-GTG-1 modulated NF-κB and IRF7 activation in neutrophils upon TLR8 engagement, resulting IL-1β, IL-8, and interferon-α upregulation, respectively. CONCLUSIONS The level of tRF-His-GTG-1 was positively correlated with NETs formation in SLE patients; tRF-His-GTG-1 inhibitor could efficiently suppress ICs-triggered NETs formation/hyperactivation, which may become a potential therapeutic target.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung, 40705, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Hung-Jen Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shih-Ting Huang
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, No.1650, Sec.4, Taiwan Boulevard, Xitun Dist, Taichung, 40705, Taiwan.
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
46
|
Larbi A. From Genesis to Old Age: Exploring the Immune System One Cell at a Time with Flow Cytometry. Biomedicines 2024; 12:1469. [PMID: 39062042 PMCID: PMC11275137 DOI: 10.3390/biomedicines12071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The immune system is a highly complex and tightly regulated system that plays a crucial role in protecting the body against external threats, such as pathogens, and internal abnormalities, like cancer cells. It undergoes development during fetal stages and continuously learns from each encounter with pathogens, allowing it to develop immunological memory and provide a wide range of immune protection. Over time, after numerous encounters and years of functioning, the immune system can begin to show signs of erosion, which is commonly named immunosenescence. In this review, we aim to explore how the immune system responds to initial encounters with antigens and how it handles persistent stimulations throughout a person's lifetime. Our understanding of the immune system has greatly benefited from advanced technologies like flow cytometry. In this context, we will discuss the valuable contribution of flow cytometry in enhancing our knowledge of the immune system behavior in aging, with a specific focus on T-cells. Moreover, we will expand our discussion to the flow cytometry-based assessment of extracellular vesicles, a recently discovered communication channel in biology, and their implications for immune system functioning.
Collapse
Affiliation(s)
- Anis Larbi
- Medical and Scientific Affairs, Beckman Coulter Life Sciences, 22 Avenue des Nations, 93420 Villepinte, France;
- Department of Medicine, Division of Geriatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
47
|
Zhang F, Zhang W. Research progress in Alzheimer's disease and bone-brain axis. Ageing Res Rev 2024; 98:102341. [PMID: 38759893 DOI: 10.1016/j.arr.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD) is the most common type of cognitive impairment. AD is closely related to orthopedic diseases, such as osteoporosis and osteoarthritis, in terms of epidemiology and pathogenesis. Brain and bone tissues can regulate each other in different manners through bone-brain axis. This article reviews the research progress of the relationship between AD and orthopedic diseases, bone-brain axis mechanisms of AD, and AD therapy by targeting bone-brain axis, in order to deepen the understanding of bone-brain communication, promote early diagnosis and explore new therapy for AD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
48
|
Liu X, Meng Q, Shi S, Geng X, Wang E, Li Y, Lin F, Liang X, Xi X, Han W, Fan H, Zhou X. Cardiac-derived extracellular vesicles improve mitochondrial function to protect the heart against ischemia/reperfusion injury by delivering ATP5a1. J Nanobiotechnology 2024; 22:385. [PMID: 38951822 PMCID: PMC11218245 DOI: 10.1186/s12951-024-02618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/28/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Numerous studies have confirmed the involvement of extracellular vesicles (EVs) in various physiological processes, including cellular death and tissue damage. Recently, we reported that EVs derived from ischemia-reperfusion heart exacerbate cardiac injury. However, the role of EVs from healthy heart tissue (heart-derived EVs, or cEVs) on myocardial ischemia-reperfusion (MI/R) injury remains unclear. RESULTS Here, we demonstrated that intramyocardial administration of cEVs significantly enhanced cardiac function and reduced cardiac damage in murine MI/R injury models. cEVs treatment effectively inhibited ferroptosis and maintained mitochondrial homeostasis in cardiomyocytes subjected to ischemia-reperfusion injury. Further results revealed that cEVs can transfer ATP5a1 into cardiomyocytes, thereby suppressing mitochondrial ROS production, alleviating mitochondrial damage, and inhibiting cardiomyocyte ferroptosis. Knockdown of ATP5a1 abolished the protective effects of cEVs. Furthermore, we found that the majority of cEVs are derived from cardiomyocytes, and ATP5a1 in cEVs primarily originates from cardiomyocytes of the healthy murine heart. Moreover, we demonstrated that adipose-derived stem cells (ADSC)-derived EVs with ATP5a1 overexpression showed much better efficacy on the therapy of MI/R injury compared to control ADSC-derived EVs. CONCLUSIONS These findings emphasized the protective role of cEVs in cardiac injury and highlighted the therapeutic potential of targeting ATP5a1 as an important approach for managing myocardial damage induced by MI/R injury.
Collapse
Affiliation(s)
- Xuan Liu
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingshu Meng
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Shanshan Shi
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yinzhen Li
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Fang Lin
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoting Liang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xiaoling Xi
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wei Han
- Department of Heart Failure, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huimin Fan
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China.
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
- Department of Cardiothoracic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Xiaohui Zhou
- Research Center for Translational Medicine, Shanghai East Hospital, School of Medicine, Tongji University, 150 Jimo Rd, Pudong, Shanghai, 200092, China.
- Shanghai Heart Failure Research Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
49
|
Neettiyath A, Chung K, Liu W, Lee LP. Nanoplasmonic sensors for extracellular vesicles and bacterial membrane vesicles. NANO CONVERGENCE 2024; 11:23. [PMID: 38918255 PMCID: PMC11199476 DOI: 10.1186/s40580-024-00431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) are promising tools for the early diagnosis of diseases, and bacterial membrane vesicles (MVs) are especially important in health and environment monitoring. However, detecting EVs or bacterial MVs presents significant challenges for the clinical translation of EV-based diagnostics. In this Review, we provide a comprehensive discussion on the basics of nanoplasmonic sensing and emphasize recent developments in nanoplasmonics-based optical sensors to effectively identify EVs or bacterial MVs. We explore various nanoplasmonic sensors tailored for EV or bacterial MV detection, emphasizing the application of localized surface plasmon resonance through gold nanoparticles and their multimers. Additionally, we highlight advanced EV detection techniques based on surface plasmon polaritons using plasmonic thin film and nanopatterned structures. Furthermore, we evaluate the improved detection capability of surface-enhanced Raman spectroscopy in identifying and classifying these vesicles, aided by plasmonic nanostructures. Nanoplasmonic sensing techniques have remarkable precision and sensitivity, making them a potential tool for accurate EV detection in clinical applications, facilitating point-of-care molecular diagnostics. Finally, we summarize the challenges associated with nanoplasmonic EV or bacterial MV sensors and offer insights into potential future directions for this evolving field.
Collapse
Affiliation(s)
- Aparna Neettiyath
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Kyungwha Chung
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| | - Wenpeng Liu
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
50
|
Yang S, Sun Y, Yan C. Recent advances in the use of extracellular vesicles from adipose-derived stem cells for regenerative medical therapeutics. J Nanobiotechnology 2024; 22:316. [PMID: 38844939 PMCID: PMC11157933 DOI: 10.1186/s12951-024-02603-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are a subset of mesenchymal stem cells (MSCs) isolated from adipose tissue. They possess remarkable properties, including multipotency, self-renewal, and easy clinical availability. ADSCs are also capable of promoting tissue regeneration through the secretion of various cytokines, factors, and extracellular vesicles (EVs). ADSC-derived EVs (ADSC-EVs) act as intercellular signaling mediators that encapsulate a range of biomolecules. These EVs have been found to mediate the therapeutic activities of donor cells by promoting the proliferation and migration of effector cells, facilitating angiogenesis, modulating immunity, and performing other specific functions in different tissues. Compared to the donor cells themselves, ADSC-EVs offer advantages such as fewer safety concerns and more convenient transportation and storage for clinical application. As a result, these EVs have received significant attention as cell-free therapeutic agents with potential future application in regenerative medicine. In this review, we focus on recent research progress regarding regenerative medical use of ADSC-EVs across various medical conditions, including wound healing, chronic limb ischemia, angiogenesis, myocardial infarction, diabetic nephropathy, fat graft survival, bone regeneration, cartilage regeneration, tendinopathy and tendon healing, peripheral nerve regeneration, and acute lung injury, among others. We also discuss the underlying mechanisms responsible for inducing these therapeutic effects. We believe that deciphering the biological properties, therapeutic effects, and underlying mechanisms associated with ADSC-EVs will provide a foundation for developing a novel therapeutic approach in regenerative medicine.
Collapse
Affiliation(s)
- Song Yang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yiran Sun
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China.
| | - Chenchen Yan
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| |
Collapse
|