1
|
Donati S, Palmini G, Aurilia C, Falsetti I, Marini F, Galli G, Zonefrati R, Iantomasi T, Margheriti L, Franchi A, Beltrami G, Masi L, Moro A, Brandi ML. Establishment and Molecular Characterization of a Human Stem Cell Line from a Primary Cell Culture Obtained from an Ectopic Calcified Lesion of a Tumoral Calcinosis Patient Carrying a Novel GALNT3 Mutation. Genes (Basel) 2025; 16:263. [PMID: 40149415 PMCID: PMC11942111 DOI: 10.3390/genes16030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Tumoral calcinosis (TC) is an extremely rare inherited disease characterized by multilobulated, dense ectopic calcified masses, usually in the periarticular soft tissue regions. In a previous study, we isolated a primary cell line from an ectopic lesion of a TC patient carrying a previously undescribed GALNT3 mutation. Here, we researched whether a stem cell (SC) subpopulation, which may play a critical role in TC progression, could be present within these lesions. METHODS A putative SC subpopulation was initially isolated by the sphere assay (marked as TC1-SC line) and characterized for its stem-like phenotype through several cellular and molecular assays, including colony forming unit assay, immunofluorescence staining for mesenchymal SC (MSC) markers, gene expression analyses for embryonic SC (ESC) marker genes, and multidifferentiation capacity. In addition, a preliminary expression pattern of osteogenesis-related pathways miRNAs and genes were assessed in the TC1-SC by quantitative Real-Time PCR (qPCR). RESULTS These cells were capable of differentiating into both the adipogenic and the osteogenic lineages. Moreover, they showed the presence of the MSC and ESC markers, confirmed respectively by using immunofluorescence and qualitative reverse transcriptase PCR (RT-PCR), and a good rate of clonogenic capacity. Finally, qPCR data revealed a signature of miRNAs (i.e., miR-21, miR-23a-3p, miR-26a, miR-27a-3p, miR-27b-3p, and miR-29b-3p) and osteogenic marker genes (i.e., ALP, RUNX2, COLIA1, OPG, OCN, and CCN2) characteristic for the established TC1-SC line. CONCLUSIONS The establishment of this in vitro cell model system could advance the understanding of mechanisms underlying TC pathogenesis, thereby paving the way for the discovery of new diagnostic and novel gene-targeted therapeutic approaches for TC.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Gaia Palmini
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Francesca Marini
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Gianna Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Roberto Zonefrati
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (C.A.); (I.F.); (G.G.); (T.I.)
| | - Lorenzo Margheriti
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Alessandro Franchi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Giovanni Beltrami
- Department of Orthopaedic Oncology and Reconstructive Surgery, Azienda Ospedaliero, Universitaria Careggi, 50134 Firenze, Italy;
| | - Laura Masi
- Metabolic Bone Diseases Unit, University Hospital of Florence, AOU Careggi, 50139 Florence, Italy;
| | - Arcangelo Moro
- Stabilimento Chimico Farmaceutico Militare (SCFM)—Agenzia Industrie Difesa (AID), 50141 Florence, Italy; (L.M.); (A.M.)
| | - Maria Luisa Brandi
- FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141 Florence, Italy; (G.P.); (F.M.); (R.Z.)
| |
Collapse
|
2
|
He Q, Xiong Y, Yang X, Yu Y, Chen Z. Molecular subtyping combined with multiomics analysis to study correlation between TACE refractoriness and tumor stemness in hepatocellular carcinoma. Discov Oncol 2025; 16:197. [PMID: 39961903 PMCID: PMC11832877 DOI: 10.1007/s12672-025-01955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Transarterial chemoembolization (TACE) refractoriness is a significant challenge in treating intermediate to advanced-stage hepatocellular carcinoma (HCC). A few studies suggest that liver cancer stem cells (LCSCs) may be associated with TACE refractoriness. This study aims to explore the potential correlation between TACE refractoriness and HCC stemness, highlighting its clinical significance. METHODS This research encompassed the analysis of diverse HCC datasets, including RNA-sequencing, microarray, single-cell RNA-sequencing, and clinical cohorts. We identified common genes between TACE refractoriness and tumor stemness (TSGs). Unsupervised clustering was employed to classify HCC patients into different clusters based on TSGs (TRS clusters). The study explored the differences in clinical prognosis, biological characteristics, genomic variations, immune landscapes, and treatment responses among the TRS clusters. RESULTS Patients with TACE-refractoriness demonstrated significantly higher tumor stemness. Our study identified 33 TSGs and established two TRS clusters, including C1 and C2. C1 was associated with TACE refractoriness, elevated tumor stemness, and poorer prognosis. Genomic alterations were found to be significantly different between the TRS clusters. The C1 exhibited signs of immunosuppression and lower activity of immune effector cells, while the C2 had a more robust immune response and higher level of immune cell presence. Single-cell RNA-seq revealed distinct cell type characteristics in each subtypes, with the C1 showing a higher proportion of stem cells and malignant cells. CONCLUSION Our findings establish a connection between TACE refractoriness and tumor stemness in HCC, proposing a novel subtype classification to guide personalized treatment. Insights gained may facilitate overcoming TACE refractoriness and the development of innovative therapies.
Collapse
Affiliation(s)
- Qifan He
- Department of Radiology, Haining People's Hospital, No.2 Qianjiang West Road, Haining, 314400, China
| | - Yue Xiong
- Department of Radiology, Haining People's Hospital, No.2 Qianjiang West Road, Haining, 314400, China
| | - Xiaoyu Yang
- Department of Radiology, Haining People's Hospital, No.2 Qianjiang West Road, Haining, 314400, China
| | - Yihui Yu
- Department of Radiology, Haining People's Hospital, No.2 Qianjiang West Road, Haining, 314400, China
| | - Zhonghua Chen
- Department of Radiology, Haining People's Hospital, No.2 Qianjiang West Road, Haining, 314400, China.
| |
Collapse
|
3
|
Wang Y, Ma X, Chen X, Wen Z, Bi C, Xu Z, Liu W. Gold(I) complexes bearing EGFR-inhibiting ligands as anti-HCC agents through dual targeting of EGFR and TrxR. Eur J Med Chem 2025; 283:117137. [PMID: 39693862 DOI: 10.1016/j.ejmech.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Overexpression of epidermal growth factor receptor (EGFR) and thioredoxin reductase (TrxR) are commonly associated with an adverse prognosis in hepatocellular carcinoma (HCC). This makes them key targets for the treatment of HCC. Studies have shown that the clinical efficacy of the EGFR tyrosine kinase inhibitor gefitinib alone in treating HCC is limited. Herein, we developed a series of novel gold(I) complexes using a "dual-targeting strategy" by combining gold(I) complexes with different gefitinib derivatives. Among them, the best complex 6g exhibits significant antiproliferative activity against Huh7 cells and Huh7R (lenvatinib-resistant) cells. Remarkably, complex 6g inhibits the expression of phosphorylated EGFR while also effectively inhibiting intracellular TrxR activity. In addition, complex 6g causes a significant increase in the accumulation of reactive oxygen species (ROS), disrupts mitochondrial membrane potential (MMP), arrests the cell cycle in the G0/G1 phase, and induces apoptosis. Collectively, our findings demonstrate that complex 6g exhibits potential anti-HCC effects via dual-targeting of EGFR and TrxR.
Collapse
Affiliation(s)
- Yawen Wang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xuejie Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhenfan Wen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Chunyang Bi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhongren Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, 215031, PR China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
4
|
Ye W, Zhao Y, Wang Y, Wang Y, Zhang H, Wang F, Chen W. Farnesoid X Receptor Attenuates the Tumorigenicity of Liver Cancer Stem Cells by Inhibiting STAT3 Phosphorylation. Int J Mol Sci 2025; 26:1122. [PMID: 39940889 PMCID: PMC11817294 DOI: 10.3390/ijms26031122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The Farnesoid X receptor (FXR) has recently been identified as being closely associated with the progression of primary hepatocellular carcinoma. Cancer stem cells (CSCs) play a crucial role in tumor initiation, progression, invasion, metastasis, recurrence, and drug resistance. The elucidation of the role and regulatory mechanism of FXR in CSCs is therefore deemed significant. Here, bioinformatics analysis has revealed a downregulation of FXR in hepatocellular carcinoma (HCC), which showed a negative correlation with HCC malignancy. This result was further confirmed through clinical sample analysis. Subsequently, CSCs were isolated from HCC cell lines and exhibited a significant decrease in the expression of FXR. The activation of FXR resulted in a remarkable inhibition of the proliferation, invasion, and tumorigenicity of CSCs. Furthermore, activated FXR prominently upregulated the expression of SOCS3 while suppressing STAT3 phosphorylation in CSCs. To further investigate this discovery, we established a DEN-induced HCC model in mice and observed that FXR-deficient mice exhibited heightened susceptibility to HCC. This was accompanied by decreased expression levels of SOCS3 and elevated expression and phosphorylation levels of STAT3, as well as significantly enhanced HCC CSCs markers and stemness-related genes expression in DEN-induced HCC tissues of FXR-deficient mice. Additionally, we also found a significant upregulation of CSCs markers and stemness-related genes within HCC clinical samples. Based on these findings, we postulated that targeted regulation of SOCS3 by FXR inhibits STAT3 phosphorylation, thereby exerting an inhibitory effect on CSCs.
Collapse
Affiliation(s)
- Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yibo Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Yahan Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Huan Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Fengling Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Weidong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot 010110, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
5
|
Jin X, Dong H, Wang J, Ou G, Lai X, Tian X, Wang L, Zhuang H, Li T, Xiang K. HBx Facilitates Drug Resistance in Hepatocellular Carcinoma via CD133-regulated Self-renewal of Liver Cancer Stem Cells. J Clin Transl Hepatol 2025; 13:15-24. [PMID: 39801781 PMCID: PMC11712087 DOI: 10.14218/jcth.2024.00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025] Open
Abstract
Background and Aims Hepatitis B virus (HBV) infection contributes to hepatocellular carcinoma (HCC) tumorigenesis, drug resistance, and recurrence, although the underlying molecular mechanisms remain unclear. Recent studies suggest that HBV infection may be associated with liver cancer stem cells (LCSCs), but the exact mechanisms are yet to be resolved. In this study, we aimed to analyze the role of HBV infection in regulating the stemness of HCCs, which is closely linked to drug resistance. Methods Sphere formation assay and real-time Polymerase Chain Reaction quantification were used to isolate and confirm liver cancer stem cells. The inhibitory concentration values of sorafenib and regorafenib were calculated and compared using the Cell Counting Kit-8 assay. HBV infection was used to assess the effect of HBV replication on LCSC markers. Co-immunoprecipitation assay was performed to detect the interaction between CD133 and SRC. Furthermore, we utilized the CRISPR-Cas9 system to knockout CD133 expression in HepG2.2.15 cells. Results LCSCs derived from HCCs exhibited high expression of stem cell markers and demonstrated reduced sensitivity to sorafenib and regorafenib. HBV replication promoted both drug resistance and stemness in hepatoma cells and clinical samples. Overexpression of HBx protein in HepG2 cells upregulated the expression of CD133, EpCAM, and CD24, enhancing resistance to sorafenib and regorafenib. Knockout of CD133 expression using the CRISPR-Cas9 system significantly inhibited drug resistance to both sorafenib and regorafenib in HepG2.2.15 cells. Mechanistically, HBV replication promoted CD133 expression, which in turn interacted with the SRC/STAT3 signaling pathway. Conclusions Our data suggest that HBV replication enhances the stemness and drug resistance of HCC, providing a strong theoretical foundation for the development of targeted and efficient treatments for HBV-infected HCCs.
Collapse
Affiliation(s)
- Xiangshu Jin
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Obstetrics and Gynecology, the Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huijun Dong
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University–YHLO Joint Laboratory for Molecular Diagnostics of Infectious Diseases, Peking University, Beijing, China
| | - Juan Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Guomin Ou
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University–YHLO Joint Laboratory for Molecular Diagnostics of Infectious Diseases, Peking University, Beijing, China
| | - Xinyuan Lai
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University–YHLO Joint Laboratory for Molecular Diagnostics of Infectious Diseases, Peking University, Beijing, China
| | - Xing Tian
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Physiology, Shenyang Medical College, Shenyang, Liaoning, China
| | - Lei Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University–YHLO Joint Laboratory for Molecular Diagnostics of Infectious Diseases, Peking University, Beijing, China
| | - Tong Li
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University–YHLO Joint Laboratory for Molecular Diagnostics of Infectious Diseases, Peking University, Beijing, China
| | - Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Peking University–YHLO Joint Laboratory for Molecular Diagnostics of Infectious Diseases, Peking University, Beijing, China
| |
Collapse
|
6
|
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. MOLECULAR BIOMEDICINE 2025; 6:2. [PMID: 39757310 PMCID: PMC11700966 DOI: 10.1186/s43556-024-00239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer remains a leading cause of mortality globally and a major health burden, with chemotherapy often serving as the primary therapeutic option for patients with advanced-stage disease, partially compensating for the limitations of non-curative treatments. However, the emergence of chemotherapy resistance significantly limits its efficacy, posing a major clinical challenge. Moreover, heterogeneity of resistance mechanisms across cancer types complicates the development of universally effective diagnostic and therapeutic approaches. Understanding the molecular mechanisms of chemoresistance and identifying strategies to overcome it are current research focal points. This review provides a comprehensive analysis of the key molecular mechanisms underlying chemotherapy resistance, including drug efflux, enhanced DNA damage repair (DDR), apoptosis evasion, epigenetic modifications, altered intracellular drug metabolism, and the role of cancer stem cells (CSCs). We also examine specific causes of resistance in major cancer types and highlight various molecular targets involved in resistance. Finally, we discuss current strategies aiming at overcoming chemotherapy resistance, such as combination therapies, targeted treatments, and novel drug delivery systems, while proposing future directions for research in this evolving field. By addressing these molecular barriers, this review lays a foundation for the development of more effective cancer therapies aimed at mitigating chemotherapy resistance.
Collapse
Affiliation(s)
- Yixiang Gu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | | | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
7
|
Sarabia-Sánchez MA, Tinajero-Rodríguez JM, Ortiz-Sánchez E, Alvarado-Ortiz E. Cancer Stem Cell markers: Symphonic masters of chemoresistance and immune evasion. Life Sci 2024; 355:123015. [PMID: 39182567 DOI: 10.1016/j.lfs.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Cancer Stem Cells (CSCs) are highly tumorigenic, chemoresistant, and immune evasive. They emerge as a central driver that gives rise to the bulk of tumoral mass, modifies the tumor microenvironment (TME), and exploits it, leading to poor clinical outcomes for patients with cancer. The existence of CSCs thus accounts for the failure of conventional therapies and immune surveillance. Identifying CSCs in solid tumors remains a significant challenge in modern oncology, with the use of cell surface markers being the primary strategy for studying, isolating, and enriching these cells. In this review, we explore CSC markers, focusing on the underlying signaling pathways that drive CSC self-renewal, which simultaneously makes them intrinsically chemoresistant and immune system evaders. We comprehensively discuss the autonomous and non-autonomous functions of CSCs, with particular emphasis on their interactions with the tumor microenvironment, especially immune cells. This reciprocal network enhances CSCs malignancy while compromising the surrounding niche, ultimately defining therapeutic vulnerabilities associated with each CSC marker. The most common CSCs surface markers addressed in this review-CD44, CD133, ICAM1/CD54, and LGR5-provide insights into the interplay between chemoresistance and immune evasion, two critically important phenomena in disease eradication. This new perspective on the state-of-the-art of CSCs will undoubtedly open new avenues for therapy.
Collapse
Affiliation(s)
- Miguel Angel Sarabia-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México; Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Huixquilucan, México
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México
| | - Eduardo Alvarado-Ortiz
- Programa de Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, México; Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
8
|
Wu J, Zhou Z, Huang Y, Deng X, Zheng S, He S, Huang G, Hu B, Shi M, Liao W, Huang N. Radiofrequency ablation: mechanisms and clinical applications. MedComm (Beijing) 2024; 5:e746. [PMID: 39359691 PMCID: PMC11445673 DOI: 10.1002/mco2.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
Radiofrequency ablation (RFA), a form of thermal ablation, employs localized heat to induce protein denaturation in tissue cells, resulting in cell death. It has emerged as a viable treatment option for patients who are ineligible for surgery in various diseases, particularly liver cancer and other tumor-related conditions. In addition to directly eliminating tumor cells, RFA also induces alterations in the infiltrating cells within the tumor microenvironment (TME), which can significantly impact treatment outcomes. Moreover, incomplete RFA (iRFA) may lead to tumor recurrence and metastasis. The current challenge is to enhance the efficacy of RFA by elucidating its underlying mechanisms. This review discusses the clinical applications of RFA in treating various diseases and the mechanisms that contribute to the survival and invasion of tumor cells following iRFA, including the roles of heat shock proteins, hypoxia, and autophagy. Additionally, we analyze the changes occurring in infiltrating cells within the TME after iRFA. Finally, we provide a comprehensive summary of clinical trials involving RFA in conjunction with other treatment modalities in the field of cancer therapy, aiming to offer novel insights and references for improving the effectiveness of RFA.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yuanwen Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xinyue Deng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Siting Zheng
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Shangwen He
- Department of Respiratory and Critical Care MedicineChronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical UniversityGuangzhouGuangdongChina
| | - Genjie Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Binghui Hu
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Min Shi
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Wangjun Liao
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Na Huang
- Department of Oncology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
9
|
Son B, Lee W, Kim H, Shin H, Park HH. Targeted therapy of cancer stem cells: inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis 2024; 15:696. [PMID: 39349424 PMCID: PMC11442590 DOI: 10.1038/s41419-024-07077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Cancer stem cells (CSCs) are a type of stem cell that possesses not only the intrinsic abilities of stem cells but also the properties of cancer cells. Therefore, CSCs are known to have self-renewal and outstanding proliferation capacity, along with the potential to differentiate into specific types of tumor cells. Cancers typically originate from CSCs, making them a significant target for tumor treatment. Among the related cascades of the CSCs, mammalian target of rapamycin (mTOR) pathway is regarded as one of the most important signaling pathways because of its association with significant upstream signaling: phosphatidylinositol 3‑kinase/protein kinase B (PI3K/AKT) pathway and mitogen‑activated protein kinase (MAPK) cascade, which influence various activities of stem cells, including CSCs. Recent studies have shown that the mTOR pathway not only affects generation of CSCs but also the maintenance of their pluripotency. Furthermore, the maintenance of pluripotency or differentiation into specific types of cancer cells depends on the regulation of the mTOR signal in CSCs. Consequently, the clinical potential and importance of mTOR in effective cancer therapy are increasing. In this review, we demonstrate the association between the mTOR pathway and cancer, including CSCs. Additionally, we discuss a new concept for anti-cancer drug development aimed at overcoming existing drawbacks, such as drug resistance, by targeting CSCs through mTOR inhibition.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyeonjeong Kim
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
10
|
Kumari B, Tiwari A, Meena S, Ahirwar DK. Inflammation-Associated Stem Cells in Gastrointestinal Cancers: Their Utility as Prognostic Biomarkers and Therapeutic Targets. Cancers (Basel) 2024; 16:3134. [PMID: 39335106 PMCID: PMC11429849 DOI: 10.3390/cancers16183134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Stem cells are critical for the development and homeostasis of the gastrointestinal (GI) tract. Inflammatory molecules are known to regulate the activity of stem cells. A comprehensive review specifically describing the role of inflammatory molecules in the regulation of stem cells within the GI tract and in GI cancers (GICs) is not available. This review focuses on understanding the role of inflammatory molecules and stem cells in maintaining homeostasis of the GI tract. We further discuss how inflammatory conditions contribute to the transformation of stem cells into tumor-initiating cells. We also describe the molecular mechanisms of inflammation and stem cell-driven progression and metastasis of GICs. Furthermore, we report on studies describing the prognostic value of cancer stem cells and the clinical trials evaluating their therapeutic utility. This review provides a detailed overview on the role of inflammatory molecules and stem cells in maintaining GI tract homeostasis and their implications for GI-related malignancies.
Collapse
Affiliation(s)
- Beauty Kumari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Aniket Tiwari
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| | - Sakshi Meena
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Indore, Indore 452001, Madhya Pradesh, India;
| | - Dinesh Kumar Ahirwar
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur 342030, Rajasthan, India; (B.K.); (A.T.)
| |
Collapse
|
11
|
Theocharopoulos C, Ziogas IA, Douligeris CC, Efstathiou A, Kolorizos E, Ziogas DC, Kontis E. Antibody-drug conjugates for hepato-pancreato-biliary malignancies: "Magic bullets" to the rescue? Cancer Treat Rev 2024; 129:102806. [PMID: 39094332 DOI: 10.1016/j.ctrv.2024.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/17/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Hepato-Pancreato-Biliary (HPB) malignancies constitute a highly aggressive group of cancers that have a dismal prognosis. Patients not amenable to curative intent surgical resection are managed with systemic chemotherapy which, however, confers little survival benefit. Antibody-Drug Conjugates (ADCs) are tripartite compounds that merge the intricate selectivity and specificity of monoclonal antibodies with the cytodestructive potency of attached supertoxic payloads. In view of the unmet need for drugs that will enhance the survival rates of HPB cancer patients, the assessment of ADCs for treating HPB malignancies has become the focus of extensive clinical and preclinical investigation, showing encouraging preliminary results. In the current review, we offer a comprehensive overview of the growing body of evidence on ADC approaches tested for HPB malignancies. Starting from a concise discussion of the functional principles of ADCs, we summarize here all available data from preclinical and clinical studies evaluating ADCs in HPB cancers.
Collapse
Affiliation(s)
| | - Ioannis A Ziogas
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | - Dimitrios C Ziogas
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National Kapodistrian University of Athens, Athens 11527, Greece
| | - Elissaios Kontis
- Department of Surgery, Metaxa Cancer Hospital, Piraeus 18537, Greece
| |
Collapse
|
12
|
Tinajero-Rodríguez JM, Ramírez-Vidal L, Becerril-Rico J, Alvarado-Ortiz E, Romero-Rodríguez DP, López-Casillas F, Hernández-Sotelo D, Fernández-Ramírez F, Contreras-Paredes A, Ortiz-Sánchez E. ICAM1 (CD54) Contributes to the Metastatic Capacity of Gastric Cancer Stem Cells. Int J Mol Sci 2024; 25:8865. [PMID: 39201551 PMCID: PMC11354656 DOI: 10.3390/ijms25168865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Gastric cancer is the fourth leading cause of cancer deaths worldwide. The presence of chemoresistant cells has been used to explain this high mortality rate. These higher tumorigenic and chemoresistant cells involve cancer stem cells (CSCs), which have the potential for self-renewal, a cell differentiation capacity, and a greater tumorigenic capacity. Our research group identified gastric cancer stem cells (GCSCs) with the CD24+CD44+CD326+ICAM1+ immunophenotype isolated from gastric cancer patients. Interestingly, this GCSC immunophenotype was absent in cells isolated from healthy people, who presented a cell population with a CD24+CD44+CD326+ immunophenotype, lacking ICAM1. We aimed to explore the role of ICAM1 in these GCSCs; for this purpose, we isolated GCSCs from the AGS cell line and generated a GCSC line knockout for ICAM1 using CRISPR/iCas9, which we named GCSC-ICAM1KO. To assess the role of ICAM1 in the GCSCs, we analyzed the migration, invasion, and chemoresistance capabilities of the GCSCs using in vitro assays and evaluated the migratory, invasive, and tumorigenic properties in a zebrafish model. The in vitro analysis showed that ICAM1 regulated STAT3 activation (pSTAT3-ser727) in the GCSCs, which could contribute to the ability of GCSCs to migrate, invade, and metastasize. Interestingly, we demonstrated that the GCSC-ICAM1KO cells lost their capacity to migrate, invade, and metastasize, but they exhibited an increased resistance to a cisplatin treatment compared to their parental GCSCs; the GCSC-ICAM1KO cells also exhibited an increased tumorigenic capability in vivo.
Collapse
Affiliation(s)
- José Manuel Tinajero-Rodríguez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Mexico City 14080, Mexico; (J.M.T.-R.); (A.C.-P.)
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Lizbeth Ramírez-Vidal
- Posgrado de Ciencias Biomédicas, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Jared Becerril-Rico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.B.-R.); (E.A.-O.)
| | - Eduardo Alvarado-Ortiz
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.B.-R.); (E.A.-O.)
| | - Dámaris P. Romero-Rodríguez
- Laboratorio Nacional Conahcyt de Investigación y Diagnóstico por Inmunocitofluorometría (LANCIDI), INER, Mexico City 14080, Mexico;
| | - Fernando López-Casillas
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Daniel Hernández-Sotelo
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | | | - Adriana Contreras-Paredes
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Mexico City 14080, Mexico; (J.M.T.-R.); (A.C.-P.)
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Av. San Fernando 22, Colonia Sección XVI, Mexico City 14080, Mexico; (J.M.T.-R.); (A.C.-P.)
| |
Collapse
|
13
|
Tsui YM, Tian L, Lu J, Ma H, Ng IOL. Interplay among extracellular vesicles, cancer stemness and immune regulation in driving hepatocellular carcinoma progression. Cancer Lett 2024; 597:217084. [PMID: 38925362 DOI: 10.1016/j.canlet.2024.217084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
The intricate interplay among extracellular vesicles, cancer stemness properties, and the immune system significantly impacts hepatocellular carcinoma (HCC) progression, treatment response, and patient prognosis. Extracellular vesicles (EVs), which are membrane-bound structures, play a pivotal role in conveying proteins, lipids, and nucleic acids between cells, thereby serving as essential mediators of intercellular communication. Since a lot of current research focuses on small extracellular vesicles (sEVs), with diameters ranging from 30 nm to 200 nm, this review emphasizes the role of sEVs in the context of interactions between HCC stemness-bearing cells and the immune cells. sEVs offer promising opportunities for the clinical application of innovative diagnostic and prognostic biomarkers in HCC. By specifically targeting sEVs, novel therapeutics aimed at cancer stemness can be developed. Ongoing investigations into the roles of sEVs in cancer stemness and immune regulation in HCC will broaden our understanding and ultimately pave the way for groundbreaking therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Man Tsui
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lu Tian
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Jingyi Lu
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Huanhuan Ma
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
14
|
El-Derby AM, Khedr MA, Ghoneim NI, Gabr MM, Khater SM, El-Badri N. Plasma-derived extracellular matrix for xenofree and cost-effective organoid modeling for hepatocellular carcinoma. J Transl Med 2024; 22:487. [PMID: 38773585 PMCID: PMC11110239 DOI: 10.1186/s12967-024-05230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) causes significant cancer mortality worldwide. Cancer organoids can serve as useful disease models by high costs, complexity, and contamination risks from animal-derived products and extracellular matrix (ECM) that limit its applications. On the other hand, synthetic ECM alternatives also have limitations in mimicking native biocomplexity. This study explores the development of a physiologically relevant HCC organoid model using plasma-derived extracellular matrix as a scaffold and nutritive biomatrix with different cellularity components to better mimic the heterogenous HCC microenvironment. Plasma-rich platelet is recognized for its elevated levels of growth factors, which can promote cell proliferation. By employing it as a biomatrix for organoid culture there is a potential to enhance the quality and functionality of organoid models for diverse applications in biomedical research and regenerative medicine and to better replicate the heterogeneous microenvironment of HCC. METHOD To generate the liver cancer organoids, HUH-7 hepatoma cells were cultured alone (homogenous model) or with human bone marrow-derived mesenchymal stromal cells and human umbilical vein endothelial cells (heterogeneous model) in plasma-rich platelet extracellular matrix (ECM). The organoids were grown for 14 days and analyzed for cancer properties including cell viability, invasion, stemness, and drug resistance. RESULTS HCC organoids were developed comprising HUH-7 hepatoma cells with or without human mesenchymal stromal and endothelial cells in plasma ECM scaffolds. Both homogeneous (HUH-7 only) and heterogeneous (mixed cellularity) organoids displayed viability, cancer hallmarks, and chemoresistance. The heterogeneous organoids showed enhanced invasion potential, cancer stem cell populations, and late-stage HCC genetic signatures versus homogeneous counterparts. CONCLUSION The engineered HCC organoids system offers a clinically relevant and cost-effective model to study liver cancer pathogenesis, stromal interactions, and drug resistance. The plasma ECM-based culture technique could enable standardized and reproducible HCC modeling. It could also provide a promising option for organoid culture and scaling up.
Collapse
Affiliation(s)
- Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Mennatallah A Khedr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Nehal I Ghoneim
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Sherry M Khater
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, 12582, Egypt.
| |
Collapse
|
15
|
Tsui YM, Ho DWH, Sze KMF, Lee JMF, Lee E, Zhang Q, Cheung GCH, Tang CN, Tang VWL, Cheung ETY, Lo ILO, Chan ACY, Cheung TT, Ng IOL. Sorted-Cell Sequencing on HCC Specimens Reveals EPS8L3 as a Key Player in CD24/CD13/EpCAM-Triple Positive, Stemness-Related HCC Cells. Cell Mol Gastroenterol Hepatol 2024; 18:101358. [PMID: 38750898 PMCID: PMC11238133 DOI: 10.1016/j.jcmgh.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a heterogeneous cancer with varying levels of liver tumor initiating or cancer stem cells in the tumors. We aimed to investigate the expression of different liver cancer stem cell (LCSC) markers in human HCCs and identify their regulatory mechanisms in stemness-related cells. METHODS We used an unbiased, single-marker sorting approach by flow cytometry, fluorescence-activated cell sorting, and transcriptomic analyses on HCC patients' resected specimens. Knockdown approach was used, and relevant functional assays were conducted on the identified targets of interest. RESULTS Flow cytometry on a total of 60 HCC resected specimens showed significant heterogeneity in the expression of LCSC markers, with CD24, CD13, and EpCAM mainly contributing to this heterogeneity. Concomitant expression of CD24, CD13, and EpCAM was detected in 32 HCC samples, and this was associated with advanced tumor stages. Transcriptomic sequencing on the HCC cells sorted for these individual markers identified epidermal growth factor receptor kinase substrate 8-like protein 3 (EPS8L3) as a common gene associated with the 3 markers and was functionally validated in HCC cells. Knocking down EPS8L3 suppressed the expression of all 3 markers. To search for the upstream regulation of EPS8L3, we found SP1 bound to EPS8L3 promoter to drive EPS8L3 expression. Furthermore, using Akt inhibitor MK2206, we showed that Akt signaling-driven SP1 drove the expression of the 3 LCSC markers. CONCLUSIONS Our findings suggest that Akt signaling-driven SP1 promotes EPS8L3 expression, which is critical in maintaining the downstream expression of CD24, CD13, and EpCAM. The findings provide insight into potential LCSC-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Eva Lee
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Qingyang Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Gary Cheuk-Hang Cheung
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | | | | | | | | | - Albert Chi-Yan Chan
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
16
|
Wu TKH, Hui RWH, Mak LY, Fung J, Seto WK, Yuen MF. Hepatocellular carcinoma: Advances in systemic therapies. F1000Res 2024; 13:104. [PMID: 38766497 PMCID: PMC11099512 DOI: 10.12688/f1000research.145493.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/22/2024] Open
Abstract
Advanced hepatocellular carcinoma (HCC) is traditionally associated with limited treatment options and a poor prognosis. Sorafenib, a multiple tyrosine kinase inhibitor, was introduced in 2007 as a first-in-class systemic agent for advanced HCC. After sorafenib, a range of targeted therapies and immunotherapies have demonstrated survival benefits in the past 5 years, revolutionizing the treatment landscape of advanced HCC. More recently, evidence of novel combinations of systemic agents with distinct mechanisms has emerged. In particular, combination trials on atezolizumab plus bevacizumab and durvalumab plus tremelimumab have shown encouraging efficacy. Hence, international societies have revamped their guidelines to incorporate new recommendations for these novel systemic agents. Aside from treatment in advanced HCC, the indications for systemic therapy are expanding. For example, the combination of systemic therapeutics with locoregional therapy (trans-arterial chemoembolization or stereotactic body radiation therapy) has demonstrated promising early results in downstaging HCC. Recent trials have also explored the role of systemic therapy as neoadjuvant treatment for borderline-resectable HCC or as adjuvant treatment to reduce recurrence risk after curative resection. Despite encouraging results from clinical trials, the real-world efficacy of systemic agents in specific patient subgroups (such as patients with advanced cirrhosis, high bleeding risk, renal impairment, or cardiometabolic diseases) remains uncertain. The effect of liver disease etiology on systemic treatment efficacy warrants further research. With an increased understanding of the pathophysiological pathways and accumulation of clinical data, personalized treatment decisions will be possible, and the field of systemic treatment for HCC will continue to evolve.
Collapse
Affiliation(s)
- Trevor Kwan-Hung Wu
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
17
|
Zhao H, Ling Y, He J, Dong J, Mo Q, Wang Y, Zhang Y, Yu H, Tang C. Potential targets and therapeutics for cancer stem cell-based therapy against drug resistance in hepatocellular carcinoma. Drug Resist Updat 2024; 74:101084. [PMID: 38640592 DOI: 10.1016/j.drup.2024.101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common digestive malignancyin the world, which is frequently diagnosed at late stage with a poor prognosis. For most patients with advanced HCC, the therapeutic options arelimiteddue to cancer occurrence of drug resistance. Hepatic cancer stem cells (CSCs) account for a small subset of tumor cells with the ability of self-renewal and differentiationin HCC. It is widely recognized that the presence of CSCs contributes to primary and acquired drug resistance. Therefore, hepatic CSCs-targeted therapy is considered as a promising strategy to overcome drug resistance and improve therapeutic outcome in HCC. In this article, we review drug resistance in HCC and provide a summary of potential targets for CSCs-based therapy. In addition, the development of CSCs-targeted therapeuticsagainst drug resistance in HCC is summarized in both preclinical and clinical trials. The in-depth understanding of CSCs-related drug resistance in HCC will favor optimization of the current therapeutic strategies and gain encouraging therapeutic outcomes.
Collapse
Affiliation(s)
- Hongxing Zhao
- Department of Radiology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Yuhang Ling
- Central Laboratory, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Huzhou Key Laboratory of Translational Medicine, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Jie He
- Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Jinling Dong
- Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Qinliang Mo
- Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Yao Wang
- Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Ying Zhang
- Central Laboratory, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Department of Hepatology, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Hongbin Yu
- Department of General Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China
| | - Chengwu Tang
- Huzhou Key Laboratory of Translational Medicine, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China; Department of Hepatopancreatobiliary Surgery, First affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, China.
| |
Collapse
|
18
|
Chen YC, Gowda K, Amin S, Schell TD, Sharma AK, Robertson GP. Pharmacological agents targeting drug-tolerant persister cells in cancer. Pharmacol Res 2024; 203:107163. [PMID: 38569982 PMCID: PMC11734664 DOI: 10.1016/j.phrs.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Current cancer therapy can be effective, but the development of drug resistant disease is the usual outcome. These drugs can eliminate most of the tumor burden but often fail to eliminate the rare, "Drug Tolerant Persister" (DTP) cell subpopulations in residual tumors, which can be referred to as "Persister" cells. Therefore, novel therapeutic agents specifically targeting or preventing the development of drug-resistant tumors mediated by the remaining persister cells subpopulations are needed. Since approximately ninety percent of cancer-related deaths occur because of the eventual development of drug resistance, identifying, and dissecting the biology of the persister cells is essential for the creation of drugs to target them. While there remains uncertainty surrounding all the markers identifying DTP cells in the literature, this review summarizes the drugs and therapeutic approaches that are available to target the persister cell subpopulations expressing the cellular markers ATP-binding cassette sub-family B member 5 (ABCB5), CD133, CD271, Lysine-specific histone demethylase 5 (KDM5), and aldehyde dehydrogenase (ALDH). Persister cells expressing these markers were selected as the focus of this review because they have been found on cells surviving following drug treatments that promote recurrent drug resistant cancer and are associated with stem cell-like properties, including self-renewal, differentiation, and resistance to therapy. The limitations and obstacles facing the development of agents targeting these DTP cell subpopulations are detailed, with discussion of potential solutions and current research areas needing further exploration.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Krishne Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shantu Amin
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd D Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Arun K Sharma
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Pennsylvania State University Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Penn State Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
19
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
20
|
Cai Y, Wang Y, Mao B, You Q, Guo X. Targeting insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs) for the treatment of cancer. Eur J Med Chem 2024; 268:116241. [PMID: 38382391 DOI: 10.1016/j.ejmech.2024.116241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) are RNA-binding proteins that regulate a variety of biological processes. In recent years, several studies have found that IGF2BPs play multiple roles in various biological processes, especially in cancer, and speculated on their mechanism of anticancer effect. In addition, targeting IGF2BPs or their downstream target gene has also received extensive attention as an effective treatment for different types of cancer. In this review, we summarized the recent progress on the role of IGF2BPs in cancers and their structural characteristics. We focused on describing the development of inhibitors targeting IGF2BPs and the prospects for further applications.
Collapse
Affiliation(s)
- Yuanqian Cai
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingzhe Wang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Bingjie Mao
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug, Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
21
|
Mondal P, Meeran SM. The emerging role of the gut microbiome in cancer cell plasticity and therapeutic resistance. Cancer Metastasis Rev 2024; 43:135-154. [PMID: 37707749 DOI: 10.1007/s10555-023-10138-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Resistance to therapeutic agents is one of the major challenges in cancer therapy. Generally, the focus is given to the genetic driver, especially the genetic mutation behind the therapeutic resistance. However, non-mutational mechanisms, such as epigenetic modifications, and TME alteration, which is mainly driven by cancer cell plasticity, are also involved in therapeutic resistance. The concept of plasticity mainly relies on the conversion of non-cancer stem cells (CSCs) to CSCs or epithelial-to-mesenchymal transition via different mechanisms and various signaling pathways. Cancer plasticity plays a crucial role in therapeutic resistance as cancer cells are able to escape from therapeutics by shifting the phenotype and thereby enhancing tumor progression. New evidence suggests that gut microbiota can change cancer cell characteristics by impacting the mechanisms involved in cancer plasticity. Interestingly, gut microbiota can also influence the therapeutic efficacy of anticancer drugs by modulating the mechanisms involved in cancer cell plasticity. The gut microbiota has been shown to reduce the toxicity of certain clinical drugs. Here, we have documented the critical role of the gut microbiota on the therapeutic efficacy of existing anticancer drugs by altering the cancer plasticity. Hence, the extended knowledge of the emerging role of gut microbiota in cancer cell plasticity can help to develop gut microbiota-based novel therapeutics to overcome the resistance or reduce the toxicity of existing drugs. Furthermore, to improve the effectiveness of therapy, it is necessary to conduct more clinical and preclinical research to fully comprehend the mechanisms of gut microbiota.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Nutritional Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Syed Musthapa Meeran
- Laboratory of Nutritional Epigenetics, Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Kieliszek AM, Mobilio D, Upreti D, Bloemberg D, Escudero L, Kwiecien JM, Alizada Z, Zhai K, Ang P, Chafe SC, Vora P, Venugopal C, Singh SK. Intratumoral Delivery of Chimeric Antigen Receptor T Cells Targeting CD133 Effectively Treats Brain Metastases. Clin Cancer Res 2024; 30:554-563. [PMID: 37787999 DOI: 10.1158/1078-0432.ccr-23-1735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Brain metastases (BM) are mainly treated palliatively with an expected survival of less than 12 months after diagnosis. In many solid tumors, the human neural stem cell marker glycoprotein CD133 is a marker of a tumor-initiating cell population that contributes to therapy resistance, relapse, and metastasis. EXPERIMENTAL DESIGN Here, we use a variant of our previously described CD133 binder to generate second-generation CD133-specific chimeric antigen receptor T cells (CAR-T) to demonstrate its specificity and efficacy against multiple patient-derived BM cell lines with variable CD133 antigen expression. RESULTS Using both lung- and colon-BM patient-derived xenograft models, we show that a CD133-targeting CAR-T cell therapy can evoke significant tumor reduction and survival advantage after a single dose, with complete remission observed in the colon-BM model. CONCLUSIONS In summary, these data suggest that CD133 plays a critical role in fueling the growth of BM, and immunotherapeutic targeting of this cell population is a feasible strategy to control the outgrowth of BM tumors that are otherwise limited to palliative care. See related commentary by Sloan et al., p. 477.
Collapse
Affiliation(s)
- Agata M Kieliszek
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Daniel Mobilio
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | | | - Laura Escudero
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Zahra Alizada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Kui Zhai
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Patrick Ang
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shawn C Chafe
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Parvez Vora
- Century Therapeutics, Hamilton, Ontario, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Sheila K Singh
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Man KF, Zhou L, Yu H, Lam KH, Cheng W, Yu J, Lee TK, Yun JP, Guan XY, Liu M, Ma S. SPINK1-induced tumor plasticity provides a therapeutic window for chemotherapy in hepatocellular carcinoma. Nat Commun 2023; 14:7863. [PMID: 38030644 PMCID: PMC10687140 DOI: 10.1038/s41467-023-43670-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Tumor lineage plasticity, considered a hallmark of cancer, denotes the phenomenon in which tumor cells co-opt developmental pathways to attain cellular plasticity, enabling them to evade targeted therapeutic interventions. However, the underlying molecular events remain largely elusive. Our recent study identified CD133/Prom1 in hepatocellular carcinoma (HCC) tumors to mark proliferative tumor-propagating cells with cancer stem cell-like properties, that follow a dedifferentiation trajectory towards a more embryonic state. Here we show SPINK1 to strongly associate with CD133 + HCC, and tumor dedifferentiation. Enhanced transcriptional activity of SPINK1 is mediated by promoter binding of ELF3, which like CD133, is found to increase following 5-FU and cisplatin treatment; while targeted depletion of CD133 will reduce both ELF3 and SPINK1. Functionally, SPINK1 overexpression promotes tumor initiation, self-renewal, and chemoresistance by driving a deregulated EGFR-ERK-CDK4/6-E2F2 signaling axis to induce dedifferentiation of HCC cells into their ancestral lineages. Depleting SPINK1 function by neutralizing antibody treatment or in vivo lentivirus-mediated Spink1 knockdown dampens HCC cancer growth and their ability to resist chemotherapy. Targeting oncofetal SPINK1 may represent a promising therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Ki-Fong Man
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lei Zhou
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong - Shenzhen Hospital, Hong Kong, China
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huajian Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ka-Hei Lam
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Cheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jing-Ping Yun
- Department of Pathology, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong - Shenzhen Hospital, Hong Kong, China
- Department of Clinical Oncology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Clinical Oncology, Shenzhen Key Laboratory for Cancer Metastasis and Personalized Therapy, The University of Hong Kong - Shenzhen Hospital, Hong Kong, China.
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Kaneko K, Liang Y, Liu Q, Zhang S, Scheiter A, Song D, Feng GS. Identification of CD133 + intercellsomes in intercellular communication to offset intracellular signal deficit. eLife 2023; 12:RP86824. [PMID: 37846866 PMCID: PMC10581692 DOI: 10.7554/elife.86824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
CD133 (prominin 1) is widely viewed as a cancer stem cell marker in association with drug resistance and cancer recurrence. Herein, we report that with impaired RTK-Shp2-Ras-Erk signaling, heterogenous hepatocytes form clusters that manage to divide during mouse liver regeneration. These hepatocytes are characterized by upregulated CD133 while negative for other progenitor cell markers. Pharmaceutical inhibition of proliferative signaling also induced CD133 expression in various cancer cell types from multiple animal species, suggesting an inherent and common mechanism of stress response. Super-resolution and electron microscopy localize CD133 on intracellular vesicles that apparently migrate between cells, which we name 'intercellsome.' Isolated CD133+ intercellsomes are enriched with mRNAs rather than miRNAs. Single-cell RNA sequencing reveals lower intracellular diversity (entropy) of mitogenic mRNAs in Shp2-deficient cells, which may be remedied by intercellular mRNA exchanges between CD133+ cells. CD133-deficient cells are more sensitive to proliferative signal inhibition in livers and intestinal organoids. These data suggest a mechanism of intercellular communication to compensate for intracellular signal deficit in various cell types.
Collapse
Affiliation(s)
- Kota Kaneko
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| | - Yan Liang
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| | - Qing Liu
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| | - Shuo Zhang
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| | - Alexander Scheiter
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
- Institute of Pathology, University of RegensburgRegensburgGermany
| | - Dan Song
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| | - Gen-Sheng Feng
- Department of Pathology, Department of Molecular Biology, and Moores Cancer Center, University of California at San DiegoLa JollaUnited States
| |
Collapse
|
25
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
26
|
Chen X, Xu Z, Tang K, Hu G, Du P, Wang J, Zhang C, Xin Y, Li K, Zhang Q, Hu J, Zhang Z, Yang M, Wang G, Tan Y. The Mechanics of Tumor Cells Dictate Malignancy via Cytoskeleton-Mediated APC/Wnt/β-Catenin Signaling. RESEARCH (WASHINGTON, D.C.) 2023; 6:0224. [PMID: 37746658 PMCID: PMC10513157 DOI: 10.34133/research.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/20/2023] [Indexed: 09/26/2023]
Abstract
Tumor cells progressively remodel cytoskeletal structures and reduce cellular stiffness during tumor progression, implicating the correlation between cell mechanics and malignancy. However, the roles of tumor cell cytoskeleton and the mechanics in tumor progression remain incompletely understood. We report that softening/stiffening tumor cells by targeting actomyosin promotes/suppresses self-renewal in vitro and tumorigenic potential in vivo. Weakening/strengthening actin cytoskeleton impairs/reinforces the interaction between adenomatous polyposis coli (APC) and β-catenin, which facilitates β-catenin nuclear/cytoplasmic localization. Nuclear β-catenin binds to the promoter of Oct4, which enhances its transcription that is crucial in sustaining self-renewal and malignancy. These results demonstrate that the mechanics of tumor cells dictate self-renewal through cytoskeleton-APC-Wnt/β-catenin-Oct4 signaling, which are correlated with tumor differentiation and patient survival. This study unveils an uncovered regulatory role of cell mechanics in self-renewal and malignancy, and identifies tumor cell mechanics as a hallmark not only for cancer diagnosis but also for mechanotargeting.
Collapse
Affiliation(s)
- Xi Chen
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Research Institute of Smart Ageing,
The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Zichen Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing, 400030, China
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Kai Tang
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Guanshuo Hu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Research Institute of Smart Ageing,
The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Pengyu Du
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Junfang Wang
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Cunyu Zhang
- Research Institute of Smart Ageing,
The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Ying Xin
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Keming Li
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Qiantang Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jianjun Hu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Zhuxue Zhang
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
| | - Mo Yang
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants,
Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Youhua Tan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Research Institute of Smart Ageing,
The Hong Kong Polytechnic University, Hong Kong, China
- Department of Biomedical Engineering,
The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
27
|
Mozooni Z, Golestani N, Bahadorizadeh L, Yarmohammadi R, Jabalameli M, Amiri BS. The role of interferon-gamma and its receptors in gastrointestinal cancers. Pathol Res Pract 2023; 248:154636. [PMID: 37390758 DOI: 10.1016/j.prp.2023.154636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Gastrointestinal malignancies are the most prevalent type of cancer around the world. Even though numerous studies have evaluated gastrointestinal malignancies, the actual underlying mechanism is still unknown. These tumors have a poor prognosis and are frequently discovered at an advanced stage. Globally, there is an increase in the incidence and mortality of gastrointestinal malignancies, including those of the stomach, esophagus, colon, liver, and pancreas. Growth factors and cytokines are signaling molecules that are part of the tumor microenvironment and play a significant role in the development and spread of malignancies. IFN-γ induce its effects by activation of intracellular molecular networks. The main pathway involved in IFN-γ signaling is the JAK/STAT pathway, which regulates the transcription of hundreds of genes and mediates various biological responses. IFN-γ receptor is composed of two IFN-γR1 chains and two IFN-γR2 chains. Binding to IFN-γ, causes the intracellular domains of IFN-γR2 to oligomerize and transphosphorylate with IFN-γR1 which activates downstream signaling components: JAK1 and JAK2. These activated JAKs phosphorylate the receptor, creating binding sites for STAT1. STAT1 is then phosphorylated by JAK, resulting in the formation of STAT1 homodimers (gamma activated factors or GAFs) that translocate to the nucleus and regulate gene expression. The balance between positive and negative regulation of this pathway is crucial for immune responses and tumorigenesis. In this paper, we evaluate the dynamic roles of IFN- γ and its receptors in gastrointestinal cancers and present evidence that inhibiting IFN- γ signaling may be an effective treatment strategy.
Collapse
Affiliation(s)
- Zahra Mozooni
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Golestani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Leyla Bahadorizadeh
- Institute of Immunology and Infectious Diseases, Antimicrobial Resistance Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Reyhaneh Yarmohammadi
- Doctoral Student Carolina University Winston, Salem, NC, USA; Skin and Stem Cell Research Center Tehran University of Medical Sciences, Tehran, Iran
| | | | - Bahareh Shateri Amiri
- Department of Internal Medicine, School of Medicine Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Sun L, Yao HJ, Li JC, Zhao BQ, Wang YA, Zhang YG. Activated Carbon nanoparticles Loaded with Metformin for Effective Against Hepatocellular Cancer Stem Cells. Int J Nanomedicine 2023; 18:2891-2910. [PMID: 37283712 PMCID: PMC10239765 DOI: 10.2147/ijn.s382519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/16/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Hepatocellular cancer stem cells (CSCs) play crucial roles in hepatocellular cancer initiation, development, relapse, and metastasis. Therefore, eradication of this cell population is a primary objective in hepatocellular cancer therapy. We prepared a nanodrug delivery system with activated carbon nanoparticles (ACNP) as carriers and metformin (MET) as drug (ACNP-MET), which was able to selectively eliminate hepatocellular CSCs and thereby increase the effects of MET on hepatocellular cancers. Methods ACNP were prepared by ball milling and deposition in distilled water. Suspension of ACNP and MET was mixed and the best ratio of ACNP and MET was determined based on the isothermal adsorption formula. Hepatocellular CSCs were identified as CD133+ cells and cultured in serum-free medium. We investigated the effects of ACNP-MET on hepatocellular CSCs, including the inhibitory effects, the targeting efficiency, self-renewal capacity, and the sphere-forming capacity of hepatocellular CSCs. Next, we evaluated the therapeutic efficacy of ACNP-MET by using in vivo relapsed tumor models of hepatocellular CSCs. Results The ACNP have a similar size, a regular spherical shape and a smooth surface. The optimal ratio for adsorption was MET: ACNP=1:4. ACNP-MET could target and inhibit the proliferation of CD133+ population and decrease mammosphere formation and renewal of CD133+ population in vitro and in vivo. Conclusion These results not only suggest that nanodrug delivery system increased the effects of MET, but also shed light on the mechanisms of the therapeutic effects of MET and ACNP-MET on hepatocellular cancers. ACNP, as a good nano-carrier, could strengthen the effect of MET by carrying drugs to the micro-environment of hepatocellular CSCs.
Collapse
Affiliation(s)
- Lan Sun
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Hong-Juan Yao
- Key Laboratory of Antibiotic Bioengineering of National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology (IMB), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, People’s Republic of China
| | - Jing-Cao Li
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Bao-Quan Zhao
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Yong-An Wang
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| | - Ying-Ge Zhang
- Key Laboratory of Nanopharmacology and Nanotoxicology, Beijing Institute of Pharmacology and Toxicology, Beijing, People’s Republic of China
| |
Collapse
|
29
|
He C, Jaffar Ali D, Qi Y, Li Y, Sun B, Liu R, Sun B, Xiao Z. Engineered extracellular vesicles mediated CRISPR-induced deficiency of IQGAP1/FOXM1 reverses sorafenib resistance in HCC by suppressing cancer stem cells. J Nanobiotechnology 2023; 21:154. [PMID: 37202772 DOI: 10.1186/s12951-023-01902-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Sorafenib resistance poses therapeutic challenges in HCC treatment, in which cancer stem cells (CSCs) plays a crucial role. CRISPR/Cas9 can be utilized as a potential technique to overcome the drug resistance. However, a safe, efficient and target specific delivery of this platform remains challenging. Extracellular vesicles (EVs), the active components of cell to cell communication, hold promising benefits as delivery platform. RESULTS Herein we report the normal epithelial cell -derived EVs engineered with HN3(HLC9-EVs) show competing tumor targeting ability. Anchoring HN3 to the membrane of the EVs through LAMP2, drastically increased the specific homing of HLC9-EVs to GPC3+Huh-7 cancer cells rather than co-cultured GPC3-LO2 cells. Combination therapy of HCC with sorafenib and HLC9-EVs containing sgIF to silence IQGAP1 (protein responsible for reactivation of Akt/PI3K signaling in sorafenib resistance) and FOXM1 (self-renewal transcription factor in CSCs attributed to sorafenib resistance), exhibited effective synergistic anti-cancer effect both in vitro and in vivo. Our results also showed that disruption of IQGAP1/FOXM1 resulted in the reduction of CD133+ population that contribute to the stemness of liver cancer cells. CONCLUSION By reversing sorafenib resistance using combination therapeutic approach with engineered EVs encapsulated CRISPR/Cas9 and sorafenib, our study foreshadows a path for a better, accurate, reliable and successful anti-cancer therapy in the future.
Collapse
Affiliation(s)
- Cong He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Doulathunnisa Jaffar Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Yuhua Qi
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, China
| | - Yumin Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Kyunggi-Do, 445-743, Republic of Korea
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
30
|
Chen C, Hernandez JC, Uthaya Kumar DB, Machida T, Tahara SM, El‐Khoueiry A, Li M, Punj V, Swaminathan SK, Kirtane A, Chen Y, Panyam J, Machida K. Profiling of Circulating Tumor Cells for Screening of Selective Inhibitors of Tumor-Initiating Stem-Like Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206812. [PMID: 36949364 PMCID: PMC10190641 DOI: 10.1002/advs.202206812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/20/2023] [Indexed: 05/18/2023]
Abstract
A critical barrier to effective cancer therapy is the improvement of drug selectivity, toxicity, and reduced recurrence of tumors expanded from tumor-initiating stem-like cells (TICs). The aim is to identify circulating tumor cell (CTC)-biomarkers and to identify an effective combination of TIC-specific, repurposed federal drug administration (FDA)-approved drugs. Three different types of high-throughput screens targeting the TIC population are employed: these include a CD133 (+) cell viability screen, a NANOG expression screen, and a drug combination screen. When combined in a refined secondary screening approach that targets Nanog expression with the same FDA-approved drug library, histone deacetylase (HDAC) inhibitor(s) combined with all-trans retinoic acid (ATRA) demonstrate the highest efficacy for inhibition of TIC growth in vitro and in vivo. Addition of immune checkpoint inhibitor further decreases recurrence and extends PDX mouse survival. RNA-seq analysis of TICs reveals that combined drug treatment reduces many Toll-like receptors (TLR) and stemness genes through repression of the lncRNA MIR22HG. This downregulation induces PTEN and TET2, leading to loss of the self-renewal property of TICs. Thus, CTC biomarker analysis would predict the prognosis and therapy response to this drug combination. In general, biomarker-guided stratification of HCC patients and TIC-targeted therapy should eradicate TICs to extend HCC patient survival.
Collapse
Affiliation(s)
- Chia‐Lin Chen
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- Present address:
Department of Life Sciences & Institute of Genome SciencesNational Yang Ming Chiao Tung University110TaipeiTaiwan
| | - Juan Carlos Hernandez
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- California State UniversityChannel IslandsCamarilloCAUSA
| | - Dinesh Babu Uthaya Kumar
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Tatsuya Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Stanley M. Tahara
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
| | - Anthony El‐Khoueiry
- Norris Comprehensive Cancer CenterUniversity of Southern CaliforniaKeck School of MedicineLos AngelesCA90033USA
| | - Meng Li
- Norris Medical Library2003 Zonal AveLos AngelesCA90089USA
| | - Vasu Punj
- Department of MedicineUniversity of Southern California Keck School of Medicine and Norris Comprehensive Cancer CenterLos AngelesCA90089USA
| | | | - Ameya Kirtane
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Yibu Chen
- Norris Medical Library2003 Zonal AveLos AngelesCA90089USA
| | - Jayanth Panyam
- Department of PharmaceuticsUniversity of MinnesotaMinneapolisMN55455USA
| | - Keigo Machida
- Departments of Molecular Microbiology and ImmunologyUniversity of Southern CaliforniaLos AngelesCA90033USA
- Southern California Research Center for ALPD and CirrhosisLos AngelesCA90033USA
| |
Collapse
|
31
|
Kim M, Jo KW, Kim H, Han ME, Oh SO. Genetic heterogeneity of liver cancer stem cells. Anat Cell Biol 2023; 56:94-108. [PMID: 36384888 PMCID: PMC9989795 DOI: 10.5115/acb.22.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer cell heterogeneity is a serious problem in the control of tumor progression because it can cause chemoresistance and metastasis. Heterogeneity can be generated by various mechanisms, including genetic evolution of cancer cells, cancer stem cells (CSCs), and niche heterogeneity. Because the genetic heterogeneity of CSCs has been poorly characterized, the genetic mutation status of CSCs was examined using Exome-Seq and RNA-Seq data of liver cancer. Here we show that different surface markers for liver cancer stem cells (LCSCs) showed a unique propensity for genetic mutations. Cluster of differentiation 133 (CD133)-positive cells showed frequent mutations in the IRF2, BAP1, and ERBB3 genes. However, leucine-rich repeat-containing G protein-coupled receptor 5-positive cells showed frequent mutations in the CTNNB1, RELN, and ROBO1 genes. In addition, some genetic mutations were frequently observed irrespective of the surface markers for LCSCs. BAP1 mutations was frequently observed in CD133-, CD24-, CD13-, CD90-, epithelial cell adhesion molecule-, or keratin 19-positive LCSCs. ASXL2, ERBB3, IRF2, TLX3, CPS1, and NFATC2 mutations were observed in more than three types of LCSCs, suggesting that common mechanisms for the development of these LCSCs. The present study provides genetic heterogeneity depending on the surface markers for LCSCs. The genetic heterogeneity of LCSCs should be considered in the development of LCSC-targeting therapeutics.
Collapse
Affiliation(s)
- Minjeong Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kwang-Woo Jo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Hyojin Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
| |
Collapse
|
32
|
Samavarchi Tehrani S, Esmaeili F, Shirzad M, Goodarzi G, Yousefi T, Maniati M, Taheri-Anganeh M, Anushiravani A. The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Med Oncol 2023; 40:116. [PMID: 36917431 DOI: 10.1007/s12032-023-01980-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Nowadays, drug resistance (DR) in gastrointestinal (GI) cancers, as the main reason for cancer-related mortality worldwide, has become a serious problem in the management of patients. Several mechanisms have been proposed for resistance to anticancer drugs, including altered transport and metabolism of drugs, mutation of drug targets, altered DNA repair system, inhibited apoptosis and autophagy, cancer stem cells, tumor heterogeneity, and epithelial-mesenchymal transition. Compelling evidence has revealed that genetic and epigenetic factors are strongly linked to DR. Non-coding RNA (ncRNA) interferences are the most crucial epigenetic alterations explored so far, and among these ncRNAs, circular RNAs (circRNAs) are the most emerging members known to have unique properties. Due to the absence of 5' and 3' ends in these novel RNAs, the two ends are covalently bonded together and are generated from pre-mRNA in a process known as back-splicing, which makes them more stable than other RNAs. As far as the unique structure and function of circRNAs is concerned, they are implicated in proliferation, migration, invasion, angiogenesis, metastasis, and DR. A clear understanding of the molecular mechanisms responsible for circRNAs-mediated DR in the GI cancers will open a new window to the management of GI cancers. Hence, in the present review, we will describe briefly the biogenesis, multiple features, and different biological functions of circRNAs. Then, we will summarize current mechanisms of DR, and finally, discuss molecular mechanisms through which circRNAs regulate DR development in esophageal cancer, pancreatic cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fataneh Esmaeili
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moein Shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tooba Yousefi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- Department of English, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Amir Anushiravani
- Digestive Disease Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Yan ZJ, Chen L, Wang HY. To be or not to be: The double-edged sword roles of liver progenitor cells. Biochim Biophys Acta Rev Cancer 2023; 1878:188870. [PMID: 36842766 DOI: 10.1016/j.bbcan.2023.188870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/11/2023] [Accepted: 01/28/2023] [Indexed: 02/28/2023]
Abstract
Given the liver's remarkable and unique regenerative capacity, researchers have long focused on liver progenitor cells (LPCs) and liver cancer stem cells (LCSCs). LPCs can differentiate into both hepatocytes and cholangiocytes. However, the mechanism underlying cell conversion and its distinct contribution to liver homeostasis and tumorigenesis remain unclear. In this review, we discuss the complicated conversions involving LPCs and LCSCs. As the critical intermediate state in malignant transformation, LPCs play double-edged sword roles. LPCs are not only involved in hepatic wound-healing responses by supplementing liver cells and bile duct cells in the damaged liver but may transform into LCSCs under dysregulation of key signaling pathways, resulting in refractory malignant liver tumors. Because LPC lineages are temporally and spatially dynamic, we discuss crucial LPC subgroups and summarize regulatory factors correlating with the trajectories of LPCs and LCSCs in the liver tumor microenvironment. This review elaborates on the double-edged sword roles of LPCs to help understand the liver's regenerative potential and tumor heterogeneity. Understanding the sources and transformations of LPCs is essential in determining how to exploit their regenerative capacity in the future.
Collapse
Affiliation(s)
- Zi-Jun Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China
| | - Lei Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Shanghai 200438, PR China; Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, PR China; Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, PR China.
| |
Collapse
|
34
|
Huang H, Tsui YM, Ng IOL. Fueling HCC Dynamics: Interplay Between Tumor Microenvironment and Tumor Initiating Cells. Cell Mol Gastroenterol Hepatol 2023; 15:1105-1116. [PMID: 36736664 PMCID: PMC10036749 DOI: 10.1016/j.jcmgh.2023.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Liver cancer (hepatocellular carcinoma) is a common cancer worldwide. It is an aggressive cancer, with high rates of tumor relapse and metastasis, high chemoresistance, and poor prognosis. Liver tumor-initiating cells (LTICs) are a distinctive subset of liver cancer cells with self-renewal and differentiation capacities that contribute to intratumoral heterogeneity, tumor recurrence, metastasis, and chemo-drug resistance. LTICs, marked by different TIC markers, have high plasticity and use diverse signaling pathways to promote tumorigenesis and tumor progression. LTICs are nurtured in the tumor microenvironment (TME), where noncellular and cellular components participate to build an immunosuppressive and tumor-promoting niche. As a result, the TME has emerged as a promising anticancer therapeutic target, as exemplified by some successful applications of tumor immunotherapy. In this review, we discuss the plasticity of LTICs in terms of cellular differentiation, epithelial-mesenchymal transition, and cellular metabolism. We also discuss the various components of the TME, including its noncellular and cellular components. Thereafter, we discuss the mutual interactions between TME and LTICs, including recently reported molecular mechanisms. Lastly, we summarize and describe new ideas concerning novel approaches and strategies for liver cancer therapy.
Collapse
Affiliation(s)
- Hongyang Huang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
35
|
Zhou XH, Li JR, Zheng TH, Chen H, Cai C, Ye SL, Gao B, Xue TC. Portal vein tumor thrombosis in hepatocellular carcinoma: molecular mechanism and therapy. Clin Exp Metastasis 2023; 40:5-32. [PMID: 36318440 DOI: 10.1007/s10585-022-10188-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Portal vein tumor thrombosis (PVTT), a common complication of advanced hepatocellular carcinoma (HCC), remains the bottleneck of the treatments. Liver cancer cells potentially experienced multi-steps during PVTT process, including cancer cells leave from cancer nest, migrate in extracellular matrix, invade the vascular barrier, and colonize in the portal vein. Accumulated evidences have revealed numerous of molecular mechanisms including genetic and epigenetic regulation, cancer stem cells, immunosuppressive microenvironment, hypoxia, et al. contributed to the PVTT formation. In this review, we discuss state-of-the-art PVTT research on the potential molecular mechanisms and experimental models. In addition, we summarize PVTT-associated clinical trials and current treatments for PVTT and suppose perspectives exploring the molecular mechanisms and improving PVTT-related treatment for the future.
Collapse
Affiliation(s)
- Xing-Hao Zhou
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Jing-Ru Li
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Tang-Hui Zheng
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Hong Chen
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Department of Hepatic Oncology, Xiamen Branch, Fudan University, Zhongshan Hospital, Xiamen, 361015, China
| | - Chen Cai
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Sheng-Long Ye
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China.,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China.,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China
| | - Bo Gao
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai Medical College, Shanghai, 200032, China.
| | - Tong-Chun Xue
- Liver Cancer Institute, Fudan University, Zhongshan Hospital, 136 Yi Xue Yuan Road, Shanghai, 200032, China. .,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, 200032, China. .,Department of Hepatic Oncology, Fudan University, Zhongshan Hospital, Shanghai, 200032, China. .,National Clinical Research Center for Interventional Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
MicroRNA-377: A therapeutic and diagnostic tumor marker. Int J Biol Macromol 2023; 226:1226-1235. [PMID: 36442575 DOI: 10.1016/j.ijbiomac.2022.11.236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.
Collapse
|
37
|
Li CJ, Tsai HW, Chen YL, Wang CI, Lin YH, Chu PM, Chi HC, Huang YC, Chen CY. Cisplatin or Doxorubicin Reduces Cell Viability via the PTPIVA3-JAK2-STAT3 Cascade in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:123-138. [PMID: 36741246 PMCID: PMC9896975 DOI: 10.2147/jhc.s385238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) accounts for 80% of all liver cancers and is the 2nd leading cause of cancer-related death in Taiwan. Various factors, including rapid cell growth, a high recurrence rate and drug resistance, make HCC difficult to cure. Moreover, the survival rate of advanced HCC patients treated with systemic chemotherapy remains unsatisfactory. Hence, the identification of novel molecular targets and the underlying mechanisms of chemoresistance in HCC and the development more effective therapeutic regimens are desperately needed. Methods An MTT assay was used to determine the cell viability after cisplatin or doxorubicin treatment. Western blotting, qRT‒PCR and immunohistochemistry were utilized to examine the protein tyrosine phosphatase IVA3 (PTP4A3) level and associated signaling pathways. ELISA was utilized to analyze the levels of the inflammatory cytokine IL-6 influenced by cisplatin, doxorubicin and PTP4A3 silencing. Results In this study, we found that PTP4A3 in the cisplatin/doxorubicin-resistant microarray was closely associated with the overall and recurrence-free survival rates of HCC patients. Cisplatin or doxorubicin significantly reduced cell viability and decreased PTP4A3 expression in hepatoma cells. IL-6 secretion increased with cisplatin or doxorubicin treatment and after PTP4A3 silencing. Furthermore, PTP4A3 was highly expressed in tumor tissues versus adjacent normal tissues from HCC patients. In addition, we evaluated the IL-6-associated signaling pathway involving STAT3 and JAK2, and the levels of p-STAT3, p-JAK2, STAT3 and JAK2 were obviously reduced with cisplatin or doxorubicin treatment in HCC cells using Western blotting and were also decreased after silencing PTP4A3. Collectively, we suggest that cisplatin or doxorubicin decreases HCC cell viability via downregulation of PTP4A3 expression through the IL-6R-JAK2-STAT3 cascade. Discussion Therefore, emerging evidence provides a deep understanding of the roles of PTP4A3 in HCC cisplatin/doxorubicin chemoresistance, which can be applied to develop early diagnosis strategies and reveal prognostic factors to establish novel targeted therapeutics to specifically treat HCC.
Collapse
Affiliation(s)
- Chao-Jen Li
- Department of General & Gastroenterological Surgery, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-I Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
| | - Yi-Ching Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan,Correspondence: Cheng-Yi Chen, Tel/Fax +886-6-2353535#5329, Email
| |
Collapse
|
38
|
Lai HC, Lin HJ, Jeng LB, Huang ST. Roles of conventional and complementary therapies in recurrent hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:19-35. [PMID: 36684056 PMCID: PMC9850766 DOI: 10.4251/wjgo.v15.i1.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common type of cancer and the fourth leading cause of cancer-related deaths in the world. HCC has a reported recurrence rate of 70%-80% after 5 years of follow-up. Controlling tumor recurrence is the most critical factor associated with HCC mortality. Conventional salvage therapies for recurrent HCC include re-hepatectomy or liver transplantation, transcatheter arterial chemoembolization, Y-90, target therapy, and immunotherapy; however, these conventional treatment modalities have yet to achieve consistently favorable outcomes. Meanwhile, previous studies have demonstrated that conventional therapies in combination with traditional Chinese medicine (TCM), acupuncture, moxibustion or dietary supplements could notably benefit patients with HCC recurrence by strengthening and augmenting the overall management strategy. However, systemic reviews related to the interactions between complementary therapies and conventional therapy in recurrent HCC are limited. In this review, we discuss the molecular mechanisms underlying the functions of complementary therapies for recurrent HCC, which include augmenting the local control to improve the congestion status of primary tumors and reducing multicentric tumor occurrence via inducing autophagy, apoptosis or cell cycle arrest. TCM and its derivatives may play important roles in helping to control HCC recurrence by inhibiting epithelial-mesenchymal transition, migration, invasion, and metastasis, inhibiting cancer stem cells, and ameliorating drug resistance.
Collapse
Affiliation(s)
- Hsiang-Chun Lai
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hung-Jen Lin
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
| | - Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Sheng-Teng Huang
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan
- Cancer Research Center for Traditional Chinese Medicine, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- An-Nan Hospital, China Medical University, Tainan 709204, Taiwan
| |
Collapse
|
39
|
Jeng KS, Chang CF, Sheen IS, Jeng CJ, Wang CH. Cellular and Molecular Biology of Cancer Stem Cells of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:1417. [PMID: 36674932 PMCID: PMC9861908 DOI: 10.3390/ijms24021417] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death globally. The cancer stem cells (CSCs) of HCC are responsible for tumor growth, invasion, metastasis, recurrence, chemoresistance, target therapy resistance and radioresistance. The reported main surface markers used to identify liver CSCs include epithelial cell adhesion/activating molecule (EpCAM), cluster differentiation 90 (CD90), CD44 and CD133. The main molecular signaling pathways include the Wnt/β-catenin, transforming growth factors-β (TGF-β), sonic hedgehog (SHH), PI3K/Akt/mTOR and Notch. Patients with EpCAM-positive alpha-fetoprotein (AFP)-positive HCC are usually young but have advanced tumor-node-metastasis (TNM) stages. CD90-positive HCCs are usually poorly differentiated with worse prognosis. Those with CD44-positive HCC cells develop early metastases. Those with CD133 expression have a higher recurrence rate and a shorter overall survival. The Wnt/β-catenin signaling pathway triggers angiogenesis, tumor infiltration and metastasis through the enhancement of angiogenic factors. All CD133+ liver CSCs, CD133+/EpCAM+ liver CSCs and CD44+ liver CSCs contribute to sorafenib resistance. SHH signaling could protect HCC cells against ionizing radiation in an autocrine manner. Reducing the CSC population of HCC is crucial for the improvement of the therapy of advanced HCC. However, targeting CSCs of HCC is still challenging.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Chiung-Fang Chang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - I-Shyang Sheen
- Department of Hepato Gastroenterology, Linkou Medical Center, Chang-Gung University, Taoyuan City 33305, Taiwan
| | - Chi-Juei Jeng
- Postgraduate of Institute of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Wang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| |
Collapse
|
40
|
Kaida T, Fujiyama Y, Soeno T, Yokota M, Nakamoto S, Goto T, Watanabe A, Okuno K, Nie Y, Fujino S, Yokota K, Harada H, Tanaka Y, Tanaka T, Yokoi K, Kojo K, Miura H, Yamanashi T, Sato T, Sasaki J, Sangai T, Hiki N, Kumamoto Y, Naitoh T, Yamashita K. Less demand on stem cell marker-positive cancer cells may characterize metastasis of colon cancer. PLoS One 2023; 18:e0277395. [PMID: 37098074 PMCID: PMC10128954 DOI: 10.1371/journal.pone.0277395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/26/2022] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND CD44 and CD133 are stem cell markers in colorectal cancer (CRC). CD44 has distinctive isoforms with different oncological properties like total CD44 (CD44T) and variant CD44 (CD44V). Clinical significance of such markers remains elusive. METHODS Sixty colon cancer were examined for CD44T/CD44V and CD133 at mRNA level in a quantitative PCR, and clarified for their association with clinicopathological factors. RESULTS (1) Both CD44T and CD44V showed higher expression in primary colon tumors than in non-cancerous mucosas (p<0.0001), while CD133 was expressed even in non-cancerous mucosa and rather decreased in the tumors (p = 0.048). (2) CD44V expression was significantly associated with CD44T expression (R = 0.62, p<0.0001), while they were not correlated to CD133 at all in the primary tumors. (3) CD44V/CD44T expressions were significantly higher in right colon cancer than in left colon cancer (p = 0.035/p = 0.012, respectively), while CD133 expression were not (p = 0.20). (4) In primary tumors, unexpectedly, CD44V/CD44T/CD133 mRNA expressions were not correlated with aggressive phenotypes, but CD44V/CD44T rather significantly with less aggressive lymph node metastasis/distant metastasis (p = 0.040/p = 0.039, respectively). Moreover, both CD44V and CD133 expressions were significantly decreased in liver metastasis as compared to primary tumors (p = 0.0005 and p = 0.0006, respectively). CONCLUSION Our transcript expression analysis of cancer stem cell markers did not conclude that their expression could represent aggressive phenotypes of primary and metastatic tumors, and rather represented less demand on stem cell marker-positive cancer cells.
Collapse
Affiliation(s)
- Takeshi Kaida
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiki Fujiyama
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takafumi Soeno
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mitsuo Yokota
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shuji Nakamoto
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takuya Goto
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Akiko Watanabe
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kota Okuno
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Nie
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shiori Fujino
- Department of Surgery, Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kazuko Yokota
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroki Harada
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoko Tanaka
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Toshimichi Tanaka
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keigo Yokoi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hirohisa Miura
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takahiro Yamanashi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeo Sato
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Jiichiro Sasaki
- Multidisciplinary Cancer Care and Treatment Center, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takafumi Sangai
- Department of Breast and Thyroid Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Naoki Hiki
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yusuke Kumamoto
- Department of General Pediatric and Hepatobiliary Pancreatic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeshi Naitoh
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Keishi Yamashita
- Department of Upper Gastrointestinal Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Division of Advanced Surgical Oncology, Research and Development Center for New Frontiers, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
41
|
Zhang K, Zhang Q, Jia R, Xiang S, Xu L. A comprehensive review of the relationship between autophagy and sorafenib-resistance in hepatocellular carcinoma: ferroptosis is noteworthy. Front Cell Dev Biol 2023; 11:1156383. [PMID: 37181755 PMCID: PMC10172583 DOI: 10.3389/fcell.2023.1156383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Patients with hepatocellular carcinoma (HCC) bear a heavy burden of disease and economic burden but have fewer treatment options. Sorafenib, a multi-kinase inhibitor, is the only approved drug that can be used to limit the progression of inoperable or distant metastatic HCC. However, enhanced autophagy and other molecular mechanisms after sorafenib exposure further induce drug resistance in HCC patients. Sorafenib-associated autophagy also generates a series of biomarkers, which may represent that autophagy is a critical section of sorafenib-resistance in HCC. Furthermore, many classic signaling pathways have been found to be involved in sorafenib-associated autophagy, including the HIF/mTOR signaling pathway, endoplasmic reticulum stress, and sphingolipid signaling, among others. In turn, autophagy also provokes autophagic activity in components of the tumor microenvironment, including tumor cells and stem cells, further impacting sorafenib-resistance in HCC through a special autophagic cell death process called ferroptosis. In this review, we summarized the latest research progress and molecular mechanisms of sorafenib-resistance-associated autophagy in detail, providing new insights and ideas for unraveling the dilemma of sorafenib-resistance in HCC.
Collapse
Affiliation(s)
- Kangnan Zhang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongrong Jia
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shihao Xiang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shihao Xiang, ; Ling Xu,
| | - Ling Xu
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Shihao Xiang, ; Ling Xu,
| |
Collapse
|
42
|
Li L, Xun C, Yu CH. Role of microRNA-regulated cancer stem cells in recurrent hepatocellular carcinoma. World J Hepatol 2022; 14:1985-1996. [PMID: 36618329 PMCID: PMC9813843 DOI: 10.4254/wjh.v14.i12.1985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Among the most common cancers, hepatocellular carcinoma (HCC) has a high rate of tumor recurrence, tumor dormancy, and drug resistance after initial successful chemotherapy or radiotherapy. A small subset of cancer cells, cancer stem cells (CSCs), exhibit stem cell characteristics and are present in various cancers, including HCC. The dysregulation of microRNAs (miRNAs) often accompanies the occurrence and development of HCC. miRNAs can influence tumorigenesis, progression, recurrence, and drug resistance by regulating CSCs properties, which supports their clinical utility in managing and treating HCC. This review summarizes the regulatory effects of miRNAs on CSCs in HCC with a special focus on their impact on HCC recurrence.
Collapse
Affiliation(s)
- Lei Li
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Chen Xun
- Department of Hepatobiliary Surgery, Zhuzhou Central Hospital, Zhuzhou 412000, Hunan Province, China
| | - Chun-Hong Yu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
43
|
D’Accardo C, Porcelli G, Mangiapane LR, Modica C, Pantina VD, Roozafzay N, Di Franco S, Gaggianesi M, Veschi V, Lo Iacono M, Todaro M, Turdo A, Stassi G. Cancer cell targeting by CAR-T cells: A matter of stemness. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1055028. [PMID: 39086964 PMCID: PMC11285689 DOI: 10.3389/fmmed.2022.1055028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/01/2022] [Indexed: 08/02/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy represents one of the most innovative immunotherapy approaches. The encouraging results achieved by CAR-T cell therapy in hematological disorders paved the way for the employment of CAR engineered T cells in different types of solid tumors. This adoptive cell therapy represents a selective and efficacious approach to eradicate tumors through the recognition of tumor-associated antigens (TAAs). Binding of engineered CAR-T cells to TAAs provokes the release of several cytokines, granzyme, and perforin that ultimately lead to cancer cells elimination and patient's immune system boosting. Within the tumor mass a subpopulation of cancer cells, known as cancer stem cells (CSCs), plays a crucial role in drug resistance, tumor progression, and metastasis. CAR-T cell therapy has indeed been exploited to target CSCs specific antigens as an effective strategy for tumor heterogeneity disruption. Nevertheless, a barrier to the efficacy of CAR-T cell-based therapy is represented by the poor persistence of CAR-T cells into the hostile milieu of the CSCs niche, the development of resistance to single targeting antigen, changes in tumor and T cell metabolism, and the onset of severe adverse effects. CSCs resistance is corroborated by the presence of an immunosuppressive tumor microenvironment (TME), which includes stromal cells, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and immune cells. The relationship between TME components and CSCs dampens the efficacy of CAR-T cell therapy. To overcome this challenge, the double strategy based on the use of CAR-T cell therapy in combination with chemotherapy could be crucial to evade immunosuppressive TME. Here, we summarize challenges and limitations of CAR-T cell therapy targeting CSCs, with particular emphasis on the role of TME and T cell metabolic demands.
Collapse
Affiliation(s)
- Caterina D’Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Laura Rosa Mangiapane
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Vincenzo Davide Pantina
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Narges Roozafzay
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Simone Di Franco
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Miriam Gaggianesi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Melania Lo Iacono
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
44
|
Wang HC, Haung LY, Wang CJ, Chao YJ, Hou YC, Yen CJ, Shan YS. Tumor-associated macrophages promote resistance of hepatocellular carcinoma cells against sorafenib by activating CXCR2 signaling. J Biomed Sci 2022; 29:99. [PMID: 36411463 PMCID: PMC9677647 DOI: 10.1186/s12929-022-00881-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Sorafenib (SOR) is the first line treatment for advanced hepatocellular carcinoma (HCC), but resistance develops frequently. Tumor-associated macrophages (TAMs) have been reported to affect the progression of HCC. We therefore aimed to study the role of TAMs in promoting SOR resistance. METHODS Immunofluorescence staining for the M2 marker CD204 and the cancer stem cell (CSC) markers CD44 and CD133 was performed in paired HCC and adjacent noncancerous tissues and HCC tissues stratified by response of SOR treatment. HCC/U937 coculture system and cytokines were used to induce M2 polarization for studying the effects of M2 TAMs on CSC properties and apoptotic death of HCC cells after SOR treatment. RESULTS Higher expression of CD204, CD44, and CD133 was observed in patients with SOR nonresponse (SNR) than in those with SOR response (SR), suggesting that SNR is positively correlated to levels of CSCs and M2 TAMs. After coculture, M2 TAMs could increase the level of CSCs but decrease SOR-induced apoptosis. Incubation of HCC cells with coculture conditioned medium increased the formation of spheres that were resistant to SOR. Furthermore, CXCL1 and CXCL2 were found to be the potential paracrine factors released by M2 TAMs to upregulate SOR resistance in HCC cells. Treatment with CXCL1 and CXCL2 could increase HCC CSC activity but decrease SOR-induced apoptosis by affecting BCL-2 family gene expression. Using pharmacological inhibitors, CXCR2/ERK signaling was found to be critical to CXCL1- and CXCL2-mediated SOR resistance. CONCLUSION This study identified CXCL1, CXCL2, and their downstream CXCR2/ERK signaling as potential therapeutic targets to overcome SOR resistance in HCC.
Collapse
Affiliation(s)
- Hao-Chen Wang
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Road, Tainan, 704017 Taiwan
| | - Lin-Ya Haung
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Road, Tainan, 704017 Taiwan
| | - Chih-Jung Wang
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Ying-Jui Chao
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Ya-Chin Hou
- grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Chia-Jui Yen
- grid.64523.360000 0004 0532 3255Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| | - Yan-Shen Shan
- grid.64523.360000 0004 0532 3255Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Road, Tainan, 704017 Taiwan ,grid.64523.360000 0004 0532 3255Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No. 138, Shengli Road, Tainan, 704302 Taiwan
| |
Collapse
|
45
|
Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines 2022; 10:biomedicines10112988. [PMID: 36428556 PMCID: PMC9687343 DOI: 10.3390/biomedicines10112988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer metastasis and treatment resistance are the main causes of treatment failure and cancer-related deaths. Their underlying mechanisms remain to be fully elucidated and have been attributed to the presence of cancer stem cells (CSCs)-a small population of highly tumorigenic cancer cells with pluripotency and self-renewal properties, at the apex of a cellular hierarchy. CSCs drive metastasis and treatment resistance and are sustained by a dynamic tumor microenvironment (TME). Numerous pathways mediate communication between CSCs and/or the surrounding TME. These include a paracrine renin-angiotensin system and its convergent signaling pathways, the immune system, and other signaling pathways including the Notch, Wnt/β-catenin, and Sonic Hedgehog pathways. Appreciation of the mechanisms underlying metastasis and treatment resistance, and the pathways that regulate CSCs and the TME, is essential for developing a durable treatment for cancer. Pre-clinical and clinical studies exploring single-point modulation of the pathways regulating CSCs and the surrounding TME, have yielded partial and sometimes negative results. This may be explained by the presence of uninhibited alternative signaling pathways. An effective treatment of cancer may require a multi-target strategy with multi-step inhibition of signaling pathways that regulate CSCs and the TME, in lieu of the long-standing pursuit of a 'silver-bullet' single-target approach.
Collapse
Affiliation(s)
| | - Sabrina P. Koh
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Freya R. Weth
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
46
|
Yang J, Aljitawi O, Van Veldhuizen P. Prostate Cancer Stem Cells: The Role of CD133. Cancers (Basel) 2022; 14:5448. [PMID: 36358865 PMCID: PMC9656005 DOI: 10.3390/cancers14215448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 09/27/2023] Open
Abstract
Prostate cancer stem cells (PCSCs), possessing self-renewal properties and resistance to anticancer treatment, are possibly the leading cause of distant metastasis and treatment failure in prostate cancer (PC). CD133 is one of the most well-known and valuable cell surface markers of cancer stem cells (CSCs) in many cancers, including PC. In this article, we focus on reviewing the role of CD133 in PCSC. Any other main stem cell biomarkers in PCSC reported from key publications, as well as about vital research progress of CD133 in CSCs of different cancers, will be selectively reviewed to help us inform the main topic.
Collapse
Affiliation(s)
| | - Omar Aljitawi
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter Van Veldhuizen
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
47
|
Harkus U, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data. Semin Cancer Biol 2022; 86:799-815. [PMID: 35065242 DOI: 10.1016/j.semcancer.2022.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related deaths in the world, and for patients with advanced disease there are few therapeutic options available. The complex immunological microenvironment of HCC and the success of immunotherapy in several types of tumours, has raised the prospect of potential benefit for immune based therapies, such as immune checkpoint inhibitors (ICIs), in HCC. This has led to significant breakthrough research, numerous clinical trials and the rapid approval of multiple systemic drugs for HCC by regulatory bodies worldwide. Although some patients responded well to ICIs, many have failed to achieve significant benefit, while others showed unexpected and paradoxical deterioration. The aim of this review is to discuss the pathophysiology of HCC, the tumour microenvironment, key clinical trials evaluating ICIs in HCC, various resistance mechanisms to ICIs, and possible ways to overcome these impediments to improve patient outcomes.
Collapse
Affiliation(s)
- Uasim Harkus
- Townsville University Hospital, Townsville, Queensland 4811, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia
| | - Pranavan Palamuthusingam
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; Townsville University Hospital, Townsville, Queensland 4811, Australia; Mater Hospital, Townsville, Queensland 4811, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales 2145, Australia.
| |
Collapse
|
48
|
Gong L, Zhang Y, Yang Y, Yan Q, Ren J, Luo J, Tiu YC, Fang X, Liu B, Lam RHW, Lam K, Lee AW, Guan X. Inhibition of lysyl oxidase-like 2 overcomes adhesion-dependent drug resistance in the collagen-enriched liver cancer microenvironment. Hepatol Commun 2022; 6:3194-3211. [PMID: 35894804 PMCID: PMC9592791 DOI: 10.1002/hep4.1966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/13/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is considered to be one of the vital mediators of tumor progression. Extracellular matrix (ECM), infiltrating immune cells, and stromal cells collectively constitute the complex ecosystem with varied biochemical and biophysical properties. The development of liver cancer is strongly tied with fibrosis and cirrhosis that alters the microenvironmental landscape, especially ECM composition. Enhanced deposition and cross-linking of type I collagen are frequently detected in patients with liver cancer and have been shown to facilitate tumor growth and metastasis by epithelial-to-mesenchymal transition. However, information on the effect of collagen enrichment on drug resistance is lacking. Thus, the present study has comprehensively illustrated phenotypical and mechanistic changes in an in vitro mimicry of collagen-enriched TME and revealed that collagen enrichment could induce 5-fluorouracil (5FU) and sorafenib resistance in liver cancer cells through hypoxia-induced up-regulation of lysyl oxidase-like 2 (LOXL2). LOXL2, an enzyme that facilitates collagen cross-linking, enhances cell adhesion-mediated drug resistance by activating the integrin alpha 5 (ITGA5)/focal adhesion kinase (FAK)/phosphoinositide 3-kinase (PI3K)/rho-associated kinase 1 (ROCK1) signaling axis. Conclusion: We demonstrated that inhibition of LOXL2 in a collagen-enriched microenvironment synergistically promotes the efficacy of sorafenib and 5FU through deterioration of focal adhesion signaling. These findings have clinical implications for developing LOXL2-targeted strategies in patients with chemoresistant liver cancer and especially for those patients with advanced fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Yu Zhang
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- Department of Pediatric OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuma Yang
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Qian Yan
- Department of Colorectal SurgeryGuangdong Institute Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jifeng Ren
- Department of Biomedical EngineeringCity University of Hong KongHong KongChina
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Jie Luo
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Yuen Chak Tiu
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Xiaona Fang
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Beilei Liu
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Raymond Hiu Wai Lam
- Department of Biomedical EngineeringCity University of Hong KongHong KongChina
| | - Ka‐On Lam
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Anne Wing‐Mui Lee
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Xin‐Yuan Guan
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
49
|
Cancer Stem Cells in Hepatocellular Carcinoma: Intrinsic and Extrinsic Molecular Mechanisms in Stemness Regulation. Int J Mol Sci 2022; 23:ijms232012327. [PMID: 36293184 PMCID: PMC9604119 DOI: 10.3390/ijms232012327] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains the most predominant type of liver cancer with an extremely poor prognosis due to its late diagnosis and high recurrence rate. One of the culprits for HCC recurrence and metastasis is the existence of cancer stem cells (CSCs), which are a small subset of cancer cells possessing robust stem cell properties within tumors. CSCs play crucial roles in tumor heterogeneity constitution, tumorigenesis, tumor relapse, metastasis, and resistance to anti-cancer therapies. Elucidation of how these CSCs maintain their stemness features is essential for the development of CSCs-based therapy. In this review, we summarize the present knowledge of intrinsic molecules and signaling pathways involved in hepatic CSCs, especially the CSC surface markers and associated signaling in regulating the stemness characteristics and the heterogeneous subpopulations within the CSC pool. In addition, we recapitulate the effects of crucial extrinsic cellular components in the tumor microenvironment, including stromal cells and immune cells, on the modulation of hepatic CSCs. Finally, we synopsize the currently valuable CSCs-targeted therapy strategies based on intervention in these intrinsic and extrinsic molecular mechanisms, in the hope of shedding light on better clinical management of HCC patients.
Collapse
|
50
|
Sun J, Liu C, Shi J, Wang N, Jiang D, Mao F, Gu J, Zhou L, Shen L, Lau WY, Cheng S. A novel chemotherapy strategy for advanced hepatocellular carcinoma: a multicenter retrospective study. Chin Med J (Engl) 2022; 135:2338-2343. [PMID: 36103975 PMCID: PMC9771239 DOI: 10.1097/cm9.0000000000001952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Chemotherapy is a common treatment for advanced hepatocellular carcinoma, but the effect is not satisfactory. The study aimed to retrospectively evaluate the effects of adding all-trans-retinoic acid (ATRA) to infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) for advanced hepatocellular carcinoma (HCC). METHODS We extracted the data of patients with advanced HCC who underwent systemic chemotherapy using FOLFOX4 or ATRA plus FOLFOX4 at the Eastern Hepatobiliary Surgery Hospital, First Hospital of Jilin University, and Zhejiang Sian International Hospital and retrospectively compared for overall survival. The Cox proportional hazards model was used to calculate the hazard ratios for overall survival and disease progression after controlling for age, sex, and disease stage. RESULTS From July 2013 to July 2018, 111 patients with HCC were included in this study. The median survival duration was 14.8 months in the ATRA plus FOLFOX4 group and 8.2 months in the FOLFOX4 only group ( P < 0.001). The ATRA plus FOLFOX4 group had a significantly longer median time to progression compared with the FOLFOX4 group (3.6 months vs. 1.8 months, P < 0.001). Hazard ratios for overall survival and disease progression were 0.465 (95% confidence interval: 0.298-0.726; P = 0.001) and 0.474 (0.314-0.717; P < 0.001) after adjusting for potential confounders, respectively. CONCLUSION ATRA plus FOLFOX4 significantly improves the overall survival and time to disease progression in patients with advanced HCC.
Collapse
Affiliation(s)
- Juxian Sun
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Chang Liu
- Department of Integrative Oncology, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Jie Shi
- Department of Outpatient Department, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Nanya Wang
- Department of Oncology, First Hospital of Jilin University, Changchun, Jilin 130000, China
| | - Dafeng Jiang
- Department of Oncology Zhejiang Sian International Hospital, Jiaxing, Zhejiang 314000, China
| | - Feifei Mao
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Jingwen Gu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Liping Zhou
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Li Shen
- Department of Outpatient Department, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
| | - Wan Yee Lau
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
- Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR 999077, China
| | - Shuqun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai 200433, China
| |
Collapse
|