1
|
Kong H, Chen X, Lee W, Xie X, Tao Y, Li M. Dual-color fluorescence detection of tumor-derived extracellular vesicles using a specific and serum-stable membrane-fusion approach. Biosens Bioelectron 2025; 278:117302. [PMID: 40101657 DOI: 10.1016/j.bios.2025.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/05/2025] [Accepted: 02/21/2025] [Indexed: 03/20/2025]
Abstract
Tumor-derived extracellular vesicles (tEVs), which are essential mediators for cell-to-cell communication during tumorigenesis and tumor development, have demonstrated significant diagnostic potential in cancer liquid biopsy, particularly through biomarkers like membrane proteins and inner microRNAs. However, traditional detection methods such as ELISA and qRT-PCR encounter challenges with low sensitivity and specificity, complex procedures, and high costs. Although emerging biosensors have been developed, these methods are limited to detecting a single type of tEV biomarker, which may result in misdiagnoses due to false-positive or false-negative signals. Herein, we introduce a specific and serum-stable membrane-fusion approach (SSMFA) capable of simultaneously detecting tEV proteins and microRNAs via dual-color fluorescence analysis. In this strategy, the established epithelial cell adhesion molecule (EpCAM) aptamer-modified serum-stable membrane-fusion liposome (AptSMFL) is labeled with fluorescence resonance energy transfer (FRET) dye pairs, which can specifically recognize EpCAM-overexpressed tEVs and induce serum-stable membrane fusion, allowing the quantification of EpCAM protein levels through red fluorescence changes resulting from FRET alterations. Meanwhile, SSMFA facilitates efficient transfection of the CRISPR/Cas13a probe into tEVs to analyze the levels of microRNA-21 (miR-21) in EpCAM-positive tEVs via green fluorescence detection. When tested on serum samples from hepatocellular carcinoma models, the SSMFA exhibited minimal sample volume requirement and rapid assay time (2 h) to effectively achieve accurate quantification of both tEV EpCAM protein and miR-21 levels. Additionally, this dual-biomarker detection method showed a strong correlation with tumor burden and significantly improved cancer diagnostic accuracy (AUC = 0.98), underscoring the potential of SSMFA as a promising tEV-based liquid biopsy assay for cancer diagnosis.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaodie Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Weijen Lee
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China.
| |
Collapse
|
2
|
Zhang Y, Yue NN, Chen LY, Tian CM, Yao J, Wang LS, Liang YJ, Wei DR, Ma HL, Li DF. Exosomal biomarkers: A novel frontier in the diagnosis of gastrointestinal cancers. World J Gastrointest Oncol 2025; 17:103591. [DOI: 10.4251/wjgo.v17.i4.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Gastrointestinal (GI) cancers, which predominantly manifest in the stomach, colorectum, liver, esophagus, and pancreas, accounting for approximately 35% of global cancer-related mortality. The advent of liquid biopsy has introduced a pivotal diagnostic modality for the early identification of premalignant GI lesions and incipient cancers. This non-invasive technique not only facilitates prompt therapeutic intervention, but also serves as a critical adjunct in prognosticating the likelihood of tumor recurrence. The wealth of circulating exosomes present in body fluids is often enriched with proteins, lipids, microRNAs, and other RNAs derived from tumor cells. These specific cargo components are reflective of processes involved in GI tumorigenesis, tumor progression, and response to treatment. As such, they represent a group of promising biomarkers for aiding in the diagnosis of GI cancer. In this review, we delivered an exhaustive overview of the composition of exosomes and the pathways for cargo sorting within these vesicles. We laid out some of the clinical evidence that supported the utilization of exosomes as diagnostic biomarkers for GI cancers and discussed their potential for clinical application. Furthermore, we addressed the challenges encountered when harnessing exosomes as diagnostic and predictive instruments in the realm of GI cancers.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
- Department of Medical Administration, Huizhou Institute for Occupational Health, Huizhou 516000, Guangdong Province, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University), Shenzhen 518000, Guangdong Province, China
| | - Li-Yu Chen
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (Jinan University of Second Clinical Medical Sciences), Shenzhen 518000, Guangdong Province, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen 518000, Guangdong Province, China
| | - Dao-Ru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| | - Hua-Lin Ma
- Department of Nephrology, The Second Clinical Medical College, Jinan University, Shenzhen 518020, Guangdong Province, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518000, Guangdong Province, China
| |
Collapse
|
3
|
Reynolds DE, Roh YH, Chintapula U, Huynh E, Vallapureddy P, Tran HH, Lee D, Allen MG, Xu X, Ko J. Vertically Aligned Nanowires for Longitudinal Intracellular Sampling. ACS NANO 2025. [PMID: 40146010 DOI: 10.1021/acsnano.4c18297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Cells are diverse systems with unique molecular profiles that support vital functions, such as energy production and nutrient absorption. Advances in omics have provided valuable insights into these cellular processes, but many of these tools rely on cell lysis, limiting the ability to track dynamic changes over time. To overcome this, methods for longitudinal profiling of living cells have emerged; however, challenges such as low throughput and genetic manipulation still need to be addressed. Nanomaterials, particularly nanowires, offer a promising solution due to their size, high aspect ratios, low cost, simplicity, and potential for high-throughput manufacturing. Here, we present a nanowire-based platform for longitudinal mRNA profiling in living cells using vertically aligned nickel nanowire arrays for efficient mRNA extraction with minimal cellular disruption. We demonstrate its ability to track enhanced green fluorescent protein expression and transcriptomic changes from drug responses in the same cells over time, showcasing the platform's potential for dynamic cellular analysis.
Collapse
Affiliation(s)
- David Eun Reynolds
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yoon Ho Roh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Energy and Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Uday Chintapula
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Emily Huynh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Phoebe Vallapureddy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hong Huy Tran
- Department of Chemical and Biomolecular Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mark G Allen
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jina Ko
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Gerlt M, Laurell T. Acoustofluidic Chromatography for Extracellular Vesicle Enrichment from 4 μL Blood Plasma Samples. Anal Chem 2025; 97:6049-6058. [PMID: 40079471 PMCID: PMC11948168 DOI: 10.1021/acs.analchem.4c06105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/13/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
We present a novel acoustofluidic chromatography platform for high-throughput nanoparticle trapping and enrichment, with a focus on extracellular vesicles (EVs) from blood plasma. The system features a packed bed of polystyrene beads inside a rectangular glass capillary, acoustically actuated by a piezoelectric element. Using fluorescent polystyrene nanoparticles as small as 25 nm, we characterized device performance across a frequency range of 0.45-4 MHz, demonstrating particle trapping at all tested frequencies. The platform achieved recoveries of up to 42.9 ± 3.2% at input powers as low as 55 mW and operated at high flow rates of up to 200 μL/min. Trapping capacity reached 6.7 × 109 ± 2.5 × 109 particles for 25 nm polystyrene beads. For EV isolation, processing just 4 μL of blood plasma yielded 2 × 108 washed EV-sized particles eluted in 100 μL within 8 min. Micro BCA analysis confirmed a plasma protein background below 2 μg/mL, enabling downstream mass spectrometry. This platform provides an efficient, high-throughput approach for nanoparticle trapping and EV enrichment with minimal sample volumes, offering potential applications in diagnostics and therapeutic development. Future work will focus on optimizing bead properties for EV subpopulation separation and scaling the system for clinical applications.
Collapse
Affiliation(s)
| | - Thomas Laurell
- Acoustofluidics
Group, Lund University, Lund 221 00, Sweden
| |
Collapse
|
5
|
Han Y, Wang G, Han E, Yang S, Zhao R, Lan Y, Zhao M, Li Y, Ren L. SERPINI1 serves as a biomarker promoting cell proliferation and invasion in hepatocellular carcinoma. Cancer Cell Int 2025; 25:88. [PMID: 40082896 PMCID: PMC11908049 DOI: 10.1186/s12935-025-03716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND SERPINI1 is a protein-coding gene, which has been reported to be related to malignancies, and the encoding protein is a secreted protein. Nevertheless, the specific effect of SERPINI1 on Hepatocellular carcinoma (HCC) remains unclear. METHODS The expression level of SERPINI1 in cancers was detected by the Gene Expression Omnibus (GEO) database, the Gene Expression Profiling Interactive Analysis (GEPIA) database and the collected serum of HCC patients. The receiver operating characteristic (ROC) curve and area under curve (AUC) were used to evaluate the diagnostic effectiveness of serum SERPINI1 and the combination of AFP and SERPINI1 for HCC. The Kaplan-Meier (KM) survival was used to evaluate the prognostic capacity of SERPINI1 for HCC in GEPIA database. Furthermore, the correlations between clinicopathological characteristics and the level of serum SERPINI1 were analyzed. Besides, we detected the expression of SERPINI1 in HepG2 by qPCR and western blot, and confirmed the biological function of SERPINI1 through MTT, EdU, wound healing and transwell invasion assay. RESULTS The results indicated that the level of SERPINI1 was significantly increased in tissue and serum of HCC patients. ROC analysis displayed that SERPINI1 had a significantly diagnostic value for HCC, the combination of AFP and SERPINI1 gained the higher specificity and sensitivity. The KM survival curves indicated that patients with SERPINI1 overexpression had worse overall survival. Furthermore, we found the positive correlations between serum SERPINI1 level and some clinicopathological characteristics, such as tumor size, differentiation degrees and so on. In addition, in vitro experiments revealed that SERPINI1 could promote the proliferation and invasion of HCC. CONCLUSIONS Taken together, our study demonstrates that SERPINI1, which is highly expressed in HCC and closely related to cell proliferation and invasion, may serve as a novel biomarker for diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Yawei Han
- Department of Laboratory, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, PR China
| | - Gaoyv Wang
- Department of Otorhinolaryngology, Tianjin Medical University General Hospital, Tianjin, China
| | - Erwei Han
- Severe Medical Department, Gaocheng People's Hospital, Shijiazhuang City, Hebei Province, China
| | - Shuting Yang
- Department of Laboratory, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, PR China
| | - Ran Zhao
- Department of Laboratory, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, PR China
| | - Yvying Lan
- Department of Laboratory, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, PR China
- Clinical Medical College, Tianjin Medical University, Tianjin, China
| | - Meng Zhao
- Department of Laboratory, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, PR China.
| | - Yueguo Li
- Department of Laboratory, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, PR China.
| | - Li Ren
- Department of Laboratory, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Huanhuxi Road, Hexi District, Tianjin, 300060, PR China.
| |
Collapse
|
6
|
Malone CD, Bajaj S, He A, Mody K, Hickey RM, Sarwar A, Krishnan S, Patel TC, Toskich BB. Combining Radioembolization and Immune Checkpoint Inhibitors for the Treatment of Hepatocellular Carcinoma: The Quest for Synergy. J Vasc Interv Radiol 2025; 36:414-424.e2. [PMID: 39586534 DOI: 10.1016/j.jvir.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
Hepatocellular carcinoma is a leading and increasing contributor to cancer-related death worldwide. Recent advancements in both liver-directed therapies in the form of yttrium-90 (90Y) radioembolization (RE) and systemic therapy in the form of immune checkpoint inhibitors (ICI) have expanded treatment options for patients with an otherwise poor prognosis. Despite these gains, ICIs and 90Y-RE each have key limitations with low objective response rates and persistent hazard of out-of-field recurrence, respectively, and overall survival remains low. However, each therapy's strength may mitigate the other's weakness, making them potentially ideal partners for combination treatment strategies. This review discusses the scientific and clinical rationale for combining 90Y-RE with ICIs, highlights early clinical trial data on its safety and effectiveness, and proposes key issues to be addressed in this emerging field. With optimal strategies, combination therapies can potentially result in increasing likelihood of durable and curative outcomes in later stage patients.
Collapse
Affiliation(s)
- Christopher D Malone
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri.
| | - Suryansh Bajaj
- Department of Radiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aiwu He
- Division of Gastroenterology and Medical Oncology, MedStar Health, Washington, DC
| | | | - Ryan M Hickey
- Department of Radiology, NYU Langone Health, New York, New York
| | - Ammar Sarwar
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sunil Krishnan
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center, Houston, Texas
| | - Tushar C Patel
- Department of Transplant, Mayo Clinic, Jacksonville, Florida
| | - Beau B Toskich
- Division of Vascular and Interventional Radiology, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
7
|
Ju Y, Watson J, Wang JJ, Yen YT, Gevorkian L, Chen Z, Tu KH, Salumbides B, Phung A, Zhao C, Kim H, Ji YR, Zhang RY, Lee J, Gong J, Scher K, You S, Chen JF, Tseng HR, Zhu Y, Posadas EM. B7-H3-liquid biopsy for the characterization and monitoring of the dynamic biology of prostate cancer. Drug Resist Updat 2025; 79:101207. [PMID: 39914189 DOI: 10.1016/j.drup.2025.101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/23/2024] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND B7-H3 is a promising target for cancer therapy, notably in prostate cancer (PCa), particularly in metastatic, castration-resistant PCa (mCRPC). With the development of B7-H3-targeted therapies, there is a need for a rapid, reliable, and cost-effective method to detect and monitor B7-H3 expression. Leveraging their abundance and stability, we developed a liquid biopsy assay using extracellular vesicles (EVs) for this purpose. METHODS B7-H3+ EVs were isolated using a B7-H3 antibody-mediated, click chemistry-based enrichment method. Antibodies were conjugated to methyltetrazine-grafted microbeads. EVs were isolated from 100 µL of plasma from metastatic, castration-sensitive PCa (mCSPC) (n = 43) and mCRPC (n = 103) patients and quantified using RT-qPCR of ACTB. Measurements were compared with the patient's disease status over time. RESULTS The assay detected higher B7-H3+ EVs in mCRPC than mCSPC and increased when mCSPC transitioned to mCRPC. Elevated B7-H3+ EVs were associated with lower overall survival (Hazard ratio (HR) 2.19, p = 0.01). In patients with serial plasma samples, B7-H3+ EV levels reflected treatment response and disease progression. CONCLUSIONS This B7-H3+ EV assay represents a significant advancement in utilizing tumor-derived EVs for a non-invasive, quantitative, and consistent real-time measurement of B7-H3. This assay warrants further development as a companion diagnostic for B7-H3 targeted therapies in PCa and other conditions.
Collapse
Affiliation(s)
- Yong Ju
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Joshua Watson
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Jasmine J Wang
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Ying-Tzu Yen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Lilit Gevorkian
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Zijing Chen
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Kai Han Tu
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Brenda Salumbides
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Aaron Phung
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Chen Zhao
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Hyoyong Kim
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - You-Ren Ji
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Ryan Y Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Junseok Lee
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Jun Gong
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Kevin Scher
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Sungyong You
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Urology, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA; Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles 90048, USA.
| | - Jie-Fu Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | - Edwin M Posadas
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Urology, Cedars-Sinai Medical Center, Los Angeles CA 90048, USA.
| |
Collapse
|
8
|
Zhang G, Huang X, Liu S, Xu Y, Wang N, Yang C, Zhu Z. Demystifying EV heterogeneity: emerging microfluidic technologies for isolation and multiplexed profiling of extracellular vesicles. LAB ON A CHIP 2025; 25:1228-1255. [PMID: 39775292 DOI: 10.1039/d4lc00777h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers carrying complex molecular cargoes, including proteins, nucleic acids, glycans, etc. These vesicles are closely associated with specific physiological characteristics, which makes them invaluable in the detection and monitoring of various diseases. However, traditional isolation methods are often labour-intensive, inefficient, and time-consuming. In addition, single biomarker analyses are no longer accurate enough to meet diagnostic needs. Routine isolation and molecular analysis of high-purity EVs in clinical applications is even more challenging. In this review, we discuss a promising solution, microfluidic-based techniques, that combine efficient isolation and multiplex detection of EVs, to further demystify EV heterogeneity. These microfluidic-based EV multiplexing platforms will hopefully facilitate development of liquid biopsies and offer promising opportunities for personalised therapy.
Collapse
Affiliation(s)
- Guihua Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiaodan Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Sinong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yiling Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Nan Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao tong University, Shanghai 200127, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
9
|
Park J, Lee YT, Agopian VG, Liu JS, Koltsova EK, You S, Zhu Y, Tseng HR, Yang JD. Liquid biopsy in hepatocellular carcinoma: Challenges, advances, and clinical implications. Clin Mol Hepatol 2025; 31:S255-S284. [PMID: 39604328 PMCID: PMC11925447 DOI: 10.3350/cmh.2024.0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive primary liver malignancy often diagnosed at an advanced stage, resulting in a poor prognosis. Accurate risk stratification and early detection of HCC are critical unmet needs for improving outcomes. Several blood-based biomarkers and imaging tests are available for early detection, prediction, and monitoring of HCC. However, serum protein biomarkers such as alpha-fetoprotein have shown relatively low sensitivity, leading to inaccurate performance. Imaging studies also face limitations related to suboptimal accuracy, high cost, and limited implementation. Recently, liquid biopsy techniques have gained attention for addressing these unmet needs. Liquid biopsy is non-invasive and provides more objective readouts, requiring less reliance on healthcare professional's skills compared to imaging. Circulating tumor cells, cell-free DNA, and extracellular vesicles are targeted in liquid biopsies as novel biomarkers for HCC. Despite their potential, there are debates regarding the role of these novel biomarkers in the HCC care continuum. This review article aims to discuss the technical challenges, recent technical advancements, advantages and disadvantages of these liquid biopsies, as well as their current clinical application and future directions of liquid biopsy in HCC.
Collapse
Affiliation(s)
- Jaeho Park
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi-Te Lee
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Vatche G Agopian
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Jessica S Liu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Ekaterina K Koltsova
- Smidt Heart Institute, Department of Medicine, Department of Biomedical Sciences, 8700 Beverly Blvd, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology and Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
10
|
Peppicelli S, Calorini L, Bianchini F, Papucci L, Magnelli L, Andreucci E. Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. Cell Oncol (Dordr) 2025; 48:27-41. [PMID: 39023664 PMCID: PMC11850579 DOI: 10.1007/s13402-024-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment. Understanding the intricate molecular mechanisms governing the interactions between tumor and host cells within a hypoxic and acidic microenvironment, triggered by the release of EVs, could pave the way for innovative strategies to disrupt the complex interplay of cancer cells with their microenvironment. This approach may contribute to the development of an efficient and safe therapeutic strategy to combat cancer progression. Therefore, we review the major findings on the release of EVs in a hypoxic/acidic tumor microenvironment to appreciate their role in tumor progression toward metastatic disease.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy.
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| |
Collapse
|
11
|
Dong L, Dong C, Yu Y, Jiao X, Zhang X, Zhang X, Li Z. Transcriptomic analysis of Paraoxonase 1 expression in hepatocellular carcinoma and its potential impact on tumor immunity. Clin Transl Oncol 2025; 27:612-629. [PMID: 39031295 DOI: 10.1007/s12094-024-03598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is characterized by a complex pathogenesis that confers aggressive malignancy, leading to a lack of dependable biomarkers for predicting invasion and metastasis, which results in poor prognoses in patients with HCC. Glycogen storage disease (GSD) is an uncommon metabolic disorder marked by hepatomegaly and liver fibrosis. Notably, hepatic adenomas in GSD patients present a heightened risk of malignancy compared to those in individuals without the disorder. In this investigation, PON1 emerged as a potential pivotal gene for HCC through bioinformatics analysis. METHODS Transcriptomic profiling data of liver cancer were collected and integrated from TCGA and GEO databases. Bioinformatics analysis was conducted to identify mutated mRNAs associated with GSD, and the PON1 gene was selected as a key gene. Patients were grouped based on the expression levels of PON1, and differences in clinical characteristics, biological pathways, immune infiltration, and expression of immune checkpoints were compared. RESULTS The expression levels of the PON1 gene showed significant differences between the high-expression group and the low-expression group in HCC patients. Further analysis indicated that the PON1 gene at different expression levels might influence the clinical manifestations, biological processes, immune infiltration, and expression of immune checkpoints in HCC. Additionally, immunohistochemistry (IHC) results revealed high expression of PON1 in normal tissues and low expression in HCC tissues. These findings provide important clues and future research directions for the early diagnosis, prognosis, immunotherapy, and potential molecular interactions of HCC. CONCLUSION Our investigation underscores the noteworthy prognostic significance of PON1 in HCC, suggesting its potential pivotal role in modulating tumor progression and immune cell infiltration. These findings establish PON1 as a novel tumor biomarker with significant implications for the prognosis, targeted therapy, and immunotherapy of patients with HCC.
Collapse
Affiliation(s)
- Linhuan Dong
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Changjun Dong
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Yunlin Yu
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xin Jiao
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xiangwei Zhang
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xianlin Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
| | - Zheng Li
- Department of General surgery, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
12
|
Wang L, Gong Z, Wang M, Liang YZ, Zhao J, Xie Q, Wu XW, Li QY, Zhang C, Ma LY, Zheng SY, Jiang M, Yu X, Xu L. Rapid and unbiased enrichment of extracellular vesicles via a meticulously engineered peptide. Bioact Mater 2025; 43:292-304. [PMID: 39399836 PMCID: PMC11470464 DOI: 10.1016/j.bioactmat.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
Extracellular vesicles (EVs) have garnered significant attention in biomedical applications. However, the rapid, efficient, and unbiased separation of EVs from complex biological fluids remains a challenge due to their heterogeneity and low abundance in biofluids. Herein, we report a novel approach to reconfigure and modify an artificial insertion peptide for the unbiased and rapid isolation of EVs in 20 min with ∼80% recovery in neutral conditions. Moreover, the approach demonstrates exceptional anti-interference capability and achieves a high purity of EVs comparable to standard ultracentrifugation and other methods. Importantly, the isolated EVs could be directly applied for downstream protein and nucleic acid analyses, including proteomics analysis, exome sequencing analysis, as well as the detection of both epidermal growth factor receptor (EGFR) and V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) gene mutation in clinical plasma samples. Our approach offers great possibilities for utilizing EVs in liquid biopsy, as well as in various other biomedical applications.
Collapse
Affiliation(s)
- Le Wang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi-Zhong Liang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Xie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Wei Wu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical Collage of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin-Ying Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cong Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li-Yun Ma
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si-Yang Zheng
- Department of Electrical Engineering and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States
| | - Ming Jiang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
13
|
Li H, Li J, Zhang Z, Yang Q, Du H, Dong Q, Guo Z, Yao J, Li S, Li D, Pang N, Li C, Zhang W, Zhou L. Digital Quantitative Detection for Heterogeneous Protein and mRNA Expression Patterns in Circulating Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410120. [PMID: 39556692 PMCID: PMC11727120 DOI: 10.1002/advs.202410120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Hepatocellular carcinoma (HCC) circulating tumor cells (CTCs) exhibit significant phenotypic heterogeneity and diverse gene expression profiles due to epithelial-mesenchymal transition (EMT). However, current detection methods lack the capacity for simultaneous quantification of multidimensional biomarkers, impeding a comprehensive understanding of tumor biology and dynamic changes. Here, the CTC Digital Simultaneous Cross-dimensional Output and Unified Tracking (d-SCOUT) technology is introduced, which enables simultaneous quantification and detailed interpretation of HCC transcriptional and phenotypic biomarkers. Based on self-developed multi-real-time digital PCR (MRT-dPCR) and algorithms, d-SCOUT allows for the unified quantification of Asialoglycoprotein Receptor (ASGPR), Glypican-3 (GPC-3), and Epithelial Cell Adhesion Molecule (EpCAM) proteins, as well as Programmed Death Ligand 1 (PD-L1), GPC-3, and EpCAM mRNA in HCC CTCs, with good sensitivity (LOD of 3.2 CTCs per mL of blood) and reproducibility (mean %CV = 1.80-6.05%). In a study of 99 clinical samples, molecular signatures derived from HCC CTCs demonstrated strong diagnostic potential (AUC = 0.950, sensitivity = 90.6%, specificity = 87.5%). Importantly, by integrating machine learning, d-SCOUT allows clustering of CTC characteristics at the mRNA and protein levels, mapping normalized heterogeneous 2D molecular profiles to assess HCC metastatic risk. Dynamic digital tracking of eight HCC patients undergoing different treatments visually illustrated the therapeutic effects, validating this technology's capability to quantify the treatment efficacy. CTC d-SCOUT enhances understanding of tumor biology and HCC management.
Collapse
MESH Headings
- Humans
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/blood
- Liver Neoplasms/diagnosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/blood
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reproducibility of Results
- Epithelial Cell Adhesion Molecule/genetics
- Epithelial Cell Adhesion Molecule/metabolism
- Glypicans/genetics
- Glypicans/metabolism
- Male
- Real-Time Polymerase Chain Reaction/methods
- Female
Collapse
Affiliation(s)
- Hao Li
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
- School of Biomedical Engineering (Suzhou)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Jinze Li
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Zhiqi Zhang
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Qi Yang
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Hong Du
- The Second Affiliated Hospital of Soochow UniversitySuzhou215000China
| | - Qiongzhu Dong
- Department of General SurgeryHuashan Hospital & Cancer Metastasis InstituteFudan UniversityShanghai200040China
| | - Zhen Guo
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
- School of Biomedical Engineering (Suzhou)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Jia Yao
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Shuli Li
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Dongshu Li
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
- School of Biomedical Engineering (Suzhou)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Nannan Pang
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| | - Chuanyu Li
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
- School of Biomedical Engineering (Suzhou)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Wei Zhang
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
- School of Biomedical Engineering (Suzhou)Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230026China
| | - Lianqun Zhou
- Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of ScienceSuzhou215163China
| |
Collapse
|
14
|
Lehrich BM, Delgado ER. Lipid Nanovesicle Platforms for Hepatocellular Carcinoma Precision Medicine Therapeutics: Progress and Perspectives. Organogenesis 2024; 20:2313696. [PMID: 38357804 PMCID: PMC10878025 DOI: 10.1080/15476278.2024.2313696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. HCC is highly heterogenous with diverse etiologies leading to different driver mutations potentiating unique tumor immune microenvironments. Current therapeutic options, including immune checkpoint inhibitors and combinations, have achieved limited objective response rates for the majority of patients. Thus, a precision medicine approach is needed to tailor specific treatment options for molecular subsets of HCC patients. Lipid nanovesicle platforms, either liposome- (synthetic) or extracellular vesicle (natural)-derived present are improved drug delivery vehicles which may be modified to contain specific cargos for targeting specific tumor sites, with a natural affinity for liver with limited toxicity. This mini-review provides updates on the applications of novel lipid nanovesicle-based therapeutics for HCC precision medicine and the challenges associated with translating this therapeutic subclass from preclinical models to the clinic.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Evan R. Delgado
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Jin K, Lan H, Han Y, Qian J. Exosomes in cancer diagnosis based on the Latest Evidence: Where are We? Int Immunopharmacol 2024; 142:113133. [PMID: 39278058 DOI: 10.1016/j.intimp.2024.113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Exosomes are small extracellular vesicles (EVs) derived from various cellular sources and have emerged as favorable biomarkers for cancer diagnosis and prognosis. These vesicles contain a variety of molecular components, including nucleic acids, proteins, and lipids, which can provide valuable information for cancer detection, classification, and monitoring. However, the clinical application of exosomes faces significant challenges, primarily related to the standardization and scalability of their use. In order to overcome these challenges, sophisticated methods such as liquid biopsy and imaging are being combined to augment the diagnostic capabilities of exosomes. Additionally, a deeper understanding of the interaction between exosomes and immune system components within the tumor microenvironment (TME) is essential. This review discusses the biogenesis and composition of exosomes, addresses the current challenges in their clinical translation, and highlights recent technological advancements and integrative approaches that support the role of exosomes in cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Ketao Jin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China.
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, China; Department of Breast Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang 310006, China.
| | - Yuejun Han
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310003, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People's Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang 312500, China.
| |
Collapse
|
16
|
Shen S, Qiu X, Yang C, Li J, Peng Y, Wen Z, Luo H, Xiang B. Prognostic importance of the Scottish inflammatory prognostic score in patients with hepatocellular carcinoma after hepatectomy: a retrospective cohort study. BMC Cancer 2024; 24:1393. [PMID: 39533231 PMCID: PMC11559137 DOI: 10.1186/s12885-024-13174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The Scottish Inflammatory Prognostic Score (SIPS), an innovative scoring system, has emerged as a promising biomarker for predicting patient outcomes following cancer therapy. This study aimed to evaluate the value of SIPS as a prognostic indicator following hepatectomy in patients with hepatocellular carcinoma (HCC). METHODS This retrospective study included 693 HCC patients who underwent hepatectomy. Survival outcomes were compared between propensity score-matched groups. Independent prognostic factors were identified through Cox regression analysis. Additionally, both traditional Cox proportional hazards models and machine learning models based on the SIPS were developed and validated. RESULTS A total of 693 HCC patients who underwent hepatectomy were included, with 102 in the high SIPS group and 591 in the low SIPS group. Following propensity score matching (1:3 ratio), both groups achieved balance, with 82 patients in the high SIPS group and 240 patients in the low SIPS group. The low SIPS group demonstrated significantly superior recurrence-free survival (RFS) (25 months vs. 21 months; P < 0.001) and overall survival (OS) (69 months vs. 58 months; P < 0.001) compared to the high SIPS group. Multivariable analysis identified SIPS as an independent adverse factor affecting both RFS and OS. The calibration curve for overall patient survival diagnosis displayed excellent predictive accuracy. Traditional COX prognostic models and machine learning models incorporating SIPS demonstrated excellent performance both the training and validation set. CONCLUSION This study confirms the prognostic significance of SIPS in post-hepatectomy HCC patients, providing a practical tool for risk stratification and clinical decision-making. Further research and validation are needed to consolidate its role in prognostic assessment.
Collapse
Affiliation(s)
- Shuang Shen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, China
| | - Xin Qiu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Chenglei Yang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Jindu Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yi Peng
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Zhaochan Wen
- Oncology School, Guangxi Medical University, Nanning, 530021, China
| | - Huili Luo
- College of Basic Medicine, Guangxi Medical University, Nanning, 530199, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
17
|
Zhang Y, Zhang C, Wu N, Feng Y, Wang J, Ma L, Chen Y. The role of exosomes in liver cancer: comprehensive insights from biological function to therapeutic applications. Front Immunol 2024; 15:1473030. [PMID: 39497820 PMCID: PMC11532175 DOI: 10.3389/fimmu.2024.1473030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
In recent years, cancer, especially primary liver cancer (including hepatocellular carcinoma and intrahepatic cholangiocarcinoma), has posed a serious threat to human health. In the field of liver cancer, exosomes play an important role in liver cancer initiation, metastasis and interaction with the tumor microenvironment. Exosomes are a class of nanoscale extracellular vesicles (EVs)secreted by most cells and rich in bioactive molecules, including RNA, proteins and lipids, that mediate intercellular communication during physiological and pathological processes. This review reviews the multiple roles of exosomes in liver cancer, including the initiation, progression, and metastasis of liver cancer, as well as their effects on angiogenesis, epithelial-mesenchymal transformation (EMT), immune evasion, and drug resistance. Exosomes have great potential as biomarkers for liver cancer diagnosis and prognosis because they carry specific molecular markers that facilitate early detection and evaluation of treatment outcomes. In addition, exosomes, as a new type of drug delivery vector, have unique advantages in the targeted therapy of liver cancer and provide a new strategy for the treatment of liver cancer. The challenges and prospects of exosome-based immunotherapy in the treatment of liver cancer were also discussed. However, challenges such as the standardization of isolation techniques and the scalability of therapeutic applications remain significant hurdles.
Collapse
Affiliation(s)
- Yinghui Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Congcong Zhang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Nan Wu
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Yuan Feng
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jiayi Wang
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Ma
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yulong Chen
- College of Rehabilitation Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
18
|
Attia AM, Rezaee-Zavareh MS, Hwang SY, Kim N, Adetyan H, Yalda T, Chen PJ, Koltsova EK, Yang JD. Novel Biomarkers for Early Detection of Hepatocellular Carcinoma. Diagnostics (Basel) 2024; 14:2278. [PMID: 39451600 PMCID: PMC11507329 DOI: 10.3390/diagnostics14202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/08/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality globally. Most patients present with late diagnosis, leading to poor prognosis. This narrative review explores novel biomarkers for early HCC detection. We conducted a comprehensive literature review analyzing protein, circulating nucleic acid, metabolite, and quantitative proteomics-based biomarkers, evaluating the advantages and limitations of each approach. While established markers like alpha-fetoprotein (AFP), des-gamma-carboxy prothrombin, and AFP-L3 remain relevant, promising candidates include circulating tumor DNA, microRNAs, long noncoding RNAs, extracellular vesicle, and metabolomic biomarkers. Multi-biomarker panels like the GALAD score, Oncoguard, and Helio liver test show promise for improved diagnostic accuracy. Non-invasive approaches like urine and gut microbiome analysis are also emerging possibilities. Integrating these novel biomarkers with current screening protocols holds significant potential for earlier HCC detection and improved patient outcomes. Future research should explore multi-biomarker panels, omics technologies, and artificial intelligence to further enhance early HCC diagnosis and management.
Collapse
Affiliation(s)
- Abdelrahman M. Attia
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | | | - Soo Young Hwang
- Department of Internal Medicine, University of Maryland Medical Center, Midtown Campus, Baltimore, MD 21201, USA;
| | - Naomy Kim
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Hasmik Adetyan
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Tamar Yalda
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
| | - Pin-Jung Chen
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (A.M.A.); (N.K.); (H.A.); (T.Y.)
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
19
|
Tang H, Yu D, Zhang J, Wang M, Fu M, Qian Y, Zhang X, Ji R, Gu J, Zhang X. The new advance of exosome-based liquid biopsy for cancer diagnosis. J Nanobiotechnology 2024; 22:610. [PMID: 39380060 PMCID: PMC11463159 DOI: 10.1186/s12951-024-02863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Liquid biopsy is a minimally invasive method that uses biofluid samples instead of tissue samples for cancer diagnosis. Exosomes are small extracellular vesicles secreted by donor cells and act as mediators of intercellular communication in human health and disease. Due to their important roles, exosomes have been considered as promising biomarkers for liquid biopsy. However, traditional methods for exosome isolation and cargo detection methods are time-consuming and inefficient, limiting their practical application. In the past decades, many new strategies, such as microfluidic chips, nanowire arrays and electrochemical biosensors, have been proposed to achieve rapid, accurate and high-throughput detection and analysis of exosomes. In this review, we discussed about the new advance in exosome-based liquid biopsy technology, including isolation, enrichment, cargo detection and analysis approaches. The comparison of currently available methods is also included. Finally, we summarized the advantages and limitations of the present strategies and further gave a perspective to their future translational use.
Collapse
Affiliation(s)
- Haozhou Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, 215300, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Min Fu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong, 226300, China.
- Affiliated Cancer Hospital of Nantong University, Nantong, 226300, China.
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
20
|
Wang K, Chen XY, Zhang RWY, Yue Y, Wen XL, Yang YS, Han CY, Ma Y, Liu HJ, Zhu HL. Multifunctional fluorescence/photoacoustic bimodal imaging of γ-glutamyltranspeptidase in liver disorders under different triggering conditions. Biomaterials 2024; 310:122635. [PMID: 38810386 DOI: 10.1016/j.biomaterials.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Hepatocellular carcinoma (HCC) seriously threatens the human health. Previous investigations revealed that γ-glutamyltranspeptidase (GGT) was tightly associated with the chronic injury, hepatic fibrosis, and the development of HCC, therefore might act as a potential indicator for monitoring the HCC-related processes. Herein, with the contribution of a structurally optimized probe ETYZE-GGT, the bimodal imaging in both far red fluorescence (FL) and photoacoustic (PA) modes has been achieved in multiple HCC-related models. To our knowledge, this work covered the most comprehensive models including the fibrosis and developed HCC processes as well as the premonitory induction stages (autoimmune hepatitis, drug-induced liver injury, non-alcoholic fatty liver disease). ETYZE-GGT exhibited steady and practical monitoring performances on reporting the HCC stages via visualizing the GGT dynamics. The two modes exhibited working consistency and complementarity with high spatial resolution, precise apparatus and desirable biocompatibility. In cooperation with the existing techniques including testing serum indexes and conducting pathological staining, ETYZE-GGT basically realized the universal application for the accurate pre-clinical diagnosis of as many HCC stages as possible. By deeply exploring the mechanically correlation between GGT and the HCC process, especially during the premonitory induction stages, we may further raise the efficacy for the early diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Kai Wang
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xu-Yang Chen
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Ren-Wei-Yang Zhang
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China
| | - Ying Yue
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China
| | - Xiao-Lin Wen
- Affiliated Children's Hospital of Jiangnan University, Wuxi, 214023, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chen-Yang Han
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314001, China
| | - Yuan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Hong-Ji Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
21
|
Fei Z, Zheng J, Zheng X, Ren H, Liu G. Engineering extracellular vesicles for diagnosis and therapy. Trends Pharmacol Sci 2024; 45:931-940. [PMID: 39304474 DOI: 10.1016/j.tips.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
Extracellular vesicle (EV)-based therapeutics have gained substantial interest in the areas of drug delivery, immunotherapy, and regenerative medicine. However, the clinical translation of EVs has been slowed due to limited yields and functional heterogeneity, as well as inadequate targeting. Engineering EVs to modify their inherent function and endow them with additional functions has the potential to advance the clinical translation of EV applications. Bio-orthogonal click chemistry is an engineering approach that modifies EVs in a controlled, specific, and targeted way without compromising their intrinsic structure. Here, we provide an overview of bio-orthogonal labeling approaches involved in EV engineering. We also present the isolation methods of bio-orthogonally labeled vesicles using magnetic beads, microfluidics, and microarray chip technologies. We highlight the in vivo applications of bio-orthogonal labeling EVs for diagnosis and therapy, especially the exciting potential of bio-orthogonal glycometabolic engineered EVs for targeted therapies.
Collapse
Affiliation(s)
- Zhengyue Fei
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China
| | - Jiamin Zheng
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China
| | - Xiangxiang Zheng
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province, China.
| | - Hao Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Jiangsu Province, China.
| | - Guannan Liu
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu Province, China; Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture, Jiangsu Province, China.
| |
Collapse
|
22
|
Xin Z, Chen H, Xu J, Zhang H, Peng Y, Ren J, Guo Q, Song J, Jiao L, You L, Bai L, Wei Y, Zhou J, Ying B. Exosomal mRNA in plasma serves as a predictive marker for microvascular invasion in hepatocellular carcinoma. J Gastroenterol Hepatol 2024; 39:2228-2238. [PMID: 38972728 DOI: 10.1111/jgh.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND AIM There is a pressing need for non-invasive preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC). This study investigates the potential of exosome-derived mRNA in plasma as a biomarker for diagnosing MVI. METHODS Patients with suspected HCC undergoing hepatectomy were prospectively recruited for preoperative peripheral blood collection. Exosomal RNA profiling was conducted using RNA sequencing in the discovery cohort, followed by differential expression analysis to identify candidate targets. We employed multiplexed droplet digital PCR technology to efficiently validate them in a larger sample size cohort. RESULTS A total of 131 HCC patients were ultimately enrolled, with 37 in the discovery cohort and 94 in the validation cohort. In the validation cohort, the expression levels of RSAD2, PRPSAP1, and HOXA2 were slightly elevated while CHMP4A showed a slight decrease in patients with MVI compared with those without MVI. These trends were consistent with the findings in the discovery cohort, although they did not reach statistical significance (P > 0.05). Notably, the expression level of exosomal PRPSAP1 in plasma was significantly higher in patients with more than 5 MVI than in those without MVI (0.147 vs 0.070, P = 0.035). CONCLUSION This study unveils the potential of exosome-derived PRPSAP1 in plasma as a promising indicator for predicting MVI status preoperatively.
Collapse
Affiliation(s)
- Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jingtong Xu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haili Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yufu Peng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ren
- Department of Laboratory Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Qin Guo
- Department of Laboratory Medicine, The First People's Hospital of Ziyang, Ziyang, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Wei
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Cao L, Zhou Y, Lin S, Yang C, Guan Z, Li X, Yang S, Gao T, Zhao J, Fan N, Song Y, Li D, Li X, Li Z, Guan F, Tan Z. The trajectory of vesicular proteomic signatures from HBV-HCC by chitosan-magnetic bead-based separation and DIA-proteomic analysis. J Extracell Vesicles 2024; 13:e12499. [PMID: 39207047 PMCID: PMC11359709 DOI: 10.1002/jev2.12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer often associated with chronic hepatitis B virus infection (CHB) and liver cirrhosis (LC), underscoring the critical need for biomarker discovery to improve patient outcomes. Emerging as a promising avenue for biomarker development, proteomic technology leveraging liquid biopsy from small extracellular vesicles (sEV) offers new insights. Here, we evaluated various methods for sEV isolation and identified polysaccharide chitosan (CS) as an optimal approach. Subsequently, we employed optimized CS-based magnetic beads (Mag-CS) for sEV separation from serum samples of healthy controls, CHB, LC, and HBV-HCC patients. Leveraging data-independent acquisition mass spectrometry coupled with machine learning, we uncovered potential vesicular protein biomarker signatures (KNG1, F11, KLKB1, CAPNS1, CDH1, CPN2, NME2) capable of distinguishing HBV-HCC from CHB, LC, and non-HCC conditions. Collectively, our findings highlight the utility of Mag-CS-based sEV isolation for identifying early detection biomarkers in HBV-HCC.
Collapse
Affiliation(s)
- Lin Cao
- Institute of HematologyProvincial Key Laboratory of Biotechnology, School of MedicineNorthwest UniversityXi'anShaanxiChina
| | - Yue Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Shuai Lin
- Department of OncologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Chunyan Yang
- Institute of Basic and Translational MedicineXi'an Medical UniversityXi'anShaanxiChina
| | - Zixuan Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Xiaofan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Shujie Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Tong Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Jiazhen Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Ning Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Yanan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesXi'an Jiaotong University Health Science CenterXi'anShaanxiP.R. China
| | - Xiang Li
- Institute of HematologyProvincial Key Laboratory of Biotechnology, School of MedicineNorthwest UniversityXi'anShaanxiChina
| | - Zhuo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
- Department of Laboratory MedicineThe First Affiliated Hospital of Xi'an Medical UniversityXi'anShaanxiP.R. China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life SciencesNorthwest UniversityXi'anShaanxiChina
| | - Zengqi Tan
- Institute of HematologyProvincial Key Laboratory of Biotechnology, School of MedicineNorthwest UniversityXi'anShaanxiChina
| |
Collapse
|
24
|
Lai J, Luo Z, Liu J, Hu H, Jiang H, Liu P, He L, Cheng W, Ren W, Wu Y, Piao JG, Wu Z. Charged Gold Nanoparticles for Target Identification-Alignment and Automatic Segmentation of CT Image-Guided Adaptive Radiotherapy in Small Hepatocellular Carcinoma. NANO LETTERS 2024; 24:10614-10623. [PMID: 39046153 PMCID: PMC11363118 DOI: 10.1021/acs.nanolett.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Because of the challenges posed by anatomical uncertainties and the low resolution of plain computed tomography (CT) scans, implementing adaptive radiotherapy (ART) for small hepatocellular carcinoma (sHCC) using artificial intelligence (AI) faces obstacles in tumor identification-alignment and automatic segmentation. The current study aims to improve sHCC imaging for ART using a gold nanoparticle (Au NP)-based CT contrast agent to enhance AI-driven automated image processing. The synthesized charged Au NPs demonstrated notable in vitro aggregation, low cytotoxicity, and minimal organ toxicity. Over time, an in situ sHCC mouse model was established for in vivo CT imaging at multiple time points. The enhanced CT images processed using 3D U-Net and 3D Trans U-Net AI models demonstrated high geometric and dosimetric accuracy. Therefore, charged Au NPs enable accurate and automatic sHCC segmentation in CT images using classical AI models, potentially addressing the technical challenges related to tumor identification, alignment, and automatic segmentation in CT-guided online ART.
Collapse
Affiliation(s)
- Jianjun Lai
- Department
of Radiation Oncology, Zhejiang Hospital, Hangzhou 310013, China
- Instiute
of Intelligent Control and Robotics, Hangzhou
Dianzi University, Hangzhou 310018, China
| | - Zhizeng Luo
- Instiute
of Intelligent Control and Robotics, Hangzhou
Dianzi University, Hangzhou 310018, China
| | - Jiping Liu
- Department
of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Haili Hu
- Department
of Radiation Oncology, Zhejiang Hospital, Hangzhou 310013, China
| | - Hao Jiang
- Department
of Radiation Oncology, Zhejiang Hospital, Hangzhou 310013, China
| | - Pengyuan Liu
- Department
of Radiation Oncology, Zhejiang Hospital, Hangzhou 310013, China
| | - Li He
- School
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Weiyi Cheng
- School
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Weiye Ren
- School
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Yajun Wu
- Department
of Pharmacy, Zhejiang Hospital, Hangzhou 310013, China
| | - Ji-Gang Piao
- School
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Zhibing Wu
- Department
of Radiation Oncology, Zhejiang Hospital, Hangzhou 310013, China
- Department
of Radiation Oncology, Affiliated Zhejiang
Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| |
Collapse
|
25
|
Shin GJ, Choi BH, Eum HH, Jo A, Kim N, Kang H, Hong D, Jang JJ, Lee HH, Lee YS, Lee YS, Lee HO. Single-cell RNA sequencing of nc886, a non-coding RNA transcribed by RNA polymerase III, with a primer spike-in strategy. PLoS One 2024; 19:e0301562. [PMID: 39190696 DOI: 10.1371/journal.pone.0301562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/06/2024] [Indexed: 08/29/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has emerged as a versatile tool in biology, enabling comprehensive genomic-level characterization of individual cells. Currently, most scRNA-seq methods generate barcoded cDNAs by capturing the polyA tails of mRNAs, which exclude many non-coding RNAs (ncRNAs), especially those transcribed by RNA polymerase III (Pol III). Although previously thought to be expressed constitutively, Pol III-transcribed ncRNAs are expressed variably in healthy and disease states and play important roles therein, necessitating their profiling at the single-cell level. In this study, we developed a measurement protocol for nc886 as a model case and initial step for scRNA-seq for Pol III-transcribed ncRNAs. Specifically, we spiked in an oligo-tagged nc886-specific primer during the polyA tail capture process for the 5'scRNA-seq. We then produced sequencing libraries for standard 5' gene expression and oligo-tagged nc886 separately, to accommodate different cDNA sizes and ensure undisturbed transcriptome analysis. We applied this protocol in three cell lines that express high, low, and zero levels of nc886. Our results show that the identification of oligo tags exhibited limited target specificity, and sequencing reads of nc886 enabled the correction of non-specific priming. These findings suggest that gene-specific primers (GSPs) can be employed to capture RNAs lacking a polyA tail, with subsequent sequence verification ensuring accurate gene expression counting. Moreover, we embarked on an analysis of differentially expressed genes in cell line sub-clusters with differential nc886 expression, demonstrating variations in gene expression phenotypes. Collectively, the primer spike-in strategy allows combined analysis of ncRNAs and gene expression phenotype.
Collapse
Affiliation(s)
- Gyeong-Jin Shin
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Byung-Han Choi
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hye Hyeon Eum
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Areum Jo
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Nayoung Kim
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
| | - Huiram Kang
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
| | - Dongwan Hong
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, The Catholic University of Korea, Seoul, Korea
| | - Jiyoung Joan Jang
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hwi-Ho Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Yeon-Su Lee
- Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, Korea
| | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Hae-Ock Lee
- Department of Microbiology, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
26
|
Hu L, Ji YY, Zhu P, Lu RQ. Mutation-Selected Amplification droplet digital PCR: A new single nucleotide variant detection assay for TP53 R249S mutant in tumor and plasma samples. Anal Chim Acta 2024; 1318:342929. [PMID: 39067934 DOI: 10.1016/j.aca.2024.342929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
The early detection of gene mutations in physiological and pathological processes is a powerful approach to guide decisions in precision medicine. However, detecting low-copy mutant DNA from clinical samples poses a challenge due to the enrichment of wild-type DNA backgrounds. In this study, we devised a novel strategy, named Mutation-Selected Amplification droplet digital PCR (MSA-ddPCR), to quantitatively analyze single nucleotide variants (SNVs) at low variant allele frequencies (VAFs). Using TP53R249S (a hotspot mutation associated with hepatocellular carcinoma) as a model, we optimized the concentration ratio of primers, the annealing temperature and nucleic acid amplification modifiers. Subsequently, we evaluated the linear range and precision of MSA-ddPCR by detecting TP53R249S and TP53wild-type (TP53WT) plasmid DNA, respectively. MSA-ddPCR demonstrated superior ability to discriminate between mutant DNA and wild-type DNA compared to traditional TaqMan-MGB PCR. We further applied MSA-ddPCR to analyze the TP53R249S mutation in 20 plasma samples and 15 formalin-fixed paraffin-embedded (FFPE) tissue samples, and assessed the agreement rates between MSA-ddPCR and amplicon high-throughput sequencing. The results showed that the limit of blanks of MSA-ddPCR are 0.449 copies μL-1 in the FAM channel and 0.452 copies μL-1 in the VIC channel. MSA-ddPCR could accurately quantify VAFs as low as 0.01 %, surpassing existing PCR and next-generation sequencing (NGS) methods. In the detection of clinical samples, a high correlation was found between MSA-ddPCR and amplicon high-throughput sequencing. Additionally, MSA-ddPCR outperformed sequencing methods in terms of detection time and simplicity of data analysis. MSA-ddPCR can be easily implemented into clinical practice and serve as a robust tool for detecting mutant genes due to its high sensitivity and accuracy.
Collapse
Affiliation(s)
- Ling Hu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 20032, China
| | - Yuan-Ye Ji
- Department of Medical Laboratory, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Peng Zhu
- Department of Medical Laboratory, Ningbo No.2 Hospital, Ningbo, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China.
| | - Ren-Quan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical School, Fudan University, Shanghai, 20032, China.
| |
Collapse
|
27
|
Fekry B, Ugartemendia L, Esnaola NF, Goetzl L. Extracellular Vesicles, Circadian Rhythms, and Cancer: A Comprehensive Review with Emphasis on Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:2552. [PMID: 39061191 PMCID: PMC11274441 DOI: 10.3390/cancers16142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
This review comprehensively explores the complex interplay between extracellular vesicles (ECVs)/exosomes and circadian rhythms, with a focus on the role of this interaction in hepatocellular carcinoma (HCC). Exosomes are nanovesicles derived from cells that facilitate intercellular communication by transporting bioactive molecules such as proteins, lipids, and RNA/DNA species. ECVs are implicated in a range of diseases, where they play crucial roles in signaling between cells and their surrounding environment. In the setting of cancer, ECVs are known to influence cancer initiation and progression. The scope of this review extends to all cancer types, synthesizing existing knowledge on the various roles of ECVs. A unique aspect of this review is the emphasis on the circadian-controlled release and composition of exosomes, highlighting their potential as biomarkers for early cancer detection and monitoring metastasis. We also discuss how circadian rhythms affect multiple cancer-related pathways, proposing that disruptions in the circadian clock can alter tumor development and treatment response. Additionally, this review delves into the influence of circadian clock components on ECV biogenesis and their impact on reshaping the tumor microenvironment, a key component driving HCC progression. Finally, we address the potential clinical applications of ECVs, particularly their use as diagnostic tools and drug delivery vehicles, while considering the challenges associated with clinical implementation.
Collapse
Affiliation(s)
- Baharan Fekry
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Lierni Ugartemendia
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| | - Nestor F. Esnaola
- Division of Surgical Oncology and Gastrointestinal Surgery, Department of Surgery, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Laura Goetzl
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (L.U.); (L.G.)
| |
Collapse
|
28
|
Lim W, Lee S, Koh M, Jo A, Park J. Recent advances in chemical biology tools for protein and RNA profiling of extracellular vesicles. RSC Chem Biol 2024; 5:483-499. [PMID: 38846074 PMCID: PMC11151817 DOI: 10.1039/d3cb00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles secreted by cells that contain various cellular components such as proteins, nucleic acids, and lipids from the parent cell. EVs are abundant in body fluids and can serve as circulating biomarkers for a variety of diseases or as a regulator of various biological processes. Considering these characteristics of EVs, analysis of the EV cargo has been spotlighted for disease diagnosis or to understand biological processes in biomedical research. Over the past decade, technologies for rapid and sensitive analysis of EVs in biofluids have evolved, but detection and isolation of targeted EVs in complex body fluids is still challenging due to the unique physical and biological properties of EVs. Recent advances in chemical biology provide new opportunities for efficient profiling of the molecular contents of EVs. A myriad of chemical biology tools have been harnessed to enhance the analytical performance of conventional assays for better understanding of EV biology. In this review, we will discuss the improvements that have been achieved using chemical biology tools.
Collapse
Affiliation(s)
- Woojeong Lim
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Soyeon Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science Seoul 03722 Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon 24341 Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
29
|
Liu T, Sun L, Ji Y, Zhu W. Extracellular vesicles in cancer therapy: Roles, potential application, and challenges. Biochim Biophys Acta Rev Cancer 2024; 1879:189101. [PMID: 38608963 DOI: 10.1016/j.bbcan.2024.189101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Extracellular vesicles (EVs) have emerged as a novel cell-free strategy for the treatment of many diseases including cancer as they play important roles in cancer development and progression. Considering their natural capacity to facilitate cell-to-cell communication as well as their high physiochemical stability and biocompatibility, EVs serve as superior delivery systems for a wide range of therapeutic agents, including medicines, nanomaterials, nucleic acids, and proteins. Therefore, EVs-based cancer therapy is of greater interest to researchers. Mounting studies indicate that EVs can be improved in efficiency, specificity, and safety for cancer therapy. However, their heterogeneity of physicochemical properties and functions is not fully understood, hindering the achievement of bioactive EVs with high yield and purity. Herein, we paid more attention to the EVs applications and their significance in cancer therapy.
Collapse
Affiliation(s)
- Ting Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, China.
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
30
|
Woo J, Choi Y. Biomarkers in Detection of Hepatitis C Virus Infection. Pathogens 2024; 13:331. [PMID: 38668286 PMCID: PMC11054098 DOI: 10.3390/pathogens13040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
The hepatitis C virus (HCV) infection affects 58 million people worldwide. In the United States, the incidence rate of acute hepatitis C has doubled since 2014; during 2021, this increased to 5% from 2020. Acute hepatitis C is defined by any symptom of acute viral hepatitis plus either jaundice or elevated serum alanine aminotransferase (ALT) activity with the detection of HCV RNA, the anti-HCV antibody, or hepatitis C virus antigen(s). However, most patients with acute infection are asymptomatic. In addition, ALT activity and HCV RNA levels can fluctuate, and a delayed detection of the anti-HCV antibody can occur among some immunocompromised persons with HCV infection. The detection of specific biomarkers can be of great value in the early detection of HCV infection at an asymptomatic stage. The high rate of HCV replication (which is approximately 1010 to 1012 virions per day) and the lack of proofreading by the viral RNA polymerase leads to enormous genetic diversity, creating a major challenge for the host immune response. This broad genetic diversity contributes to the likelihood of developing chronic infection, thus leading to the development of cirrhosis and liver cancer. Direct-acting antiviral (DAA) therapies for HCV infection are highly effective with a cure rate of up to 99%. At the same time, many patients with HCV infection are unaware of their infection status because of the mostly asymptomatic nature of hepatitis C, so they remain undiagnosed until the liver damage has advanced. Molecular mechanisms induced by HCV have been intensely investigated to find biomarkers for diagnosing the acute and chronic phases of the infection. However, there are no clinically verified biomarkers for patients with hepatitis C. In this review, we discuss the biomarkers that can differentiate acute from chronic hepatitis C, and we summarize the current state of the literature on the useful biomarkers that are detectable during acute and chronic HCV infection, liver fibrosis/cirrhosis, and hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
| | - Youkyung Choi
- Division of Viral Hepatitis, National Center for HIV, Viral Hepatitis, STD and TB Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA 30329-4018, USA;
| |
Collapse
|
31
|
Liu C, Lin H, Yu H, Mai X, Pan W, Guo J, Liao T, Feng J, Zhang Y, Situ B, Zheng L, Li B. Isolation and Enrichment of Extracellular Vesicles with Double-Positive Membrane Protein for Subsequent Biological Studies. Adv Healthc Mater 2024; 13:e2303430. [PMID: 37942845 DOI: 10.1002/adhm.202303430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Indexed: 11/10/2023]
Abstract
The isolation and enrichment of specific extracellular vesicle (EV) subpopulations are essential in the context of precision medicine. However, the current methods predominantly rely on a single-positive marker and are susceptible to interference from soluble proteins or impurities. This limitation represents a significant obstacle to the widespread application of EVs in biological research. Herein, a novel approach that utilizes proximity ligation assay (PLA) and DNA-RNA hybridization are proposed to facilitate the binding of two proteins on the EV membrane in advance enabling the isolation and enrichment of intact EVs with double-positive membrane proteins followed by using functionalized magnetic beads for capture and enzymatic cleavage for isolated EVs release. The isolated subpopulations of EVs can be further utilized for cellular uptake studies, high-throughput small RNA sequencing, and breast cancer diagnosis. Hence, developing and implementing a specialized system for isolating and enriching a specific subpopulation of EVs can enhance basic and clinical research in this field.
Collapse
Affiliation(s)
- Chunchen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huixian Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haiyang Yu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xueying Mai
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingyun Guo
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tong Liao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
32
|
Juratli MA, Pollmann NS, Oppermann E, Mohr A, Roy D, Schnitzbauer A, Michalik S, Vogl T, Stoecklein NH, Houben P, Katou S, Becker F, Hoelzen JP, Andreou A, Pascher A, Bechstein WO, Struecker B. Extracellular vesicles as potential biomarkers for diagnosis and recurrence detection of hepatocellular carcinoma. Sci Rep 2024; 14:5322. [PMID: 38438456 PMCID: PMC10912302 DOI: 10.1038/s41598-024-55888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/28/2024] [Indexed: 03/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and a leading cause of cancer-related deaths worldwide. However, current diagnostic tools are often invasive and technically limited. In the last decade, non-invasive liquid biopsies have transformed the field of clinical oncology, showcasing the potential of various liquid-biopsy derived analytes, including extracellular vesicles (EVs), to diagnose and monitor HCC progression and metastatic spreading, serving as promising novel biomarkers. A prospective single-center cohort study including 37 HCC patients and 20 patients with non-malignant liver disease (NMLD), as a control group, was conducted. Serum EVs of both groups were analyzed before and after liver surgery. The study utilized microbead-based magnetic particle sorting and flow cytometry to detect 37 characteristic surface proteins of EVs. Furthermore, HCC patients who experienced tumor recurrence (R-HCC) within 12 months after surgery were compared to HCC patients without recurrence (NR-HCC). EVs of R-HCC patients (n = 12/20) showed significantly lower levels of CD31 compared to EVs of NR-HCC patients (p = 0.0033). EVs of NMLD-group showed significantly higher expressions of CD41b than EVs of HCC group (p = 0.0286). The study determined significant short-term changes in CD19 dynamics in EVs of the NMLD-group, with preoperative values being significantly higher than postoperative values (p = 0.0065). This finding of our pilot study suggests EVs could play a role as potential targets for the development of diagnostic and therapeutic approaches for the early and non-invasive detection of HCC recurrence. Further, more in-depth analysis of the specific EV markers are needed to corroborate their potential role as diagnostic and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Mazen A Juratli
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany.
- Department of General, Transplant and Thorax Surgery, Frankfurt University Hospital, Goethe University, VisceralFrankfurt, Germany.
| | - Nicola S Pollmann
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Elsie Oppermann
- Department of General, Transplant and Thorax Surgery, Frankfurt University Hospital, Goethe University, VisceralFrankfurt, Germany
| | - Annika Mohr
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Dhruvajyoti Roy
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andreas Schnitzbauer
- Department of General, Transplant and Thorax Surgery, Frankfurt University Hospital, Goethe University, VisceralFrankfurt, Germany
| | - Sabine Michalik
- Department of Diagnostic and Interventional Radiology, Frankfurt University Hospital, Goethe University, Frankfurt, Germany
| | - Thomas Vogl
- Department of Diagnostic and Interventional Radiology, Frankfurt University Hospital, Goethe University, Frankfurt, Germany
| | - Nikolas H Stoecklein
- General, Visceral and Pediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Philipp Houben
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Shadi Katou
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Felix Becker
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Jens Peter Hoelzen
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Andreas Andreou
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Andreas Pascher
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| | - Wolf O Bechstein
- Department of General, Transplant and Thorax Surgery, Frankfurt University Hospital, Goethe University, VisceralFrankfurt, Germany
| | - Benjamin Struecker
- Department of General, Visceral and Transplant Surgery, Muenster University Hospital, Muenster University, Muenster, Germany
| |
Collapse
|
33
|
Pei Y, Guo Y, Wang W, Wang B, Zeng F, Shi Q, Xu J, Guo L, Ding C, Xie X, Ren T, Guo W. Extracellular vesicles as a new frontier of diagnostic biomarkers in osteosarcoma diseases: a bibliometric and visualized study. Front Oncol 2024; 14:1359807. [PMID: 38500663 PMCID: PMC10944918 DOI: 10.3389/fonc.2024.1359807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
The use of liquid biopsy in cancer research has grown exponentially, offering potential for early detection, treatment stratification, and monitoring residual disease and recurrence. Exosomes, released by cancer cells, contain tumor-derived materials and are stable in biofluids, making them valuable biomarkers for clinical evaluation. Bibliometric research on osteosarcoma (OS) and exosome-derived diagnostic biomarkers is scarce. Therefore, we aimed to conduct a bibliometric evaluation of studies on OS and exosome-derived biomarkers. Using the Web of Science Core Collection database, Microsoft Excel, the R "Bibliometrix" package, CiteSpace, and VOSviewer software, quantitative analyses of the country, author, annual publications, journals, institutions, and keywords of studies on exosome-derived biomarkers for OS from 1995 to 2023 were performed. High-quality records (average citation rate ≥ 10/year) were filtered. The corresponding authors were mainly from China, the USA, Australia, and Canada. The University of Kansas Medical Center, National Cancer Center, Japan, and University of Kansas were major institutions, with limited cooperation reported by the University of Kansas Medical Center. Keyword analysis revealed a shift from cancer progression to mesenchymal stem cells, exosome expression, biogenesis, and prognostic biomarkers. Qualitative analysis highlighted exosome cargo, including miRNAs, circRNAs, lncRNAs, and proteins, as potential diagnostic OS biomarkers. This research emphasizes the rapid enhancement of exosomes as a diagnostic frontier, offering guidance for the clinical application of exosome-based liquid biopsy in OS, contributing to the evolving landscape of cancer diagnosis.
Collapse
Affiliation(s)
- Yanhong Pei
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Yu Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Boyang Wang
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Fanwei Zeng
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Qianyu Shi
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Lei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Chaowei Ding
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Xiangpang Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cangnan Hospital of Wenzhou Medical University, Cangnan, Zhejiang, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, China
| |
Collapse
|
34
|
Yang B, Xi X, Yu H, Jiang H, Liang Z, Smayi A, Wu B, Yang Y. Evaluation of the effectiveness of surgical resection and ablation for the treatment of early-stage hepatocellular carcinoma: A retrospective cohort study. Cancer Rep (Hoboken) 2024; 7:e2030. [PMID: 38488487 PMCID: PMC10941592 DOI: 10.1002/cnr2.2030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The optimal treatment strategy for early-stage hepatocellular carcinoma (HCC) remains controversial, specifically in regard to surgical resection (SR) and ablation. The aim of this study was to investigate the impact of SR and ablation on recurrence and prognosis in early-stage HCC patients, to optimize treatment strategies and improve long-term survival. METHODS A retrospective analysis was conducted on 801 patients diagnosed with Barcelona Clinic Liver Cancer (BCLC) stage 0/A HCC and treated with SR or ablation between January 2015 and December 2019. The effectiveness and complications of both treatments were analyzed, and patients were followed up to measure recurrence and survival. Propensity score matching (PSM) was employed to increase comparability between the two groups. The Kaplan-Meier method was used to analyze recurrence and survival, and a Cox risk proportional hazard model was used to identify risk factors that affect recurrence and surviva. RESULTS Before PSM, the overall survival (OS) rates were similar in both groups, with recurrence-free survival (RFS) rates better in the SR group than in the ablation group. After PSM, there was no significant difference in OS between the two groups. However, the RFS rates were significantly better in the SR group than in the ablation group. The ablation group exhibited superior outcomes compared to the SR group, with shorter treatment times, reduced bleeding, shorter hospital stays, and lower hospital costs. Concerning the location of the HCC within the liver, comparable efficacy was observed between SR and ablation for disease located in the noncentral region or left lobe. However, for HCCs located in the central region or right lobe of the liver, SR was more effective than ablation. CONCLUSIONS This study revealed no significant difference in OS between SR and ablation for early-stage HCC, with SR providing better RFS and ablation demonstrating better safety profiles and lower hospital costs. These findings offer valuable insights for clinicians in determining optimal treatment strategies for early-stage HCC patients, particularly in terms of balancing efficacy, safety, and cost considerations.
Collapse
Affiliation(s)
- Bilan Yang
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouGuangdongPeople's Republic of China
| | - Xiaoli Xi
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouGuangdongPeople's Republic of China
| | - Hongsheng Yu
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouGuangdongPeople's Republic of China
| | - Hao Jiang
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouGuangdongPeople's Republic of China
| | - Zixi Liang
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouGuangdongPeople's Republic of China
| | - Abdukyamu Smayi
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouGuangdongPeople's Republic of China
| | - Bin Wu
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouGuangdongPeople's Republic of China
| | - Yidong Yang
- Department of GastroenterologyThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouPeople's Republic of China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchGuangzhouGuangdongPeople's Republic of China
| |
Collapse
|
35
|
Lehrich BM, Zhang J, Monga SP, Dhanasekaran R. Battle of the biopsies: Role of tissue and liquid biopsy in hepatocellular carcinoma. J Hepatol 2024; 80:515-530. [PMID: 38104635 PMCID: PMC10923008 DOI: 10.1016/j.jhep.2023.11.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The diagnosis and management of hepatocellular carcinoma (HCC) have improved significantly in recent years. With the introduction of immunotherapy-based combination therapy, there has been a notable expansion in treatment options for patients with unresectable HCC. Simultaneously, innovative molecular tests for early detection and management of HCC are emerging. This progress prompts a key question: as liquid biopsy techniques rise in prominence, will they replace traditional tissue biopsies, or will both techniques remain relevant? Given the ongoing challenges of early HCC detection, including issues with ultrasound sensitivity, accessibility, and patient adherence to surveillance, the evolution of diagnostic techniques is more relevant than ever. Furthermore, the accurate stratification of HCC is limited by the absence of reliable biomarkers which can predict response to therapies. While the advantages of molecular diagnostics are evident, their potential has not yet been fully harnessed, largely because tissue biopsies are not routinely performed for HCC. Liquid biopsies, analysing components such as circulating tumour cells, DNA, and extracellular vesicles, provide a promising alternative, though they are still associated with challenges related to sensitivity, cost, and accessibility. The early results from multi-analyte liquid biopsy panels are promising and suggest they could play a transformative role in HCC detection and management; however, comprehensive clinical validation is still ongoing. In this review, we explore the challenges and potential of both tissue and liquid biopsy, highlighting that these diagnostic methods, while distinct in their approaches, are set to jointly reshape the future of HCC management.
Collapse
Affiliation(s)
- Brandon M Lehrich
- Department of Pathology and Pittsburgh Liver Institute, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Staford, CA, 94303, USA
| | - Satdarshan P Monga
- Department of Pathology and Pittsburgh Liver Institute, University of Pittsburgh, School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Staford, CA, 94303, USA.
| |
Collapse
|
36
|
Dai L, Zhou S, Yang C, Li J, Wang Y, Qin M, Pan L, Zhang D, Qian Z, Wu H. A bioorthogonal cell sorting strategy for isolation of desired cell phenotypes. Chem Commun (Camb) 2024; 60:1916-1919. [PMID: 38259188 DOI: 10.1039/d3cc05604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Here we describe a cost-effective and simplified cell sorting method using tetrazine bioorthogonal chemistry. We successfully isolated SKOV3 cells from complex mixtures, demonstrating efficacy in separating mouse lymphocytes expressing interferon and HeLa cells expressing virally transduced green fluorescent protein post-infection.
Collapse
Affiliation(s)
- Liqun Dai
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Siming Zhou
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Cheng Yang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jie Li
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yayue Wang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Qin
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Pan
- Department of Nuclear Medicine, Laboratory of Clinical Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dan Zhang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoxing Wu
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province and Frontiers Science Center for Disease Related Molecular Network West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
37
|
Yu D, Zhang J, Wang M, Ji R, Qian H, Xu W, Zhang H, Gu J, Zhang X. Exosomal miRNAs from neutrophils act as accurate biomarkers for gastric cancer diagnosis. Clin Chim Acta 2024; 554:117773. [PMID: 38199579 DOI: 10.1016/j.cca.2024.117773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/10/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND Gastric cancer (GC) is the third leading cause of cancer-related death worldwide. Sensitive and accurate biomarkers can greatly aid in early diagnosis and favorable prognosis. Neutrophils are the most abundant immune cells in human circulation and play a critical role in tumor progression. Neutrophil-derived exosomes (Neu-Exo) contain abundant bioactive molecules and are critically involved in disease progression. METHODS We proposed a Dynabeads-based (CD66b antibody-coupled) separation and detection system for Neu-Exo analysis. Dual antibody-assisted fluorescent Dynabeads was established to detect Neu-Exo abundance. MiRNA signature of Neu-Exo was identified by RNA sequencing. QRT-PCR and droplet digital PCR (ddPCR) were used for candidate miRNA detection and the potential of Neu-Exo miRNAs in the diagnosis of gastric cancer was evaluated. RESULTS Dual antibody-assisted fluorescent Dynabeads obtained a detection limit of 7.8 × 105 particles/mL of Neu-Exo and a recovery rate of 81 % under optimized conditions. ROC curve indicated that the abundance of CD66b+ Neu-Exo could well distinguish GC patients from healthy controls (HC) (AUC > 0.8). Additionally, miR-223-3p was found among the top differentially expressed miRNAs in Neu-Exo and presented superior diagnostic value in gastric cancer. Droplet digital PCR (ddPCR) significantly improved the diagnostic efficiency to differentiate GC patients from HC and benign gastric diseases (BGD) patients (AUC > 0.9). CONCLUSION The Dynabeads-based separation and detection system, assisted with ddPCR analysis, provides a promising platform to enrich Neu-Exo and analyze miRNA profile for gastric cancer liquid biopsy.
Collapse
Affiliation(s)
- Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hui Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wenrong Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Abo Akademi University, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Abo Akademi University, 20520 Turku, Finland.
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Affiliated Cancer Hospital of Nantong University, 226300 Nantong, China.
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
38
|
Soliman N, Saharia A, Abdelrahim M, Connor AA. Molecular profiling in the management of hepatocellular carcinoma. Curr Opin Organ Transplant 2024; 29:10-22. [PMID: 38038621 DOI: 10.1097/mot.0000000000001124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to both summarize the current knowledge of hepatocellular carcinoma molecular biology and to suggest a framework in which to prospectively translate this knowledge into patient care. This is timely as recent guidelines recommend increased use of these technologies to advance personalized liver cancer care. RECENT FINDINGS The main themes covered here address germline and somatic genetic alterations recently discovered in hepatocellular carcinoma, largely owing to next generation sequencing technologies, and nascent efforts to translate these into contemporary practice. SUMMARY Early efforts of translating molecular profiling to hepatocellular carcinoma care demonstrate a growing number of potentially actionable alterations. Still lacking are a consensus on what biomarkers and technologies to adopt, at what scale and cost, and how to integrate them most effectively into care.
Collapse
|
39
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
40
|
Cheng S, Zhang C, Hu X, Zhu Y, Shi H, Tan W, Luo X, Xian Y. Ultrasensitive determination of surface proteins on tumor-derived small extracellular vesicles for breast cancer identification based on lanthanide-activated signal amplification strategy. Talanta 2024; 267:125189. [PMID: 37714039 DOI: 10.1016/j.talanta.2023.125189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Small extracellular vesicles (sEVs) carrying multiple tumor-associated proteins inherited from parental cells play crucial roles in noninvasive breast cancer (BC) diagnosis. However, it is challenging to assess the subtle variations of surface proteins on sEV membranes due to the highly heterogeneous BC. Therefore, a simple and ultrasensitive assay based on lanthanide (Ln3+)-activated luminescence signal amplification was developed to detect multiple surface proteins on BC-derived sEVs. Multiple protein biomarkers on sEVs can be well identified with high sensitivity and specificity through dissolution-amplified luminescence of the NaEuF4 nanoparticle-based nanoprobe. We employ linear discriminant analysis to successfully discriminate triple negative BC cell (MDA-MB-231 cell) derived sEVs from other breast cell lines (MCF-7, SK-BR-3, BT474 and MCF-10A cell). Furthermore, the strategy enables high accuracy for districting the progression stages of BC patients and healthy donors. The simple and sensitive signal amplification strategy exhibits great potential for early clinic diagnosis by precise protein profiling of sEVs.
Collapse
Affiliation(s)
- Shasha Cheng
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Xinyu Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yingxin Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqiao Tan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
41
|
Singal AG, Llovet JM, Yarchoan M, Mehta N, Heimbach JK, Dawson LA, Jou JH, Kulik LM, Agopian VG, Marrero JA, Mendiratta-Lala M, Brown DB, Rilling WS, Goyal L, Wei AC, Taddei TH. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023; 78:1922-1965. [PMID: 37199193 PMCID: PMC10663390 DOI: 10.1097/hep.0000000000000466] [Citation(s) in RCA: 542] [Impact Index Per Article: 271.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Amit G. Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Josep M. Llovet
- Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
- Translational Research in Hepatic Oncology, Liver Unit, August Pi i Sunyer Biomedical Research Institute, Hospital Clinic, University of Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Mark Yarchoan
- Department of Medical Oncology, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Neil Mehta
- University of California, San Francisco, San Francisco, California, USA
| | | | - Laura A. Dawson
- Radiation Medicine Program/University Health Network, Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Janice H. Jou
- Division of Gastroenterology and Hepatology, Oregon Health and Science University, Portland, Oregon, USA
| | - Laura M. Kulik
- Northwestern Medical Faculty Foundation, Chicago, Illinois, USA
| | - Vatche G. Agopian
- The Dumont–University of California, Los Angeles, Transplant Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jorge A. Marrero
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mishal Mendiratta-Lala
- Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Daniel B. Brown
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William S. Rilling
- Division of Interventional Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Lipika Goyal
- Department of Medicine, Stanford School of Medicine, Palo Alto, California, USA
| | - Alice C. Wei
- Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Tamar H. Taddei
- Department of Medicine (Digestive Diseases), Yale School of Medicine, New Haven, CT, USA
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
42
|
Asleh K, Dery V, Taylor C, Davey M, Djeungoue-Petga MA, Ouellette RJ. Extracellular vesicle-based liquid biopsy biomarkers and their application in precision immuno-oncology. Biomark Res 2023; 11:99. [PMID: 37978566 PMCID: PMC10655470 DOI: 10.1186/s40364-023-00540-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
While the field of precision oncology is rapidly expanding and more targeted options are revolutionizing cancer treatment paradigms, therapeutic resistance particularly to immunotherapy remains a pressing challenge. This can be largely attributed to the dynamic tumor-stroma interactions that continuously alter the microenvironment. While to date most advancements have been made through examining the clinical utility of tissue-based biomarkers, their invasive nature and lack of a holistic representation of the evolving disease in a real-time manner could result in suboptimal treatment decisions. Thus, using minimally-invasive approaches to identify biomarkers that predict and monitor treatment response as well as alert to the emergence of recurrences is of a critical need. Currently, research efforts are shifting towards developing liquid biopsy-based biomarkers obtained from patients over the course of disease. Liquid biopsy represents a unique opportunity to monitor intercellular communication within the tumor microenvironment which could occur through the exchange of extracellular vesicles (EVs). EVs are lipid bilayer membrane nanoscale vesicles which transfer a plethora of biomolecules that mediate intercellular crosstalk, shape the tumor microenvironment, and modify drug response. The capture of EVs using innovative approaches, such as microfluidics, magnetic beads, and aptamers, allow their analysis via high throughput multi-omics techniques and facilitate their use for biomarker discovery. Artificial intelligence, using machine and deep learning algorithms, is advancing multi-omics analyses to uncover candidate biomarkers and predictive signatures that are key for translation into clinical trials. With the increasing recognition of the role of EVs in mediating immune evasion and as a valuable biomarker source, these real-time snapshots of cellular communication are promising to become an important tool in the field of precision oncology and spur the recognition of strategies to block resistance to immunotherapy. In this review, we discuss the emerging role of EVs in biomarker research describing current advances in their isolation and analysis techniques as well as their function as mediators in the tumor microenvironment. We also highlight recent lung cancer and melanoma studies that point towards their application as predictive biomarkers for immunotherapy and their potential clinical use in precision immuno-oncology.
Collapse
Affiliation(s)
- Karama Asleh
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada.
| | - Valerie Dery
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
| | - Catherine Taylor
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Michelle Davey
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | | | - Rodney J Ouellette
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada
- Dr Georges L. Dumont University Hospital, Vitalite Health Network, Moncton, New Brunswick, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
43
|
Koksal AR, Ekmen N, Aydin Y, Nunez K, Sandow T, Delk M, Moehlen M, Thevenot P, Cohen A, Dash S. A Single-Step Immunocapture Assay to Quantify HCC Exosomes Using the Highly Sensitive Fluorescence Nanoparticle-Tracking Analysis. J Hepatocell Carcinoma 2023; 10:1935-1954. [PMID: 37936599 PMCID: PMC10627088 DOI: 10.2147/jhc.s423043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/07/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction Extracellular vesicles could serve as a non-invasive biomarker for early cancer detection. However, limited methods to quantitate cancer-derived vesicles in the native state remain a significant barrier to clinical translation. Aim This research aims to develop a rapid, one-step immunoaffinity approach to quantify HCC exosomes directly from a small serum volume. Methods HCC-derived exosomes in the serum were captured using fluorescent phycoerythrin (PE)-conjugated antibodies targeted to GPC3 and alpha-fetoprotein (AFP). Total and HCC-specific exosomes were then quantified in culture supernatant or patient-derived serums using fluorescence nanoparticle tracking analysis (F-NTA). The performance of HCC exosome quantification in the serum was compared with the tumor size determined by MRI. Results Initially we tested the detection limits of the F-NTA using synthetic fluorescent and non-fluorescent beads. The assay showed an acceptable sensitivity with a detection range of 104-108 particles/mL. Additionally, the combination of immunocapture followed by size-exclusion column purification allows the isolation of smaller-size EVs and quantification by F-NTA. Our assay demonstrated that HCC cell culture releases a significantly higher quantity of GPC3 or GPC3+AFP positive EVs (100-200 particles/cell) compared to non-HCC culture (10-40 particles/cell) (p<0.01 and p<0.05 respectively). The F-NTA enables absolute counting of HCC-specific exosomes in the clinical samples with preserved biological immunoreactivity. The performance of F-NTA was clinically validated in serum from patients ± cirrhosis and with confirmed HCC. F-NTA quantification data show selective enrichment of AFP and GPC3 positive EVs in HCC serum compared to malignancy-free cirrhosis (AUC values for GPC3, AFP, and GPC3/AFP were found 0.79, 0.71, and 0.72 respectively). The MRI-confirmed patient cohort indicated that there was a positive correlation between total tumor size and GPC3-positive exosome concentration (r:0.78 and p<0.001). Conclusion We developed an immunocapture assay that can be used for simultaneous isolation and quantification of HCC-derived exosomes from a small serum volume with high accuracy.
Collapse
Affiliation(s)
- Ali Riza Koksal
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Nergiz Ekmen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Yucel Aydin
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Kelley Nunez
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Tyler Sandow
- Department of Radiology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Molly Delk
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Martin Moehlen
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Paul Thevenot
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
| | - Ari Cohen
- Department of Gastroenterology and Hepatology, Institute of Translational Research, Ochsner Health, New Orleans, LA, USA
- Multi-Organ Transplant Institute, Ochsner Health, New Orleans, LA, USA
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Department of Gastroenterology and Hepatology, Tulane University Health Sciences Center, New Orleans, LA, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| |
Collapse
|
44
|
Ghodasara A, Raza A, Wolfram J, Salomon C, Popat A. Clinical Translation of Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2301010. [PMID: 37421185 DOI: 10.1002/adhm.202301010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Indexed: 07/10/2023]
Abstract
Extracellular vesicles (EVs) occur in a variety of bodily fluids and have gained recent attraction as natural materials due to their bioactive surfaces, internal cargo, and role in intercellular communication. EVs contain various biomolecules, including surface and cytoplasmic proteins; and nucleic acids that are often representative of the originating cells. EVs can transfer content to other cells, a process that is thought to be important for several biological processes, including immune responses, oncogenesis, and angiogenesis. An increased understanding of the underlying mechanisms of EV biogenesis, composition, and function has led to an exponential increase in preclinical and clinical assessment of EVs for biomedical applications, such as diagnostics and drug delivery. Bacterium-derived EV vaccines have been in clinical use for decades and a few EV-based diagnostic assays regulated under Clinical Laboratory Improvement Amendments have been approved for use in single laboratories. Though, EV-based products are yet to receive widespread clinical approval from national regulatory agencies such as the United States Food and Drug Administration (USFDA) and European Medicine Agency (EMA), many are in late-stage clinical trials. This perspective sheds light on the unique characteristics of EVs, highlighting current clinical trends, emerging applications, challenges and future perspectives of EVs in clinical use.
Collapse
Affiliation(s)
- Aayushi Ghodasara
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- The School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Research, Postgraduate and Further Education (DIPEC), Falcuty of Health Sciences, University of Alba, Santiago, 8320000, Chile
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
45
|
Gao Q, Zang P, Li J, Zhang W, Zhang Z, Li C, Yao J, Li C, Yang Q, Li S, Guo Z, Zhou L. Revealing the Binding Events of Single Proteins on Exosomes Using Nanocavity Antennas beyond Zero-Mode Waveguides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49511-49526. [PMID: 37812455 DOI: 10.1021/acsami.3c11077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Exosomes (EXOs) play a crucial role in biological action mechanisms. Understanding the biological process of single-molecule interactions on the surface of the EXO membrane is essential for elucidating the precise function of the EXO receptor. However, due to dimensional incompatibility, monitoring the binding events between EXOs of tens to hundreds of nanometers and biomolecules of nanometers using existing nanostructure antennas is difficult. Unlike the typical zero-mode waveguides (ZMWs), this work presents a nanocavity antenna (λvNAs) formed by nanocavities with diameters close to the visible light wavelength dimensions. Effective excitation volumes suitable for observing single-molecule fluorescence were generated in nanocavities of larger diameters than typical ZMWs; the optimal signal-to-noise ratio obtained was 19.5 when the diameter was 300 nm and the incident angle was ∼50°. EXOs with a size of 50-150 nm were loaded into λvNAs with an optimized diameter of 300-500 nm, resulting in appreciable occupancy rates that overcame the nanocavity size limitation for large-volume biomaterial loading. Additionally, this method identified the binding events between the single transmembrane CD9 proteins on the EXO surface and their monoclonal antibody anti-CD9, demonstrating that λvNAs expanded the application range beyond subwavelength ZMWs. Furthermore, the λvNAs provide a platform for obtaining in-depth knowledge of the interactions of single molecules with biomaterials ranging in size from tens to hundreds of nanometers.
Collapse
Affiliation(s)
- Qingxue Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Peilin Zang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jinze Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| | - Zhiqi Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| | - Chao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jia Yao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Chuanyu Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Qi Yang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Shuli Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| |
Collapse
|
46
|
Lei Y, Fei X, Ding Y, Zhang J, Zhang G, Dong L, Song J, Zhuo Y, Xue W, Zhang P, Yang C. Simultaneous subset tracing and miRNA profiling of tumor-derived exosomes via dual-surface-protein orthogonal barcoding. SCIENCE ADVANCES 2023; 9:eadi1556. [PMID: 37792944 PMCID: PMC10550235 DOI: 10.1126/sciadv.adi1556] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023]
Abstract
The clinical potential of miRNA-based liquid biopsy has been largely limited by the heterogeneous sources in plasma and tedious assay processes. Here, we develop a precise and robust one-pot assay called dual-surface-protein-guided orthogonal recognition of tumor-derived exosomes and in situ profiling of microRNAs (SORTER) to detect tumor-derived exosomal miRNAs and enhance the diagnostic accuracy of prostate cancer (PCa). The SORTER uses two allosteric aptamers against exosomal marker CD63 and tumor marker EpCAM to create an orthogonal labeling barcode and achieve selective sorting of tumor-specific exosome subtypes. Furthermore, the labeled barcode on tumor-derived exosomes initiated targeted membrane fusion with liposome probes to import miRNA detection reagents, enabling in situ sensitive profiling of tumor-derived exosomal miRNAs. With a signature of six miRNAs, SORTER differentiated PCa and benign prostatic hyperplasia with an accuracy of 100%. Notably, the diagnostic accuracy reached 90.6% in the classification of metastatic and nonmetastatic PCa. We envision that the SORTER will promote the clinical adaptability of miRNA-based liquid biopsy.
Collapse
Affiliation(s)
- Yanmei Lei
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaochen Fei
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yue Ding
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianhui Zhang
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Guihua Zhang
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liang Dong
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jia Song
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Xue
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Peng Zhang
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
47
|
Zhang Y, Zhao L, Li Y, Wan S, Yuan Z, Zu G, Peng F, Ding X. Advanced extracellular vesicle bioinformatic nanomaterials: from enrichment, decoding to clinical diagnostics. J Nanobiotechnology 2023; 21:366. [PMID: 37798669 PMCID: PMC10557264 DOI: 10.1186/s12951-023-02127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane nanoarchitectures generated by cells that carry a variety of biomolecules, including DNA, RNA, proteins and metabolites. These characteristics make them attractive as circulating bioinformatic nanocabinets for liquid biopsy. Recent advances on EV biology and biogenesis demonstrate that EVs serve as highly important cellular surrogates involved in a wide range of diseases, opening up new frontiers for modern diagnostics. However, inefficient methods for EV enrichment, as well as low sensitivity of EV bioinformatic decoding technologies, hinder the use of EV nanocabinet for clinical diagnosis. To overcome these challenges, new EV nanotechnology is being actively developed to promote the clinical translation of EV diagnostics. This article aims to present the emerging enrichment strategies and bioinformatic decoding platforms for EV analysis, and their applications as bioinformatic nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Yawei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Liang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fei Peng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
48
|
Manea I, Iacob R, Iacob S, Cerban R, Dima S, Oniscu G, Popescu I, Gheorghe L. Liquid biopsy for early detection of hepatocellular carcinoma. Front Med (Lausanne) 2023; 10:1218705. [PMID: 37809326 PMCID: PMC10556479 DOI: 10.3389/fmed.2023.1218705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent and lethal cancer globally. Over 90% of HCC cases arise in the context of liver cirrhosis, and the severity of the underlying liver disease or advanced tumor stage at diagnosis significantly limits treatment options. Early diagnosis is crucial, and all guidelines stress the importance of screening protocols for HCC early detection as a public health objective. As serum biomarkers are not optimal for early diagnosis, liquid biopsy has emerged as a promising tool for diagnosis, prognostication, and patients' stratification for personalized therapy in various solid tumors, including HCC. While circulating tumor cells (CTCs) are better suited for personalized therapy and prognosis, cell-free DNA (cfDNA) and extracellular vesicle-based technologies show potential for early diagnosis, HCC screening, and surveillance protocols. Evaluating the added value of liquid biopsy genetic and epigenetic biomarkers for HCC screening is a key goal in translational research. Somatic mutations commonly found in HCC can be investigated in cfDNA and plasma exosomes as genetic biomarkers. Unique methylation patterns in cfDNA or cfDNA fragmentome features have been suggested as innovative tools for early HCC detection. Likewise, extracellular vesicle cargo biomarkers such as miRNAs and long non-coding RNAs may serve as potential biomarkers for early HCC detection. This review will explore recent findings on the utility of liquid biopsy for early HCC diagnosis. Combining liquid biopsy methods with traditional serological biomarkers could improve the overall diagnostic accuracy for early HCC detection.
Collapse
Affiliation(s)
- Ioana Manea
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Iacob
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Speranta Iacob
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Razvan Cerban
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Simona Dima
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Gabriel Oniscu
- Transplant Division, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Irinel Popescu
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| | - Liliana Gheorghe
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Digestive Diseases and Liver Transplantation Center, Fundeni Clinical Institute, Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
49
|
Lin W, Fang J, Wei S, He G, Liu J, Li X, Peng X, Li D, Yang S, Li X, Yang L, Li H. Extracellular vesicle-cell adhesion molecules in tumours: biofunctions and clinical applications. Cell Commun Signal 2023; 21:246. [PMID: 37735659 PMCID: PMC10512615 DOI: 10.1186/s12964-023-01236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 09/23/2023] Open
Abstract
Cell adhesion molecule (CAM) is an umbrella term for several families of molecules, including the cadherin family, integrin family, selectin family, immunoglobulin superfamily, and some currently unclassified adhesion molecules. Extracellular vesicles (EVs) are important information mediators in cell-to-cell communication. Recent evidence has confirmed that CAMs transported by EVs interact with recipient cells to influence EV distribution in vivo and regulate multiple cellular processes. This review focuses on the loading of CAMs onto EVs, the roles of CAMs in regulating EV distribution, and the known and possible mechanisms of these actions. Moreover, herein, we summarize the impacts of CAMs transported by EVs to the tumour microenvironment (TME) on the malignant behaviour of tumour cells (proliferation, metastasis, immune escape, and so on). In addition, from the standpoint of clinical applications, the significance and challenges of using of EV-CAMs in the diagnosis and therapy of tumours are discussed. Finally, considering recent advances in the understanding of EV-CAMs, we outline significant challenges in this field that require urgent attention to advance research and promote the clinical applications of EV-CAMs. Video Abstract.
Collapse
Affiliation(s)
- Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
50
|
Li D, Zhu L, Wang Y, Zhou X, Li Y. Bacterial outer membrane vesicles in cancer: Biogenesis, pathogenesis, and clinical application. Biomed Pharmacother 2023; 165:115120. [PMID: 37442066 DOI: 10.1016/j.biopha.2023.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Outer membrane vesicles (OMVs) are spherical, nano-sized particles of bilayer lipid structure secreted by Gram-negative bacteria. They contain a series of cargos from bacteria and are important messengers for communication between bacteria and their environment. OMVs play multiple roles in bacterial survival and adaptation and can affect host physiological functions and disease development by acting on host cell membranes and altering host cell signaling pathways. This paper summarizes the mechanisms of OMV genesis and the multiple roles of OMVs in the tumor microenvironment. Also, this paper discusses the prospects of OMVs for a wide range of applications in drug delivery, tumor diagnosis, and therapy.
Collapse
Affiliation(s)
- Deming Li
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Lisi Zhu
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Yuxiao Wang
- Anesthesia Department, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China
| | - Xiangyu Zhou
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| | - Yan Li
- Department of General surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|