1
|
Wu J, Song H, Xiao S, Lu M. Heterogeneity of TP53 mutations necessitates differentiation with p53-rescue therapies. Nat Rev Cancer 2025; 25:561-563. [PMID: 40379968 DOI: 10.1038/s41568-025-00826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Affiliation(s)
- Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Peuget S, Selivanova G. Reply to 'Heterogeneity of TP53 mutations necessitates differentiation with p53-rescue therapies'. Nat Rev Cancer 2025; 25:564-565. [PMID: 40379969 DOI: 10.1038/s41568-025-00825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/19/2025]
Affiliation(s)
- Sylvain Peuget
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Galina Selivanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Krueger C, Sabapathy K. p53 prophylactic therapy for cancer prevention. Cell Death Differ 2025:10.1038/s41418-025-01538-z. [PMID: 40562832 DOI: 10.1038/s41418-025-01538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 05/20/2025] [Accepted: 06/13/2025] [Indexed: 06/28/2025] Open
Abstract
Germline mutations in the tumor suppressor TP53 lead to cancer predisposition, as seen in Li-Fraumeni syndrome (LFS). Currently, no strategies exist to delay or prevent cancer development in this population. Our work is based on the hypothesis that modulating wild-type p53 levels could serve as a prophylactic approach to mitigate cancer risk. By introducing a third copy of Trp53, either constitutively or in an inducible manner in adulthood, we demonstrate that tumor development is delayed, and mice live longer without observable side effects in both the Eu-myc lymphoma and LFS models. Mechanistically, Trp53 loss of heterozygosity is reduced in the LFS model, accompanied by an enhanced p53 transcriptional response. Our findings therefore provide genetic evidence supporting this approach, which could be leveraged to identify compounds that modulate p53 levels and benefit LFS carriers and other cancer-prone populations with reduced p53 activity.
Collapse
Affiliation(s)
- Christian Krueger
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Kanaga Sabapathy
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, Singapore.
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Yin Y, Cao Y, Zhou Y, Xu Z, Luo P, Yang B, He Q, Yan H, Yang X. Downregulation of DDIT4 levels with borneol attenuates hepatotoxicity induced by gilteritinib. Biochem Pharmacol 2025; 236:116869. [PMID: 40081769 DOI: 10.1016/j.bcp.2025.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Gilteritinib, a multi-target kinase inhibitor, is currently used as standard therapy for acute myeloid leukemia. However, approximately half of the patients encounter liver-related adverse effects during the treatment with gilteritinib, which limiting its clinical applications. The underlying mechanisms of gilteritinib-induced hepatotoxicity and the development of strategies to prevent this toxicity are not well-reported. In our study, we utilized JC-1 dye, and MitoSOX to demonstrate that gilteritinib treatment leads to hepatocytes undergoing p53-mediated mitochondrial apoptosis. Furthermore, qRT-PCR analysis revealed that DNA damage-inducible transcript 4 (DDIT4), a downstream target of p53, was upregulated following gilteritinib administration and was identified as a key factor in gilteritinib-induced hepatotoxicity. After drug screening and western blot analysis, borneol, a bicyclic monoterpenoid, was found to decrease the protein level of DDIT4. This is the first compound found to downregulate DDIT4 levels and ameliorate hepatic injury caused by gilteritinib. Our findings suggest that high levels of DDIT4 are the primary driver behind gilteritinib-induced liver injury, and that borneol could potentially be a clinically safe and feasible therapeutic strategy by inhibiting DDIT4 levels.
Collapse
Affiliation(s)
- Yiming Yin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yashi Cao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Yourong Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018 Zhejiang, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100 Zhejiang, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, China.
| |
Collapse
|
5
|
Sun Q, Wang H, Xie J, Wang L, Mu J, Li J, Ren Y, Lai L. Computer-Aided Drug Discovery for Undruggable Targets. Chem Rev 2025. [PMID: 40423592 DOI: 10.1021/acs.chemrev.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Undruggable targets are those of therapeutical significance but challenging for conventional drug design approaches. Such targets often exhibit unique features, including highly dynamic structures, a lack of well-defined ligand-binding pockets, the presence of highly conserved active sites, and functional modulation by protein-protein interactions. Recent advances in computational simulations and artificial intelligence have revolutionized the drug design landscape, giving rise to innovative strategies for overcoming these obstacles. In this review, we highlight the latest progress in computational approaches for drug design against undruggable targets, present several successful case studies, and discuss remaining challenges and future directions. Special emphasis is placed on four primary target categories: intrinsically disordered proteins, protein allosteric regulation, protein-protein interactions, and protein degradation, along with discussion of emerging target types. We also examine how AI-driven methodologies have transformed the field, from applications in protein-ligand complex structure prediction and virtual screening to de novo ligand generation for undruggable targets. Integration of computational methods with experimental techniques is expected to bring further breakthroughs to overcome the hurdles of undruggable targets. As the field continues to evolve, these advancements hold great promise to expand the druggable space, offering new therapeutic opportunities for previously untreatable diseases.
Collapse
Affiliation(s)
- Qi Sun
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Hanping Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Liying Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junxi Mu
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junren Li
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuhao Ren
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Badar T, Foran JM, Bewersdorf JP, Wang YH, Coltoff A, El Kettani M, Shah K, Denis Oliva F, Lin C, Jamy O, Diebold K, Shallis RM, Siddon A, Katkov D, Schoen A, Khan I, Foucar CE, Atallah E, Goldberg AD, Patel AA. Heterogeneity in outcomes of TP53-mutated myeloproliferative neoplasms based on disease phenotype and mutational status. Br J Haematol 2025. [PMID: 40400334 DOI: 10.1111/bjh.20187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Affiliation(s)
- Talha Badar
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida, USA
| | - James M Foran
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida, USA
| | - Jan Philipp Bewersdorf
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Yu-Hung Wang
- Epigenetics of Hematopoiesis Laboratory, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Alexander Coltoff
- Division of Hematology and Oncology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Mobachir El Kettani
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida, USA
| | - Kashish Shah
- Division of Hematology-Oncology and Blood and Marrow Transplantation and Cellular Therapy Program, Mayo Clinic, Jacksonville, Florida, USA
| | - Francyess Denis Oliva
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chenyu Lin
- Division of Hematologic Malignancies and Cellular Therapy, Duke University School of Medicine, Durham, North Carolina, USA
| | - Omer Jamy
- Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kendall Diebold
- Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rory M Shallis
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alexa Siddon
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniil Katkov
- Section of Hematology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alexa Schoen
- Robert H. Lurie Comprehensive Cancer Center, Northwestern Hospital, Chicago, Illinois, USA
| | - Irum Khan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern Hospital, Chicago, Illinois, USA
| | - Charles E Foucar
- Division of Hematology and Oncology, University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico, USA
| | - Ehab Atallah
- Division of Hematology and Medical Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Aaron D Goldberg
- Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Anand A Patel
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Sun J, Gao J, Li J, Zhao H. TP53 gene mutation in lymphoepithelioma‑like carcinoma of the breast with thyroid cancer: A case report. Oncol Lett 2025; 29:247. [PMID: 40177135 PMCID: PMC11962588 DOI: 10.3892/ol.2025.14993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Abstract
Globally, breast cancer is the most common malignancy among women and thyroid cancer is also one of the common cancer types among women. Patients with breast cancer exhibit a higher incidence of thyroid cancer than that noted in the general population. The exact mechanism of multiple tumors remains elusive. In the present study, the case of a patient with multiple tumors harboring gene mutation is reported. Specifically, a patient with lymphoepithelioma-like carcinoma of the breast (LELC-B) and thyroid cancer is described. It was hypothesized that the short interval between the onset of these two types of malignant tumor may be related to the TP53 gene mutation status of the patient. To date, a specific relationship between gene mutations and multiple tumors is yet to be determined. Therefore, additional studies are required to address this topic.
Collapse
Affiliation(s)
- Jie Sun
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Jiyue Gao
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Jun Li
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Haidong Zhao
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
8
|
Kondo T, Bourassa FXP, Achar S, DuSold J, Céspedes PF, Ando M, Dwivedi A, Moraly J, Chien C, Majdoul S, Kenet AL, Wahlsten M, Kvalvaag A, Jenkins E, Kim SP, Ade CM, Yu Z, Gaud G, Davila M, Love P, Yang JC, Dustin ML, Altan-Bonnet G, François P, Taylor N. Engineering TCR-controlled fuzzy logic into CAR T cells enhances therapeutic specificity. Cell 2025; 188:2372-2389.e35. [PMID: 40220754 DOI: 10.1016/j.cell.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 09/16/2024] [Accepted: 03/09/2025] [Indexed: 04/14/2025]
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy represents a breakthrough in the treatment of hematological malignancies, but poor specificity has limited its applicability to solid tumors. By contrast, natural T cells harboring T cell receptors (TCRs) can discriminate between neoantigen-expressing cancer cells and self-antigen-expressing healthy tissues but have limited potency against tumors. We used a high-throughput platform to systematically evaluate the impact of co-expressing a TCR and CAR on the same CAR T cell. While strong TCR-antigen interactions enhanced CAR activation, weak TCR-antigen interactions actively antagonized their activation. Mathematical modeling captured this TCR-CAR crosstalk in CAR T cells, allowing us to engineer dual TCR/CAR T cells targeting neoantigens (HHATL8F/p53R175H) and human epithelial growth factor receptor 2 (HER2) ligands, respectively. These T cells exhibited superior anti-cancer activity and minimal toxicity against healthy tissue compared with conventional CAR T cells in a humanized solid tumor mouse model. Harnessing pre-existing inhibitory crosstalk between receptors, therefore, paves the way for the design of more precise cancer immunotherapies.
Collapse
MESH Headings
- Humans
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Immunotherapy, Adoptive/methods
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Fuzzy Logic
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Cell Line, Tumor
- Neoplasms/therapy
- Neoplasms/immunology
- Antigens, Neoplasm/immunology
Collapse
Affiliation(s)
- Taisuke Kondo
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - François X P Bourassa
- Department of Physics, McGill University, Montréal, QC, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Sooraj Achar
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Justyn DuSold
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Pablo F Céspedes
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; CAMS Oxford Institute, University of Oxford, Oxford, UK
| | - Makoto Ando
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alka Dwivedi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christopher Chien
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Saliha Majdoul
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Adam L Kenet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Madison Wahlsten
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | - Edward Jenkins
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sanghyun P Kim
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Catherine M Ade
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Guillaume Gaud
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Marco Davila
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - James C Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Paul François
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada; MILA Québec, Montréal, QC, Canada.
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Université de Montpellier, Institut de Génétique Moléculaire de Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Torices L, Nunes‐Xavier CE, Pulido R. Therapeutic Potential of Translational Readthrough at Disease-Associated Premature Termination Codons From Tumor Suppressor Genes. IUBMB Life 2025; 77:e70018. [PMID: 40317855 PMCID: PMC12046619 DOI: 10.1002/iub.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/27/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Tumor suppressor genes are frequently targeted by mutations introducing premature termination codons (PTC) in the protein coding sequence, both in sporadic cancers and in the germline of patients with cancer predisposition syndromes. These mutations have a high pathogenic impact since they generate C-terminal truncated proteins with altered stability and function. In addition, PTC mutations trigger transcript degradation by nonsense-mediated mRNA decay. Suppression of PTC by translational readthrough restores protein biosynthesis and stabilizes the PTC-targeted mRNA, making a suitable therapeutic approach the reconstitution of active full-length tumor suppressor proteins by pharmacologically-induced translational readthrough. Here, we review the recent advances in small molecule pharmacological induction of translational readthrough of disease-associated PTC from tumor suppressor genes, and discuss the therapeutic potential of translational readthrough in specific groups of patients with hereditary syndromic cancers.
Collapse
Affiliation(s)
| | - Caroline E. Nunes‐Xavier
- Biobizkaia Health Research InstituteBarakaldoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERERISCIIISpain
- Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Rafael Pulido
- Biobizkaia Health Research InstituteBarakaldoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERERISCIIISpain
- IkerbasqueThe Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
10
|
Hong L, Ye T, Wang TZ, Srijay D, Liu H, Zhao L, Watson R, Vincoff S, Chen T, Kholina K, Goel S, DeLisa MP, Chatterjee P. Programmable protein stabilization with language model-derived peptide guides. Nat Commun 2025; 16:3555. [PMID: 40229275 PMCID: PMC11997201 DOI: 10.1038/s41467-025-58872-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Dysregulated protein degradation via the ubiquitin-proteasomal pathway can induce numerous disease phenotypes, including cancer, neurodegeneration, and diabetes. While small molecule-based targeted protein degradation (TPD) and targeted protein stabilization (TPS) platforms can address this dysregulation, they rely on structured and stable binding pockets, which do not exist to classically "undruggable" targets. Here, we expand the TPS target space by engineering "deubiquibodies" (duAbs) via fusion of computationally-designed peptide binders to the catalytic domain of the potent OTUB1 deubiquitinase. In human cells, duAbs effectively stabilize exogenous and endogenous proteins in a DUB-dependent manner. Using protein language models to generate target-binding peptides, we engineer duAbs to conformationally diverse target proteins, including key tumor suppressor proteins p53 and WEE1, and heavily-disordered fusion oncoproteins, such as PAX3::FOXO1. We further encapsulate p53-targeting duAbs as mRNA in lipid nanoparticles and demonstrate effective intracellular delivery, p53 stabilization, and apoptosis activation, motivating further in vivo translation.
Collapse
Affiliation(s)
- Lauren Hong
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianzheng Ye
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Tian Z Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Divya Srijay
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Howard Liu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lin Zhao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Rio Watson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tianlai Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kseniia Kholina
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Shrey Goel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Computer Science, Duke University, Durham, NC, USA.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
| |
Collapse
|
11
|
Ma Z, Zhou M, Chen H, Shen Q, Zhou J. Deubiquitinase-Targeting Chimeras (DUBTACs) as a Potential Paradigm-Shifting Drug Discovery Approach. J Med Chem 2025; 68:6897-6915. [PMID: 40135978 DOI: 10.1021/acs.jmedchem.4c02975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Developing proteolysis-targeting chimeras (PROTACs) is well recognized through target protein degradation (TPD) toward promising therapeutics. While a variety of diseases are driven by aberrant ubiquitination and degradation of critical proteins with protective functions, target protein stabilization (TPS) rather than TPD is emerging as a unique therapeutic modality. Deubiquitinase-targeting chimeras (DUBTACs), a class of heterobifunctional protein stabilizers consisting of deubiquitinase (DUB) and protein-of-interest (POI) targeting ligands conjugated with a linker, can rescue such proteins from aberrant elimination. DUBTACs stabilize the levels of POIs in a DUB-dependent manner, removing ubiquitin from polyubiquitylated and degraded proteins. DUBTACs can induce a new interaction between POI and DUB by forming a POI-DUBTAC-DUB ternary complex. Herein, therapeutic benefits of TPS approaches for human diseases are introduced, and recent advances in developing DUBTACs are summarized. Relevant challenges, opportunities, and future perspectives are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Qiang Shen
- Department of Interdisciplinary Oncology, School of Medicine, LSU LCMC Health Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
12
|
Monge C, Waldrup B, Manjarrez S, Carranza FG, Velazquez‐Villarreal E. Detecting PI3K and TP53 Pathway Disruptions in Early-Onset Colorectal Cancer Among Hispanic/Latino Patients. Cancer Med 2025; 14:e70791. [PMID: 40165548 PMCID: PMC11959147 DOI: 10.1002/cam4.70791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aims to characterize PI3K and TP53 pathway alterations in Hispanic/Latino patients with early-onset colorectal cancer (CRC), focusing on potential differences compared to non-Hispanic White patients. Understanding these differences may shed light on the molecular basis of CRC health disparities. METHODS Using cBioPortal, we conducted a bioinformatics analysis to evaluate CRC mutations within the PI3K and TP53 pathways. CRC patients were stratified by age and ethnicity: (1) early-onset (< 50 years) versus late-onset (≥ 50 years) and (2) early-onset in Hispanic/Latino patients compared to early-onset in non-Hispanic White patients. Mutation frequencies were assessed using descriptive statistics, with chi-squared tests comparing proportions between early-onset Hispanic/Latino and non-Hispanic White groups. Kaplan-Meier survival curves were generated to assess overall survival for early-onset Hispanic/Latino patients, stratified by the presence or absence of PI3K and TP53 pathway alterations. RESULTS Significant differences were noted when comparing early-onset CRC in Hispanic/Latino patients to early-onset CRC in non-Hispanic White patients. PI3K (47.1% vs. 35.2%, p = 9.39e-3) and TP53 (89.1% vs. 81.7%, p = 0.04) pathway alterations were more prevalent in early-onset CRC among Hispanic/Latino patients, with AKT1 (5.1% vs. 1.8%, p = 0.03), INPP4B (4.3% vs. 1.4%, p = 0.04), and TSC1 (7.2% vs. 3.1% p = 0.03) gene alterations also significantly higher in this group. Significant differences were observed in TP53 mutations between colon adenocarcinomas (90% vs. 79.1%, p = 0.03), with higher prevalence in Hispanic/Latino patients when stratified by tumor site. No significant differences were observed between early-onset and late-onset CRC patients within the Hispanic/Latino cohort. CONCLUSIONS These findings highlight the distinct role of PI3K and TP53 pathway disruptions in early-onset CRC among Hispanic/Latino patients, suggesting that pathway-specific mechanisms may drive cancer health disparities. Insights from this study could inform the potential development of precision medicine approaches and targeted therapies aimed at addressing these disparities.
Collapse
Affiliation(s)
- Cecilia Monge
- Center for Cancer Research, National Cancer InstituteBethesdaMarylandUSA
| | - Brigette Waldrup
- Department of Integrative Translational SciencesCity of Hope, Beckman Research InstituteDuarteCaliforniaUSA
| | - Sophia Manjarrez
- Department of Integrative Translational SciencesCity of Hope, Beckman Research InstituteDuarteCaliforniaUSA
| | - Francisco G. Carranza
- Department of Integrative Translational SciencesCity of Hope, Beckman Research InstituteDuarteCaliforniaUSA
| | - Enrique Velazquez‐Villarreal
- Department of Integrative Translational SciencesCity of Hope, Beckman Research InstituteDuarteCaliforniaUSA
- City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
13
|
Cui X, Huang T, Jiang T, Wang H. Current status and prospects of targeted therapy for cholangiocarcinoma based on molecular characteristics. Cancer Lett 2025; 614:217540. [PMID: 39924074 DOI: 10.1016/j.canlet.2025.217540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Cholangiocarcinoma (CCA) is a serious public health issue due to its insidious onset and dismal prognosis. The past few years have witnessed and highlighted the development of understanding and management of CCA. The combination of gemcitabine and cisplatin (GP) chemotherapy regimen with immunotherapy using immune checkpoint inhibitors has been considered the new standard first-line treatment alternative for advanced CCA. Notably, the proportion of patients with advanced CCA with targetable genetic mutations is approximately 40 %, and these patients may be considered for molecularly targeted therapy in the second-line treatment. In this review, we highlight the advances and progress in targeted therapies for advanced CCA, with special attention to data from Asian populations, including Chinese. In addition, we present in detail the phosphatase tension homolog (PTEN), a novel biomarker for both of first-line chemotherapy and second-line targeted therapy in advanced CCA, and its ability to forecast prognosis in patients with CCA. The mechanisms of rapid resistance to targeted agents warrant further investigation and address in light of the development of new targeted therapies. Precision medicine is gradually playing an increasing role in achieving optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Xiaowen Cui
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Teng Huang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, The Naval Medical University, Shanghai, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Tianyi Jiang
- International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, The Naval Medical University, Shanghai, China.
| | - Hongyang Wang
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China; International Cooperation Laboratory on Signal Transduction, National Center for Liver Cancer, The Naval Medical University, Shanghai, China; Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| |
Collapse
|
14
|
Amano Y, Hasegawa M, Kihara A, Matsubara D, Fukushima N, Nishino H, Mori Y, Inamura K, Niki T. Clinicopathological and prognostic significance of stromal p16 and p53 expression in oral squamous cell carcinoma. Ann Diagn Pathol 2025; 75:152439. [PMID: 39837151 DOI: 10.1016/j.anndiagpath.2025.152439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/23/2025]
Abstract
The tumor microenvironment is highly heterogeneous and consists of neoplastic cells and diverse stromal components, including fibroblasts, endothelial cells, pericytes, immune cells, local and bone marrow-derived stromal stem and progenitor cells, and the surrounding extracellular matrix. Although the significance of p16 and p53 has been reported in various tumor types, their involvement in the stromal cells of oral squamous cell carcinoma (OSCC) remains unclear. We performed immunohistochemical analyses of p16 and p53 expression in OSCC samples, Of the 116 samples, 74 showed p16-positive stromal cells, and 33 showed p53-positive stromal cells. Both p16 and p53 positivity were associated with an increased histological grade, lymphovascular invasion, an immature stromal pattern with abundant amorphous extracellular matrix material, infiltrative invasion patterns (Yamamoto Kohama classification-4C and 4D), and poor prognosis. Multivariate analyses identified p16 and p53 positivity in the stroma as independent prognostic factors for overall survival (P = 0.032 and P = 0.020, respectively); moreover, stromal p16 positivity correlated with stromal p53 positivity. These findings indicated that p16 and p53 stroma positivity may regulate OSCC tumor aggressiveness.
Collapse
Affiliation(s)
- Yusuke Amano
- Division of Tumor Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan.
| | - Masayo Hasegawa
- Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Otolaryngology-Head and Neck Surgery, Jichi Medical University Saitama Medical Center, 1-847, Amanumacho, Omiya-ku, Saitama, Japan
| | - Atsushi Kihara
- Division of Tumor Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Daisuke Matsubara
- Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Pathology, Faculty of medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki, Japan
| | - Noriyoshi Fukushima
- Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Hiroshi Nishino
- Department of Otolaryngology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Yoshiyuki Mori
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University Saitama Medical Center, 1-847, Amanumacho, Omiya, Saitama, Saitama, Japan
| | - Kentaro Inamura
- Division of Tumor Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan; Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, Japan
| | - Toshiro Niki
- Department of Pathology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, Japan
| |
Collapse
|
15
|
Li S, Wang W, Liu S, Du Y, Zhao N. Evolved enzymes in the metabolism of biological poly-acids: Applications in otolaryngological biocatalysis. Int J Biol Macromol 2025; 302:140068. [PMID: 39837444 DOI: 10.1016/j.ijbiomac.2025.140068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
This study explores evolved Hyaluronidase, Lipase, and Elastase's identification, characterization, and therapeutic potential to enhance tissue regeneration and drug delivery systems in otolaryngology. Hyaluronidase variant H5 exhibited a turnover number (k_cat) of 1500 min-1, a 200 % increase over wild-type (500 min-1), demonstrating superior hyaluronic acid degradation. Similarly, lipase variant L2 reached 1200 min-1 (400 min-1 wild-type), and elastase variant E3 showed a turnover of 2200 min-1 (1000 min-1 wild-type). Kinetic analyses revealed improved Km and Vmax values across variants, with Hyaluronidase Variant H5 achieving Km = 1.5 μM and Vmax = 3000 μM/min. Molecular Dynamics (MD) simulations indicated structural stability (average RMSD ~1.5 Å for H5) and strong hydrogen bonding (180 bonds), enhancing catalytic efficiency. In vitro assays demonstrated a 40 % enhancement in tissue regeneration and increased epithelial cell proliferation (100 % for Hyaluronidase Variant H5 vs. 60 % wild-type). In vivo studies in rabbits revealed a 30 % reduction in recovery time post-sinus surgery and a 50 % reduction in scar tissue formation. These findings underscore the potential of evolved enzymes in advancing drug delivery (DD) and tissue repair (TR), with implications for broader applications in wound healing and inflammatory diseases.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Wei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Shengnan Liu
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China
| | - Yaqi Du
- Department of Gastroenterology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| | - Ning Zhao
- Department of Otolaryngology, The First Hospital of China Medical University, 155 Nanjing Street, Heping, Shenyang, Liaoning 110001, China.
| |
Collapse
|
16
|
Singh SR, Bhaskar R, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Mladenov M, Hadzi-Petrushev N, Stojchevski R, Sinha JK, Avtanski D. Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers (Basel) 2025; 17:1082. [PMID: 40227591 PMCID: PMC11988167 DOI: 10.3390/cancers17071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Cancer is complex because of the critical imbalance in genetic regulation as characterized by both the overexpression of oncogenes (OGs), mainly through mutations, amplifications, and translocations, and the inactivation of tumor-suppressor genes (TSGs), which entail the preservation of genomic integrity by inducing apoptosis to counter the malignant growth. Reviewing the intricate molecular interplay between OGs and TSGs draws attention to their cell cycle, apoptosis, and cancer metabolism regulation. In the present review, we discuss seminal discoveries, such as Knudson's two-hit hypothesis, which framed the field's understanding of cancer genetics, leading to the next breakthroughs with next-generation sequencing and epigenetic profiling, revealing novel insights into OG and TSG dysregulation with opportunities for targeted therapy. The key pathways, such as MAPK/ERK, PI3K/AKT/mTOR, and Wnt/β-catenin, are presented in the context of tumor progression. Importantly, we further highlighted the advances in therapeutic strategies, including inhibitors of KRAS and MYC and restoration of TSG function, despite which mechanisms of resistance and tumor heterogeneity pose daunting challenges. A high-level understanding of interactions between OG-TSGs forms the basis for effective, personalized cancer treatment-something to strive for in better clinical outcomes. This synthesis should integrate foundational biology with translation and, in this case, contribute to the ongoing effort against cancer.
Collapse
Affiliation(s)
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea;
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, India
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | | | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
17
|
Li J, Zhang S, Wang B, Dai Y, Wu J, Liu D, Liang Y, Xiao S, Wang Z, Wu J, Zheng D, Chen X, Shi F, Tan K, Ding X, Song H, Zhang S, Lu M. Pharmacological rescue of mutant p53 triggers spontaneous tumor regression via immune responses. Cell Rep Med 2025; 6:101976. [PMID: 39986271 PMCID: PMC11970324 DOI: 10.1016/j.xcrm.2025.101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/05/2024] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Tumor suppressor p53 is the most frequently mutated protein in cancer, possessing untapped immune-modulating capabilities in anticancer treatment. Here, we investigate the efficacy and underlying mechanisms of pharmacological reactivation of mutant p53 in treating spontaneous tumors in mice. In the p53 R279W (equivalent to the human hotspot R282W) mouse model developing spontaneous tumors, arsenic trioxide (ATO) treatment through drinking water significantly prolongs the survival of mice, dependent on p53-R279W reactivation. Transient regressions of spontaneous T-lymphomas are observed in 70% of the ATO-treated mice, accompanied by interferon (IFN) response. In allograft models, the tumor-suppressive effect of reactivated p53-R279W is detectably reduced in both immunodeficient Rag1-/- and CD8+ T cell-depleted mice. ATO also activates the IFN pathway in human cancer cells harboring various p53 mutations, as well as in primary samples derived from the p53-mutant patient treated with ATO. Together, p53 could serve as an alternative therapeutic target for the development of immunotherapies.
Collapse
Affiliation(s)
- Jiabing Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shuang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X, Institute School of Biomedical Engineering Research, Shanghai Jiao Tong University, Shanghai, China
| | - Baohui Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiale Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dianjia Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Liang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhengyuan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Derun Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xueqin Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fangfang Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xianting Ding
- State Key Laboratory of Systems Medicine for Cancer, Institute for Personalized Medicine and Med-X, Institute School of Biomedical Engineering Research, Shanghai Jiao Tong University, Shanghai, China.
| | - Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Sujiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
18
|
Zhang YX, Wan H, Shan GY, Cheng JY, Liu YY, Shi WN, Li HJ. Pharmacological role of Herba Patriniae and Coix seed in colorectal cancer. World J Gastrointest Oncol 2025; 17:99673. [PMID: 40092956 PMCID: PMC11866235 DOI: 10.4251/wjgo.v17.i3.99673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/31/2024] [Accepted: 12/25/2024] [Indexed: 02/14/2025] Open
Abstract
Colorectal cancer (CRC) is the most prevalent cancer globally, and its traditional treatment modalities commonly encompass radiation therapy, chemotherapy, surgery and the administration of cytotoxic drugs. Currently, novel chemotherapy drugs that combine traditional Chinese medicine (TCM) with herbal extracts exhibit superior comprehensive benefits. Herein, we delved into an article authored by Wang et al, focusing specifically on the pharmacological effects of "Herba Patriniae and Coix seed (HC)" and their targeted mechanisms in combating CRC. From the perspective of TCM philosophy, damp-heat stagnation and toxicity are the cardinal pathogenic factors underlying CRC. HC, renowned for their abilities to antipyretic and enhance diuresis, have demonstrated promising efficacy in preliminary studies for the treatment of CRC. These findings offer potential insights in favor of fostering anti-cancer medications.
Collapse
Affiliation(s)
- Yu-Xin Zhang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hui Wan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130061, Jilin Province, China
| | - Yi-Ying Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wen-Na Shi
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Hai-Jun Li
- Institute of Liver Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
19
|
Tabanifar B, Lau H, Sabapathy K. Tumor suppressor genes in the tumor microenvironment. Dis Model Mech 2025; 18:dmm052049. [PMID: 40110599 PMCID: PMC11957449 DOI: 10.1242/dmm.052049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Tumor suppressor genes (TSGs) are thought to suppress tumor development primarily via cancer cell-autonomous mechanisms. However, the tumor microenvironment (TME) also significantly influences tumorigenesis. In this context, a role for TSGs in the various cell types of the TME in regulating tumor growth is emerging. Indeed, expression analyses of TSGs in clinical samples, along with data from mouse models in which TSGs were deleted selectively in the TME, indicate a functional role for them in tumor development. In this Perspective, using TP53 and PTEN as examples, we posit that TSGs play a significant role in cells of the TME in regulating tumor development, and postulate both a 'pro-active' and 'reactive' model for their contribution to tumor growth, dependent on the temporal sequence of initiating events. Finally, we discuss the need to consider a 2-in-1 cancer-treatment strategy to improve the efficacy of clearance of cancer cells and the cancer-promoting TME.
Collapse
Affiliation(s)
- Bahareh Tabanifar
- Division of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore 168583
| | - Hannah Lau
- Department of Physiology, National University of Singapore, Singapore 117558
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Kanaga Sabapathy
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
20
|
Ma X, Xu J, Wang Y, Fleishman JS, Bing H, Yu B, Li Y, Bo L, Zhang S, Chen ZS, Zhao L. Research progress on gene mutations and drug resistance in leukemia. Drug Resist Updat 2025; 79:101195. [PMID: 39740374 DOI: 10.1016/j.drup.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Leukemia is a type of blood cancer characterized by the uncontrolled growth of abnormal cells in the bone marrow, which replace normal blood cells and disrupt normal blood cell function. Timely and personalized interventions are crucial for disease management and improving survival rates. However, many patients experience relapse following conventional chemotherapy, and increasing treatment intensity often fails to improve outcomes due to mutated gene-induced drug resistance in leukemia cells. This article analyzes the association of gene mutations and drug resistance in leukemia. It explores genetic abnormalities in leukemia, highlighting recently identified mutations affecting signaling pathways, cell apoptosis, epigenetic regulation, histone modification, and splicing mechanisms. Additionally, the article discusses therapeutic strategies such as molecular targeting of gene mutations, alternative pathway targeting, and immunotherapy in leukemia. These approaches aim to combat specific drug-resistant mutations, providing potential avenues to mitigate leukemia relapse. Future research with these strategies holds promise for advancing leukemia treatment and addressing the challenges of drug-resistant mutations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yanan Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Hao Bing
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yanming Li
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Shaolong Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
21
|
Yu T, Zhao J, Li Z, Pan C, Liu J, Zheng K, Wang X, Zhang Y. Research Progress on the Role of Zinc Finger Protein in Colorectal Cancer. Cancer Rep (Hoboken) 2025; 8:e70123. [PMID: 40085529 PMCID: PMC11908617 DOI: 10.1002/cnr2.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Colorectal cancer is one of the most prevalent malignancies worldwide, with a tendency of increasing incidence in developed countries, which poses a significant threat to the patients' physical and mental health. RECENT FINDINGS The process of gene transcription affects the important physiological functions of cells, so the normal expression of transcription factors is an important prerequisite for maintaining cellular homeostasis. Changes in the level of zinc finger proteins, the most prevalent transcription factor, may play an important trigger for the development of colorectal cancer. Different zinc finger proteins play different roles in terms of promoting or inhibiting cancer development. CONCLUSION This paper briefly reviews the classification, functional characteristics, and expression changes of zinc finger proteins in colorectal cancer, it focuses on how they regulate gene transcription, influence on common signaling pathways, and their potential for translational studies and clinical applications. The objective is to stimulate new ideas for their study of colorectal cancer while also providing foundational information to guide drug development and treatment strategies for colorectal cancer patients in clinical settings.
Collapse
Affiliation(s)
- Tang Yu
- The Third Affiliated Hospital of Kunming Medical UniversityKunming Medical UniversityKunmingChina
- Chongqing Nanchuan District People's HospitalChongqing Medical UniversityChongqingChina
| | - Jiumei Zhao
- Chongqing Nanchuan District People's HospitalChongqing Medical UniversityChongqingChina
| | - Ziwei Li
- Department of Gynecology and Obstetrics, Chongqing Health Center for Women and ChildrenWomen and Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Chenglong Pan
- The Third Affiliated Hospital of Kunming Medical UniversityKunming Medical UniversityKunmingChina
| | - Jialing Liu
- The Third Affiliated Hospital of Kunming Medical UniversityKunming Medical UniversityKunmingChina
| | - Kepu Zheng
- The Third Affiliated Hospital of Kunming Medical UniversityKunming Medical UniversityKunmingChina
| | - Xiaohao Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yan Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
22
|
Standing S, Malkin D, Johnston DL. A Unique Case of a Pediatric Patient with Six Childhood Cancers in Association with a Germline TP53 Gene Pathogenic Variant. Pediatr Blood Cancer 2025; 72:e31487. [PMID: 39702904 DOI: 10.1002/pbc.31487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Affiliation(s)
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatircs, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Donna L Johnston
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
23
|
Semenova Y, Kerimkulov A, Uskenbayev T, Zharlyganova D, Shatkovskaya O, Sarina T, Manatova A, Yessenbayeva G, Adylkhanov T. Chemotherapy Options for Locally Advanced Gastric Cancer: A Review. Cancers (Basel) 2025; 17:809. [PMID: 40075656 PMCID: PMC11899121 DOI: 10.3390/cancers17050809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cancers represent a significant global health burden, affecting millions of individuals each year [...].
Collapse
Affiliation(s)
- Yuliya Semenova
- Department of Surgery, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan;
| | - Altay Kerimkulov
- Department of Multidisciplinary Surgery, National Research Oncology Center, Astana 020000, Kazakhstan; (A.K.); (T.U.); (T.S.); (T.A.)
| | - Talgat Uskenbayev
- Department of Multidisciplinary Surgery, National Research Oncology Center, Astana 020000, Kazakhstan; (A.K.); (T.U.); (T.S.); (T.A.)
| | - Dinara Zharlyganova
- Department of Scientific Management, National Research Oncology Center, Astana 020000, Kazakhstan; (D.Z.); (G.Y.)
| | - Oxana Shatkovskaya
- Board for Strategic Development, Scientific and Educational Activities, National Research Oncology Center, Astana 020000, Kazakhstan;
| | - Tomiris Sarina
- Department of Multidisciplinary Surgery, National Research Oncology Center, Astana 020000, Kazakhstan; (A.K.); (T.U.); (T.S.); (T.A.)
| | - Almira Manatova
- Department of Scientific Management, National Research Oncology Center, Astana 020000, Kazakhstan; (D.Z.); (G.Y.)
| | - Gulfairus Yessenbayeva
- Department of Scientific Management, National Research Oncology Center, Astana 020000, Kazakhstan; (D.Z.); (G.Y.)
| | - Tasbolat Adylkhanov
- Department of Multidisciplinary Surgery, National Research Oncology Center, Astana 020000, Kazakhstan; (A.K.); (T.U.); (T.S.); (T.A.)
| |
Collapse
|
24
|
Takikawa M, Nakano A, Krishnaraj J, Tabata Y, Watanabe Y, Okabe A, Sakaguchi Y, Fujiki R, Mochizuki A, Tajima T, Sada A, Matsushita S, Wakabayashi Y, Araki K, Kaneda A, Ishikawa F, Sadaie M, Ohki R. Extrinsic induction of apoptosis and tumor suppression via the p53-Reprimo-Hippo-YAP/TAZ-p73 pathway. Proc Natl Acad Sci U S A 2025; 122:e2413126122. [PMID: 39913207 PMCID: PMC11831151 DOI: 10.1073/pnas.2413126122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/03/2025] [Indexed: 02/19/2025] Open
Abstract
Tumor progression is suppressed by inherent cellular mechanisms such as apoptosis. The p53 tumor suppressor gene is the most commonly mutated gene in human cancer and plays a pivotal role in tumor suppression. RPRM is a target gene of p53 known to be involved in tumor suppression, but its molecular function has remained elusive. Here, we report that Reprimo (the protein product of RPRM) is secreted and extrinsically induces apoptosis in recipient cells. We identified FAT1, FAT4, CELSR1, CELSR2, and CELSR3, members of the protocadherin family, as receptors for Reprimo. Subsequent analyses revealed that Reprimo acts upstream of the Hippo-YAP/TAZ-p73 axis and induces apoptosis by transactivating various proapoptotic genes. In vivo analyses further support the tumor-suppressive effects of secreted Reprimo. These findings identify the p53-Reprimo-Hippo-YAP/TAZ-p73 axis as an extrinsic apoptosis pathway that plays a crucial role in tumor suppression. Our finding of the innate tumor eliminator Reprimo and the downstream pathway offers a promising avenue for the pharmacological treatment of cancer.
Collapse
Affiliation(s)
- Masahiro Takikawa
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba278-8510, Japan
| | - Airi Nakano
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
- Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki852-8523, Japan
| | - Jayaraman Krishnaraj
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Yuko Tabata
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Yuzo Watanabe
- Proteomics Facility, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto606-8502, Japan
| | - Atsushi Okabe
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
- Health and Disease Omics Center, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
| | - Yukiko Sakaguchi
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
| | - Ami Mochizuki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Tomoko Tajima
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Akane Sada
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Shu Matsushita
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| | - Yuichi Wakabayashi
- Cancer Genome Center, Division of Experimental Animal Research, Chiba Cancer Center Research Institute, Chuo-ku, Chiba260-8717, Japan
| | - Kimi Araki
- Division of Developmental Genetics, Institute of Resource Development and Analysis, Kumamoto University, Chuo-ku, Kumamoto860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Honjo, Kumamoto860-8556, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
- Health and Disease Omics Center, Chiba University, Chuo‐ku, Chiba260‐8670, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan
| | - Mahito Sadaie
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba278-8510, Japan
| | - Rieko Ohki
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Chuo-ku, Tokyo104-0045, Japan
| |
Collapse
|
25
|
Hsu CL, Chang YS, Li HP. Molecular diagnosis of nasopharyngeal carcinoma: Past and future. Biomed J 2025; 48:100748. [PMID: 38796105 PMCID: PMC11772973 DOI: 10.1016/j.bj.2024.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/28/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor originated from the nasopharynx epithelial cells and has been linked with Epstein-Barr virus (EBV) infection, dietary habits, environmental and genetic factors. It is a common malignancy in Southeast Asia, especially with gender preference among men. Due to its non-specific symptoms, NPC is often diagnosed at a late stage. Thus, the molecular diagnosis of NPC plays a crucial role in early detection, treatment selection, disease monitoring, and prognosis prediction. This review aims to provide a summary of the current state and the latest emerging molecular diagnostic techniques for NPC, including EBV-related biomarkers, gene mutations, liquid biopsy, and DNA methylation. Challenges and potential future directions of NPC molecular diagnosis will be discussed.
Collapse
Affiliation(s)
- Cheng-Lung Hsu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Sun Chang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Pai Li
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
26
|
Lv FL, Zhang L, Ji C, Peng L, Zhu M, Yang S, Dong S, Zhou M, Guo F, Li Z, Wang F, Chen Y, Zhou J, Ren X, Shen G, Yang JM, Li B, Zhang Y. Cabozantinib selectively induces proteasomal degradation of p53 somatic mutant Y220C and impedes tumor growth. J Biol Chem 2025; 301:108167. [PMID: 39793887 PMCID: PMC11847077 DOI: 10.1016/j.jbc.2025.108167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/07/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Inactivation of p53 by mutations commonly occurs in human cancer. The mutated p53 proteins may escape proteolytic degradation and exhibit high expression in tumors and acquire gain-of-function activity that promotes tumor progression and chemo-resistance. Therefore, selectively targeting of the gain-of-function p53 mutants may serve as a promising therapeutic strategy for cancer prevention and treatment. In this study, we identified cabozantinib, a multikinase inhibitor currently used in the clinical treatment of several types of cancer, as a selective inducer of proteasomal degradation of the p53-Y220C mutant. We demonstrate that cabozantinib disrupts the interaction between p53Y220C and USP7, a deubiquitylating enzyme, resulting in the dissociation of p53Y220C protein from its binding with USP7 and subsequent ubiquitination and degradation mediated by CHIP (the carboxyl terminal of Hsp70-interacting protein). We also show that cabozantinib displays preferential cytotoxicity to p53Y220C-harboring cancer cells both in vitro and in vivo. This study demonstrates a novel, p53-Y220C mutant-targeted anticancer action and mechanism for cabozantinib and provides the rationale for use of this drug in the treatment of cancers that carry the p53-Y220C mutation.
Collapse
Affiliation(s)
- Fang Lin Lv
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lu Zhang
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Cheng Ji
- Department of Respiratory Medicine, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Lei Peng
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Mingxian Zhu
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shumin Yang
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shunli Dong
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Mingxuan Zhou
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Fanfan Guo
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhenyun Li
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Fang Wang
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Jinhua Zhou
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Xingcong Ren
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Genhai Shen
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jin-Ming Yang
- Department of Cancer Biology and Toxicology, Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Bin Li
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| | - Yi Zhang
- Department of Hepatopancreatobiliary Surgery, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
27
|
Yan T, Yan Z, Chen G, Xu S, Wu C, Zhou Q, Wang G, Li Y, Jia M, Zhuang X, Yang J, Liu L, Wang L, Wu Q, Wang B, Yan T. Survival outcome prediction of esophageal squamous cell carcinoma patients based on radiomics and mutation signature. Cancer Imaging 2025; 25:9. [PMID: 39891186 PMCID: PMC11783911 DOI: 10.1186/s40644-024-00821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 12/29/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND The present study aimed to develop a nomogram model for predicting overall survival (OS) in esophageal squamous cell carcinoma (ESCC) patients. METHODS A total of 205 patients with ESCC were enrolled and randomly divided into a training cohort (n = 153) and a test cohort (n = 52) at a ratio of 7:3. Multivariate Cox regression was used to construct the radiomics model based on CT data. The mutation signature was constructed based on whole genome sequencing data and found to be significantly associated with the prognosis of patients with ESCC. A nomogram model combining the Rad-score and mutation signature was constructed. An integrated nomogram model combining the Rad-score, mutation signature, and clinical factors was constructed. RESULTS A total of 8 CT features were selected for multivariate Cox regression analysis to determine whether the Rad-score was significantly correlated with OS. The area under the curve (AUC) of the radiomics model was 0.834 (95% CI, 0.767-0.900) for the training cohort and 0.733 (95% CI, 0.574-0.892) for the test cohort. The Rad-score, S3, and S6 were used to construct an integrated RM nomogram. The predictive performance of the RM nomogram model was better than that of the radiomics model, with an AUC of 0. 830 (95% CI, 0.761-0.899) in the training cohort and 0.793 (95% CI, 0.653-0.934) in the test cohort. The Rad-score, TNM stage, lymph node metastasis status, S3, and S6 were used to construct an integrated RMC nomogram. The predictive performance of the RMC nomogram model was better than that of the radiomics model and RM nomogram model, with an AUC of 0. 862 (95% CI, 0.795-0.928) in the training cohort and 0. 837 (95% CI, 0.705-0.969) in the test cohort. CONCLUSION An integrated nomogram model combining the Rad-score, mutation signature, and clinical factors can better predict the prognosis of patients with ESCC.
Collapse
Affiliation(s)
- Ting Yan
- Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Zhenpeng Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Guohui Chen
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Songrui Xu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Chenxuan Wu
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Qichao Zhou
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Guolan Wang
- School of Computer Information Engineering, Shanxi Technology and Business University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Ying Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Mengjiu Jia
- School of Computer Information Engineering, Shanxi Technology and Business University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Xiaofei Zhuang
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, 030013, People's Republic of China
| | - Jie Yang
- Department of Gastroenterology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Lili Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Lu Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Qinglu Wu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi, 030001, People's Republic of China
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China.
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing, People's Republic of China.
| |
Collapse
|
28
|
Xu J, Yuan J, Wang W, Zhu X, Li J, Ma Y, Liu S, Feng J, Chen Y, Lu T, Li H. Small molecules that targeting p53 Y220C protein: mechanisms, structures, and clinical advances in anti-tumor therapy. Mol Divers 2025:10.1007/s11030-024-11045-x. [PMID: 39799258 DOI: 10.1007/s11030-024-11045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/04/2024] [Indexed: 01/15/2025]
Abstract
The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets. Among them, mutant p53 Y220C creates a narrow crevice since the side chains dynamics on protein surface, which is suitable for designing small molecules to occupy the cavity and recovery the tumor suppressing function. Here, we describe the mechanism of p53 related signal pathway and how p53 Y220C regulate the tumorigenesis. We review the two types of p53 Y220C modulators including restoring the conformation of mutant p53 Y220C protein to wild-type p53 protein and recruiting histone acetyltransferase p300/CBP to acetylate p53 Y220C thus enables p53 Y220C dependent upregulation of apoptotic genes and downregulation of DNA damage response pathways. We also report clinical advances and challenges of these molecules in p53 Y220C medicated tumor therapy.
Collapse
Affiliation(s)
- Jinglei Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Jiahao Yuan
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Wenxin Wang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Xiaoning Zhu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Jialong Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Yule Ma
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Shaojie Liu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Jie Feng
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
29
|
Spiegelberg D, Hwang LA, Pua KH, Kumar SC, Koh XY, Koh XH, Selvaraju RK, Sabapathy K, Nestor M, Lane D. Targeting mutant p53: Evaluation of novel anti-p53 R175H monoclonal antibodies as diagnostic tools. Sci Rep 2025; 15:1000. [PMID: 39762369 PMCID: PMC11704002 DOI: 10.1038/s41598-024-83871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
About 50% of all cancers carry a mutation in p53 that impairs its tumor suppressor function. The p53 missense mutation p53R175H (p53R172H in mice) is a hotspot mutation in various cancer types. Therefore, monoclonal antibodies selectively targeting clinically relevant mutations like p53R175H could prove immensely value. We aimed to evaluate the in vitro and in vivo binding properties of two novel anti-p53R175H monoclonal antibodies and to assess their performance as agents for molecular imaging. In vitro, 125I-4H5 and 125I-7B9 demonstrated long shelf life and antigen-specific binding. Our in vivo study design allowed head-to-head comparison of the antibodies in a double tumor model using repeated SPECT/CT imaging, followed by biodistribution and autoradiography. Both tracers performed similarly, with marginally faster blood clearance for 125I-7B9. Repeated molecular imaging demonstrated suitable imaging characteristics for both antibodies, with the best contrast images occurring at 48 h post-injection. Significantly higher uptake was detected in the mut-p53-expressing tumors, confirmed by ex vivo autoradiography. We conclude that molecular imaging with an anti-p53R175H tracer could be a promising approach for cancer diagnostics and could be further applied for patient stratification and treatment response monitoring of mutant p53-targeted therapeutics.
Collapse
Affiliation(s)
- Diana Spiegelberg
- Department of Immunology, Genetics, Pathology, Uppsala University, Uppsala, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Le-Ann Hwang
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Khian Hong Pua
- Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673, Singapore
| | - Sashwini Chandra Kumar
- Divisions of Cellular & Molecular Research, National Cancer Centre Singapore, Singapore, 168583, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xin Yu Koh
- Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673, Singapore
| | - Xiao Hui Koh
- Institute of Molecular and Cellular Biology, ASTAR, Singapore, 138673, Singapore
| | - Ram Kumar Selvaraju
- Preclinical PET-MRI Platform, Part of Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Kanaga Sabapathy
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Marika Nestor
- Department of Immunology, Genetics, Pathology, Uppsala University, Uppsala, Sweden
| | - David Lane
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Funk JS, Klimovich M, Drangenstein D, Pielhoop O, Hunold P, Borowek A, Noeparast M, Pavlakis E, Neumann M, Balourdas DI, Kochhan K, Merle N, Bullwinkel I, Wanzel M, Elmshäuser S, Teply-Szymanski J, Nist A, Procida T, Bartkuhn M, Humpert K, Mernberger M, Savai R, Soussi T, Joerger AC, Stiewe T. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat Genet 2025; 57:140-153. [PMID: 39774325 PMCID: PMC11735402 DOI: 10.1038/s41588-024-02039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The mutational landscape of TP53, a tumor suppressor mutated in about half of all cancers, includes over 2,000 known missense mutations. To fully leverage TP53 mutation status for personalized medicine, a thorough understanding of the functional diversity of these mutations is essential. We conducted a deep mutational scan using saturation genome editing with CRISPR-mediated homology-directed repair to engineer 9,225 TP53 variants in cancer cells. This high-resolution approach, covering 94.5% of all cancer-associated TP53 missense mutations, precisely mapped the impact of individual mutations on tumor cell fitness, surpassing previous deep mutational scan studies in distinguishing benign from pathogenic variants. Our results revealed even subtle loss-of-function phenotypes and identified promising mutants for pharmacological reactivation. Moreover, we uncovered the roles of splicing alterations and nonsense-mediated messenger RNA decay in mutation-driven TP53 dysfunction. These findings underscore the power of saturation genome editing in advancing clinical TP53 variant interpretation for genetic counseling and personalized cancer therapy.
Collapse
Affiliation(s)
- Julianne S Funk
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Maria Klimovich
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Ole Pielhoop
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Pascal Hunold
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Anna Borowek
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Maxim Noeparast
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Michelle Neumann
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Katharina Kochhan
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Imke Bullwinkel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University, Marburg University Hospital, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Tara Procida
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University, Giessen, Germany
| | - Katharina Humpert
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
- Bioinformatics Core Facility, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Rajkumar Savai
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Lung Microenvironmental Niche in Cancerogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thierry Soussi
- Centre de Recherche Saint-Antoine UMRS_938, INSERM, Sorbonne Université, Paris, France
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.
- Genomics Core Facility, Philipps-University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
- Bioinformatics Core Facility, Philipps-University, Marburg, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
31
|
Debnath A, Mazumder R. Clinical Progress of Targeted Therapy for Breast Cancer: A Comprehensive Review. Curr Cancer Drug Targets 2025; 25:555-573. [PMID: 38566384 DOI: 10.2174/0115680096289260240311062343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
The discovery of effective breast cancer therapy is both urgent and daunting, beset by a myriad of challenges that range from the disease's inherent heterogeneity to its complex molecular underpinnings. Drug resistance, the intricacies of the tumor microenvironment, and patient-specific variables further complicate this landscape. The stakes are even higher when dealing with subtypes like triple-negative breast cancer, which eludes targeted hormonal therapies due to its lack of estrogen, progesterone, and HER2 receptors. Strategies to overcome such challenges include combinations of drugs and identifying new drug targets. Developing new drugs based on such targets could be a better solution than relying on costly immunotherapy or combinational therapies. In this review, we have endeavored to comprehensively examine the proven therapeutic drug targets associated with breast cancer and elucidate their respective molecular mechanisms and current clinical status. This study aims to facilitate researchers in conducting a comparative analysis of different targets to select single and multi-targeted drug discovery approaches for breast cancer.
Collapse
Affiliation(s)
- Abhijit Debnath
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| |
Collapse
|
32
|
Lee Y, Lee YY, Park J, Maksakova A, Seo D, Kim J, Yeom JE, Kim Y, Kim CH, Ryoo R, Kim SN, Park J, Park W, Kim TH, Choy YB, Park CG, Kim KH, Lee W. Illudin S inhibits p53-Mdm2 interaction for anticancer efficacy in colorectal cancer. Biomed Pharmacother 2025; 182:117795. [PMID: 39740390 DOI: 10.1016/j.biopha.2024.117795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025] Open
Abstract
The impairment of the p53 pathway was once regarded as inadequately druggable due to the specificity of the p53 structure, its flat surface lacking an ideal drug-binding site, and the difficulty in reinstating p53 function. However, renewed interest in p53-based therapies has emerged, with promising approaches targeting p53 and ongoing clinical trials investigating p53-based treatments across various cancers. Despite significant progress in p53-targeted therapies, challenges persist in identifying effective therapeutic targets within the p53 pathway. In this study, we implemented a molecular screening system to effectively discover p53 activator. As a result, illudin S was identified as a potential inhibitor of the p53-Mdm2 interaction. This compound is particularly intriguing due to its well-documented anti-cancer effects, despite the ambiguity surrounding its precise mechanism of action. Illudin S demonstrated a direct binding affinity to the Mdm2 binding site of p53 through hydrogen bonding, which enhanced the stability and transcriptional activity of p53. The inhibition of the p53-Mdm2 interaction by illudin S led to increased p53 expression. Moreover, this inhibition effectively induced apoptosis and cell cycle arrest in CT26 colorectal cancer cells. Administration of illudin S in a colorectal cancer mouse model resulted in prolonged survival and significant tumor growth inhibition. These findings elucidate the mechanism underlying the anti-cancer effects of illudin S, specifically through its targeting of the p53-Mdm2 interaction in colorectal cancer. Consequently, illudin S emerges as a promising candidate for the development of p53-targeted cancer therapies.
Collapse
Affiliation(s)
- Yoonsuk Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yun Young Lee
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jinyoung Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Anna Maksakova
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghyuk Seo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisun Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Eun Yeom
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yewon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cheol-Hwi Kim
- Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Rhim Ryoo
- Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Se-Na Kim
- Research and Development Center, MediArk Inc., Cheongju 28644, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Tae-Hyung Kim
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young Bin Choy
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon 16419, Republic of Korea; Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang 14, Seongbuk, Seoul 02792, Republic of Korea.
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
33
|
Guo L, Chen W, Yue J, Gao M, Zhang J, Huang Y, Xiong H, Li X, Wang Y, Yuan Y, Chen L, Fei F, Xu R. Unlocking the potential of LHPP: Inhibiting glioma growth and cell cycle via the MDM2/p53 pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167509. [PMID: 39277057 DOI: 10.1016/j.bbadis.2024.167509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The recurrence of glioma after treatment has remained an intractable problem for many years. Recently, numerous studies have explored the pivotal role of the mouse double minute 2 (MDM2)/p53 pathway in cancer treatment. Lysine phosphate phosphohistidine inorganic pyrophosphate phosphatase (LHPP), a newly discovered tumor suppressor, has been confirmed in numerous studies on tumors, but its role in glioma remains poorly understood. Expression matrices in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were analyzed using gene set enrichment analysis (GSEA), revealing significant alterations in the p53 pathway among glioma patients with high LHPP expression. The overexpression of LHPP in glioma cells resulted in a reduction in cell proliferation, migration, and invasive ability, as well as an increase in apoptosis and alterations to the cell cycle. The present study has identified a novel inhibitory mechanism of LHPP against glioma, both in vivo and in vitro. The results demonstrate that LHPP exerts anti-glioma effects via the MDM2/p53 pathway. These findings may offer a new perspective for the treatment of glioma in the clinic.
Collapse
Affiliation(s)
- Lili Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiong Yue
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Gao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yukai Huang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinda Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangyang Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Yuan
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Fan Fei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
34
|
Malhotra L, Singh A, Kaur P, Ethayathulla AS. Phenotypical mapping of TP53 unique missense mutations spectrum in human cancers. J Biomol Struct Dyn 2024:1-14. [PMID: 39639563 DOI: 10.1080/07391102.2024.2435060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/04/2024] [Indexed: 12/07/2024]
Abstract
The p53 tumor suppressor is one of the most mutated genes responsible for tumorigenesis in most human cancers. Out of 29,891 genomic mutations reported in the TP53 Database (https://tp53.isb-cgc.org/), 1,297 are identified as unique missense somatic mutations excluding frameshift, intronic, deletion, nonsense, silent, splice, and other unknown mutations. We have comprehensively analyzed all these 1,297 unique missense mutations and created a phenotypical map based on the distribution of mutations in each domain, the functional state of the protein, and their occurrence in different types of tissues and organs. Our mutation map shows that almost 118 unique missense mutations are reported in the transactivation and proline-rich domains, 1,065 in the central DNA-binding domains, and 113 in the oligomerization and regulatory domains. Based on the phenotype, these mutations are subdivided into 46 super trans, 491 functional, 315 partially functional, and 415 non-functional mutations. The prevalence of these mutations was checked in 71 different types of tissues and found that the mutant R248Q is reported in 51 types of tissues followed by R175H and R273H in 46 types. We correlated the potential impact of mutation in target gene transcription and regulation with nucleosomal DNA and RNA-Pol II complexes. We have discussed the impact of mutation at post-translational modification sites in the structure and function of p53 highlighting the potential therapeutic drug targets with tremendous clinical applications.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
35
|
Tong S, Huang K, Xing W, Chu Y, Nie C, Ji L, Wang W, Tian G, Wang B, Yang J. Unveiling the distinctive variations in multi-omics triggered by TP53 mutation in lung cancer subtypes: An insight from interaction among intratumoral microbiota, tumor microenvironment, and pathology. Comput Biol Chem 2024; 113:108274. [PMID: 39531992 DOI: 10.1016/j.compbiolchem.2024.108274] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/13/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The TP53 mutation is one of the most common gene mutations in non-small cell lung cancer (NSCLC) and plays a significant role in the occurrence, development, and prognosis of both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC). Recent studies have also suggested the predictive value of TP53 mutations in the response to immunotherapy for NSCLC. It is known that intratumoral microbiota, tumor immune microenvironment (TIME) and histology are associated with the roles of TP53 mutation in NSCLC. However, the intrinsic associations among these three factors and their underlying interaction with TP53 mutation are not well understood. Additionally, the potential of predicting TP53 mutations using deep learning methods has not yet been fully evaluated. In this paper, we comprehensively evaluated the tissue microbiome, host gene expression characteristics, and histopathological slides of 992 NSCLC patients obtained from the cancer genome atlas (TCGA) and validated the findings using multi-omics data of 332 NSCLC patients from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Compared to LUSC, LUAD exhibited more substantial differences between patients with and without TP53 mutation in all three aspects. In LUAD, our results imply underlying links between the tissue microbiome and immune cell components in the TIME, and show that the abundance of immune cells is reflected in histology slides. Furthermore, we propose a novel multimodal deep learning model that focuses on histopathology images, which achieves an area under the curve (AUC) of 0.84 in LUAD. In summary, TP53 mutation of LUAD resulted more significant changes in intratumoral microbiota, TIME and histology than that of LUSC. And histopathology images can be used to predict TP53 mutation in LUAD with reasonable accuracy.
Collapse
Affiliation(s)
- Shanhe Tong
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China; Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Kenan Huang
- Department of Thoracic Surgery, Shanghai Changzheng Hospital, Navy Military Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China; Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Weipeng Xing
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China; Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Yuwen Chu
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China; Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Chuanqi Nie
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China; Geneis Beijing Co., Ltd., Beijing 100102, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Wenyan Wang
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China
| | - Geng Tian
- Geneis Beijing Co., Ltd., Beijing 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Bing Wang
- School of Electrical & Information Engineering, Anhui University of Technology, Anhui 243002, China.
| | - Jialiang Yang
- Geneis Beijing Co., Ltd., Beijing 100102, China; Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China.
| |
Collapse
|
36
|
Ullah MZ, Hussain Z, Shakir SA, Mahmood M, Ejaz SA, Aziz M, Fayyaz A, Iqbal J, Mumtaz A. Exploration of newly synthesized deferasirox derivatives as potential anti-cancer agents via in-vitro and in-silico approaches. Int J Biol Macromol 2024; 283:137971. [PMID: 39581395 DOI: 10.1016/j.ijbiomac.2024.137971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Carbonic anhydrase IX (CA IX), upregulated by hypoxia-inducible factor (HIF), plays a crucial role in regulation of intracellular and extracellular pH, which is essential for the growth and spread of tumors. The overexpression of CA IX in breast cancer is linked to a low post-radiation patient survival rate. Under normoxic conditions, CA IX expression is relatively low, but hypoxia-inducible factors (HIFs) upregulate its expression when oxygen levels drop. This adaptation supports the tumor's acidic microenvironment, aiding processes like metastasis, immune evasion, and resistance to therapies. Due to these functions, CA IX is considered a promising target for cancer therapy, with inhibitors in development aimed at disrupting its activity and thus hindering tumor growth and survival. Thus, various derivatives of already reported anticancer drug i.e., deferasirox were synthesized and their effect on CA IX enzyme were assessed. Additionally, the binding affinities of deferasirox derivatives with three distinct receptor proteins i.e., Tumor Protein P53 (TP53), Nuclear factor kappa B (NF-κB) and caspase 3 (pdb: 3DCY, 1NFI, 3DEI) were also observed. Their anticancer effect was evaluated by using non-invasive human breast cancer cells i.e., MCF-7 and glioblastoma cells (U87). Among all derivatives, the four thioureas derivatives showed more anticancer potential. The 4-(3,5-bis(2-hydroxyphenyl)-1H-1,2,4-triazol-1-yl)-N-((3,4-dimethoxyphenyl)carbamothioyl) benzamide (6) derivative exhibited maximum anticancer potential (0.33 ± 0.02 μM) with greater binding affinity at different protein receptors. The MTT results further confirmed the enzyme inhibition results of deferasirox derivatives. In conclusion, targeting hypoxia-induced CA IX expression in breast cancer through the use of deferasirox-derived thiourea derivatives presents a promising therapeutic approach.
Collapse
Affiliation(s)
- Muhammad Zahid Ullah
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Zahid Hussain
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan; Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Syed Ahmad Shakir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Mahnoor Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacv, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Jamshed Iqbal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan; Center for Advance Drug Research, COMSATS University Islamabad, Abbottabad 22060, Pakistan.
| | - Amara Mumtaz
- Department of Chemistry, COMSATS University Islamabad, Abbottabad 22060, Pakistan.
| |
Collapse
|
37
|
Gungordu S, Aptullahoglu E. Targeting MDM2-mediated suppression of p53 with idasanutlin: a promising therapeutic approach for acute lymphoblastic leukemia. Invest New Drugs 2024; 42:603-611. [PMID: 39305365 DOI: 10.1007/s10637-024-01473-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/17/2024] [Indexed: 12/08/2024]
Abstract
Despite available treatments for acute lymphoblastic leukemia (ALL), the disease's high clinical variability necessitates new therapeutic strategies, particularly for patients with high-risk features. The tumor suppressor protein p53, encoded by the TP53 gene and known as the guardian of the genome, plays a crucial role in preventing tumor development. Over 90% of ALL cases initially harbor wild-type TP53. Reactivation of p53, which is encoded from the wild type TP53 but lost its function for several reasons, is an attractive therapeutic approach in cancer treatment. p53 can be activated in a non-genotoxic manner by targeting its primary repressor, the MDM2 protein. Clinical trials involving MDM2 inhibitors are currently being conducted in a growing body of investigation, reflecting of the interest in incorporating these treatments into cancer treatment strategies. Early-phase clinical trials have demonstrated the promise of idasanutlin (RG7388), one of the developed compounds. It is a second-generation MDM2-p53 binding antagonist with enhanced potency, selectivity, and bioavailability. The aim of this study is to evaluate the efficacy of RG7388 as a therapeutic strategy for ALL and to investigate its potential impact on improving treatment outcomes for high-risk patients. RG7388 potently decreased the viability in five out of six ALL cell lines with diverse TP53 mutation profiles, whereas only one cell line exhibited high resistance. RG7388 induced a pro-apoptotic gene expression signature with upregulation of p53-target genes involved in the intrinsic and extrinsic pathways of apoptosis. Consequently, RG7388 led to a concentration-dependent increase in caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase. In this research, RG7388 was investigated with pre-clinical methods in ALL cells as a novel treatment strategy. This study suggests further functional research and in-vivo evaluation, and it highlights the prospect of treating p53-functional ALL with MDM2 inhibitors.
Collapse
Affiliation(s)
- Seyda Gungordu
- Biotechnology Application and Research Centre, Bilecik Şeyh Edebali University, 11100, Bilecik, Turkey
| | - Erhan Aptullahoglu
- Biotechnology Application and Research Centre, Bilecik Şeyh Edebali University, 11100, Bilecik, Turkey.
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Şeyh Edebali University, 11100, Bilecik, Turkey.
| |
Collapse
|
38
|
Gu Z, Zou L, Pan X, Yu Y, Liu Y, Zhang Z, Liu J, Mao S, Zhang J, Guo C, Li W, Geng J, Zhang W, Yao X, Shen B. The role and mechanism of NAT10-mediated ac4C modification in tumor development and progression. MedComm (Beijing) 2024; 5:e70026. [PMID: 39640362 PMCID: PMC11617596 DOI: 10.1002/mco2.70026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
RNA modification has emerged as a crucial area of research in epigenetics, significantly influencing tumor biology by regulating RNA metabolism. N-acetyltransferase 10 (NAT10)-mediated N4-acetylcytidine (ac4C) modification, the sole known acetylation in eukaryotic RNA, influences cancer pathogenesis and progression. NAT10 is the only writer of ac4C and catalyzes acetyl transfer on targeted RNA, and ac4C helps to improve the stability and translational efficiency of ac4C-modified RNA. NAT10 is highly expressed and associated with poor prognosis in pan-cancers. Based on its molecular mechanism and biological functions, ac4C is a central factor in tumorigenesis, tumor progression, drug resistance, and tumor immune escape. Despite the increasing focus on ac4C, the specific regulatory mechanisms of ac4C in cancer remain elusive. The present review thoroughly analyzes the current knowledge on NAT10-mediated ac4C modification in cancer, highlighting its broad regulatory influence on targeted gene expression and tumor biology. This review also summarizes the limitations and perspectives of current research on NAT10 and ac4C in cancer, to identify new therapeutic targets and advance cancer treatment strategies.
Collapse
Affiliation(s)
- Zhuoran Gu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Libin Zou
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Xinjian Pan
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Yang Yu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Yongqiang Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Zhijin Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Ji Liu
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Shiyu Mao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Junfeng Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Changcheng Guo
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Wei Li
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Jiang Geng
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Wentao Zhang
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Xudong Yao
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
| | - Bing Shen
- Department of UrologyShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
- Urologic Cancer InstituteSchool of MedicineTongji UniversityShanghaiChina
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of MedicineTongi UniversityShanahaiChina
| |
Collapse
|
39
|
Peng Y, Bai J, Li W, Su Z, Cheng X. Advancements in p53-Based Anti-Tumor Gene Therapy Research. Molecules 2024; 29:5315. [PMID: 39598704 PMCID: PMC11596491 DOI: 10.3390/molecules29225315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
The p53 gene is one of the genes most closely associated with human tumors and has become a popular target for tumor drug design. Currently, p53-based gene therapy techniques have been developed, but these therapies face challenges such as immaturity, high safety hazards, limited efficacy, and low patient acceptance. However, researchers are no less enthusiastic about the treatment because of its theoretical potential to treat cancer. In this paper, the advances in p53-based gene therapy and related nucleic acid delivery technologies were reviewed and prospected in order to support further development in this field.
Collapse
Affiliation(s)
- Yuanwan Peng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Jinping Bai
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Wang Li
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.P.); (J.B.); (W.L.)
| |
Collapse
|
40
|
Song H, Xiao S, Wu J, Lu M. Drugging p53: Barriers, Criteria, and Prospects. Cancer Discov 2024; 14:2055-2060. [PMID: 39485253 DOI: 10.1158/2159-8290.cd-24-0837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 11/03/2024]
Abstract
Pharmacologically targeting tumor suppressors necessitates an unprecedented strategy of restoring, rather than conventionally inhibiting, protein function, and p53, the most commonly mutated protein in cancer, has thus remained undruggable. In this study, we address long-standing misconceptions in the field and gaps in the scientific logic for a p53 function-restoration strategy, identify four barriers for drugging mutant p53, and accordingly propose effectiveness evaluation criteria, clinical-translating norms, and prospects for mutant p53 rescue compounds.
Collapse
Affiliation(s)
- Huaxin Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shujun Xiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Lu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Lu J, Chen L, Fatima Z, Huang J, Chen J. Synergistic rescue of temperature-sensitive p53 mutants by hypothermia and arsenic trioxide. Mol Carcinog 2024; 63:2205-2217. [PMID: 39115446 PMCID: PMC11466696 DOI: 10.1002/mc.23804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 10/11/2024]
Abstract
The p53 tumor suppressor is inactivated by mutations in about 50% of tumors. Rescuing the transcriptional function of mutant p53 has potential therapeutic benefits. Approximately 15% of p53 mutants are temperature sensitive (TS) and regain maximal activity at 32°C. Proof of concept study showed that induction of 32°C hypothermia in mice restored TS mutant p53 activity and inhibited tumor growth. However, 32°C is the lower limit of therapeutic hypothermia procedures for humans. Higher temperatures are preferable but result in suboptimal TS p53 activation. Recently, arsenic trioxide (ATO) was shown to rescue the conformation of p53 structural mutants by stabilizing the DNA binding domain. We examined the responses of 17 frequently observed p53 TS mutants to functional rescue by temperature shift and ATO. The results showed that ATO only rescued mild p53 TS mutants with high basal activity at 37°C. Mild TS mutants showed a common feature of regaining significant activity at the semi-permissive temperature of 35°C and could be further stimulated by ATO at 35°C. TS p53 rescue by ATO was antagonized by the cellular redox mechanism and was rapidly reversible. Inhibition of glutathione (GSH) biosynthesis enhanced ATO rescue efficiency and sustained p53 activity after ATO washout. The results suggest that mild TS p53 mutants are uniquely responsive to functional rescue by ATO due to small thermostability deficits and inherent potential to regain active conformation. Combining mild hypothermia and ATO may provide an effective and safe procedure for targeting tumors with p53 TS mutations.
Collapse
Affiliation(s)
- Junhao Lu
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Lihong Chen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Zainab Fatima
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jeffrey Huang
- Department of Anesthesiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jiandong Chen
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
42
|
Abusaliya A, Kim HH, Vetrivel P, Bhosale PB, Jeong SH, Park MY, Lee SJ, Kim GS. Transcriptome analysis revealed the genes and major pathways involved in prunetrin treated hepatocellular carcinoma cells. Front Pharmacol 2024; 15:1400186. [PMID: 39555097 PMCID: PMC11563786 DOI: 10.3389/fphar.2024.1400186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/14/2024] [Indexed: 11/19/2024] Open
Abstract
Liver cancer represents a complex and severe ailment that poses tough challenges to global healthcare. Transcriptome sequencing plays a crucial role in enhancing our understanding of cancer biology and accelerating the development of more effective methods for cancer diagnosis and treatment. In the course of our current investigation, we identified a total of 1,149 differentially expressed genes (DEGs), encompassing 499 upregulated and 650 downregulated genes, subsequent to prunetrin (PUR) treatment. Our methodology encompassed gene and pathway enrichment analysis, functional annotation, KEGG pathway assessments, and protein-protein interaction (PPI) analysis of the DEGs. The preeminent genes within the DEGs were found to be associated with apoptotic processes, cell cycle regulation, the PI3k/Akt pathway, the MAPK pathway, and the mTOR pathway. Furthermore, key apoptotic-related genes exhibited close interconnections and cluster analysis found three interacting hub genes namely, TP53, TGFB1 and CASP8. Validation of these genes was achieved through GEPIA and western blotting. Collectively, our findings provide insights into the functional landscape of liver cancer-related genes, shedding light on the molecular mechanisms driving disease progression and highlighting potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Preethi Vetrivel
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Yeong Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Si Joon Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
43
|
Puzo CJ, Hager KM, Rinder HM, Weinberg OK, Siddon AJ. Overall survival in TP53-mutated AML and MDS. Ann Hematol 2024:10.1007/s00277-024-06054-7. [PMID: 39443370 DOI: 10.1007/s00277-024-06054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
TP53 mutations in patients with AML and MDS frequently portend a poor prognosis, related to both p53 allele status and blast count. In 2022, the ICC and WHO released updated guidelines for classifying p53-mutated AML/MDS. The characteristics of p53 mutations, their associated co-mutations, and their effects on overall survival (OS) are not known in the context of these new guidelines. A retrospective chart review was undertaken for all patients with AML or MDS and at least one TP53 mutation detected on next generation sequencing (NGS) at Yale New Haven Hospital from 2015 to 2023. All patients (N = 210) met criteria for one of the 5 diagnostic classes based on WHO and ICC guidelines. Kaplan-Meier curves with associated log-rank testing and Cox proportional hazards model quantified the effects of clinical and molecular data on survival. Multi-hit pathogenic mutations were related to poorer OS in MDS but not AML using either the WHO (p = .02) or the ICC (p = .01) diagnostic criteria. The most significant predictors of OS in the sample overall were platelet count < 50 K (HR: 2.01, 95% CI [1.47, 2.75], p < .001) and TP53 VAF ≤ 40% (HR: 0.68, 95% CI[0.50, 0.91], p = .01). Blast count ranges, complex karyotype, and p53 mutation type or location, showed no association with OS. In our cohort defined by the 2022 ICC and WHO criteria, VAF and thrombocytopenia, rather than blast count or p53 mutation features, significantly predicted OS. These results speak to each criteria's ability to identify cases of similarly aggressive disease biology and prognosis.
Collapse
Affiliation(s)
| | - Karl M Hager
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Henry M Rinder
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Olga K Weinberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexa J Siddon
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
44
|
Hosseini MS. Current insights and future directions of Li-Fraumeni syndrome. Discov Oncol 2024; 15:561. [PMID: 39404911 PMCID: PMC11480288 DOI: 10.1007/s12672-024-01435-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Li-Fraumeni syndrome is a rare yet serious hereditary cancer predisposition syndrome, marked by a significant early-life increased risk of developing cancer. Primarily caused by germline mutations in the TP53 tumor suppressor gene, Li-Fraumeni syndrome is associated with a wide range of malignancies. Clinical management of Li-Fraumeni syndrome could be challenging, especially the lifelong surveillance and follow-up of patients which requires a multidisciplinary approach. Emerging insights into the molecular and clinical basis of Li-Fraumeni syndrome, coupled with advances in genomic technologies and targeted therapies, offer promise in optimizing risk assessment, early detection, and treatment strategies tailored to the unique clinical and molecular profiles of affected individuals. This review discusses Li-Fraumeni syndrome in more depth, reviewing molecular, genomic, epidemiological, clinical, and therapeutic aspects of this disease.
Collapse
Affiliation(s)
- Mohammad-Salar Hosseini
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Golgasht Street, Tabriz, 51666, EA, Iran.
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Evidence-Based Medicine, Iranian EBM Center: A JBI Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
45
|
Nzitakera A, Uwamariya D, Kato H, Surwumwe JB, Mbonigaba A, Ndoricyimpaye EL, Uwamungu S, Manirakiza F, Ndayisaba MC, Ntakirutimana G, Seminega B, Dusabejambo V, Rutaganda E, Kamali P, Ngabonziza F, Ishikawa R, Watanabe H, Rugwizangoga B, Baba S, Yamada H, Yoshimura K, Sakai Y, Sugimura H, Shinmura K. TP53 mutation status and consensus molecular subtypes of colorectal cancer in patients from Rwanda. BMC Cancer 2024; 24:1266. [PMID: 39394554 PMCID: PMC11468329 DOI: 10.1186/s12885-024-13009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Mutations in the TP53 tumor suppressor gene are well-established drivers of colorectal cancer (CRC) development. However, data on the prevalence of TP53 variants and their association with consensus molecular subtype (CMS) classification in patients with CRC from Rwanda are currently lacking. This study addressed this knowledge gap by investigating TP53 mutation status concerning CMS classification in a CRC cohort from Rwanda. METHODS Formalin-fixed paraffin-embedded (FFPE) tissue blocks were obtained from 51 patients with CRC at the University Teaching Hospital of Kigali, Rwanda. Exons 4 to 11 and their flanking intron-exon boundaries in the TP53 gene were sequenced using Sanger sequencing to identify potential variants. The recently established immunohistochemistry-based classifier was employed to determine the CMS of each tumor. RESULTS Sequencing analysis of cancerous tissue DNA revealed TP53 pathogenic variants in 23 of 51 (45.1%) patients from Rwanda. These variants were predominantly missense types (18/23, 78.3%). The most frequent were c.455dup (p.P153Afs*28), c.524G > A (p.R175H), and c.733G > A (p.G245S), each identified in three tumors. Trinucleotide sequence context analysis of the 23 mutations (20 of which were single-base substitutions) revealed a predominance of the [C > N] pattern among single-base substitutions (SBSs) (18/20; 90.0%), with C[C > T]G being the most frequent mutation (5/18, 27.8%). Furthermore, pyrimidine bases (C and T) were preferentially found at the 5' flanking position of the mutated cytosine (13/18; 72.2%). Analysis of CMS subtypes revealed the following distribution: CMS1 (microsatellite instability-immune) (6/51, 11.8%), CMS2 (canonical) (28/51, 54.9%), CMS3 (metabolic) (9/51, 17.6%), and CMS4 (mesenchymal) (8/51, 15.7%). Interestingly, the majority of TP53 variants were in the CMS2 subgroup (14/23; 60.1%). CONCLUSION Our findings indicate a high frequency of TP53 variants in CRC patients from Rwanda. Importantly, these variants are enriched in the CMS2 subtype. This study, representing the second investigation into molecular alterations in patients with CRC from Rwanda and the first to explore TP53 mutations and CMS classification, provides valuable insights into the molecular landscape of CRC in this understudied population.
Collapse
Affiliation(s)
- Augustin Nzitakera
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Delphine Uwamariya
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Jean Bosco Surwumwe
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - André Mbonigaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Ella Larissa Ndoricyimpaye
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Université Catholique de Louvain, Médecine Expérimentale, Brussels, 1348, Belgium
| | - Schifra Uwamungu
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-40530, Sweden
| | - Felix Manirakiza
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Marie Claire Ndayisaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Gervais Ntakirutimana
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Benoit Seminega
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Vincent Dusabejambo
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Eric Rutaganda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Placide Kamali
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - François Ngabonziza
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Rei Ishikawa
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Belson Rugwizangoga
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Tumor Immunology Laboratory, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SE- 40530, Sweden
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Medicine, 1- 20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Haruhiko Sugimura
- Sasaki Institute Sasaki Foundation, 2-2 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
46
|
Qayoom H, Haq BU, Sofi S, Jan N, Jan A, Mir MA. Targeting mutant p53: a key player in breast cancer pathogenesis and beyond. Cell Commun Signal 2024; 22:484. [PMID: 39390510 PMCID: PMC11466041 DOI: 10.1186/s12964-024-01863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The p53 mutation is the most common genetic mutation associated with human neoplasia. TP53 missense mutations, which frequently arise early in breast cancer, are present in over thirty percent of breast tumors. In breast cancer, p53 mutations are linked to a more aggressive course of the disease and worse overall survival rates. TP53 mutations are mostly seen in triple-negative breast cancer, a very diverse kind of the disease. The majority of TP53 mutations originate in the replacement of individual amino acids within the p53 protein's core domain, giving rise to a variety of variations referred to as "mutant p53s." In addition to gaining carcinogenic qualities through gain-of-function pathways, these mutants lose the typical tumor-suppressive features of p53 to variable degrees. The gain-of-function impact of stabilized mutant p53 causes tumor-specific dependency and resistance to therapy. P53 is a prospective target for cancer therapy because of its tumor-suppressive qualities and the numerous alterations that it experiences in tumors. Phenotypic abnormalities in breast cancer, notably poorly differentiated basal-like tumors are frequently linked to high-grade tumors. By comparing data from cell and animal models with clinical outcomes in breast cancer, this study investigates the molecular mechanisms that convert gene alterations into the pathogenic consequences of mutant p53's tumorigenic activity. The study delves into current and novel treatment approaches aimed at targeting p53 mutations, taking into account the similarities and differences in p53 regulatory mechanisms between mutant and wild-type forms, as well.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Burhan Ul Haq
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Shazia Sofi
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Nusrat Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Asma Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India.
| |
Collapse
|
47
|
Lin YC, Ku CC, Wuputra K, Wu DC, Yokoyama KK. Vulnerability of Antioxidant Drug Therapies on Targeting the Nrf2-Trp53-Jdp2 Axis in Controlling Tumorigenesis. Cells 2024; 13:1648. [PMID: 39404411 PMCID: PMC11475825 DOI: 10.3390/cells13191648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Control of oxidation/antioxidation homeostasis is important for cellular protective functions, and disruption of the antioxidation balance by exogenous and endogenous ligands can lead to profound pathological consequences of cancerous commitment within cells. Although cancers are sensitive to antioxidation drugs, these drugs are sometimes associated with problems including tumor resistance or dose-limiting toxicity in host animals and patients. These problems are often caused by the imbalance between the levels of oxidative stress-induced reactive oxygen species (ROS) and the redox efficacy of antioxidants. Increased ROS levels, because of abnormal function, including metabolic abnormality and signaling aberrations, can promote tumorigenesis and the progression of malignancy, which are generated by genome mutations and activation of proto-oncogene signaling. This hypothesis is supported by various experiments showing that the balance of oxidative stress and redox control is important for cancer therapy. Although many antioxidant drugs exhibit therapeutic potential, there is a heterogeneity of antioxidation functions, including cell growth, cell survival, invasion abilities, and tumor formation, as well as the expression of marker genes including tumor suppressor proteins, cell cycle regulators, nuclear factor erythroid 2-related factor 2, and Jun dimerization protein 2; their effectiveness in cancer remains unproven. Here, we summarize the rationale for the use of antioxidative drugs in preclinical and clinical antioxidant therapy of cancer, and recent advances in this area using cancer cells and their organoids, including the targeting of ROS homeostasis.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Kazunari K. Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-C.K.); (K.W.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
48
|
Lo CS, Alavi P, Bassey-Archibong B, Jahroudi N, Pasdar M. Differential effect of plakoglobin in restoring the tumor suppressor activities of p53-R273H vs. p53-R175H mutants. PLoS One 2024; 19:e0306705. [PMID: 39361615 PMCID: PMC11449273 DOI: 10.1371/journal.pone.0306705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/21/2024] [Indexed: 10/05/2024] Open
Abstract
The six most common missense mutations in the DNA binding domain of p53 are known as "hot spots" and include two of the most frequently occurring p53 mutations (p53-R175H and p53-R273H). p53 stability and function are regulated by various post-translational modifications such as phosphorylation, acetylation, sumoylation, methylation, and interactions with other proteins including plakoglobin. Previously, using various carcinoma cell lines we showed that plakoglobin interacted with wild-type and several endogenous p53 mutants (e.g., R280K, R273H, S241F, S215R, R175H) and restored their tumor suppressor activities in vitro. Since mutant p53 function is both mutant-specific and cell context-dependent, we sought herein, to determine if plakoglobin tumor suppressive effects on exogenously expressed p53-R273H and p53-R175H mutants are similarly maintained under the same genetic background using the p53-null and plakoglobin-deficient H1299 cell line. Functional assays were performed to assess colony formation, migration, and invasion while immunoblotting and qPCR were used to examine the subcellular distribution and expression of specific proteins and genes that are typically regulated by or regulate p53 function and are altered in mutant p53-expressing cell lines and tumors. We show that though, plakoglobin interacted with both p53-R273H and p53-R175H mutants, it had a differential effect on the transcription and subcellular distribution of their gene targets and their overall oncogenic properties in vitro. Notably, we found that plakoglobin's tumor suppressive effects were significantly stronger in p53-R175H expressing cells compared to p53-R273H cells. Together, our results indicate that exploring plakoglobin interactions with p53-R175H may be useful for the development of cancer therapeutics focused on the restoration of p53 function.
Collapse
Affiliation(s)
- Chu Shiun Lo
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Parnian Alavi
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Blessing Bassey-Archibong
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biology and Environmental Sciences Concordia University of Edmonton, Edmonton, Alberta, Canada
| | - Nadia Jahroudi
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
49
|
Di Y, Zhang X, Wen X, Qin J, Ye L, Wang Y, Song M, Wang Z, He W. MAPK Signaling-Mediated RFNG Phosphorylation and Nuclear Translocation Restrain Oxaliplatin-Induced Apoptosis and Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402795. [PMID: 39120977 PMCID: PMC11481204 DOI: 10.1002/advs.202402795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/12/2024] [Indexed: 08/11/2024]
Abstract
Chemotherapy resistance remains a major challenge in the treatment of colorectal cancer (CRC). Therefore, it is crucial to develop novel strategies to sensitize cancer cells to chemotherapy. Here, the fringe family is screened to determine their contribution to chemotherapy resistance in CRC. It is found that RFNG depletion significantly sensitizes cancer cells to oxaliplatin treatment. Mechanistically, chemotherapy-activated MAPK signaling induces ERK to phosphorylate RFNG Ser255 residue. Phosphorylated RFNG S255 (pS255) interacts with the nuclear importin proteins KPNA1/importin-α1 and KPNB1/importin-β1, leading to its translocation into the nucleus where it targets p53 and inhibits its phosphorylation by competitively inhibiting the binding of CHK2 to p53. Consequently, the expression of CDKN1A is decreased and that of SLC7A11 is increased, leading to the inhibition of apoptosis and ferroptosis. In contrast, phosphor-deficient RFNG S225A mutant showed increased apoptosis and ferroptosis, and exhibited a notable response to oxaliplatin chemotherapy both in vitro and in vivo. It is further revealed that patients with low RFNG pS255 exhibited significant sensitivity to oxaliplatin in a patient-derived xenograft (PDX) model. These findings highlight the crosstalk between the MAPK and p53 signaling pathways through RFNG, which mediates oxaliplatin resistance in CRC. Additionally, this study provides guidance for oxaliplatin treatment of CRC patients.
Collapse
Affiliation(s)
- Yuqin Di
- Molecular Diagnosis and Gene Testing CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiang Zhang
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiangqiong Wen
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Jiale Qin
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Lvlan Ye
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of BiochemistryZhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Youpeng Wang
- Center of Hepato‐Pancreato‐Biliary SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Ziyang Wang
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Center for Translational MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361000China
| |
Collapse
|
50
|
Dinić J, Jovanović Stojanov S, Dragoj M, Grozdanić M, Podolski-Renić A, Pešić M. Cancer Patient-Derived Cell-Based Models: Applications and Challenges in Functional Precision Medicine. Life (Basel) 2024; 14:1142. [PMID: 39337925 PMCID: PMC11433531 DOI: 10.3390/life14091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
The field of oncology has witnessed remarkable progress in personalized cancer therapy. Functional precision medicine has emerged as a promising avenue for achieving superior treatment outcomes by integrating omics profiling and sensitivity testing of patient-derived cancer cells. This review paper provides an in-depth analysis of the evolution of cancer-directed drugs, resistance mechanisms, and the role of functional precision medicine platforms in revolutionizing individualized treatment strategies. Using two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived xenograft (PDX) models, and advanced functional assays has significantly improved our understanding of tumor behavior and drug response. This progress will lead to identifying more effective treatments for more patients. Considering the limited eligibility of patients based on a genome-targeted approach for receiving targeted therapy, functional precision medicine provides unprecedented opportunities for customizing medical interventions according to individual patient traits and individual drug responses. This review delineates the current landscape, explores limitations, and presents future perspectives to inspire ongoing advancements in functional precision medicine for personalized cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11108 Belgrade, Serbia; (J.D.); (S.J.S.); (M.D.); (M.G.); (A.P.-R.)
| |
Collapse
|