1
|
Katona BW, Shukla A, Hu W, Nyul T, Dudzik C, Arvanitis A, Clay D, Dungan M, Weber M, Tu V, Hao F, Gan S, Chau L, Buchner AM, Falk GW, Jaffe DL, Ginsberg G, Palmer SN, Zhan X, Patterson AD, Bittinger K, Ni J. Microbiota and metabolite-based prediction tool for colonic polyposis with and without a known genetic driver. Gut Microbes 2025; 17:2474141. [PMID: 40069167 PMCID: PMC11913376 DOI: 10.1080/19490976.2025.2474141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/22/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Despite extensive investigations into the microbiome and metabolome changes associated with colon polyps and colorectal cancer (CRC), the microbiome and metabolome profiles of individuals with colonic polyposis, including those with (Gene-pos) and without (Gene-neg) a known genetic driver, remain comparatively unexplored. Using colon biopsies, polyps, and stool from patients with Gene-pos adenomatous polyposis (N = 9), Gene-neg adenomatous polyposis (N = 18), and serrated polyposis syndrome (SPS, N = 11), we demonstrated through 16S rRNA sequencing that the mucosa-associated microbiota in individuals with colonic polyposis is representative of the microbiota associated with small polyps, and that both Gene-pos and SPS cohorts exhibit differential microbiota populations relative to Gene-neg polyposis cohorts. Furthermore, we used these differential microbiota taxa to perform linear discriminant analysis to differentiate Gene-neg subjects from Gene-pos and from SPS subjects with an accuracy of 89% and 93% respectively. Stool metabolites were quantified via 1H NMR, revealing an increase in alanine in SPS subjects relative to non-polyposis subjects, and Partial Least Squares Discriminant Analysis (PLS-DA) analysis indicated that the proportion of leucine to tyrosine in fecal samples may be predictive of SPS. Use of these microbial and metabolomic signatures may allow for better diagnostric and risk-stratification tools for colonic polyposis patients and their families as well as promote development of microbiome-targeted approaches for polyp prevention.
Collapse
Affiliation(s)
- Bryson W Katona
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ashutosh Shukla
- Division of Digestive & Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Weiming Hu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas Nyul
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christina Dudzik
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Alex Arvanitis
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Clay
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michaela Dungan
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marina Weber
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA, USA
| | - Shuheng Gan
- Peter O'Donnell Jr. School of Public Health, Quantitative Biomedical Research Center, Center for the Genetics and Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lillian Chau
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Anna M Buchner
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gary W Falk
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David L Jaffe
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gregory Ginsberg
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Suzette N Palmer
- Peter O'Donnell Jr. School of Public Health, Quantitative Biomedical Research Center, Center for the Genetics and Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaowei Zhan
- Peter O'Donnell Jr. School of Public Health, Quantitative Biomedical Research Center, Center for the Genetics and Host Defense, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, Penn State University, University Park, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Josephine Ni
- Division of Digestive & Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Cruz-Lebrón A, Faiez TS, Hess MM, Sfanos KS. Diet and the microbiome as mediators of prostate cancer risk, progression, and therapy response. Urol Oncol 2025; 43:209-220. [PMID: 39757039 DOI: 10.1016/j.urolonc.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 01/07/2025]
Abstract
Complex relationships between the human microbiome and cancer are increasingly recognized for cancer sites that harbor commensal microbial communities such as the gut, genitourinary tract, and skin. For organ sites that likely do not contain commensal microbiota, there is still a substantial capacity for the human-associated microbiota to influence disease etiology across the cancer spectrum. We propose such a relationship for prostate cancer, the most commonly diagnosed cancer in males in the United States. This review explores the current evidence for a role for the urinary and gut microbiota in prostate cancer risk, via both direct interactions (prostate infections) and long-distance interactions such as via the metabolism of procarcinogenic or anticarcinogenic dietary metabolites. We further explore a newly recognized role of the gut microbiota in mediating cancer treatment response or resistance either via production of androgens and/or procarcinogenic metabolites or via direct metabolism of anticancer drugs that are used to treat advanced disease. Overall, we present the current state of knowledge relating to how the human microbiome mediates prostate cancer risk, progression, and therapy response, as well as suggest future research directions for the field.
Collapse
Affiliation(s)
- Angélica Cruz-Lebrón
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Megan M Hess
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD; Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
3
|
Abolhasani-Zadeh F, Kheirandish A, Rajaeinia H, Hashemipour MA. Relationship between the risk of breast cancer and periodontal disease: a case-control study. Sci Rep 2025; 15:10518. [PMID: 40140504 PMCID: PMC11947191 DOI: 10.1038/s41598-025-94710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Periodontal disease affects individuals' quality of life across economic, social, and psychological dimensions. Without timely and appropriate treatment, it can lead to tooth loss. This disease is potentially associated with certain types of cancer. The aim of this study was to investigate the relationship between periodontal disease and the risk of breast cancer. This study examined 200 women with breast cancer and 200 healthy women over the age of 35. Age and gender were matched between the case and control groups. A questionnaire was completed for all participants, which included epidemiological indicators such as age, gender, smoking status, alcohol consumption, socio-economic and educational status, body mass index (BMI), family history of breast cancer, age at menarche, age at menopause, physical inactivity, current diseases, and past medical/dental history. Periodontal status indicators, including probing pocket depth (PPD), bleeding on probing (BOP), attachment loss (AL), and gingival index (GI), were also evaluated. Statistical analysis was performed using Chi-square tests, multivariate regression models, and SPSS software version 21. A p-value of < 0.05 was considered statistically significant for all tests. The study revealed that a family history of breast cancer, early menarche, late menopause, age at first pregnancy, BMI above 25 and higher GI were significantly associated with an increased risk of breast cancer. After running Step 1a of the regression model, it was found that family history of breast cancer, increased BMI and GI were significantly associated with the risk of breast cancer. However, no statistically significant differences were found regarding age, educational level, socio-economic status, smoking, BOP, and PPD in relation to breast cancer occurrence. Individuals with a positive family history of breast cancer, higher BMI, and elevated GI were significantly at greater risk of developing breast cancer.
Collapse
Affiliation(s)
| | - Amirali Kheirandish
- Kerman Social Determinants on Oral Health Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Haleh Rajaeinia
- Kerman Social Determinants on Oral Health Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Alsadat Hashemipour
- Professor of Oral Medicine, Department of Oral Medicine, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
5
|
Sharma P, Jain T, Sorgen A, Iyer S, Tarique M, Roy P, Kurtom S, Sethi V, Bava EP, Gutierrez-Garcia AK, Vaish U, Suresh DS, Sahay P, Edwards D, Afghani J, Putluri S, Reddy KRK, Amara CS, Kamal AHM, Fodor A, Dudeja V. Smoking-induced gut microbial dysbiosis mediates cancer progression through modulation of anti-tumor immune response. iScience 2025; 28:112002. [PMID: 40104059 PMCID: PMC11914281 DOI: 10.1016/j.isci.2025.112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/01/2024] [Accepted: 02/07/2025] [Indexed: 03/20/2025] Open
Abstract
Cigarette smoke exposure (CSE) increases the risk for a plethora of cancers. Recent evidence indicates that the gut microbiome can influence cancer progression by immune system modulation. Since CSE alters the gut microbiome, we hypothesized that the gut microbiome serves as a causative link between smoking and cancer growth. Through a combination of syngeneic animal models and fecal microbiota transplantation studies, we established an essential role for smoke-induced dysbiosis in cancer growth. 16s rRNA sequencing and liquid chromatography-mass spectrometry indicated a unique CSE-associated microbial and metabolomic signature. Immunophenotyping of tumor specimens and experiments in Rag1-KO and CD8-KO demonstrated that smoke-induced tumor growth requires functional adaptive immunity. Finally, utilizing gut microbial ablation strategies with broad- and narrow-spectrum antibiotics, we demonstrated the reversal of phenotypic effects of CSE. Our study provides evidence for gut microbiome as an actionable target to mitigate CSE-induced tumor promotion.
Collapse
Affiliation(s)
- Prateek Sharma
- Department of Surgery, University of Alabama, Birmingham, AL 35233, USA
| | - Tejeshwar Jain
- Department of Surgery, University of Alabama, Birmingham, AL 35233, USA
| | - Ali Sorgen
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Srikanth Iyer
- Department of Surgery, University of Alabama, Birmingham, AL 35233, USA
| | - Mohammad Tarique
- Sylvester Cancer Center, Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Pooja Roy
- Sylvester Cancer Center, Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Saba Kurtom
- Sylvester Cancer Center, Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Vrishketan Sethi
- Department of Surgery, University of Alabama, Birmingham, AL 35233, USA
| | - Ejas P Bava
- Department of Surgery, University of Alabama, Birmingham, AL 35233, USA
| | | | - Utpreksha Vaish
- Department of Surgery, University of Alabama, Birmingham, AL 35233, USA
| | | | - Preeti Sahay
- Department of Surgery, University of Alabama, Birmingham, AL 35233, USA
| | - Dujon Edwards
- Sylvester Cancer Center, Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Jumana Afghani
- Sylvester Cancer Center, Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Satwikreddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karthik Reddy Kami Reddy
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chandra Sekhar Amara
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abu Hena Mustafa Kamal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anthony Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Vikas Dudeja
- Department of Surgery, University of Alabama, Birmingham, AL 35233, USA
| |
Collapse
|
6
|
Qin Y, Wang Q, Lin Q, Liu F, Pan X, Wei C, Chen J, Huang T, Fang M, Yang W, Pan L. Multi-omics analysis reveals associations between gut microbiota and host transcriptome in colon cancer patients. mSystems 2025; 10:e0080524. [PMID: 40013792 PMCID: PMC11915798 DOI: 10.1128/msystems.00805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Colon cancer (CC) is one of the most common cancers globally, which is associated with the gut microbiota intimately. In current research, exploring the complex interaction between microbiomes and CC is a hotspot. However, the information on microbiomes in most previous studies is based on fecal, which does not fully display the microbial environment of CC. Herein, we collected mucosal and tissue samples from both the tumor and normal regions of 19 CC patients and clarified the composition of mucosal microbiota by 16S rRNA and metagenomic sequencing. Additionally, RNA-Seq was also conducted to identify the different expression genes between tumor and normal tissue samples. We revealed significantly different microbial community structures and expression profiles to CC. Depending on correlation analysis, we demonstrated that 1,472 genes were significantly correlated with CC tumor microbiota. Our study reveals a significant enrichment of Campylobacter jejuni in the mucosa of CC, which correlates with bile secretion. Additionally, we observe a negative correlation between C. jejuni and immune cells CD4+ Tem and mast cells. Finally, we discovered that metabolic bacterial endosymbiont of Bathymodiolus sp., Bacillus wiedmannii, and Mycobacterium tuberculosis had a significant survival value for CC, which was ignored by previous research. Overall, our study expands the understanding of the complex interplay between microbiota and CC and provides new targets for the treatment of CC. IMPORTANCE This study contributes to our understanding of the interaction between microbiota and colon cancer (CC). By examining mucosal and tissue samples rather than solely relying on fecal samples, we have uncovered previously unknown aspects of CC-associated microbiota. Our findings reveal distinct microbial community structures and gene expression profiles correlated with CC progression. Notably, the enrichment of Campylobacter jejuni in CC mucosa, linked to bile secretion, underscores potential mechanisms in CC pathogenesis. Additionally, observed correlations between microbial taxa and immune cell populations offer new avenues for immunotherapy research in CC. Importantly, this study introduces CC-associated microbiota with survival implications for CC, expanding therapeutic targets beyond conventional strategies. By elucidating these correlations, our study not only contributes to uncovering the potential role of gut microbiota in colon cancer but also establishes a foundation for mechanistic studies of gut microbiota in colon cancer, emphasizing the broader impact of microbiota research on cancer biology.
Collapse
Affiliation(s)
- Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiang Wang
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiumei Lin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fengfei Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Caibiao Wei
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junxian Chen
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Taijun Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Fang
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilong Yang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Linghui Pan
- Guangxi Clinical Research Center for Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
7
|
Lee S, Sfanos K, Singla N. The role of the urinary microbiome in genitourinary cancers. Nat Rev Urol 2025:10.1038/s41585-025-01011-z. [PMID: 40082677 DOI: 10.1038/s41585-025-01011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
Genitourinary cancers account for 20% of cancer instances globally and pose a substantial burden. The microbiome, defined as the ecosystem of organisms that reside within and on the human body, seems to be closely related to multiple cancers. Research on the gut microbiome has yielded substantial insights into the interactions of this entity with the immune system and cancer therapeutic efficacy, whereas the urinary microbiome has been relatively less well-studied. Advances in next-generation sequencing technologies led to new discoveries in the urinary microbiome, which might aid in early detection, risk stratification and personalized treatment strategies in genitourinary cancers. Mechanistic investigations have also suggested a role for the urinary microbiome in modulating the tumour microenvironment and host immune response. For example, distinct urinary microbial signatures have been linked to bladder cancer occurrence and recurrence risk, with specific taxa associated with cytokine production and inflammation. Urinary microbiome signatures have also been explored as potential biomarkers for non-invasive cancer detection. However, challenges remain in standardizing methodologies, validating findings across studies, and establishing causative mechanisms. As investigations into the urinary microbiome continue to evolve, so does the potential for developing microbiome-modulating therapies and enhancing diagnostic capabilities to improve outcomes in patients with genitourinary cancers.
Collapse
Affiliation(s)
- Seoho Lee
- The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Urology, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nirmish Singla
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
- Department of Urology, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Xiao L, Wu J, Fan L, Wang L, Zhu X. CLMT: graph contrastive learning model for microbe-drug associations prediction with transformer. Front Genet 2025; 16:1535279. [PMID: 40144888 PMCID: PMC11936976 DOI: 10.3389/fgene.2025.1535279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Accurate prediction of microbe-drug associations is essential for drug development and disease diagnosis. However, existing methods often struggle to capture complex nonlinear relationships, effectively model long-range dependencies, and distinguish subtle similarities between microbes and drugs. To address these challenges, this paper introduces a new model for microbe-drug association prediction, CLMT. The proposed model differs from previous approaches in three key ways. Firstly, unlike conventional GCN-based models, CLMT leverages a Graph Transformer network with an attention mechanism to model high-order dependencies in the microbe-drug interaction graph, enhancing its ability to capture long-range associations. Then, we introduce graph contrastive learning, generating multiple augmented views through node perturbation and edge dropout. By optimizing a contrastive loss, CLMT distinguishes subtle structural variations, making the learned embeddings more robust and generalizable. By integrating multi-view contrastive learning and Transformer-based encoding, CLMT effectively mitigates data sparsity issues, significantly outperforming existing methods. Experimental results on three publicly available datasets demonstrate that CLMT achieves state-of-the-art performance, particularly in handling sparse data and nonlinear microbe-drug interactions, confirming its effectiveness for real-world biomedical applications. On the MDAD, aBiofilm, and Drug Virus datasets, CLMT outperforms the previously best model in terms of Accuracy by 4.3%, 3.5%, and 2.8%, respectively.
Collapse
Affiliation(s)
- Liqi Xiao
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
| | - Junlong Wu
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
| | - Liu Fan
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
| | - Lei Wang
- Technology Innovation Center of Changsha, Changsha University, Changsha, China
| | - Xianyou Zhu
- College of Computer Science and Technology, Hengyang Normal University, Hengyang, China
- Hunan Engineering Research Center of Cyberspace Security Technology and Applications, Hengyang Normal University, Hengyang, China
| |
Collapse
|
9
|
Feng S, Zhang P, Chen H, Zhou B, Qin Y, Fan T, Sun Q, Chen Y, Jiang Y. Au@Fe 3O 4 Nanoparticle-Based Colorimetric Aptasensor for Noninvasive Screening of Colorectal Cancer via Detection of Parvimonas micra. ACS Sens 2025; 10:1053-1062. [PMID: 39905704 DOI: 10.1021/acssensors.4c02885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Colorectal cancer (CRC) is a common malignancy requiring early screening to improve patient outcomes. Current screening methods such as colonoscopy and fecal occult blood tests have several limitations including high cost, poor specificity, invasiveness, and inconvenience. Recent research has identified specific bacterial communities associated with CRC, notably Parvimonas micra (P. micra), which serves as a biomarker for early screening and diagnosis owing to its accumulation in the malignant tissues and feces of CRC patients. Herein, we employed the whole-bacterium systematic evolution of ligands by the exponential enrichment (SELEX) method to isolate high-affinity aptamers against P. micra using 17 selection cycles. These aptamers were subsequently bound to Au@Fe3O4 nanoparticles, and the interaction of P. micra and aptamers inhibited the peroxidase-like activity of Au@Fe3O4 nanoparticles, thereby blocking the 3,3',5,5'-tetramethylbenzidine (TMB) chromogenic reaction and resulting in a measurable reduction in absorbance. This colorimetric detection strategy demonstrated a linear response across a range of 100-108 CFU/mL for P. micra with a limit of detection of 11 CFU/mL. Using a colorimetric aptasensor, we assessed the abundance of P. micra in clinical fecal samples and found significantly higher levels in the feces of CRC patients as compared to that of healthy individuals, which was consistent with the quantitative polymerase chain reaction results. This study therefore represents the first successful identification of an aptamer with high affinity and specificity for P. micra, leading to the development of a highly specific and sensitive aptasensor for its detection. The presented approach has a significant potential for CRC screening and diagnosis.
Collapse
Affiliation(s)
- Shanshan Feng
- Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Peiyi Zhang
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Bo Zhou
- Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen 518035, P. R. China
| | - Tingting Fan
- Shenzhen Bay Laboratory, Institute of Biomedical Health Technology and Engineering, Shenzhen 518000, P. R. China
| | - Qinsheng Sun
- Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Yan Chen
- Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Yuyang Jiang
- Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| |
Collapse
|
10
|
Atabieke F, Aierken A, Aierken M, Rehaman M, Zhang QQ, Li J, Xia Y, Aizezi Y, Dilixiati D, Gao HL, Zhang ZQ. Investigating casual association among gut microbiome and esophageal cancer: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e41563. [PMID: 39993127 PMCID: PMC11856886 DOI: 10.1097/md.0000000000041563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
The gut microbiota has been strongly linked to gastrointestinal cancer, but the relationship between gut microbiota and esophageal cancer (EC) is still not fully understood. We conducted a 2-sample Mendelian randomization (MR) study to unveil the potential impact of intestinal microorganisms on EC in East Asian populations. In order to delve deeper into the potential causal relationship between gut microbiota and EC, we conducted a 2-sample MR analysis, utilizing 211 single nucleotide polymorphisms associated with gut microbiota, sourced from the largest genome-wide association study on gut microbiota, for our analysis. To estimate the causal relationship, we employed the inverse variance weighting method. In addition, to assess the potential influence of pleiotropy, we used MR-Egger regression in our analysis. Among the 10 specific bacterial taxa identified using the inverse variance weighting as being associated with the risk of EC, we observed a positive association between family Bacteroidaceae (P = .04), genus Bacteroides (P = .04), genus Bilophila (P = .02), genus Candidatus Soleaferrea (P = .02) and the EC, while family Victivallaceae (P = .03), genus Eubacterium coprostanoligenes (P = .01), genus Catenibacterium (P = .01), genus Coprococcus2 (P = .01), unknowngenus.id.959 (P = .02) and unknowngenus.id.1868 (P = .01) may be associated with a reduced risk of EC. Our MR analysis indicate a probable association between gut microbiota and the development and advancement of EC. These findings offer novel perspectives on the possible application of targeted gut bacteria for the prevention and management of EC.
Collapse
Affiliation(s)
- Falide Atabieke
- The Second Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | - Munire Aierken
- Department of Disinfection and Vector Biocontrol, Disease Prevention and Control Center, Urumqi, China
| | - Mayinuer Rehaman
- Department of Physiology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Qi-Qi Zhang
- The Second Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jian Li
- The Second Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yu Xia
- The Second Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yierzhati Aizezi
- Center of Critical Care Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi
| | - Diliyaer Dilixiati
- Department of Urology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong-Liang Gao
- The Second Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhi-Qiang Zhang
- The Second Department of Gastroenterology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
11
|
Wen Q, Wang S, Min Y, Liu X, Fang J, Lang J, Chen M. Associations of the gut, cervical, and vaginal microbiota with cervical cancer: a systematic review and meta-analysis. BMC Womens Health 2025; 25:65. [PMID: 39955550 PMCID: PMC11829412 DOI: 10.1186/s12905-025-03599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND An increasing number of studies indicate that the gut, cervical, and vaginal microbiota may play crucial roles in the development of cervical cancer (CC). However, the interactions between the microbiota and the host are yet unknown. To address this gap, a systematic review and meta-analysis were conducted to assess the microbiota alterations in a variety of body locations, including the gut and genital tract. METHODS Electronic searches of PubMed, Embase, Web of Science, and the Cochrane Library were conducted to retrieve eligible papers published from January 1, 2014, to January 1, 2024 (PROSPERO: CRD42024554433). This study was restricted to English-language studies reporting on alpha diversity, beta diversity, and relative abundance, as well as on patients with CC whose microbiota had been analyzed via next-generation sequencing technologies. To assess the risk of bias (RoB), we utilized the Newcastle‒Ottawa Quality Assessment Scale (NOS) and the ROBINS-I tool. For the meta-analysis, we employed Review Manager 5.4. RESULTS Thirty-six eligible studies were included in this review. The Chao1 index (SMD = 0.96, [95% CI: 0.71, 1.21], I2 = 0%) and the Shannon index (SMD = 1.02, [95% CI: 0.53, 1.50], I2 = 85%) values from vaginal samples were significantly greater in patients than in the controls. In the cervical samples, the Shannon index value (SMD = 1.29, [95% CI: 0.61, 1.97], I2 = 93%) significantly increased, whereas the Chao1 index value did not significantly differ (SMD = 0.50, [95% CI: -0.46, 1.46], I2 = 89%). The Shannon index value (SMD = 0.25, [95% CI: -0.22, 0.72], I2 = 38%) did not significantly differ across the gut samples. The majority of studies (19/25) indicated that the patients and noncancer controls differed significantly in terms of beta diversity. Cancer-associated changes were observed, with a dramatic decrease in the Lactobacillus genus and significant increases in pathogenic bacteria, including the Anaerococcus, Peptostreptococcus, Porphyromonas, Prevotella, and Sneathia genera. Additionally, the impact of antineoplastic therapies on microbial diversity was inconsistently reported across several studies. CONCLUSION This systematic review elucidates the microbiota alterations associated with the prevalence of CC and its response to anti-tumor therapies, aiming to provide insights for future research directions and precision medicine strategies to enhance women's quality of life. PROSPERO REGISTRATION CRD42024554433.
Collapse
Affiliation(s)
- Qin Wen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Shubin Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Yalan Min
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Xinyi Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
| | - Jian Fang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China
- Southwest Medical University, Luzhou, 646000, China
| | - Jinyi Lang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China.
| | - Meihua Chen
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
12
|
Zang T, Zhang Z, Liu W, Yin L, Zhao S, Liu B, Ma L, Li Z, Tang X. Structural and functional changes in the oral microbiome of patients with craniofacial microsomia. Sci Rep 2025; 15:5400. [PMID: 39948426 PMCID: PMC11825945 DOI: 10.1038/s41598-025-86537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Craniofacial microsomia (CFM) is the second most common congenital craniofacial deformity, presenting diverse clinical manifestations and treatments that may influence oral bacteria dysbiosis (OBD). However, research linking CFM to OBD is limited. Saliva samples were collected from 20 patients with CFM and 24 controls. We compared oral microflora and gene function using 16 S ribosomal RNA sequencing and metagenomics. We also evaluated the correlation between CFM clinical phenotypes and microbiota community structure. Patients with CFM demonstrated greater richness and evenness in their oral microflora. The dominant genera included several pathogenic species, such as Actinomyces, Fusobacterium, and Prevotella. Notably, the severity of CFM correlated positively with the abundance of Neisseria and Porphyromonas. Upregulated pathways were primarily linked to biotin and amino acid metabolism, such as Tryptophan metabolism and Lysine degradation, and further underscored the need for focused oral health interventions in this population. This study is the first to indicate that CFM patients exhibit unique oral bacterial dysbiosis, marked by a higher presence of opportunistic pathogens and increased pathways related to oral and systemic health. These findings highlight the importance of monitoring oral health in patients with CFM.
Collapse
Affiliation(s)
- Tianying Zang
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Zhiyong Zhang
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Wei Liu
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Lin Yin
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Shanbaga Zhao
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Bingyang Liu
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Lunkun Ma
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Zhifeng Li
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China
| | - Xiaojun Tang
- Maxillo-facial Surgery Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 33 Ba-Da-Chu Road, Beijing, China.
| |
Collapse
|
13
|
Yang C, Qin LH, Li L, Wei QY, Long L, Liao JY. The causal relationship between the gut microbiota and endometrial cancer: a mendelian randomization study. BMC Cancer 2025; 25:248. [PMID: 39939905 PMCID: PMC11823214 DOI: 10.1186/s12885-025-13656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Gut microbiota is associated with endometrial cancer (EC); however, the causal relationship remains unexplored. This study attempted to explore the relationship between gut microbiota and EC using Mendelian randomization (MR) methods. METHODS In this two-sample MR analysis, we used MiBioGen's gut microbiota data as the exposure and three datasets from European populations with EC as the outcome. The EC datasets included general EC, endometrioid histology, and non-endometrioid histology. Single nucleotide polymorphism (SNP) was used as the instrumental variable. Inverse variance weighted (IVW), multiplicative random effects IVW (MRE-IVW), Maximum likelihood (ML), MR Egger, MR-PRESSO, and the weighted median were used to perform MR analysis. Sensitivity analysis was conducted to assess the reliability of the results. RESULTS In this MR analysis of three EC datasets, specific gut microbiota were identified as potentially associated with different pathological types of EC. For general EC (ID: ebi-a-GCST006464), Family.Acidaminococcaceae (OR = 1.23, 95%CI: 1.02-1.48) and genus.Butyrivibrio (OR = 1.08, 95%CI: 1.01-1.16) were identified as risk factors, while genus.Ruminococcaceae UCG014 (OR = 0.82, 95%CI: 0.69-0.98) and genus.Turicibacter (OR = 0.84, 95%CI: 0.73-0.97) appeared to have protective effects. For endometrioid histology EC (ID: ebi-a-GCST006465), Family.Acidaminococcaceae (OR = 1.27, 95%CI: 1.01-1.59) and genus.Butyrivibrio (OR = 1.10, 95%CI: 1.01-1.19) were identified as risk factors, while several microbiota, including Family.Lactobacillaceae, genus.Coprococcus3, genus.Dorea, genus.Flavonifractor, genus.Lactobacillus, genus.Paraprevotella, and genus.Turicibacter, were identified as protective factors. For non-endometrioid histology EC (ID: ebi-a-GCST006466), Family.Rhodospirillaceae (OR = 1.41, 95%CI: 1.01-1.96) and genus.Peptococcus (OR = 1.43, 95%CI: 1.07-1.91) were identified as risk factors, while no significant protective factors were identified. CONCLUSIONS This two-sample MR study has identified gut microbiota with potential causal relationships with EC, varying by pathological type. These findings provide new insights into the pathogenesis of EC and suggest directions for future research on diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Chongze Yang
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lan-Hui Qin
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liwei Li
- Department of Gastroenterology, the Second Affiliated Hospital of Guangxi Medical University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiu-Ying Wei
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liling Long
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Jin-Yuan Liao
- Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Guangxi Zhuang Autonomous Region, Nanning, 530021, People's Republic of China.
| |
Collapse
|
14
|
Vaziri Y. Dietary influence on cancer progression: Gut health and genomic profiles. Curr Probl Cancer 2025; 54:101159. [PMID: 39615199 DOI: 10.1016/j.currproblcancer.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/10/2024] [Accepted: 11/15/2024] [Indexed: 01/20/2025]
Abstract
This scholarly review comprehensively examines the connection between dietary habits, gut health, cancer prognosis, and genomic profiles. It emphasizes the crucial role of gut microbiota in mediating genomic changes and oncogenic processes through metabolic derivatives.It advocatеs for pеrsonalizеd nutrition stratеgiеs based on individual microbiomе and gеnomic profilеs and proposеs that customized diеtary intеrvеntions could play a crucial rolе in cancеr prеvеntion thеrapy. Thе article highlights thе influеncе of spеcific nutriеnts and such as diеtary fibеr and polyphеnols found in cеrtain foods and dеmonstrating thеir potеntial to altеr gеnе еxprеssions associatеd with inflammation and tumorigеnеsis. Thе rеviеw citеs rеcеnt studiеs that support thе idеa that diеtary modifications can influеncе gеnе rеgulation and thеrеby potеntially altеring cancеr progrеssion. Nevertheless, it calls for morе rigorous rеsеarch including longitudinal and randomizеd studies, to substantiatе thе еvidеncе nеcеssary for developing diеtary guidеlinеs tailorеd for cancеr patiеnts. Thе rеviеw еmphasizеs thе nееd for a multidisciplinary approach and highlight thе importancе of collaboration across thе fiеlds of nutrition gеnomics microbiology and oncology to improve cancеr trеatmеnts and patiеnt quality of lifе. It posits thе rеviеw as a cornеrstonе for a divеrsе audiеncе within thе scientific and mеdical communitimphasizing thе nеcеssity for ongoing rеsеarch in nutritional gеnomics which it dеpicts as a fiеld full of opportunitiеs to transform cancеr carе.
Collapse
Affiliation(s)
- Yashar Vaziri
- Department of Nutrition and Dietetics, Sarab branch, Islamic Azad University, Sarab, Iran.
| |
Collapse
|
15
|
Kuźmycz O, Kowalczyk A, Bolanowska A, Drozdzowska A, Lach J, Wierzbińska W, Kluz T, Stączek P. A comprehensive analysis of the uterine microbiome in endometrial cancer patients - identification of Anaerococcus as a potential biomarker and carcinogenic cofactor. Front Cell Infect Microbiol 2025; 15:1511625. [PMID: 39958933 PMCID: PMC11827426 DOI: 10.3389/fcimb.2025.1511625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Endometrial cancer (EC) is a significant gynecological malignancy with increasing incidence worldwide. Emerging evidence highlights the role of the uterine microbiome in the pathogenesis of EC. This study aims to characterize the uterine microbiome in EC patients and identify potential microbial biomarkers, with a focus on Anaerococcus as a differentiating taxon. Methods The endocervical canal swabs from patients with EC (n=16) and non-cancerous patients (EM, n=13) were collected. The V3-V4 region of the 16S rRNA gene was sequenced using the Illumina platform. Bioinformatic analyses were performed with QIIME2, and statistical comparisons were conducted to assess differences in microbial composition and diversity. In vitro experiments were conducted to assess the functional impact of Anaerococcus on human uterine fibroblasts, including its ability to adhere to the human cells and induce oxidative stress. Results The α-diversity metrics, including Shannon entropy and observed amplicon sequence variants (ASVs), revealed significantly higher microbial diversity in EC samples compared to EM. Anaerococcus was identified as a key taxon differentiating EC from EM groups, showing a higher relative abundance in EC samples. Functional predictions and in vitro assays indicated that Anaerococcus may contribute to carcinogenesis by inducing reactive oxygen species (ROS) production, and has the high ability to adhere to the human endometrial fibroblasts. Discussion The study provides evidence of distinct microbial signatures in EC, with Anaerococcus emerging as a potential biomarker. The in vitro findings suggest its role in endometrial carcinogenesis, underscoring its potential as a target for future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Olga Kuźmycz
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
| | - Aleksandra Kowalczyk
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
| | - Aleksandra Bolanowska
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, Rzeszow, Poland
| | - Anna Drozdzowska
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, Rzeszow, Poland
| | - Jakub Lach
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
- Biobank Lab, Department of Cancer Biology and Epigenetics, University of Lodz, Faculty of Biology and Environmental Protection, Lodz, Poland
| | - Wiktoria Wierzbińska
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Lodz, Poland
| | - Tomasz Kluz
- Department of Gynecology and Obstetrics, Fryderyk Chopin University Hospital No. 1, Rzeszow, Poland
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Paweł Stączek
- Department of Molecular Microbiology, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Faculty of Biology and Environmental, Protection, Lodz, Poland
| |
Collapse
|
16
|
Leon-Gomez P, Romero VI. Human papillomavirus, vaginal microbiota and metagenomics: the interplay between development and progression of cervical cancer. Front Microbiol 2025; 15:1515258. [PMID: 39911706 PMCID: PMC11794528 DOI: 10.3389/fmicb.2024.1515258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025] Open
Abstract
Persistent infection with oncogenic human papillomavirus (HPV) types, such as HPV 16 or 18, is a major factor in cervical cancer development. However, only a small percentage of infected women develop cancer, indicating that other factors are involved. Emerging evidence links vaginal microbiota with HPV persistence and cancer progression. Alterations in microbial composition, function, and metabolic pathways may contribute to this process. Despite the potential of metagenomics to explore these interactions, studies on the vaginal microbiota's role in cervical cancer are limited. This review systematically examines the relationship between cervical microbiota, HPV, and cervical cancer by analyzing studies from PubMed, EBSCO, and Scopus. We highlight how microbial diversity influences HPV persistence and cancer progression, noting that healthy women typically have lower microbiota diversity and higher Lactobacillus abundance compared to HPV-infected women, who exhibit increased Gardenella, Prevotella, Sneathia, Megasphaera, Streptococcus, and Fusobacterium spp., associated with dysbiosis. We discuss how microbial diversity is associated with HPV persistence and cancer progression, noting that studies suggest healthy women typically have lower microbiota diversity and higher Lactobacillus abundance, while HPV-infected women exhibit increased Gardnerella, Prevotella, Sneathia, Megasphaera, Streptococcus, and Fusobacterium spp., indicative of dysbiosis. Potential markers such as Gardnerella and Prevotella have been identified as potential microbiome biomarkers associated with HPV infection and cervical cancer progression. The review also discusses microbiome-related gene expression changes in cervical cancer patients. However, further research is needed to validate these findings and explore additional microbiome alterations in cancer progression.
Collapse
Affiliation(s)
- Paul Leon-Gomez
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
| | - Vanessa I. Romero
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
17
|
Liang M, Liu X, Li J, Chen Q, Zeng B, Wang Z, Li J, Wang L. BANNMDA: a computational model for predicting potential microbe-drug associations based on bilinear attention networks and nuclear norm minimization. Front Microbiol 2025; 15:1497886. [PMID: 39911712 PMCID: PMC11794793 DOI: 10.3389/fmicb.2024.1497886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Predicting potential associations between microbes and drugs is crucial for advancing pharmaceutical research and development. In this manuscript, we introduced an innovative computational model named BANNMDA by integrating Bilinear Attention Networks(BAN) with the Nuclear Norm Minimization (NNM) to uncover hidden connections between microbes and drugs. Methods In BANNMDA, we initially constructed a heterogeneous microbe-drug network by combining multiple drug and microbe similarity metrics with known microbe-drug relationships. Subsequently, we applied both BAN and NNM to compute predicted scores of potential microbe-drug associations. Finally, we implemented 5-fold cross-validation frameworks to evaluate the prediction performance of BANNMDA. Results and discussion The experimental results indicated that BANNMDA outperformed state-of-the-art competitive methods. We conducted case studies on well-known drugs such as the Amoxicillin and Ceftazidime, as well as on pathogens such as Bacillus cereus and Influenza A virus, to further evaluate the efficacy of BANNMDA, and experimental outcomes showed that there were 9 out of the top 10 predicted drugs, along with 8 and 9 out of the top 10 predicted microbes having been corroborated by relevant literatures. These findings underscored the capability of BANNMDA to achieve commendable predictive accuracy.
Collapse
Affiliation(s)
- Mingmin Liang
- School of Intelligent Equipment, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Xianzhi Liu
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Juncai Li
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Qijia Chen
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Bin Zeng
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Zhong Wang
- School of Humanities and Education, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Jing Li
- School of Information Engineering, Hunan Vocational College of Electronic and Technology, Changsha, China
| | - Lei Wang
- Big Data Innovation and Entrepreneurship Education Center of Hunan Province, Changsha University, Changsha, China
| |
Collapse
|
18
|
Wu XR, He XH, Xie YF. Characteristics of gut microbiota dysbiosis in patients with colorectal polyps. World J Gastrointest Oncol 2025; 17:98872. [PMID: 39817124 PMCID: PMC11664624 DOI: 10.4251/wjgo.v17.i1.98872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 12/12/2024] Open
Abstract
This editorial, inspired by a recent study published in the World Journal of Gastrointestinal Oncology, covers the research findings on microbiota changes in various diseases. In recurrent colorectal polyps, the abundances of Klebsiella, Parvimonas, and Clostridium increase, while those of Bifidobacterium and Lactobacillus decrease. This dysbiosis may promote the formation and recurrence of polyps. Similar microbial changes have also been observed in colorectal cancer, inflammatory bowel disease, autism spectrum disorder, and metabolic syndrome, indicating the role of increased pathogens and decreased probiotics in these conditions. Regulating the gut microbiota, particularly by increasing probiotic levels, may help prevent polyp recurrence and promote gut health. This microbial intervention strategy holds promise as an adjunctive treatment for patients with colorectal polyps.
Collapse
Affiliation(s)
- Xian-Rong Wu
- School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China
| | - Xiao-Hong He
- School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China
| | - Yong-Fang Xie
- School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China
| |
Collapse
|
19
|
Zhang J, Lou K, Chi J, Wu J, Fan X, Cui Y. Research progress on intratumoral microorganisms in renal cancer. World J Urol 2025; 43:72. [PMID: 39812826 DOI: 10.1007/s00345-024-05403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
The human body harbors a vast array of microorganisms. Changes in the microbial ecosystem can potentially lead to diseases, including cancer. Traditionally, research has focused more on the gut microbiota and its influence on cancer. However, with the advancement of sequencing technologies, scholars have discovered that microorganisms within kidney tissues are significant components of tumor tissues. Intratumoral microorganisms may affect tumor growth and development through certain mechanisms, influence the function of immune cells, or impact the effectiveness of chemotherapy or immunotherapy in patients. This paper reviews the latest progress in the research on intratumoral microorganisms in renal cancer (RCa). It summarizes the types and distribution characteristics of these microorganisms, discusses the close association between specific viral infections (such as HPV and EBV) and RCa, and highlights the role of microorganisms in the pathogenesis of RCa. This review provides new perspectives for understanding the pathogenic mechanisms of RCa, thereby offering potential clinical applications.
Collapse
Affiliation(s)
- Jiankun Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Keyuan Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Junpeng Chi
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xinying Fan
- Department of Blood Purification, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
20
|
Al-Matouq J, Al-Ghafli H, Alibrahim NN, Alsaffar N, Radwan Z, Ali MD. Unveiling the Interplay Between the Human Microbiome and Gastric Cancer: A Review of the Complex Relationships and Therapeutic Avenues. Cancers (Basel) 2025; 17:226. [PMID: 39858007 PMCID: PMC11763844 DOI: 10.3390/cancers17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The human microbiota plays a crucial role in maintaining overall health and well-being. The gut microbiota has been implicated in developing and progressing various diseases, including cancer. This review highlights the related mechanisms and the compositions that influence cancer pathogenesis with a highlight on gastric cancer. We provide a comprehensive overview of the mechanisms by which the microbiome influences cancer development, progression, and response to treatment, with a focus on identifying potential biomarkers for early detection, prevention strategies, and novel therapeutic interventions that leverage microbiome modulation. This comprehensive review can guide future research and clinical practices in understanding and harnessing the microbiome to optimize gastric cancer therapies.
Collapse
Affiliation(s)
- Jenan Al-Matouq
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Hawra Al-Ghafli
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Noura N. Alibrahim
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Nida Alsaffar
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Zaheda Radwan
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia;
| |
Collapse
|
21
|
Kasahara K, Kerby RL, Aquino-Martinez R, Evered AH, Cross TWL, Everhart J, Ulland TK, Kay CD, Bolling BW, Bäckhed F, Rey FE. Gut microbes modulate the effects of the flavonoid quercetin on atherosclerosis. NPJ Biofilms Microbiomes 2025; 11:12. [PMID: 39794320 PMCID: PMC11723976 DOI: 10.1038/s41522-024-00626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/27/2024] [Indexed: 01/13/2025] Open
Abstract
Gut bacterial metabolism of dietary flavonoids results in the production of a variety of phenolic acids, whose contributions to health remain poorly understood. Here, we show that supplementation with the commonly consumed flavonoid quercetin impacted gut microbiome composition and resulted in a significant reduction in atherosclerosis burden in conventionally raised (ConvR) Apolipoprotein E (ApoE) knockout (KO) mice but not in germ-free (GF) ApoE KO mice. Metabolomic analysis revealed that consumption of quercetin significantly increased plasma levels of benzoylglutamic acid, 3,4 dihydroxybenzoic acid (3,4-DHBA) and its sulfate-conjugated form in ConvR mice, but not in GF mice supplemented with the flavonoid. Levels of these metabolites were negatively associated with atherosclerosis burden. Furthermore, we show that 3,4-DHBA prevented lipopolysaccharide (LPS)-induced decrease in transendothelial electrical resistance (TEER). These results suggest that the effects of quercetin on atherosclerosis are influenced by gut microbes and are potentially mediated by bacterial metabolites derived from the flavonoid.
Collapse
Affiliation(s)
- Kazuyuki Kasahara
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Robert L Kerby
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Abigail H Evered
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Tzu-Wen L Cross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Jessica Everhart
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Colin D Kay
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
22
|
Gamrath L, Pedersen TB, Møller MV, Volmer LM, Holst-Christensen L, Vestermark LW, Donskov F. Role of the Microbiome and Diet for Response to Cancer Checkpoint Immunotherapy: A Narrative Review of Clinical Trials. Curr Oncol Rep 2025; 27:45-58. [PMID: 39753816 PMCID: PMC11762419 DOI: 10.1007/s11912-024-01622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2024] [Indexed: 01/26/2025]
Abstract
PURPOSE OF REVIEW The advent of checkpoint immunotherapy has dramatically changed the outcomes for patients with cancer. However, a considerable number of patients have little or no response to therapy. We review recent findings on the connection between the gut microbiota and the immune system, exploring whether this link could enhance the effectiveness of immunotherapy. RECENT FINDINGS Clinical studies have reported specific types of bacteria in larger quantities at baseline in responders than in non-responders, especially Akkermansia mucinifila, Ruminococcaceae, Faecalibacterium, and Lachnospiraceae. Following the consumption of a high-fiber diet, bacteria in the gut ferment dietary fiber to short-chain fatty acids (SCFAs), like acetate, propionate, and butyrate. Some of the SCFAs nurture intestinal epithelial cells, and some enter the bloodstream. Here SCFAs can activate DC8 + cytotoxic T-cells to induce cancer cell death. High fiber intake in the diet was associated with a reduced risk of progression or death during checkpoint immunotherapy. Recent findings demonstrate that high-fiber plant-based diets such as the Mediterranean Diet positively influence the gut microbiota whereas antibiotics and proton pump inhibitors can negatively influence outcomes of cancer immunotherapy by changing the gut microbiota. This narrative review provides evidence of an association between types of bacteria and their metabolites and favorable responses to checkpoint immunotherapy. Prospective clinical trials are needed to determine if diet interventions can improve treatment outcomes.
Collapse
Affiliation(s)
- Lone Gamrath
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Tobias Bruun Pedersen
- Department of Clinical Diagnostics, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Martin Vad Møller
- Department of Clinical Diagnostics, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Lone Marie Volmer
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Linda Holst-Christensen
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Lene Weber Vestermark
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark
| | - Frede Donskov
- Department of Oncology, University Hospital of Southern Denmark, Finsensgade 35, Esbjerg, 6700, Denmark.
- Department of Regional Health Science, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
23
|
Palkovsky M, Modrackova N, Neuzil-Bunesova V, Liberko M, Soumarova R. The Bidirectional Impact of Cancer Radiotherapy and Human Microbiome: Microbiome as Potential Anti-tumor Treatment Efficacy and Toxicity Modulator. In Vivo 2025; 39:37-54. [PMID: 39740900 PMCID: PMC11705129 DOI: 10.21873/invivo.13803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 01/02/2025]
Abstract
Microbiome and radiotherapy represent bidirectionally interacting entities. The human microbiome has emerged as a pivotal modulator of the efficacy and toxicity of radiotherapy; however, a reciprocal effect of radiotherapy on microbiome composition alterations has also been observed. This review explores the relationship between the microbiome and extracranial solid tumors, particularly focusing on the bidirectional impact of radiotherapy on organ-specific microbiome. This article aims to provide a systematic review on the radiotherapy-induced microbial alteration in-field as well as in distant microbiomes. In this review, particular focus is directed to the oral and gut microbiome, its role in the development and progression of cancer, and how it is altered throughout radiotherapy. This review concludes with recommendations for future research, such as exploring microbiome modification to optimize radiotherapy-induced toxicities or enhance its anti-cancer effects.
Collapse
Affiliation(s)
- Martin Palkovsky
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic;
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Nikol Modrackova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Vera Neuzil-Bunesova
- Czech University of Life Sciences Prague, Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Marian Liberko
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| | - Renata Soumarova
- Department of Oncology, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Charles University, Third Faculty of Medicine, Department of Oncology, Prague, Czech Republic
| |
Collapse
|
24
|
Zaramella A, Arcidiacono D, Duci M, Benna C, Pucciarelli S, Fantin A, Rosato A, De Re V, Cannizzaro R, Fassan M, Realdon S. Predictive Value of a Gastric Microbiota Dysbiosis Test for Stratifying Cancer Risk in Atrophic Gastritis Patients. Nutrients 2024; 17:142. [PMID: 39796578 PMCID: PMC11722812 DOI: 10.3390/nu17010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Gastric cancer (GC) incidence remains high worldwide, and the survival rate is poor. GC develops from atrophic gastritis (AG), associated with Helicobacter pylori (Hp) infection, passing through intestinal metaplasia and dysplasia steps. Since Hp eradication does not exclude GC development, further investigations are needed. New data suggest the possible role of unexplored gastric microbiota beyond Hp in the progression from AG to GC. Aimed to develop a score that could be used in clinical practice to stratify GC progression risk, here was investigate gastric microbiota in AG Hp-negative patients with or without high-grade dysplasia (HGD) or GC. METHODS Consecutive patients undergoing upper endoscopy within an endoscopic follow-up for AG were considered. The antrum and corpus biopsies were used to assess the microbiota composition along the disease progression by sequencing the 16S ribosomal RNA gene. Statistical differences between HGD/GC and AG patients were included in a multivariate analysis. RESULTS HGD/GC patients had a higher percentage of Bacillus in the antrum and a low abundance of Rhizobiales, Weeksellaceae and Veillonella in the corpus. These data were used to calculate a multiparametric score (Resident Gastric Microbiota Dysbiosis Test, RGM-DT) to predict the risk of progression toward HGD/GC. The performance of RGM-DT in discriminating patients with HGD/GC showed a specificity of 88.9%. CONCLUSIONS The microbiome-based risk prediction model for GC could clarify the role of gastric microbiota as a cancer risk biomarker to be used in clinical practice. The proposed test might be used to personalize follow-up program thanks to a better cancer risk stratification.
Collapse
Affiliation(s)
- Alice Zaramella
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Diletta Arcidiacono
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Miriam Duci
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy;
- Pediatric Surgery Unit, Division of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Clara Benna
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
| | - Salvatore Pucciarelli
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
| | - Alberto Fantin
- Gastroenterology Unit, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy; (D.A.); (A.F.)
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Via Giustiniani 2, 35128 Padua, Italy; (A.Z.); (C.B.); (S.P.); (A.R.)
- UOC Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Valli De Re
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Matteo Fassan
- Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128 Padua, Italy;
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Via Gabelli 61, 35121 Padua, Italy
| | - Stefano Realdon
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO), National Cancer Institute, IRCCS, 33081 Aviano, Italy;
| |
Collapse
|
25
|
Zong Z, Zeng W, Li Y, Wang M, Cao Y, Cheng X, Jin Z, Mao S, Zhu X. Intratumor microbiota and colorectal cancer: Comprehensive and lucid review. Chin J Cancer Res 2024; 36:683-699. [PMID: 39802896 PMCID: PMC11724182 DOI: 10.21147/j.issn.1000-9604.2024.06.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
As a key component of tumor microenvironment, the microbiota has gradually played a key role in cancer research. Particularly in colorectal cancer, the specific population of microbiota within the tumor shows a strong association with the tumor type. Although the existence and potential role of microbiota in tumors have been recognized, the specific associations between the microbiota and tumor tissue and the mechanism of action still need to be further explored. This paper reviews the discovery, origin, and emerging role of the intratumor microbiota in the immune microenvironment and systematically outlines the oncogenic and metastasis-promoting strategies of the intratumor microbiota. Moreover, it comprehensively and holistically evaluates therapeutic strategies and prognostic performance on the basis of the intratumor microbiota, with the goal of providing strong support for future research and clinical practice.
Collapse
Affiliation(s)
- Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Wenjuan Zeng
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yin Li
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Menghui Wang
- Huan Kui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuke Cao
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zhenhua Jin
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Shengxun Mao
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xingen Zhu
- Department of Neurosurgey, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang 330006, China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, China
- Jiangxi Provincial Health Commission Key Laboratory of Neurological Medicine, Nanchang 330006, China
| |
Collapse
|
26
|
Al-Ishaq RK, Ferrara CR, Stephan N, Krumsiek J, Suhre K, Montrose DC. A Comprehensive Metabolomic and Microbial Analysis Following Dietary Amino Acid Reduction in Mice. Metabolites 2024; 14:706. [PMID: 39728487 DOI: 10.3390/metabo14120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction: Nutritional metabolomics provides a comprehensive overview of the biochemical processes that are induced by dietary intake through the measurement of metabolite profiles in biological samples. However, there is a lack of deep phenotypic analysis that shows how dietary interventions influence the metabolic state across multiple physiologic sites. Dietary amino acids have emerged as important nutrients for physiology and pathophysiology given their ability to impact cell metabolism. Methods: The aim of the current study is to evaluate the effect of modulating amino acids in diet on the metabolome and microbiome of mice. Here, we report a comprehensive metabolite profiling across serum, liver, and feces, in addition to gut microbial analyses, following a reduction in either total dietary protein or diet-derived non-essential amino acids in mice. Results: We observed both distinct and overlapping patterns in the metabolic profile changes across the three sample types, with the strongest signals observed in liver and serum. Although amino acids and related molecules were the most commonly and strongly altered group of metabolites, additional small molecule changes included those related to glycolysis and the tricarboxylic acid cycle. Microbial profiling of feces showed significant differences in the abundance of select species across groups of mice. Conclusions: Our results demonstrate how changes in dietary amino acids influence the metabolic profiles across organ systems and the utility of metabolomic profiling for assessing diet-induced alterations in metabolism.
Collapse
Affiliation(s)
- Raghad Khalid Al-Ishaq
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Cornell University, Education City, Doha 24144, Qatar
| | - Carmen R Ferrara
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, MART Building, 9M-0816, Lauterbur Dr., Stony Brook, NY 11794, USA
| | - Nisha Stephan
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Cornell University, Education City, Doha 24144, Qatar
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, New York, NY 11215, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10021, USA
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Cornell University, Education City, Doha 24144, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10021, USA
| | - David C Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, MART Building, 9M-0816, Lauterbur Dr., Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| |
Collapse
|
27
|
Jiang C, Feng J, Shan B, Chen Q, Yang J, Wang G, Peng X, Li X. Predicting microbe-disease associations via graph neural network and contrastive learning. Front Microbiol 2024; 15:1483983. [PMID: 39735180 PMCID: PMC11671253 DOI: 10.3389/fmicb.2024.1483983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/14/2024] [Indexed: 12/31/2024] Open
Abstract
In the contemporary field of life sciences, researchers have gradually recognized the critical role of microbes in maintaining human health. However, traditional biological experimental methods for validating the association between microbes and diseases are both time-consuming and costly. Therefore, developing effective computational methods to predict potential associations between microbes and diseases is an important and urgent task. In this study, we propose a novel computational framework, called GCATCMDA, for forecasting potential associations between microbes and diseases. Firstly, we construct Gaussian kernel similarity networks for microbes and diseases using known microbe-disease association data. Then, we design a feature encoder that combines graph convolutional network and graph attention mechanism to learn the node features of networks, and propose a feature dual-fusion module to effectively integrate node features from each layer's output. Next, we apply the feature encoder separately to the microbe similarity network, disease similarity network, and microbe-disease association network, and enhance the consistency of features for the same nodes across different association networks through contrastive learning. Finally, we pass the microbe and disease features into an inner product decoder to obtain the association scores between them. Experimental results demonstrate that the GCATCMDA model achieves superior predictive performance compared to previous methods. Furthermore, case studies confirm that GCATCMDA is an effective tool for predicting microbe-disease associations in real situations.
Collapse
Affiliation(s)
- Cong Jiang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
| | - Junxuan Feng
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
| | - Bingshen Shan
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
| | - Qiyue Chen
- College of Management, Shenzhen University, Shenzhen, China
| | - Jian Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Gang Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiaogang Peng
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
| | - Xiaozheng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- JCY Biotech Ltd., Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
28
|
Lv R, Wang D, Wang T, Li R, Zhuang A. Causality between gut microbiota, immune cells, and breast cancer: Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e40815. [PMID: 39654239 PMCID: PMC11630993 DOI: 10.1097/md.0000000000040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
The association between gut microbiota (GM) and breast cancer (BC) has been studied. Nevertheless, the causal relationship between them and the potential mediating factors have not been clearly defined. Therefore, in this study, Mendelian randomization analysis (MR) was employed to explore the causal relationship between 473 GM and BC, as well as the mediating effect of potential immune cells. In this investigation, we availed ourselves of the publicly accessible summary statistics from the genome-wide association study to undertake two-sample and reverse Mendelian randomization analyses on GM and BC, with the intention of clarifying the causal association between GM and BC. Subsequently, through the application of the two-step Mendelian randomization analysis, it was revealed that the relationship between GM and BC was mediated by immune cells. The stability of the research outcomes was verified via sensitivity analysis. Mendelian randomization analysis elucidated the protective impacts of 8 genera on BC (such as Phylum Actinobacteriota, Species Bacteroides A plebeius A, Species Bifidobacterium adolescentis, Species CAG-841 sp002479075, Family Fibrobacteraceae, Order Fibrobacterales, Class Fibrobacteria, and Species Phascolarctobacterium sp003150755). Additionally, there are 23 immune cell traits related to BC. Our research findings showed that the species Megamonas funiformis was associated with an increased risk of BC, and 11.20% of this effect was mediated by CD38 on IgD+ CD24-. Likewise, HLA DR on CD33br HLA DR+ CD14- mediated the causal relationship between Species Prevotellamassilia and BC, having a mediating ratio of 7.89%. This study clarifies a potential causal relationship between GM, immune cells, and BC and provides genetic evidence for this causal connection. It offers research directions for the subsequent prevention and treatment of BC through the interaction between GM and immune cells, and provides a reference for future mechanistic and clinical studies in this field.
Collapse
Affiliation(s)
- Rui Lv
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Danyan Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhuji Second People’s Hospital, Zhuji, China
| | - Tengyue Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongqun Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aiwen Zhuang
- Institute of TCM Literature and Information, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
29
|
Zhao H, Zhang L, Du D, Mai L, Liu Y, Morigen M, Fan L. The RIG-I-like receptor signaling pathway triggered by Staphylococcus aureus promotes breast cancer metastasis. Int Immunopharmacol 2024; 142:113195. [PMID: 39303544 DOI: 10.1016/j.intimp.2024.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Host microbes are increasingly recognized as key components in various types of cancer, although their exact impact remains unclear. This study investigated the functional significance of Staphylococcus aureus (S. aureus) in breast cancer tumorigenesis and progression. We found that S. aureus invasion resulted in a compromised DNA damage response process, as evidenced by the absence of G1-phase arrest and apoptosis in breast cells in the background of double strand breaks production and the activation of the ataxia-telangiectasia mutated (ATM)-p53 signaling pathway. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies revealed that S. aureus facilitates breast cell metastasis through the innate immune pathway, particularly in cancer cells. During metastasis, S. aureus initially induced the expression of RIG-I-like receptors (RIG-I in normal breast cells, RIG-I and MDA5 in breast cancer cells), which in turn activated NF-κB p65 expression. We further showed that NF-κB p65 activated the CCL5-CCR5 pathway, contributing to breast cell metastasis. Our study provides novel evidence that the innate immune system, triggered by bacterial infection, plays a role in bacterial-driven cancer metastasis.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Linzhe Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Dongdong Du
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Lisu Mai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Morigen Morigen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
30
|
Liu R, Qiao X, Shi Y, Peterson CB, Bush WS, Cominelli F, Wang M, Zhang L. Constructing phylogenetic trees for microbiome data analysis: A mini-review. Comput Struct Biotechnol J 2024; 23:3859-3868. [PMID: 39554614 PMCID: PMC11564040 DOI: 10.1016/j.csbj.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/19/2024] Open
Abstract
As next-generation sequencing technologies advance rapidly and the cost of metagenomic sequencing continues to decrease, researchers now face an unprecedented volume of microbiome data. This surge has stimulated the development of scalable microbiome data analysis methods and necessitated the incorporation of phylogenetic information into microbiome analysis for improved accuracy. Tools for constructing phylogenetic trees from 16S rRNA sequencing data are well-established, as the highly conserved regions of the 16S gene are limited, simplifying the identification of marker genes. In contrast, metagenomic and whole genome shotgun (WGS) sequencing involve sequencing from random fragments of the entire gene, making identification of consistent marker genes challenging owing to the vast diversity of genomic regions, resulting in a scarcity of robust tools for constructing phylogenetic trees. Although bacterial sequence tree construction tools exist for upstream bioinformatics, many downstream researchers-those integrating these trees into statistical models or machine learning-are either unaware of these tools or find them difficult to use due to the steep learning curve of processing raw sequences. This is compounded by the fact that public datasets often lack phylogenetic trees, providing only abundance tables and taxonomic classifications. To address this, we present a comprehensive review of phylogenetic tree construction techniques for microbiome data (16S rRNA or whole-genome shotgun sequencing). We outline the strengths and limitations of current methods, offering expert insights and step-by-step guidance to make these tools more accessible and widely applicable in quantitative microbiome data analysis.
Collapse
Affiliation(s)
- Ruitao Liu
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Xi Qiao
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Yushu Shi
- Weill Cornell Medicine, Cornell University, 1300 York Ave, New York, 10065, NY, United States
| | - Christine B. Peterson
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, 77030, TX, United States
| | - William S. Bush
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Fabio Cominelli
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
- Case Digestive Health Research Institute, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| | - Liangliang Zhang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
- Case Comprehensive Cancer Center, 10900 Euclid Avenue, Cleveland, 44106, OH, United States
| |
Collapse
|
31
|
Singhal S, Bhadana R, Jain BP, Gautam A, Pandey S, Rani V. Role of gut microbiota in tumorigenesis and antitumoral therapies: an updated review. Biotechnol Genet Eng Rev 2024; 40:3716-3742. [PMID: 36632709 DOI: 10.1080/02648725.2023.2166268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/13/2023]
Abstract
Gut microbiota plays a prominent role in regulation of host nutrientmetabolism, drug and xenobiotics metabolism, immunomodulation and defense against pathogens. It synthesizes numerous metabolites thatmaintain the homeostasis of host. Any disbalance in the normalmicrobiota of gut can lead to pathological conditions includinginflammation and tumorigenesis. In the past few decades, theimportance of gut microbiota and its implication in various diseases, including cancer has been a prime focus in the field of research. Itplays a dual role in tumorigenesis, where it can accelerate as wellas inhibit the process. Various evidences validate the effects of gutmicrobiota in development and progression of malignancies, wheremanipulation of gut microbiota by probiotics, prebiotics, dietarymodifications and faecal microbiota transfer play a significant role.In this review, we focus on the current understanding of theinterrelationship between gut microbiota, immune system and cancer,the mechanisms by which they play dual role in promotion andinhibition of tumorigenesis. We have also discussed the role ofcertain bacteria with probiotic characteristics which can be used tomodulate the outcome of the various anti-cancer therapies under theinfluence of the alteration in the composition of gut microbiota.Future research primarily focusing on the microbiota as a communitywhich affect and modulate the treatment for cancer would benoteworthy in the field of oncology. This necessitates acomprehensive knowledge of the roles of individual as well asconsortium of microbiota in relation to physiology and response ofthe host.
Collapse
Affiliation(s)
- Shivani Singhal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Renu Bhadana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Buddhi Prakash Jain
- Department of Zoology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, School of Medical Sciences, University of Hyderabad, Hyderabad, India
| | - Shweta Pandey
- Department of Biotechnology, Govt Vishwanath Yadav Tamaskar Post-Graduate Autonomous College Durg, Chhattisgarh, India
| | - Vibha Rani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
32
|
Camañes-Gonzalvo S, Montiel-Company JM, Lobo-de-Mena M, Safont-Aguilera MJ, Fernández-Diaz A, López-Roldán A, Paredes-Gallardo V, Bellot-Arcís C. Relationship between oral microbiota and colorectal cancer: A systematic review. J Periodontal Res 2024; 59:1071-1082. [PMID: 38775019 PMCID: PMC11626693 DOI: 10.1111/jre.13289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 12/10/2024]
Abstract
This systematic review aims to investigate the microbial basis underlying the association between oral microbiota and colorectal cancer. A comprehensive search was conducted across four databases, encompassing potentially relevant studies published up to April 2024 related to the PECO question: "Is there a differentiation in oral microbial composition between adult patients diagnosed with colorectal cancer compared to healthy patients?". The Newcastle-Ottawa Scale was used to evaluate the quality of the studies included. The level of evidence was assessed through the GRADE (Grading of Recommendations, Assessment, Development and Evaluation) tool. Sixteen studies fulfilled the eligibility criteria. Based on low to moderate evidence profile, high levels of certain subspecies within Firmicutes (such as Streptococcus anginosus, Peptostreptococcus stomatis, S. koreensis, and S. gallolyticus), Prevotella intermedia, Fusobacterium nucleatum, and Neisseria oralis were found to be associated with colorectal cancer. Conversely, certain bacteria (e.g., Lachnospiraceae, F. periodonticum, and P. melaninogenica) could exert a symbiotic protective effect against colorectal cancer. Based on existing evidence, it appears that variations in oral microbiota composition exist among individuals with and without colorectal cancer. However, further research is necessary to determine the mechanisms of oral dysbiosis in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Sara Camañes-Gonzalvo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | | | - Miriam Lobo-de-Mena
- Medical Oncology Department, Consortium of the General University Hospital of Valencia, University of Valencia, Valencia, Spain
| | - María José Safont-Aguilera
- Medical Oncology Department, Consortium of the General University Hospital of Valencia, University of Valencia, Valencia, Spain
| | | | - Andrés López-Roldán
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Vanessa Paredes-Gallardo
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Carlos Bellot-Arcís
- Department of Stomatology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| |
Collapse
|
33
|
Yao R, Sun L, Gao R, Mei Y, Xue G, Yu D. PTTM: dissecting the profile of tumor tissue microbiome to reveal microbiota features and associations with host transcriptome. Brief Bioinform 2024; 26:bbaf057. [PMID: 39924716 PMCID: PMC11807729 DOI: 10.1093/bib/bbaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/05/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
Microbiota is present in the human tissue microenvironment and closely related to tumorigenesis and treatment. However, the landscape of tissue microbiome and its relationship with tumors remain less understood. In this study, we re-analyzed the omics data from the 7104 samples (94 projects for 15 cancers) in the NCBI database to obtain microbial profiles. After normalization and decontamination processing, we established classification models to distinguish between different tumors and tumor with adjacent normal tissues. The models had excellent performances, indicating that tissue microbiome had significant tumor specificity. Moreover, a series of key bacteria and bacteria-gene association pairs were screened out based on bioinformatic analysis, such as the tumor-promoting bacteria Fusobacterium, the tumor-suppressing bacteria Actinomyces, and the significant Rhodopseudomonas-COL1A1 association pair. In addition, we created a visual website, PTTM (http://198.46.152.196:7080/), for users to query and download the results. The identified key bacteria and association pairs provide candidate targets for further exploration of the molecular mechanisms of microbial action on tumorigenesis and the development of cancer therapy.
Collapse
Affiliation(s)
- Ruiqian Yao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Department of Medical Genetics, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China
- Department of Dermatology, Naval Medical Centre, Naval Medical University, Shanghai 200052, China
| | - Lu Sun
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Ruifang Gao
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Yue Mei
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Geng Xue
- Department of Medical Genetics, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China
| | - Dong Yu
- Department of Precision Medicine, Translational Medicine Research Center, Naval Medical University, Xiang-Yin Road, 800, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| |
Collapse
|
34
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
35
|
Huang L, Jiang C, Yan M, Wan W, Li S, Xiang Z, Wu J. The oral-gut microbiome axis in breast cancer: from basic research to therapeutic applications. Front Cell Infect Microbiol 2024; 14:1413266. [PMID: 39639864 PMCID: PMC11617537 DOI: 10.3389/fcimb.2024.1413266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024] Open
Abstract
As a complicated and heterogeneous condition, breast cancer (BC) has posed a tremendous public health challenge across the world. Recent studies have uncovered the crucial effect of human microbiota on various perspectives of health and disease, which include cancer. The oral-gut microbiome axis, particularly, have been implicated in the occurrence and development of colorectal cancer through their intricate interactions with host immune system and modulation of systemic inflammation. However, the research concerning the impact of oral-gut microbiome axis on BC remains scarce. This study focused on comprehensively reviewing and summarizing the latest ideas about the potential bidirectional relation of the gut with oral microbiota in BC, emphasizing their potential impact on tumorigenesis, treatment response, and overall patient outcomes. This review can reveal the prospect of tumor microecology and propose a novel viewpoint that the oral-gut microbiome axis can be a breakthrough point in future BC studies.
Collapse
Affiliation(s)
- Lan Huang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Meina Yan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Weimin Wan
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Shuxiang Li
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
36
|
Ren X, Xin L, Peng L, Xiao Y, Zhou Z, Luo H, Zhu Z, Wei Q, Jiang Y, He H, Xiang L, Wang Y, Tang Y, Gu H. Association between sulfur microbial diet and the risk of esophageal cancer: a prospective cohort study in 101,752 American adults. Nutr J 2024; 23:139. [PMID: 39511614 PMCID: PMC11542201 DOI: 10.1186/s12937-024-01035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Sulfur microbial diet (SMD) is a dietary pattern closely related to the intestinal load of sulfur-metabolizing microbes in humans. Diet and microbes may play an important role in the carcinogenesis of esophagus. However, epidemiological studies on SMD and esophageal cancer (EC) risk are scarce. Here, we evaluated this association based on a large American cohort. METHODS In the cohort of the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, a SMD score was calculated to evaluate participants' compliance of SMD pattern, with higher scores presenting greater adherence. Cox hazards regression model was used to explore the association between the SMD score and the incidence of EC, esophageal squamous cell carcinoma (ESCC), and esophageal adenocarcinoma (EA). Subgroup analyses were conducted to figure out potential modifiers interacting with SMD on EC. Sensitivity analyses were used to testify the robustness of our main result. RESULTS Among 101,752 participants, 154 EC cases, consisted of 41 ESCC cases and 97 EA cases, were identified with mean follow-up of 8.9 years. In the fully adjusted model, the highest versus the lowest quartiles of the SMD score were found to be associated with an increased risk of EC and ESCC (EC: HRQ4 vs. Q1: 1.64; 95% CI: 1.05, 2.56; P = 0.016 for trend; ESCC: HRQ4 vs. Q1: 2.37; 95% CI: 1.02, 5.47; P = 0.031 for trend), while not significantly associated with increases risk of EA (HRQ4 vs. Q1: 1.41; P = 0.144 for trend). The main result remained through a series of sensitivity analyses. Subgroup analyses showed a stronger association between SMD and EC in participants with no regular consumption of aspirin (HRQ4 vs. Q1: 1.90; 95% CI: 1.04, 3.47) than in those using aspirin regularly (HRQ4 vs. Q1: 1.37; 95% CI: 0.71, 2.66) (P = 0.008 for interaction). CONCLUSION Adherence to the SMD pattern may be associated with increased risks of EC and ESCC, particularly for EC in individuals who do not regularly consume aspirin.
Collapse
Affiliation(s)
- Xiaorui Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China
| | - Li Xin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China
| | - Linglong Peng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China
| | - Yi Xiao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China
| | - Zhihang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haoyun Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China
| | - Zhiyong Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China
| | - Qi Wei
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China
| | - Yahui Jiang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China
| | - Hongmei He
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China
| | - Ling Xiang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yaxu Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China
| | - Yunhao Tang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China.
| | - Haitao Gu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, No.288 Tianwen Avenue, Nan'an District, Chongqing, 400010, China.
| |
Collapse
|
37
|
Khan M, Dong Y, Ullah R, Li M, Huang Q, Hu Y, Yang L, Luo Z. Recent Advances in Bacterium-Based Therapeutic Modalities for Melanoma Treatment. Adv Healthc Mater 2024; 13:e2401076. [PMID: 39375965 DOI: 10.1002/adhm.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/16/2024] [Indexed: 10/09/2024]
Abstract
Melanoma is one of the most severe skin cancer indications with rapid progression and a high risk of metastasis. However, despite the accumulated advances in melanoma treatment including adjuvant radiation, chemotherapy, and immunotherapy, the overall melanoma treatment efficacy in the clinics is still not satisfactory. Interestingly, bacterial therapeutics have demonstrated unique properties for tumor-related therapeutic applications, such as tumor-targeted motility, tailorable cytotoxicity, and immunomodulatory capacity of the tumor microenvironment, which have emerged as a promising platform for melanoma therapy. Indeed, the recent advances in genetic engineering and nanotechnologies have boosted the application potential of bacterium-based therapeutics for treating melanoma by further enhancing their tumor-homing, cell-killing, drug delivery, and immunostimulatory capacities. This review provides a comprehensive summary of the state-of-the-art bacterium-based anti-melanoma modalities, which are categorized according to their unique functional merits, including tumor-specific cytotoxins, tumor-targeted drug delivery platforms, and immune-stimulatory agents. Furthermore, a perspective is provided discussing the potential challenges and breakthroughs in this area. The insights in this review may facilitate the development of more advanced bacterium-based therapeutic modalities for improved melanoma treatment efficacy.
Collapse
Affiliation(s)
- Mubassir Khan
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yilong Dong
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325016, P. R. China
| | - Razi Ullah
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Lab for Vascular Implants College of Bioengineering Chongqing University, Chongqing, 400030, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| | - Qiping Huang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing, Chongqing, 400044, P. R. China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
38
|
García-Perdomo HA, Granados-Duque V, Spiess PE. What is the relationship between penile cancer and the microbiome? A scoping review. Actas Urol Esp 2024; 48:632-641. [PMID: 38734067 DOI: 10.1016/j.acuroe.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION The microbiota is defined as the microorganisms in a particular environment. Conversely, the term microbiome is less firmly defined and is used to reference the habitat. OBJECTIVE To identify the association between the microbiome and the penile cancer EVIDENCE ACQUISITION: We performed this scoping review according to the recommendations of the Joanna Briggs Institute. We found five articles that fulfilled the inclusion criteria. We focused on oncogenesis and factors that alter the penile microbiome. We were not limited to language or setting. We searched MEDLINE (Ovid), Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and LILACS from inception to the present day. EVIDENCE SYNTHESIS We found nine studies describing multiple factors that could disturb the microbiome, such as sexual behavior, anatomic alterations including circumcision, and inflammatory factors: lichen sclerosus, poor genital hygiene, compromised immune system, smoking, and HPV infection. CONCLUSION Overall, knowledge of the composition of the penile microbiota and its role in penile cancer oncogenesis is minimal. PATIENT SUMMARY Future studies should focus on the relationship between the microbiome and penile cancer to broaden this field of knowledge.
Collapse
Affiliation(s)
- H A García-Perdomo
- UROGIV Research Group, Universidad del Valle, Cali, Colombia; Division of Urology/Urooncology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia.
| | - V Granados-Duque
- UROGIV Research Group, Universidad del Valle, Cali, Colombia; Hospital Universitario del Valle, Cali, Colombia
| | - P E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, Estados Unidos; Department of Genitourinary Oncology and Cancer Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States; Urology and Oncology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
39
|
Iyengar G, Perry M. Game-Theoretic Flux Balance Analysis Model for Predicting Stable Community Composition. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2394-2405. [PMID: 39331552 DOI: 10.1109/tcbb.2024.3470592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Models for microbial interactions attempt to understand and predict the steady state network of inter-species relationships in a community, e.g. competition for shared metabolites, and cooperation through cross-feeding. Flux balance analysis (FBA) is an approach that was introduced to model the interaction of a particular microbial species with its environment. This approach has been extended to analyzing interactions in a community of microbes; however, these approaches have two important drawbacks: first, one has to numerically solve a differential equation to identify the steady state, and second, there are no methods available to analyze the stability of the steady state. We propose a game theory based community FBA model wherein species compete to maximize their individual growth rate, and the state of the community is given by the resulting Nash equilibrium. We develop a computationally efficient method for directly computing the steady state biomasses and fluxes without solving a differential equation. We also develop a method to determine the stability of a steady state to perturbations in the biomasses and to invasion by new species. We report the results of applying our proposed framework to a small community of four E. coli mutants that compete for externally supplied glucose, as well as cooperate since the mutants are auxotrophic for metabolites exported by other mutants, and a more realistic model for a gut microbiome consisting of nine species.
Collapse
|
40
|
Xu C, Guo J, Chang B, Zhang Y, Tan Z, Tian Z, Duan X, Ma J, Jiang Z, Hou J. Design of probiotic delivery systems and their therapeutic effects on targeted tissues. J Control Release 2024; 375:20-46. [PMID: 39214316 DOI: 10.1016/j.jconrel.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The microbiota at different sites in the body is closely related to disease. The intake of probiotics is an effective strategy to alleviate diseases and be adjuvant in their treatment. However, probiotics may suffer from harsh environments and colonization resistance, making it difficult to maintain a sufficient number of live probiotics to reach the target sites and exert their original probiotic effects. Encapsulation of probiotics is an effective strategy. Therefore, probiotic delivery systems, as effective methods, have been continuously developed and innovated to ensure that probiotics are effectively delivered to the targeted site. In this review, initially, the design of probiotic delivery systems is reviewed from four aspects: probiotic characteristics, processing technologies, cell-derived wall materials, and interactions between wall materials. Subsequently, the review focuses on the effects of probiotic delivery systems that target four main microbial colonization sites: the oral cavity, skin, intestine, and vagina, as well as disease sites such as tumors. Finally, this review also discusses the safety concerns of probiotic delivery systems in the treatment of disease and the challenges and limitations of implementing this method in clinical studies. It is necessary to conduct more clinical studies to evaluate the effectiveness of different probiotic delivery systems in the treatment of diseases.
Collapse
Affiliation(s)
- Cong Xu
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Jiahui Guo
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Baoyue Chang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Yiming Zhang
- Department of Psychiatry and Mental Health, Dalian Medical University, Dalian 116044, China
| | - Zhongmei Tan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Zihao Tian
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Xiaolei Duan
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China
| | - Jiage Ma
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China.
| | - Juncai Hou
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China; Key Laboratory of Dairy Science, Northeast Agricultural University, College of Food Science, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
41
|
Sun L, Wang X, Zhou H, Li R, Meng M, Roviello G, Oh B, Feng L, Yu Z, Wang J. Gut microbiota and metabolites associated with immunotherapy efficacy in extensive-stage small cell lung cancer: a pilot study. J Thorac Dis 2024; 16:6936-6954. [PMID: 39552845 PMCID: PMC11565349 DOI: 10.21037/jtd-24-1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 11/19/2024]
Abstract
Background The gut microbiota and its associated metabolites play a critical role in shaping the systemic immune response and influencing the efficacy of immunotherapy. In this study, patients with extensive-stage small cell lung cancer (ES-SCLC) were included to explore the correlation between gut microbiota and metabolites and immunotherapy efficacy in patients with ES-SCLC. Methods Pre- and post-treatment, we collected stool samples from 49 ES-SCLC patients treated with an anti-programmed death-ligand 1 (PD-L1) antibody. We then applied 16S ribosomal RNA (rRNA) sequencing and liquid chromatography-mass spectrometry (LC-MS) non-targeted metabolomics technology. Subsequently, the gut microbiota and metabolites were identified and classified. Results The results showed no statistical difference in gut microbiota alpha and beta diversity between the responder (R) and non-responder (NR) patients at baseline. However, the alpha diversity of the R patients was significantly higher than that of the NR patients after treatment. There were also differences in the microbiome composition at the baseline and post-treatment. Notably, after treatment, Faecalibacterium, Clostridium_sensu_stricto_1, and [Ruminococcus]_torques were enriched in the R group, while Dubosiella, coriobacteriaceae_UCG-002 was enriched in the NR group. The non-targeted metabolomics results also indicated that short-chain fatty acids (SCFAs) were up-regulated in the R group after treatment. More, differential metabolites were enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including the PD-L1 expression and programmed death 1 (PD-1) checkpoint pathway in cancer. Conclusions These findings are anticipated to provide novel markers for predicting the efficacy of immune checkpoint inhibitors (ICIs) in patients with ES-SCLC, and offer new directions for further research on molecular mechanisms.
Collapse
Affiliation(s)
- Liyang Sun
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xueting Wang
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Huimin Zhou
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Rui Li
- Health Management Center, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Ming Meng
- School of Pharmacy, Qingdao University Medical College, Qingdao University, Qingdao, China
| | | | - Byeongsang Oh
- Northern Sydney Cancer Centre, Royal North Shore Hospital, University of Sydney Medical School, Sydney, NSW, Australia
| | - Lingxin Feng
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhuang Yu
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Oncology, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
42
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
43
|
Tigabu A. Immunoregulatory protein B7-H3 upregulated in bacterial and viral infection and its diagnostic potential in clinical settings. Front Immunol 2024; 15:1472626. [PMID: 39497833 PMCID: PMC11532155 DOI: 10.3389/fimmu.2024.1472626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Bacterial and viral infections cause a huge burden to healthcare settings worldwide, and mortality rates associated with infectious microorganisms have remained high in recent decades. Despite tremendous efforts and resources worldwide to explore diagnostic biomarkers, rapid and easily assayed indicators for the diagnosis of bacterial and viral infections remain a challenge. B7 homolog 3 (B7-H3), a member of the B7 family of immunoregulatory proteins, is overexpressed in patients with septicemia, meningitis, pneumonia, and hepatitis. Therefore, B7-H3 could be used as a potential clinical indicator and therapeutic target for bacterial and viral infections caused by H. pylori, S. pneumoniae, M. pneumoniae, hepatitis B virus (HBV), viral hemorrhagic septicemia virus (VHSV), respiratory syncytial virus (RSV), and human immunodeficiency virus (HIV). Moreover, the interplay between infectious microorganisms and B7-H3 and exploration of the functional roles of the B7-H3 molecule could aid in the development of novel strategies for disease diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Abiye Tigabu
- Department of Medical Microbiology, University of Gondar,
Gondar, Ethiopia
| |
Collapse
|
44
|
Scarfò G, Daniele S, Chelucci E, Papini F, Epifani F, Ruggiero M, Cela V, Franzoni F, Artini PG. Endometrial Dysbiosis: A Possible Association with Estrobolome Alteration. Biomolecules 2024; 14:1325. [PMID: 39456258 PMCID: PMC11506823 DOI: 10.3390/biom14101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Microbiota modification at the endometrial level can favor gynecological diseases and impair women's fertility. The overgrowth of pathogen microorganisms is related to the contemporary alteration of estrogen-metabolizing bacteria, including β-glucuronidase, thereby enhancing estrogen-related inflammatory states and decreasing anti-inflammatory cells. The possible connection between estrobolome impairment and gynecological diseases has been suggested in animal models. Nevertheless, in humans, coherent evidence on the estrobolome alteration and functionality of the female reproductive tract is still lacking. The objective of this study was to explore alterations in estrogen-related signaling and the putative link with endometrial dysbiosis. METHODS Women with infertility and repeated implantation failure (RIF, N = 40) were enrolled in order to explore the putative link between estrogen metabolism and endometrial dysbiosis. Endometrial biopsies were used to measure inflammatory and growth factor molecules. β-glucuronidase enzyme activity and estrogen receptor (ER) expression were also assessed. RESULTS Herein, increased levels of inflammatory molecules (i.e., IL-1β and HIF-1α) and decreased levels of the growth factor IGF-1 were found in the endometrial biopsies of patients presenting dysbiosis compared to eubiotic ones. β-glucuronidase activity and the expression of ERβ were significantly enhanced in patients in the dysbiosis group. Interestingly, Lactobacilli abundance was inversely related to β-glucuronidase activity and to ERβ expression, thus suggesting that an alteration of the estrogen-activating enzyme may affect the expression of ERs as well. CONCLUSIONS Overall, these preliminary data suggested a link between endometrial dysbiosis and estrobolome impairment as possible synergistic contributing factors to women infertility and RIF.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (F.F.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Elisa Chelucci
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Francesca Papini
- Division of Gynecology and Obstetrics, Azienda Ospedaliero Universitaria Pisana and Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (V.C.)
| | - Francesco Epifani
- Department of Juridical and Economic Sciences, Pegaso Telematic University, 80143 Napoli, Italy;
- Fanfani, Diagnostics and Health, 50129 Firenze, Italy
| | | | - Vito Cela
- Division of Gynecology and Obstetrics, Azienda Ospedaliero Universitaria Pisana and Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (V.C.)
- San Rossore Clinic Care, 56100 Pisa, Italy;
| | - Ferdinando Franzoni
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (F.F.)
| | - Paolo Giovanni Artini
- Division of Gynecology and Obstetrics, Azienda Ospedaliero Universitaria Pisana and Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.P.); (V.C.)
- San Rossore Clinic Care, 56100 Pisa, Italy;
| |
Collapse
|
45
|
Dorobisz K, Dorobisz T, Pazdro-Zastawny K. Analysis of Risk Factors with Assessment of the Impact of the Microbiome on the Risk of Squamous Cell Carcinoma of the Larynx. J Clin Med 2024; 13:6101. [PMID: 39458051 PMCID: PMC11508926 DOI: 10.3390/jcm13206101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Introduction: Head and neck squamous cell carcinoma (HNSCC) ranks sixth among cancers in the world, and the 5-year survival rate ranges from 25% to 60%. The risk factors for HNSCC are primarily smoking, alcohol consumption and human papillomavirus (HPV). Data indicate that 15-20% of cancers are caused by infectious agents, 20-30% by smoking and 30-35% by unhealthy lifestyles, diet, lack of physical activity and obesity. Dysbiosis is a microbiome imbalance, which promotes oncogenesis by intensifying inflammatory processes and affecting the host's metabolism. Profiling the microbiome in various types of cancer is currently the subject of research and analysis. However, there is still little information on the correlation of the microbiome with HNSCC and its impact on oncogenesis, the course of the disease and its treatment. Objective: The aim of the study was to prospectively assess risk factors with assessment of the impact of the microbiome on the risk of squamous cell carcinoma of the larynx. The study included a group of 44 patients diagnosed with squamous cell carcinoma of the larynx and 30 patients from the control group. Results: In the control group, bacteria of the normal microbiome dominated-the genus Streptococcus, Gemella, Neisseria and Kingella. In the group of patients with laryngeal cancer, Prevotella, Clostridiales and Stomatobaculum were found significantly more often. Porphyromonas, Fusobacterium, Lactobacillus, Actinobacteria, Actinomyces and Shaalia odontolytica were also found at a higher percentage in the study group. Analyzing the phylum, Firmicutes dominated in the control group; there were statistically significantly more of them than in patients from the study group. Bacteroides and Bacillota were found significantly more often in patients with laryngeal cancer. Conclusions: The importance of the microbiome in oncology has been confirmed in many studies. Independent risk factors for laryngeal cancer were primarily a lower number of Firmicutes in the microbiome, but also an increased leukocyte level above 6.52 × 103/mm and a decreased total protein level below 6.9 g/dL. Prevotella, Clostridiales, Stomatobaculum, Porphyromonas, Fusobacterium, Lactobacillus, Actinobacteria, Actinomyces and Shaalia were considered to be the bacteria contributing to the development of laryngeal cancer. Streptococcus, Gemella, Neisserie and Kingella were considered to be protective bacteria. Moreover, the study confirmed the significant impact of smoking, alcohol consumption and poor oral hygiene on the development of laryngeal cancer. The microbiome, its identification and manipulation may constitute a breakthrough discovery for improving the diagnosis and oncological therapy of laryngeal cancer, and also of the entire group of HNSCC. Profiling the microbiome may allow for personalized therapy related to its modification. Assessing the microbiome of patients diagnosed with cancer may provide an opportunity to predict treatment response and effectiveness.
Collapse
Affiliation(s)
- Karolina Dorobisz
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Tadeusz Dorobisz
- Department of Vascular and General Surgery, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| | - Katarzyna Pazdro-Zastawny
- Department of Otolaryngology, Head and Neck Surgery, Wrocław Medical University, Borowska 213, 50-556 Wrocław, Poland
| |
Collapse
|
46
|
Patel NM, Patel PH, Bhogal RH, Harrington KJ, Singanayagam A, Kumar S. Altered Microbiome Promotes Pro-Inflammatory Pathways in Oesophago-Gastric Tumourigenesis. Cancers (Basel) 2024; 16:3426. [PMID: 39410045 PMCID: PMC11476036 DOI: 10.3390/cancers16193426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTION The upper gastrointestinal microbiome is a dynamic entity that is involved in numerous processes including digestion, production of vitamins and protection against pathogens. Many external and intrinsic factors may cause changes in the proportions of bacteria within the microbial community, termed 'dysbiosis'. A number of these have been identified as risk factors for a range of diseases, including oesophago-gastric carcinoma. MATERIALS AND METHODS A narrative review was conducted to elucidate the current evidence on the role of the microbiome in promoting oesophago-gastric tumourigenesis. Significant causes of dysbiosis including age, medications and GORD were examined and key pro-inflammatory pathways implicated in tumourigenesis and their interaction with the microbiome were described. RESULTS AND DISCUSSION An association between microbial dysbiosis and development of oesophago-gastric cancer may be mediated via activation of pro-inflammatory pathways, the inflammasome and the innate immune system. Advances in sequencing technology allow microbial communities to be fingerprinted by sequencing the 16S rRNA gene, enabling a deeper understanding of the genera that may be implicated in driving tumourigenesis. CONCLUSIONS Developing a greater understanding of the influence of the microbiota on oesophago-gastric tumourigenesis may enable advances to be made in the early detection of malignancy and in the development of novel systemic therapies, leading to improved rates of survival.
Collapse
Affiliation(s)
- Nikhil Manish Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pranav Harshad Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ricky Harminder Bhogal
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kevin Joseph Harrington
- Targeted Therapy Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Sacheen Kumar
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Upper Gastrointestinal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic London Hospital, London SW1X 7HY, UK
| |
Collapse
|
47
|
Messaritakis I, Vougiouklakis G, Koulouridi A, Agouridis AP, Spernovasilis N. Hidden army within: Harnessing the microbiome to improve cancer treatment outcomes. World J Clin Cases 2024; 12:6159-6164. [PMID: 39371567 PMCID: PMC11362890 DOI: 10.12998/wjcc.v12.i28.6159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 08/13/2024] Open
Abstract
The gut microbiome has emerged as a critical player in cancer pathogenesis and treatment response. Dysbiosis, an imbalance in the gut microbial community, impacts tumor initiation, progression, and therapy outcomes. Specific bacterial species have been associated with either promoting or inhibiting tumor growth, offering potential targets for therapeutic intervention. The gut microbiome influences the efficacy and toxicity of conventional treatments and cutting-edge immunotherapies, highlighting its potential as a therapeutic target in cancer care. However, translating microbiome research into clinical practice requires addressing challenges such as standardizing methodologies, validating microbial biomarkers, and ensuring ethical considerations. Here, we provide a comprehensive overview of the gut microbiome's role in cancer highlighting the need for ongoing research, collaboration, and innovation to harness its full potential for improving patient outcomes in oncology. The current editorial aims to explore these insights and emphasizes the need for standardized methodologies, validation of microbial biomarkers, and interdisciplinary collaboration to translate microbiome research into clinical applications. Furthermore, it underscores ethical considerations and regulatory challenges surrounding the use of microbiome-based therapies. Together, this article advocates for ongoing research, collaboration, and innovation to realize the full potential of microbiome-guided oncology in improving patient care and outcomes.
Collapse
Affiliation(s)
- Ippokratis Messaritakis
- Department of Microbiology, German Oncology Center & Yiannoukas Labs LTD, Bioiatriki Group, Limassol 4108, Cyprus
| | | | | | - Aris P Agouridis
- Department of Internal Medicine, German Oncology Center, Limassol 4108, Cyprus
- School of Medicine, European University Cyprus, Nicosia 2404, Cyprus
| | | |
Collapse
|
48
|
Zein L, Grossmann J, Swoboda H, Borgel C, Wilke B, Awe S, Nist A, Stiewe T, Stehling O, Freibert SA, Adhikary T, Chung HR. Haptoglobin buffers lipopolysaccharides to delay activation of NFκB. Front Immunol 2024; 15:1401527. [PMID: 39416789 PMCID: PMC11479958 DOI: 10.3389/fimmu.2024.1401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
It has remained yet unclear which soluble factors regulate the anti-inflammatory macrophage phenotype observed in both homeostasis and tumourigenesis. We show here that haptoglobin, a major serum protein with elusive immunoregulatory properties, binds and buffers bacterial lipopolysaccharides to attenuate activation of NFκB in macrophages. Haptoglobin binds different lipopolysaccharides with low micromolar affinities. Given its abundance, haptoglobin constitutes a buffer for serum-borne lipopolysaccharides, shielding them to safeguard against aberrant inflammatory reactions by reducing the amount of free lipopolysaccharides available for binding to TLR4. Concordantly, NFκB activation by haptoglobin-associated lipopolysaccharides was markedly delayed relative to stimulation with pure lipopolysaccharide. Our findings warrant evaluation of therapeutic benefits of haptoglobin for inflammatory conditions and re-evaluation of purification strategies. Finally, they allow to elucidate mechanisms of enhanced immunosuppression by oncofetal haptoglobin.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Josina Grossmann
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Helena Swoboda
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Christina Borgel
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Bernhard Wilke
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Stephan Awe
- Institute for Molecular Biology and Tumor Research, Biomedical Research Center, Philipps University Marburg, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
| | - Oliver Stehling
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Sven-Andreas Freibert
- Protein Biochemistry and Spectroscopy Core Facility, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
- Institute of Cytobiology, Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Till Adhikary
- Institute for Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University Marburg, Marburg, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| | - Ho-Ryun Chung
- Institute for Medical Bioinformatics and Biostatistics, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
49
|
Xia Y, Duan L, Zhang XL, Niu YJ, Ling X. Integrated analysis of gut microbiota and metabolomic profiling in colorectal cancer metastasis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4467-4478. [PMID: 38483004 DOI: 10.1002/tox.24228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 10/24/2024]
Abstract
Colorectal cancer (CRC) is characterized by its heterogeneity and complex metastatic mechanisms, presenting significant challenges in treatment and prognosis. This study aimed to unravel the intricate interplay between the gut microbiota and metabolic alterations associated with CRC metastasis. By employing high-throughput sequencing and advanced metabolomic techniques, we identified distinct patterns in the gut microbiome and fecal metabolites across different CRC metastatic sites. The differential gene analysis highlighted significant enrichment in biological processes related to immune response and extracellular matrix organization, with key genes playing roles in the complement and clotting cascades, and staphylococcus aureus infections. Protein-protein interaction networks further elucidated the potential mechanisms driving CRC spread, emphasizing the importance of extracellular vesicles and the PPAR signaling pathway in tumor metastasis. Our comprehensive microbiota analysis revealed a relatively stable alpha diversity across groups but identified specific bacterial genera associated with metastatic stages. Metabolomic profiling using OPLS-DA models unveiled distinct metabolic signatures, with differential metabolites enriched in pathways crucial for cancer metabolism and immune modulation. Integrative analysis of the gut microbiota and metabolic profiles highlighted significant correlations, suggesting a complex interplay that may influence CRC progression and metastasis. These findings offer novel insights into the microbial and metabolic underpinnings of CRC metastasis, paving the way for innovative diagnostic and therapeutic strategies targeting the gut microbiome and metabolic pathways.
Collapse
Affiliation(s)
- Yang Xia
- The First Clinical Medicine of Lanzhou University, Lanzhou, China
- Department of Hematology, The First People's Hospital of Lanzhou, Lanzhou, China
| | - Ling Duan
- The First Clinical Medicine of Lanzhou University, Lanzhou, China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xin-Lian Zhang
- Department of Hematology, The First People's Hospital of Lanzhou, Lanzhou, China
| | - Yu-Juan Niu
- Department of Hematology, The First People's Hospital of Lanzhou, Lanzhou, China
| | - Xiaoling Ling
- The First Clinical Medicine of Lanzhou University, Lanzhou, China
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
50
|
Merali N, Chouari T, Sweeney C, Halle-Smith J, Jessel MD, Wang B, O’ Brien J, Suyama S, Jiménez JI, Roberts KJ, Velliou E, Sivakumar S, Rockall TA, Demirkan A, Pedicord V, Deng D, Giovannetti E, Annels NE, Frampton AE. The microbial composition of pancreatic ductal adenocarcinoma: a systematic review of 16S rRNA gene sequencing. Int J Surg 2024; 110:6771-6799. [PMID: 38874485 PMCID: PMC11487005 DOI: 10.1097/js9.0000000000001762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), continues to pose a significant clinical and scientific challenge. The most significant finding of recent years is that PDAC tumours harbour their specific microbiome, which differs amongst tumour entities and is distinct from healthy tissue. This review aims to evaluate and summarise all PDAC studies that have used the next-generation technique, 16S rRNA gene amplicon sequencing within each bodily compartment. As well as establishing a causal relationship between PDAC and the microbiome. MATERIALS AND METHODS This systematic review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. A comprehensive search strategy was designed, and 1727 studies were analysed. RESULTS In total, 38 studies were selected for qualitative analysis and summarised significant PDAC bacterial signatures. Despite the growing amount of data provided, we are not able to state a universal 16S rRNA gene microbial signature that can be used for PDAC screening. This is most certainly due to the heterogeneity of the presentation of results, lack of available datasets, and the intrinsic selection bias between studies. CONCLUSION Several key studies have begun to shed light on causality and the influence the microbiome constituents and their produced metabolites could play in tumorigenesis and influencing outcomes. The challenge in this field is to shape the available microbial data into targetable signatures. Making sequenced data readily available is critical, coupled with the coordinated standardisation of data and the need for consensus guidelines in studies investigating the microbiome in PDAC.
Collapse
Affiliation(s)
- Nabeel Merali
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Tarak Chouari
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Casie Sweeney
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - James Halle-Smith
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Maria-Danae Jessel
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Bing Wang
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
| | - James O’ Brien
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Satoshi Suyama
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | | | - Keith J. Roberts
- Hepatobiliary and Pancreatic Surgery Unit, Queen Elizabeth Hospital Birmingham, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London (UCL), London
| | - Shivan Sivakumar
- Oncology Department and Institute of Immunology and Immunotherapy, Birmingham Medical School, University of Birmingham
| | - Timothy A. Rockall
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
| | - Ayse Demirkan
- Section of Statistical Multi-Omics, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
- Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey
| | - Virginia Pedicord
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam
- Fondazione Pisa per la Scienza, San Giuliano, Italy
| | - Nicola E. Annels
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| | - Adam E. Frampton
- Minimal Access Therapy Training Unit (MATTU), Royal Surrey Hospital NHS Foundation Trust
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital NHS Foundation Trust
- Section of Oncology, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey
| |
Collapse
|