1
|
Wang M, He A, Kang Y, Wang Z, He Y, Lim K, Zhang C, Lu L. Novel genes involved in vascular dysfunction of the middle temporal gyrus in Alzheimer's disease: transcriptomics combined with machine learning analysis. Neural Regen Res 2025; 20:3620-3634. [PMID: 39104175 PMCID: PMC11974667 DOI: 10.4103/nrr.nrr-d-23-02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/20/2024] [Accepted: 05/28/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00030/figure1/v/2025-01-31T122243Z/r/image-tiff Studies have shown that vascular dysfunction is closely related to the pathogenesis of Alzheimer's disease. The middle temporal gyrus region of the brain is susceptible to pronounced impairment in Alzheimer's disease. Identification of the molecules involved in vascular aberrance of the middle temporal gyrus would support elucidation of the mechanisms underlying Alzheimer's disease and discovery of novel targets for intervention. We carried out single-cell transcriptomic analysis of the middle temporal gyrus in the brains of patients with Alzheimer's disease and healthy controls, revealing obvious changes in vascular function. CellChat analysis of intercellular communication in the middle temporal gyrus showed that the number of cell interactions in this region was decreased in Alzheimer's disease patients, with altered intercellular communication of endothelial cells and pericytes being the most prominent. Differentially expressed genes were also identified. Using the CellChat results, AUCell evaluation of the pathway activity of specific cells showed that the obvious changes in vascular function in the middle temporal gyrus in Alzheimer's disease were directly related to changes in the vascular endothelial growth factor (VEGF)A-VEGF receptor (VEGFR) 2 pathway. AUCell analysis identified subtypes of endothelial cells and pericytes directly related to VEGFA-VEGFR2 pathway activity. Two subtypes of middle temporal gyrus cells showed significant alteration in AD: endothelial cells with high expression of Erb-B2 receptor tyrosine kinase 4 (ERBB4 high ) and pericytes with high expression of angiopoietin-like 4 (ANGPTL4 high ). Finally, combining bulk RNA sequencing data and two machine learning algorithms (least absolute shrinkage and selection operator and random forest), four characteristic Alzheimer's disease feature genes were identified: somatostatin ( SST ), protein tyrosine phosphatase non-receptor type 3 ( PTPN3 ), glutinase ( GL3 ), and tropomyosin 3 ( PTM3 ). These genes were downregulated in the middle temporal gyrus of patients with Alzheimer's disease and may be used to target the VEGF pathway. Alzheimer's disease mouse models demonstrated consistent altered expression of these genes in the middle temporal gyrus. In conclusion, this study detected changes in intercellular communication between endothelial cells and pericytes in the middle temporal gyrus and identified four novel feature genes related to middle temporal gyrus and vascular functioning in patients with Alzheimer's disease. These findings contribute to a deeper understanding of the molecular mechanisms underlying Alzheimer's disease and present novel treatment targets.
Collapse
Affiliation(s)
- Meiling Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Aojie He
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yubing Kang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhaojun Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yahui He
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Kahleong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Precise Diagnosis and Treatment Center for Neurodegenerative Diseases, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi Province, China
- Precise Diagnosis and Treatment Center for Neurodegenerative Diseases, Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
2
|
Wang K, Xiang J, Zhou J, Chen C, Wang Z, Qin N, Zhu M, Bi L, Gong L, Yang L, Chen Y, Xu X, Dai J, Ma H, Hu Z, Li W, Wang C, Jin G, Shen H. Development and validation of a transcription factor regulatory network-based signature for individualized prognostic risk in lung adenocarcinoma. Int J Cancer 2025; 156:2440-2451. [PMID: 39960662 DOI: 10.1002/ijc.35375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 03/17/2025]
Abstract
Despite significant progress in diagnostic and therapeutic modalities, lung adenocarcinoma (LUAD) still exhibits a high recurrence risk and a low 5-year survival rate. Reliable prognostic signatures are imperative for risk stratification in LUAD patients. This study encompassed 2740 patients from 23 LUAD cohorts, including one single-cell RNA sequencing (scRNA-seq) dataset, five bulk RNA-seq datasets, and 17 microarray datasets. Using scRNA-seq dataset, we defined a group of epithelial-specific transcription factors significantly over-represented in the epithelial-to-mesenchymal transition (EMT) gene set (enrichment ratio [ER] = 5.80, Fisher's exact test p < .001), and the corresponding target genes were significantly enriched in the cancer driver gene set (ER = 2.74, p < .001), indicating of their crucial roles in the EMT process and tumor progression. We constructed a single-cell gene pairs (scGPS) signature, composed of 3521 gene pairs derived from the epithelial cell-specific transcription factor regulatory network, to predict overall survival (OS) of LUAD. High-risk patients identified by scGPS in the discovery cohort exhibited significantly worse OS compared to low-risk patients (Hazard ratio [HR] = 1.78, 95% CI: 1.29-2.46, log-rank p = 1.80 × 10-4). The scGPS outperformed other established gene signatures and demonstrated robust prognostic stratification across various independent datasets, including microarray data and even early-stage LUAD patients. It remained an independent prognostic factor after adjusting for clinical and pathologic factors. In addition, combining scGPS with tumor stage further enhanced prognostic accuracy compared to using stage alone. The scGPS signature offers individualized prognosis estimations, showing significant potential for practical application in clinical settings.
Collapse
Affiliation(s)
- Kai Wang
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Xiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Zhou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lingfeng Bi
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liu Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingjia Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xianfeng Xu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Southeast University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
- State Key Laboratory Cultivation Base of Biomarkers for Cancer Precision Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Schmidt SK, Fischer S, El Ahmad Z, Schmid R, Metzger E, Schüle R, Hellerbrand C, Arkudas A, Kengelbach-Weigand A, Kappelmann-Fenzl M, Bosserhoff AK. Modeling a mesenchymal cell state by bioprinting for the molecular analysis of dormancy in melanoma. Mater Today Bio 2025; 32:101674. [PMID: 40206148 PMCID: PMC11979991 DOI: 10.1016/j.mtbio.2025.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 04/11/2025] Open
Abstract
Malignant melanoma is a highly aggressive tumor originating from the pigment producing cells, the melanocytes. It accounts for the majority of skin cancer related deaths worldwide. This is often due to the development of therapy resistance or tumor dormancy, eventually resulting in tumor relapse by yet undefined mechanisms. Tumor dormancy is thought to be mediated by the cellular microenvironment and models taking this factor into account are urgently needed. We 3D bioprinted melanoma cells in the hydrogels Cellink Bioink (CIB) or Matrigel (MG), each as a substitute of the extracellular matrix, and, thereby, induced a quiescent or a proliferative phenotype of the melanoma cell lines, respectively. RNA-Seq with subsequent comprehensive bioinformatical and molecular analyses assigned CIB-cultured cells to a predominantly mesenchymal and Matrigel-cultured cells to a more mitotic phenotype, emphasizing the CIB model as a suitable platform for the investigation of dormancy under consideration of the microenvironment. Melanoma cells in CIB 3D culture reflect a quiescent and migratory active cell state e.g. by revealing significant downregulation of genes associated with replication and cell cycle progression in this setting. Using this model system, we identified the mechanosensory gene FHL2 as one early sensor of changes in the ECM and suggest a FHL2-p21/AP-1 axis contributing to the dormant phenotype of melanoma cells in CIB.
Collapse
Affiliation(s)
- Sonja K. Schmidt
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Zubeir El Ahmad
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Rafael Schmid
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Eric Metzger
- Klinik für Urologie und Zentrale Klinische Forschung, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-University Freiburg, 79106, Freiburg, Germany
| | - Roland Schüle
- Klinik für Urologie und Zentrale Klinische Forschung, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-University Freiburg, 79106, Freiburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- CCC Erlangen-EMN: Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- CCC WERA: Comprehensive Cancer Center Alliance WERA (CCC WERA), 91054, Erlangen, Germany
- BZKF: Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - Andreas Arkudas
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, Germany
- CCC Erlangen-EMN: Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054, Erlangen, Germany
- CCC WERA: Comprehensive Cancer Center Alliance WERA (CCC WERA), 91054, Erlangen, Germany
- BZKF: Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| |
Collapse
|
4
|
Cui Y, Cui Y, Ding Y, Nakai K, Wei L, Le Y, Ye X, Sakurai T. OmniClust: A versatile clustering toolkit for single-cell and spatial transcriptomics data. Methods 2025; 238:84-94. [PMID: 40057293 DOI: 10.1016/j.ymeth.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
In recent years, RNA transcriptome sequencing technology has been continuously evolving, ranging from single-cell transcriptomics to spatial transcriptomics. Although these technologies are all based on RNA sequencing, each sequencing technology has its own unique characteristics, and there is an urgent need to develop an algorithmic toolkit that integrates both sequencing techniques. To address this, we have developed OmniClust, a toolkit based on single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics data. OmniClust employs deep learning algorithms for feature learning and clustering of spatial transcriptomics data, while utilizing machine learning algorithms for clustering scRNA-seq data. OmniClust was tested on 12 spatial transcriptomics benchmark datasets, demonstrating high clustering accuracy across multiple clustering evaluation metrics. It was also evaluated on four scRNA-seq benchmark datasets, achieving high clustering accuracy based on various clustering evaluation metrics. Furthermore, we applied OmniClust to downstream analyses of spatial transcriptomics and single-cell RNA breast cancer data, showcasing its potential to uncover and interpret the biological significance of cancer transcriptome data. In summary, OmniClust is a clustering tool designed for both single-cell transcriptomics and spatial transcriptomics data, demonstrating outstanding performance.
Collapse
Affiliation(s)
- Yaxuan Cui
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| | - Yang Cui
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Yi Ding
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan; Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Leyi Wei
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China
| | - Yuyin Le
- Department of Radiation Oncology Fuzhou Pulmonary Hospital of Fujian Province , Teaching Hospital of Fujian Medical University, China.
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan.
| | - Tetsuya Sakurai
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| |
Collapse
|
5
|
Li HX, Fei J, Xu W, Peng Y, Yan PJ, Xu Y, Qin G, Teng FY. The characterization and validation of regulated cell death-related genes in chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2025; 154:114509. [PMID: 40158428 DOI: 10.1016/j.intimp.2025.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/20/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Regulated cell death (RCD), a genetically controlled process mediated by specialized molecular pathways (commonly termed programmed cell death), plays pivotal roles in diverse pathophysiological processes. However, the landscape and functional implications of RCD subtypes in chronic rhinosinusitis with nasal polyps (CRSwNP) remain poorly characterized. This study aimed to systematically investigate the involvement of RCD mechanisms in the pathogenesis and progression of CRSwNP. METHODS Transcriptomic datasets (GSE136825, GSE23552, GSE198950, GSE196169, GSE156285) related to CRSwNP were retrieved from the Gene Expression Omnibus (GEO) database. A comprehensive panel of 18 RCD-associated gene sets was compiled through a systematic literature review. Gene set variation analysis (GSVA) was employed to profile RCD activation patterns in CRSwNP. Integrative bioinformatics approaches including weighted gene co-expression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) regression were implemented to identify hub RCD-related genes and construct a cell death index (CDI). Single-cell RNA sequencing (scRNA-seq) data were analyzed to map RCD dynamics across cellular subpopulations. Clinical validation was performed using qRT-PCR quantification of key genes in nasal polyp/inferior turbinate tissues, with the concurrent assessment of symptom severity via visual analogue scale (VAS) scores. RESULTS GSVA revealed significant upregulation of 8 RCD subtypes in CRSwNP: apoptosis, ferroptosis, necroptosis, entotic cell death, lysosome-dependent cell death, NETosis, immunogenic cell death, and anoikis. Pathway enrichment analysis demonstrated that RCD-related differentially expressed genes were predominantly involved in epithelial-mesenchymal transition (EMT) and immune-inflammatory regulation. Furthermore, the WGCNA algorithm and LASSO analysis identified 8 key cell death genes (PTHLH, GRINA, S100A9, SCG2, HMOX1, RNF183, TYROBP, SEMA7A), which were utilized to construct the cell death-related index (CDI). In training and validation cohorts, the CDI was significantly elevated in CRSwNP compared to control and exhibited high diagnostic performance, with elevated scores correlating with enhanced immune cell infiltration. Single-cell resolution analysis uncovered cell type-specific RCD activation patterns. Clinical validation confirmed significantly higher expression of S100A9, PTHLH, and HMOX1 in eosinophilic versus non-eosinophilic polyps. Notably, expression levels of PTHLH, S100A9, HMOX1, GRINA, and TYROBP showed strong positive correlations with VAS scores. CONCLUSIONS Our investigation delineates an RCD activation signature in CRSwNP pathogenesis, characterized by 8 key cell death modalities and their regulatory genes. The novel CDI exhibits promising diagnostic potential, while mechanistic insights suggest RCD pathways may drive disease progression through EMT potentiation and inflammatory cascade amplification. These findings provide a framework for developing RCD-targeted therapeutic strategies in CRSwNP.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, Sichuan 646000, China
| | - Jing Fei
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yi Peng
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Pi-Jun Yan
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, Sichuan 646000, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yong Xu
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, Sichuan 646000, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Gang Qin
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Fang-Yuan Teng
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, Sichuan 646000, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
6
|
Fan X, Li H. Integration of Single-Cell and Spatial Transcriptomic Data Reveals Spatial Architecture and Potential Biomarkers in Alzheimer's Disease. Mol Neurobiol 2025; 62:5395-5412. [PMID: 39543008 DOI: 10.1007/s12035-024-04617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the gradual loss of neurons and the accumulation of amyloid plaques and neurofibrillary tangles. Despite advancements in the understanding of AD's pathophysiology, the cellular organization and interactions in the prefrontal cortex (PFC) remain elusive. Eight single-cell RNA sequencing (scRNA-seq) datasets from both normal controls and individuals with AD were harmonized. Stringent preprocessing protocols were implemented to uphold dataset integrity. Unsupervised clustering and annotation revealed 22 distinct cell clusters corresponding to 19 unique cell types. The spatial architecture of the PFC region was constructed using the CARD tool. Further analyses encompassed trajectory examination of Oligodendrocyte subtypes, evaluation of regulon activity scores, and spot clustering within white matter regions (WM). Differential expression analysis and functional enrichment assays unveiled molecular signatures linked to AD progression and were validated using microarray data sourced from neurodegenerative disorder patients. Our investigation employs scRNA-seq and spatial transcriptomics to uncover the cellular atlas and spatial architecture of the human PFC in AD. Moreover, our results indicate that Oligodendrocytes are more prevalent in AD patients, showcasing diverse subtypes and spatial organization within WM regions. Each subtype appears to be associated with distinct biological processes and transcriptional regulators, shedding light on their involvement in AD pathology. Notably, the Oligodendrocyte_C6 subtype is linked to neurological damage in AD patients, characterized by heightened expression of genes involved in cell-cell connections, cell membrane stability, and myelination. Additionally, 12 target genes regulated by NFIA were identified, which are upregulated in AD patients and associated with disease progression. Elevated PLXDC2 expression in peripheral blood was also identified, suggesting its potential as a non-invasive biomarker for early AD detection. Our study provides novel insights into the role of Oligodendrocytes in AD and highlights the potential of PLXDC2 as a blood biomarker for non-invasive diagnosis and monitoring of AD patients.
Collapse
Affiliation(s)
- Xing Fan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, 226001, PR, China
| | - Huamei Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, PR, China.
| |
Collapse
|
7
|
Guo B, Wen X, Yu S, Yang J. Single-cell sequencing reveals PHLDA1-positive smooth muscle cells promote local invasion in head and neck squamous cell carcinoma. Transl Oncol 2025; 55:102301. [PMID: 40132389 PMCID: PMC11985064 DOI: 10.1016/j.tranon.2025.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Smooth muscle cells within the tumor microenvironment play a crucial role in cancer progression. However, their involvement in the local invasion of head and neck squamous cell carcinoma remains poorly understood. In this research, we aim to investigate the role of smooth muscle cells-mediated cell interactions in facilitating the local invasion of head and neck squamous cell carcinoma. METHODS Single-cell sequencing data from the public databases GSE164690 and GSE181919 were utilized to identify a specific smooth muscle cells cluster. Smooth muscle cells were isolated from tumor microenvironment of head and neck squamous cell carcinoma. PHLDA1 expression in smooth muscle cells was assessed through immunofluorescence staining. The role of THBS1 was investigated through in vitro studies. RESULTS PHLDA1-positive smooth muscle cells were significantly enriched in head and neck squamous cell carcinoma. PHLDA1 promoted the expression of THBS1 in smooth muscle cells. In vitro, THBS1 facilitated head and neck squamous cell carcinoma migration and invasion through SDC1 receptor. CONCLUSION PHLDA1-positive smooth muscle cells play a critical role in head and neck squamous cell carcinoma invasion through THBS1. Targeting PHLDA1-positive smooth muscle cells or THBS1 may offer a promising therapeutic approach for head and neck squamous cell carcinoma treatment.
Collapse
Affiliation(s)
- Bing Guo
- Department of Burns and Plastic Surgery, Institute of Traumatic Medicine and Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Yu
- Department of Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Wang H, Qiu B, Li X, Ying Y, Wang Y, Chen H, Zeng F, Shi J, Huang J, Wu Z, Chen Z, Che X, Li Q, Fan Y, Li B, Wang Q, Huang C, Chen Y, Li T, Mo K, Wang Q, Cui C. Single cell analysis reveals that SPP1 + macrophages enhance tumor progression by triggering fibroblast extracellular vesicles. Transl Oncol 2025; 55:102347. [PMID: 40086324 PMCID: PMC11954126 DOI: 10.1016/j.tranon.2025.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Patients with liver metastatic colorectal cancer (mCRC) have a poor prognosis and are the leading cause of death in colorectal cancer (CRC) patients, but the mechanisms associated with CRC metastasis have not been fully elucidated. In this study, we obtained data from the Gene Expression Omnibus database and characterized the single-cell profiles of CRC, mCRC and healthy samples at single-cell resolution, and explored the cells that influence CRC metastasis. We find that AQP1+ CRC identified as highly malignant tumor cells exhibited proliferative and metastatic characteristics. Immunosuppressive properties are present in the tumor microenvironment (TME), while NOTCH3+ Fib is identified to play a facilitating role in the metastatic colonization of CRC. Importantly, we reveal that tumor-associated macrophages (TAM) characterized by SPP1-specific high expression may be involved in TME remodeling through intercellular communication. Specifically, SPP1+ TAM mediates the generation of Fib-derived extracellular vesicle through the APOE-LRP1 axis, which in turn delivers tumor growth-promoting factors in the TME. This study deepens the understanding of the mechanism of TME in mCRC and lays the scientific foundation for the development of therapeutic regimens for mCRC patients.
Collapse
Affiliation(s)
- Haocheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bowen Qiu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xinyu Li
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yao Ying
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yue Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hungchen Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fanan Zeng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junyao Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junpeng Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ziying Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zequn Chen
- Department of Gastrointestinal Surgery, First Ward of Maoming People's Hospital, Maoming 525000, China
| | - Xiao Che
- Department of Abdominal Hernia Surgery, Maoming People's Hospital, Southern Medical University, Maoming 525000, China
| | - Qingzhong Li
- Guangzhou University of Traditional Chinese Medicine, Maoming 525000, China
| | - Yingming Fan
- Department of General Surgery, Guangning County People's Hospital, Guangdong Medical University, Zhaoqing 526300, China
| | - Bingyao Li
- Department of General Surgery, Guangning People's Hospital, Zhaoqing 526300, China
| | - Qun Wang
- Department of Emergency, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, China
| | - Chengyu Huang
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yixuan Chen
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ting Li
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ke Mo
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| | - Qian Wang
- Department of Gastrointestinal surgery, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528000, China.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
9
|
Li S, Zeng G, Pang C, Li J, Wu L, Luo M, Qiu Z, Jiang Y. Single-cell and spatial transcriptomics analysis reveals that Pros1 + oligodendrocytes are involved in endogenous neuroprotection after brainstem stroke. Neurobiol Dis 2025; 208:106855. [PMID: 40090471 DOI: 10.1016/j.nbd.2025.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/11/2025] [Accepted: 02/24/2025] [Indexed: 03/18/2025] Open
Abstract
BACKGROUND Brainstem stroke accounts only 7-10 % of all ischemic stroke while it had more morbidity and mortality. As the predominant cellular component of nerve tracts, oligodendrocytes might provide some neuroprotection against ischemic injury in the context of brainstem stroke, but the underlying mechanism remains unclear. METHOD A mouse model of brainstem stroke was established, and single-cell RNA sequencing and spatial transcriptomic sequencing analysis were performed to elucidate the phenotype of oligodendrocytes within this context. RESULTS Loss of oligodendrocytes led to neurological impairment following brainstem stroke, and subsequent proliferation of oligodendrocytes was observed. We identified a subcluster of Pros1+ oligodendrocytes, designated OLG8 cells. These cells increased in number after brainstem stroke and were enriched around the peri-infarct zone. OLG8 cells were derived from oligodendrocyte progenitor cells, and this process was found to be regulated by Myo1e. We found that OLG8 cells protected interneurons. Notably, the overexpression of Myo1e within OLG8 cells led to a marked reduction in infarct volume while simultaneously improving the recovery of neurological function. CONCLUSION In conclusion, we identified a novel cell subcluster, OLG8 cells, in the context of brainstem stroke, and found that overexpression of Myo1e alleviated ischemic injury by facilitating the differentiation of OLG8 cells. Our study provided insight into the mechanism of brainstem stroke.
Collapse
Affiliation(s)
- Shaojun Li
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Guanfeng Zeng
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Chunmei Pang
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Li Wu
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Ming Luo
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China
| | - Zhihua Qiu
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China.
| | - Yongjun Jiang
- Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, 250 Changgang East Road, Guangzhou 510260, China.
| |
Collapse
|
10
|
Yan T, Jiang Z, Tu W, Fang K, Xu X, Huang W, Cao J, Zhang H, Yu D, Zhang S. Single‑cell RNA‑Seq reveals PBMC profile alterations in a patient following a radiation accident. Exp Ther Med 2025; 29:96. [PMID: 40165803 PMCID: PMC11956132 DOI: 10.3892/etm.2025.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/24/2025] [Indexed: 04/02/2025] Open
Abstract
Nuclear technology has been extensively used in various fields, increasing the possibility of radiation exposure to humans. Radiation exposure outcomes may be classified as whole-body irradiation or local irradiation. Clinically, local irradiation refers to the exposure of a relatively limited portion of the body, with injury confined to the directly exposed tissues. However, locally irradiated tissues can trigger systemic reactions through the release of inflammatory factors or damage to blood cells at the irradiated site. The circulating population of peripheral blood mononuclear cells (PBMCs), a component of normal tissue, is particularly sensitive to ionizing radiation. The present study applied single-cell RNA sequencing (scRNA-Seq) to profile PBMCs from one irradiated patient and 10 healthy controls matched for sex and age. In total, 6,447 and 7,892 cells were collected for analysis from the PBMCs of the irradiated patient on the 113rd and 631st days post radiation, respectively, whereas 9,101 cells were obtained from 10 healthy controls. Following scRNA-Seq, five cell types were annotated via representative markers, revealing distinct cell types whose proportions changed markedly in the irradiated patient. Trajectory analysis indicated that the dysregulation of multiple signaling pathways was associated with radiation exposure. Furthermore, single-cell regulatory network inference and clustering analysis revealed gene regulatory networks and suggested the involvement of several signaling pathways, such as those related to viral infection, in the context of radiation exposure. The present study elucidated the dynamic landscape of human blood immune responses to ionizing radiation and provides evidence of its therapeutic potential for treating radiation injury.
Collapse
Affiliation(s)
- Tao Yan
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan 621099, P.R. China
| | - Zhiqiang Jiang
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
| | - Wenling Tu
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
| | - Kai Fang
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
| | - Xiaopeng Xu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wei Huang
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Huojun Zhang
- Department of Radiation Oncology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China
| | - Daojiang Yu
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Center of Burn and Trauma, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Shuyu Zhang
- Department of Plastic Surgery, The Second Affiliated Hospital of Chengdu Medical College (Nuclear Industry 416 Hospital), Chengdu, Sichuan 610051, P.R. China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, Sichuan 621099, P.R. China
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
11
|
Song X, Zhang F, Han D, Yu J, Ren Q, Xin X, Guo R, Le W. Reevaluating the role of Pou3f1 in striatal development: Evidence from transgenic mouse models. Brain Res Bull 2025; 224:111302. [PMID: 40088991 DOI: 10.1016/j.brainresbull.2025.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
The striatum, a critical component of the basal ganglia, is essential for motor control, cognitive processing, and emotional regulation. Medium spiny neurons (MSNs) are the primary neuronal population in the striatum, classified into D1 and D2 subtypes. The transcription factor Pou3f1 has been hypothesized to play a crucial role in the development of pyramidal neurons. Recently, a comprehensive analysis of the human embryonic scRNA-seq dataset predicted and emphasized the bridging function of POU3F1 between striatal progenitor cells and immature neurons, though this finding lacked genetic validation. In this study, we found that Pou3f1 expression was significantly reduced after Six3 deletion. However, Pou3f1 deletion does not significantly affect the number or subtype composition of MSNs, nor the proliferation and differentiation of progenitor cells, in our Pou3f1 conditional knockout (cko) mice, challenging the in silico predictions based on human data. These results suggest that Pou3f1 is not required for the specification, generation, or differentiation of MSNs, though its potential involvement in other aspects of striatal development cannot be entirely ruled out.
Collapse
Affiliation(s)
- Xiaolei Song
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
| | - Fengzhu Zhang
- Shanghai Yangpu District Mental Health Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Danyu Han
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jingzhe Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qian Ren
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xiaoming Xin
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Rongliang Guo
- Department of Central Laboratory, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Weidong Le
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China; Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
| |
Collapse
|
12
|
Windster JD, Kakiailatu NJM, Kuil LE, Antanaviciute A, Sacchetti A, MacKenzie KC, Peulen-Zink J, Kan TW, Bindels E, de Pater E, Doukas M, van den Bosch TPP, Yousefi S, Barakat TS, Meeussen CJHM, Sloots PCEJ, Wijnen RMH, Parikh K, Boesmans W, Melotte V, Hofstra RMW, Simmons A, Alves MM. Human Enteric Glia Diversity in Health and Disease: New Avenues for the Treatment of Hirschsprung Disease. Gastroenterology 2025; 168:965-979.e12. [PMID: 39725172 DOI: 10.1053/j.gastro.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/16/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND & AIMS The enteric nervous system (ENS), which is composed of neurons and glia, regulates intestinal motility. Hirschsprung disease (HSCR) results from defects in ENS formation; however, although neuronal aspects have been studied extensively, enteric glia remain disregarded. This study aimed to explore enteric glia diversity in health and disease. METHODS Full-thickness intestinal resection material from pediatric controls and patients with HSCR was collected, dissociated, and enriched for the ENS population through fluorescence-activated cell sorting. Single-cell RNA sequencing was performed to uncover the transcriptomic diversity of the ENS in controls and HSCR patients, as well as in wild-type and ret mutant zebrafish. Immunofluorescence and fluorescence in situ hybridization confirmed the presence of distinct subtypes. RESULTS Two major enteric glial classes emerged in the pediatric intestine: Schwann-like enteric glia, which are reminiscent of Schwann cells, and enteric glia expressing classical glial markers. Comparative analysis with previously published datasets confirmed our classification and revealed that although classical enteric glia are predominant prenatally, Schwann-like enteric glia become more abundant postnatally. In HSCR, ganglionic segments mirrored controls and aganglionic segments featured only Schwann-like enteric glia. Leveraging the regenerative potential of Schwann cells, we explored therapeutic options using a ret mutant zebrafish. Prucalopride, a serotonin-receptor (5-HT) agonist, induced neurogenesis partially rescuing the HSCR phenotype in ret+/- mutants. CONCLUSIONS Two major enteric glial classes were identified in the pediatric intestine, highlighting the significant postnatal contribution of Schwann-like enteric glia to glial heterogeneity. Crucially, these glial subtypes persist in aganglionic segments of patients with HSCR, offering a new target for their treatment using 5-HT agonists.
Collapse
Affiliation(s)
- Jonathan D Windster
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Naomi J M Kakiailatu
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Laura E Kuil
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Agne Antanaviciute
- MRC Translational Immune Discovery Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom; MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Andrea Sacchetti
- Department of Pathology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Katherine C MacKenzie
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Joke Peulen-Zink
- Department of Hematology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tsung W Kan
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric Bindels
- Department of Hematology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Emma de Pater
- Department of Hematology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Thierry P P van den Bosch
- Department of Pathology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Soheil Yousefi
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Tahsin-Stefan Barakat
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Conny J H M Meeussen
- Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Pim C E J Sloots
- Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Kaushal Parikh
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Werend Boesmans
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium; Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Veerle Melotte
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Alison Simmons
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Daugherty A, Milewicz DM, Dichek DA, Ghaghada KB, Humphrey JD, LeMaire SA, Li Y, Mallat Z, Saeys Y, Sawada H, Shen YH, Suzuki T, Zhou (周桢) Z. Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models. Arterioscler Thromb Vasc Biol 2025; 45:609-631. [PMID: 40079138 PMCID: PMC12018150 DOI: 10.1161/atvbaha.124.320259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
There is a recent dramatic increase in research on thoracic aortic diseases that includes aneurysms, dissections, and rupture. Experimental studies predominantly use mice in which aortopathy is induced by chemical interventions, genetic manipulations, or both. Many parameters should be deliberated in experimental design in concert with multiple considerations when providing dimensional data and characterization of aortic tissues. The purpose of this review is to provide recommendations on guidance in (1) the selection of a mouse model and experimental conditions for the study, (2) parameters for standardizing detection and measurements of aortic diseases, (3) meaningful interpretation of characteristics of diseased aortic tissue, and (4) reporting standards that include rigor and transparency.
Collapse
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David A. Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Texas Children’s Hospital, and Department of Radiology, Baylor College of Medicine Houston, TX, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Scott A. LeMaire
- Heart & Vascular Institute, Geisinger Health System, Danville, PA, USA
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, Paris, France
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Department of Applied Mathematics, Computer Science and Statistics, Ghent University Ghent, Belgium
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK and Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhen Zhou (周桢)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
14
|
Yang X, Zhang X, Tian Y, Yang J, Jia Y, Xie Y, Cheng L, Chen S, Wu L, Qin Y, Zhao Z, Zhao D, Wei Y. Srsf3-Dependent APA Drives Macrophage Maturation and Limits Atherosclerosis. Circ Res 2025; 136:985-1009. [PMID: 40160097 DOI: 10.1161/circresaha.124.326111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Circulating monocytes largely contribute to macrophage buildup in atheromata, which is crucial for clearing subendothelial LDLs (low-density lipoproteins) and dead cells; however, the transitional trajectory from monocytes to macrophages in atherosclerotic plaques and the underlying regulatory mechanism remain unclear. Moreover, the role of alternative polyadenylation, a posttranscriptional regulator of cell fate, in monocyte/macrophage fate decisions during atherogenesis is not entirely understood. METHODS To identify monocyte/macrophage subtypes in atherosclerotic lesions and the effect of alternative polyadenylation on these subtypes and atherogenesis, single-cell RNA sequencing, 3'-end sequencing, flow cytometric, and histopathologic analyses were performed on plaques obtained from Apoe-/- mouse arteries with or without myeloid deletion of Srsf3 (serine/arginine-rich splicing factor 3). Cell fractionation, polysome profiling, L-azidohomoalanine metabolic labeling assay, and metabolomic profiling were conducted to disclose the underlying mechanisms. Reprogramming of widespread alternative polyadenylation patterns was estimated in human plaques via bulk RNA sequencing. RESULTS We identified a subset of lesional cells in a monocyte-to-macrophage transitional state, which exhibited high expression of chemokines in mice. Srsf3 deletion caused a maturation delay of these transitional cells and phagocytic impairment of lesional macrophages, aggravating atherosclerosis. Mechanistically, Srsf3 deficiency shortened 3' untranslated regions of mitochondria-associated Aars2 (alanyl-tRNA synthetase 2), disrupting its translation. The resultant impairment of protein synthesis in mitochondria led to mitochondrial dysfunction with declined NAD+ (nicotinamide adenine dinucleotide, oxidized form) levels, activation of the integrated stress response, and metabolic reprogramming in macrophages. Administering an NAD+ precursor nicotinamide mononucleotide or the integrated stress response inhibitor partially restored Srsf3-deficient macrophage maturation, and nicotinamide mononucleotide treatment mitigated the proatherosclerotic effects of Srsf3 deficiency. Consistently, Srsf3 downregulation, global 3' untranslated region shortening, and accumulation of these transitional macrophages were associated with atherosclerosis progression in humans. CONCLUSIONS Our study reveals that Srsf3-dependent generation of long 3' untranslated region is required for efficient mitochondrial translation, which promotes mature phagocytic macrophage formation, thereby playing a protective role in atherosclerosis.
Collapse
Affiliation(s)
- Xian Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yaru Tian
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Jiaxuan Yang
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yunhui Jia
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yuhuai Xie
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Lianping Cheng
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Shenglai Chen
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Linfeng Wu
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Yihong Qin
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, China (Z.Z.)
- Vascular Center of Shanghai Jiao Tong University, China (Z.Z.)
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT (D.Z.)
| | - Yuanyuan Wei
- Department of Immunology, School of Basic Medical Sciences, and Department of Rheumatology, Zhongshan Hospital (X.Y., X.Z., Y.T., J.Y., Y.J., Y.X., L.C., S.C., L.W., Y.Q., Y.W.), Fudan University, Shanghai, China
- Shanghai Key Laboratory of Bioactive Small Molecules and State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences (Y.W.), Fudan University, Shanghai, China
| |
Collapse
|
15
|
Chen X, Jiang Z, Pan J, Xu W, Li Y, Chen X, Pan Y, Weng Y, Hu D, Qiu S. Integrated multi-omics reveal lactate metabolism-related gene signatures and PYGL in predicting HNSCC prognosis and immunotherapy efficacy. BMC Cancer 2025; 25:773. [PMID: 40275154 DOI: 10.1186/s12885-025-13982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) treatment faces significant clinical challenges. Lactate metabolism plays a crucial role in the initiation of many cancers and the tumor microenvironment (TME). However, the prognostic significance of lactate metabolism-related genes (LMRGs) and the role of TME in HNSCC require further elucidation. METHODS We built a prognostic multigene signature with LMRGs and systematically correlated the risk signature with immunological characteristics and immunotherapy efficacy. Next, a series of single-cell sequencing analyses were used to characterize lactate metabolism in TME. Finally, single-cell sequencing analysis, immunofluorescence analyses, and a series of in vitro experiments were used to explore the role of PYGL in HNSCC. Potential drugs targeting PYGL were screened using AutoDock 4.2. RESULTS A prognostic multigene signature based on LMRGs was developed, which effectively stratified patients into high- and low-risk groups, with significant differences in overall survival (OS) and progression-free survival (PFS). Patients in the low-risk group exhibited reduced lactate metabolism, higher CD8 + T cell infiltration, and improved response to immunotherapy. Single-cell sequencing revealed that tumor cells had the most active lactate metabolism compared to other cells in the TME. PYGL, identified as the most critical prognostic gene, was highly expressed in tumor-associated macrophages and played a role in inhibiting M1 macrophage polarization. Knockdown of PYGL led to reduced lactate levels, and its expression was inversely correlated with CD8 + T cell infiltration. Furthermore, PYGL was involved in copper-dependent cell death, highlighting its potential as a therapeutic target. Drug screening identified elesclomol, which showed promising results in PYGL-knockdown cells. CONCLUSIONS The study established a robust LMRGs-based prognostic model that not only predicts patient survival but also correlates with the immune microenvironment in HNSCC. PYGL emerged as a key biomarker with significant implications for both prognosis and therapeutic intervention. Its role in regulating lactate metabolism and immune suppression suggests that targeting PYGL could enhance the efficacy of immunotherapies. This research provides a foundation for future clinical strategies aimed at improving outcomes in HNSCC by modulating the tumor's metabolic and immune landscapes.
Collapse
Affiliation(s)
- Xiaochuan Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Zhangying Jiang
- Department of Pathology, Fuzhou Hospital of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Junping Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wenqian Xu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Ying Li
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xin Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Yuhui Pan
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Youliang Weng
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Dan Hu
- Department of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| | - Sufang Qiu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China.
| |
Collapse
|
16
|
Ding M, Mao S, Wu H, Fang S, Zhen N, Chen T, Zhu J, Tang X, Wang X, Sun F, Zhu G, Pan Q, Ma J. Malignant Hepatoblast-Like Cells Sustain Stemness via IGF2-Dependent Cholesterol Accumulation in Hepatoblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407671. [PMID: 40271711 DOI: 10.1002/advs.202407671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/08/2025] [Indexed: 04/25/2025]
Abstract
Hepatoblastoma, the most aggressive childhood liver tumor, poses significant challenges due to limited knowledge of its pathogenesis, particularly in poorly differentiated advanced tumors where the prognosis is dismal. Single-cell sequencing provides an in-depth exploration at the single-cell level and offers a deep understanding of tumor heterogeneity. Herein, single-cell transcriptomics analysis is used to identify a unique malignant-hepatoblast (HB)-like cell subpopulation as the possible origin of poorly differentiated hepatoblastoma. These cells are associated with an unfavorable clinical prognosis in hepatoblastoma patients. The malignant-HB-like cell subpopulation generated insulin-like growth factor 2 (IGF2) to sustain stem-like features by promoting abnormal cholesterol accumulation via SREBF2. IGF2 also stimulated fibroblast 2 to secrete collagen 1, intensifying tumor malignancy via the collagen 1/integrin α1 signaling pathway. This suggests that targeting malignant HB-like cells by inhibiting IGF2-induced pathways can lead to promising treatments for hepatoblastoma. Additionally, serum IGF2 levels may serve as a diagnostic biomarker for advanced hepatoblastoma. In summary, these findings provide valuable insight into the genesis and malignancy of hepatoblastoma and a foundation for more effective diagnostic tools and therapeutic strategies for this challenging disease.
Collapse
Affiliation(s)
- Miao Ding
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Siwei Mao
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Han Wu
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Sijia Fang
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Ni Zhen
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Tianshu Chen
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Jiabei Zhu
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Xiaochen Tang
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Xiaoyang Wang
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Fenyong Sun
- Department Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Guoqing Zhu
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Qiuhui Pan
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200120, P. R. China
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, 572029, P. R. China
| | - Ji Ma
- Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, 200127, P. R. China
| |
Collapse
|
17
|
Liu Q, Kang J, Du L, Liu Z, Liang H, Wang K, He H, Zhang X, Wang Q, Hong Y, Cheng Q, Liu X, Ma W, Zhao J. Single-cell multiome reveals root hair-specific responses to salt stress. THE NEW PHYTOLOGIST 2025. [PMID: 40269556 DOI: 10.1111/nph.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Soil salinization, exacerbated by environmental deterioration and improper cultivation, is a major challenge for sustainable agriculture. The root is the primary organ in plants to perceive and respond to salt stress. Utilizing single-cell sequencing, we have created the first single-cell transcriptional and chromatin accessibility landscape for normal and salt-stressed root tips in non-heading Chinese cabbage (NHCC). Our study reveals that salt stress disrupts the normal differentiation of root hairs, leaving many in an undifferentiated state and preventing stress response gene expression. Inter-species analyses show that both salt and osmotic stresses inhibit root hair differentiation and elongation similarly, resulting in fewer, malfunctioning root hairs. We found that high salinity affects root hair iron transport. Salt stress-responsive genes, cell type-specific transcriptional regulatory networks, and trajectory curves are linked to iron transport. Specifically, the expression of BcIRT2, a metal transporter gene, is influenced by salt stress. Silencing BcIRT2 causes chlorotic leaves and increases salt sensitivity, reducing iron content in NHCC roots. Our findings offer significant insights into plant salt stress responses and provide valuable information for breeding salt-tolerant NHCC and other crops.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | | | - Lin Du
- BGI Research, Beijing, 102601, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaokun Liu
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu, 215155, China
| | - Hao Liang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Kailai Wang
- Glbizzia Biosciences, Beijing, 102609, China
| | - Haijiao He
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Xiaonan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Qifan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Yiguo Hong
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Qi Cheng
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Xin Liu
- BGI Research, Beijing, 102601, China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei International Joint Research and Development Center of Modern Agricultural Biotechnology, College of Horticulture, College of Life Sciences, Hebei Agricultural University, Baoding, 071000, China
| |
Collapse
|
18
|
Ni Q, Yu J, Niu Y, Han Z, Hu B, Wang Y, Zhu J. Single-cell transcriptomic data reveal the cellular heterogeneity of glutamine metabolism in gastric premalignant lesions and early gastric cancer. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40264416 DOI: 10.3724/abbs.2025061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Glutamine metabolism is a hallmark of cancer metabolism. This study aims to perform a comprehensive and systematic single-cell profile of glutamine metabolism in premalignant and malignant gastric lesions. We use single-cell transcriptomics data from chronic atrophic gastritis (CAG) and early gastric cancer (EGC) lesions and investigate glutamine metabolism features at the single-cell level. Experiments are implemented to validate the expression and biological role of ERO1LB in gastric cancer (GC). A single-cell atlas based on 22511 cells from premalignant and early-malignant gastric lesions is established. Among these cells, epithelial cells constitute the dominant cell population in both CAG and EGC lesions. The activity of glutamine metabolism is higher in epithelial cells from EGC lesions than in those from CAG lesions. Among the epithelial cell subpopulations, glutamine metabolism is more active in the epithelial cell subpopulation cluster_4 in EGCs than in CAG lesions. As a key marker gene of this subpopulation, ERO1LB is experimentally proven to be overexpressed in human GC tissue lesions. In both in vitro and in vivo experiments, overexpression of ERO1LB in GC cells increases glutamine metabolism, facilitates cell growth and migration and prevents cell apoptosis, and vice versa. This study provides insight into the cellular heterogeneityof glutamine metabolism within the gastric mucosa in premalignant and malignant gastric lesions and identifies ERO1LB as a key orchestrator of glutamine metabolism, which may help to identify markers for GC prevention and contribute to our understanding of GC pathogenesis.
Collapse
|
19
|
Liu Z, Ba Y, Shan D, Zhou X, Zuo A, Zhang Y, Xu H, Liu S, Liu B, Zhao Y, Weng S, Wang R, Deng J, Luo P, Cheng Q, Hu X, Yang S, Wang F, Han X. THBS2-producing matrix CAFs promote colorectal cancer progression and link to poor prognosis via the CD47-MAPK axis. Cell Rep 2025; 44:115555. [PMID: 40222008 DOI: 10.1016/j.celrep.2025.115555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/30/2024] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) display significant functional and molecular heterogeneity within the tumor microenvironment, playing diverse roles in cancer progression. Employing single-cell RNA sequencing data of colorectal cancer (CRC), we identified a subset of matrix CAFs (mCAFs) as a critical subtype that secretes THBS2, a molecule linked to advanced cancer stages and poor prognosis. Spatial transcriptomics and multiplex immunohistochemistry revealed clear spatial colocalization between THBS2-producing mCAFs and tumor cells. Mechanically, CAF-secreted THBS2 binds to CD47 on tumor cells, triggering the MAPK/ERK5 signaling pathway, which enhances tumor progression. The tumor-promoting role of THBS2 was further validated using fibroblast-specific THBS2 knockout mice, patient-derived organoids, and xenografts. Moreover, the transcription factor CREB3L1 was identified as a regulator of the transformation of normal fibroblasts into THBS2-producing mCAFs. These findings underscore the pivotal role of THBS2 in CRC progression and highlight the therapeutic potential of targeting the THBS2-CD47 axis and CREB3L1 in CRC.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Dan Shan
- Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YT, UK
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Benyu Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanan Zhao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ruizhi Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jinhai Deng
- Richard Dimbleby Department of Cancer Research, Comprehensive Cancer Centre, Kings College London, London, UK
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Hu
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan, China.
| | - Fubing Wang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China; Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China; Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.
| |
Collapse
|
20
|
Ai C, Li H, Wang C, Ji Y, Wallace DC, Qian J, Zhu Y, Guan MX. Vitamin A treatment restores vision failures arising from Leber's hereditary optic neuropathy-linked mtDNA mutation. JCI Insight 2025; 10:e188962. [PMID: 40036074 DOI: 10.1172/jci.insight.188962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a paradigm for mitochondrial retinopathy due to mitochondrial DNA (mtDNA) mutations. However, the mechanism underlying retinal cell-specific effects of LHON-linked mtDNA mutations remains poorly understood, and there has been no effective treatment or cure for this disorder. Using a mouse model bearing an LHON-linked ND6P25L mutation, we demonstrated that the mutation caused retinal cell-specific deficiencies, especially in retinal ganglion cells (RGCs), rods, and Müller cells. Single-cell RNA sequencing revealed cell-specific dysregulation of oxidative phosphorylation and visual signaling pathways in the mutant retina. Strikingly, ND6 mutation-induced dysfunctions caused abnormal vitamin A (VA) metabolism essential for visual function. VA supplementation remarkably alleviated retinal deficiencies, including reduced fundus lesion and retinal thickness and increased numbers of RGCs, photoreceptors, and Müller cell neurites. The restoration of visual functions with VA treatment were further evidenced by correcting dysregulations of phototransduction cascade and neurotransmitter transmission and restoring electrophysiological properties. Interestingly, VA supplementation markedly rescued the abnormal mitochondrial morphologies and functions in the mutant retina. These findings provide insight into retina-specific pathophysiology of mitochondrial retinopathy arising from VA deficiency and mitochondrial dysfunction induced by mtDNA mutation and a step toward therapeutic intervention for LHON and other mitochondrial retinopathies.
Collapse
Affiliation(s)
- Cheng Ai
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Genetics, Zhejiang University, Hangzhou, China
- Center for Genetic Medicine, Zhejiang University International School and Institute of Medicine, Yiwu, China
| | - Huiying Li
- Institute of Genetics, Zhejiang University, Hangzhou, China
| | - Chunyan Wang
- Institute of Genetics, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University, Hangzhou, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Junbin Qian
- Institute of Genetics, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yimin Zhu
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Genetics, Zhejiang University, Hangzhou, China
- Center for Genetic Medicine, Zhejiang University International School and Institute of Medicine, Yiwu, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Stomper J, Niroula A, Belizaire R, McConkey M, Bandaru TS, Ebert BL. Sex differences in DNMT3A-mutant clonal hematopoiesis and the effects of estrogen. Cell Rep 2025; 44:115494. [PMID: 40178977 DOI: 10.1016/j.celrep.2025.115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Blood cancers are generally more common in males, and the prevalence of most mutations that drive clonal hematopoiesis and myeloid malignancies is higher in males. In contrast, hematopoietic DNMT3A mutations are more common in females. Among ∼450,000 participants in the UK Biobank, the prevalence of DNMT3A mutations and copy-number abnormalities is higher in females than males. In a murine model, Dnmt3a-mutant hematopoietic stem cells (HSCs) from unperturbed female mice had increased stemness gene expression compared to male and wild-type (WT) mice. Estrogen regulates HSCs, and we found that Dnmt3a mutations maintain stemness in the setting of estrogen-induced proliferative stress. Dnmt3a-mutant myeloid cells outcompeted WT cells under chronic estrogen treatment, an effect that was dependent on cell-intrinsic estrogen receptor alpha activity. Our studies indicate that estrogen might contribute to the female predominance of DNMT3A-mutant clonal hematopoiesis.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Abhishek Niroula
- Broad Institute, Cambridge, MA 02142, USA; Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden; SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tagore Sanketh Bandaru
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA.
| |
Collapse
|
22
|
Wang H, He P, Wang Z, Tian C, Liu C, Li X, Yan T, Qin Y, Ling S, Ling H, Wu G, Li Y, Wang J, Jin S. Single-cell RNA-seq analysis identifies the atlas of lymph fluid and reveals a sepsis-related T cell subset. Cell Rep 2025; 44:115469. [PMID: 40178976 DOI: 10.1016/j.celrep.2025.115469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/08/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
The lymphoid cycle serves as a sentinel of the immune response, yet the cell subtypes and immune properties within lymph fluid remain unclear. This study describes a comprehensive characterization of immune cells in rat lymph fluid using single-cell RNA sequencing, identifying a unique subset of CD4+ T cells (CD4_Icos) that suppresses inflammation in early sepsis. Trajectory analysis reveals that CD4+Icos+ T cells can differentiate into regulatory T cells (Tregs). Transferring CD4+Icos+ T cells alleviates CLP-induced organ injury, while CD4+ Icos-knockout (KO) mice show reduced Treg numbers, increased inflammation, and higher mortality. Further experiments identify Npas2 as an Icos-specific transcription factor regulating Icos expression and promoting the differentiation of CD4+Icos+ T cells. Clinical data show a negative correlation between ICOS expression in CD4+ T cells and clinical outcomes in septic patients. These findings highlight the protective role of CD4+ T cells in modulating immune responses and mitigating sepsis progression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panwei He
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhenxia Wang
- Department of Emergency Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Chao Tian
- Department of Anesthesiology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Chuanlong Liu
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyu Li
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tao Yan
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Qin
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Sunwang Ling
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hanzhi Ling
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gan Wu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Li
- Department of Emergency Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China; Precision Anesthesiology Key Laboratory of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
23
|
Xu K, Liu X, Zeng Q, Liu Y, Shan L, Ji L, Wu Y, Wu J, Chen Y, Li Y, Huang S, Jiang C, Hong X, Wu C, Wang Z. Cannabinoid CB 2 receptor controls chronic itch by regulating spinal microglial activation and synaptic transmission. Cell Rep 2025; 44:115559. [PMID: 40222011 DOI: 10.1016/j.celrep.2025.115559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/30/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025] Open
Abstract
Chronic itch is a devastating clinical condition, and its central mechanisms remain poorly understood. We reported that spinal cannabinoid receptor type 2 (CB2R) activation exerts antipruritic effects and that itch escalates in mice lacking Cnr2 in mouse models of dermatitis and psoriasis. In the spinal cord, CB2R is mainly expressed in microglia, and microglial ablation or inhibition attenuated chronic itch, suggesting that microglial activation contributes to chronic itch. Particularly, conditional Cnr2 deletion in microglia also exacerbated chronic itch in mice. Single-cell RNA sequencing and molecular mechanistic studies suggest that CB2R activation reprogrammed microglia by inducing anti-inflammatory suppressor of cytokine signaling 3 (SOCS3) and reducing itch-related p38 and signal transducer and activator of transcription 1 (STAT1) phosphorylation. Finally, CB2R activation suppressed neuronal excitability and synaptic transmission in gastrin-releasing peptide (GRP)/GRP receptor (GRPR) interneurons and ascending projection neurons by inhibiting microglia-derived cytokines. These findings demonstrate that microglial activation contributes to chronic itch, while CB2R activation in microglia alleviates chronic itch via neuro-immune interactions.
Collapse
Affiliation(s)
- Kangtai Xu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xuefei Liu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qian Zeng
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yaqi Liu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Leyan Shan
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Luyao Ji
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yifei Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiawei Wu
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yiming Chen
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yitong Li
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Songqiang Huang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Key University Laboratory of Metabolism and Health of Guangdong School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
| | - Chaoran Wu
- Department of Anesthesiology, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Zilong Wang
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Key University Laboratory of Metabolism and Health of Guangdong School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; SUSTech Homeostatic Medicine Institute, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
24
|
Zhang R, Shen Z, Zhao Z, Gu X, Yan T, Wei W, Wu C, Xia J, Zhang Y, Chen S, Ma L, Zhang D, Wu X, Sharpe PT, Wang S. Integrated multi-omics profiling characterizes the crucial role of human dental epithelium during tooth development. Cell Rep 2025; 44:115437. [PMID: 40120109 DOI: 10.1016/j.celrep.2025.115437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/17/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
The development of early human tooth primordia is not well understood. Here, we linked single-cell RNA sequencing, spatial transcriptomics, and secretome analysis to characterize human fetal tooth development over time. A spatiotemporal atlas of human tooth development at multiple levels was mapped, identifying previously uncharacterized epithelial subpopulations with distinct gene expression profiles and spatial localization. Dynamic changes in epithelial-mesenchymal interactions across developmental stages were characterized. Secretome analysis confirmed the extensive paracrine signaling from the epithelial to mesenchymal compartments and uncovered signaling factors produced by dental epithelium (DE) that regulate mesenchymal cell fate and differentiation. Integration of these datasets highlighted the crucial role of the DE in orchestrating tooth morphogenesis. Our multi-omics approach not only provides unprecedented insights into the cellular and molecular mechanisms of ectoderm-derived tissue development but also serves as a valuable resource, which is publicly available online, for future studies on human tooth regeneration and related diseases.
Collapse
Affiliation(s)
- Ran Zhang
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Zongshan Shen
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhenni Zhao
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiuge Gu
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tianxing Yan
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Wei Wei
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chuan Wu
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jinxuan Xia
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuanyuan Zhang
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University/Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Suwen Chen
- Beijing Obstetrics and Gynecology Hospital, Capital Medical University/Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Linsha Ma
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoshan Wu
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Songlin Wang
- Beijing Laboratory of Oral Health, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Laboratory of Homeostatic Medicine, School of Medicine and SUSTech Homeostatic Medicine Institute, Southern University of Science and Technology, Shenzhen, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China.
| |
Collapse
|
25
|
Nano PR, Fazzari E, Azizad D, Martija A, Nguyen CV, Wang S, Giang V, Kan RL, Yoo J, Wick B, Haeussler M, Bhaduri A. Integrated analysis of molecular atlases unveils modules driving developmental cell subtype specification in the human cortex. Nat Neurosci 2025:10.1038/s41593-025-01933-2. [PMID: 40259073 DOI: 10.1038/s41593-025-01933-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/27/2025] [Indexed: 04/23/2025]
Abstract
Human brain development requires generating diverse cell types, a process explored by single-cell transcriptomics. Through parallel meta-analyses of the human cortex in development (seven datasets) and adulthood (16 datasets), we generated over 500 gene co-expression networks that can describe mechanisms of cortical development, centering on peak stages of neurogenesis. These meta-modules show dynamic cell subtype specificities throughout cortical development, with several developmental meta-modules displaying spatiotemporal expression patterns that allude to potential roles in cell fate specification. We validated the expression of these modules in primary human cortical tissues. These include meta-module 20, a module elevated in FEZF2+ deep layer neurons that includes TSHZ3, a transcription factor associated with neurodevelopmental disorders. Human cortical chimeroid experiments validated that both FEZF2 and TSHZ3 are required to drive module 20 activity and deep layer neuron specification but through distinct modalities. These studies demonstrate how meta-atlases can engender further mechanistic analyses of cortical fate specification.
Collapse
Affiliation(s)
- Patricia R Nano
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elisa Fazzari
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Daria Azizad
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Antoni Martija
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Claudia V Nguyen
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sean Wang
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vanna Giang
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ryan L Kan
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Juyoun Yoo
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Brittney Wick
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Su G, Wang H, Zhang Y, Wilkins MR, Canete PF, Yu D, Yang Y, Zhang W. Inferring gene regulatory networks by hypergraph generative model. CELL REPORTS METHODS 2025; 5:101026. [PMID: 40220759 DOI: 10.1016/j.crmeth.2025.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 01/16/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
We present hypergraph variational autoencoder (HyperG-VAE), a Bayesian deep generative model that leverages hypergraph representation to model single-cell RNA sequencing (scRNA-seq) data. The model features a cell encoder with a structural equation model to account for cellular heterogeneity and construct gene regulatory networks (GRNs) alongside a gene encoder using hypergraph self-attention to identify gene modules. The synergistic optimization of encoders via a decoder improves GRN inference, single-cell clustering, and data visualization, as validated by benchmarks. HyperG-VAE effectively uncovers gene regulation patterns and demonstrates robustness in downstream analyses, as shown in B cell development data from bone marrow. Gene set enrichment analysis of overlapping genes in predicted GRNs confirms the gene encoder's role in refining GRN inference. Offering an efficient solution for scRNA-seq analysis and GRN construction, HyperG-VAE also holds the potential for extending GRN modeling to temporal and multimodal single-cell omics.
Collapse
Affiliation(s)
- Guangxin Su
- School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), Melbourne, VIC, Australia
| | - Hanchen Wang
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), Melbourne, VIC, Australia; Australian Artificial Intelligence Institute, The University of Technology Sydney, Sydney, NSW, Australia
| | - Ying Zhang
- School of Computer Science and Technology, Zhejiang Gongshang University, Zhejiang, China
| | - Marc R Wilkins
- ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), Melbourne, VIC, Australia; Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Pablo F Canete
- Frazer Institute, Faculty of Health, Medicine and Behaviour Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Di Yu
- Frazer Institute, Faculty of Health, Medicine and Behaviour Sciences, The University of Queensland, Brisbane, QLD, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Health, Medicine and Behaviour Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yang Yang
- Frazer Institute, Faculty of Health, Medicine and Behaviour Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Wenjie Zhang
- School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW, Australia; ARC Centre of Excellence for the Mathematical Analysis of Cellular Systems (MACSYS), Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Huynh KLA, Tyc KM, Matuck BF, Easter QT, Pratapa A, Kumar NV, Pérez P, Kulchar RJ, Pranzatelli TJF, de Souza D, Weaver TM, Qu X, Soares Junior LAV, Dolhnokoff M, Kleiner DE, Hewitt SM, da Silva LFF, Rocha VG, Warner BM, Byrd KM, Liu J. Deconvolution of cell types and states in spatial multiomics utilizing TACIT. Nat Commun 2025; 16:3747. [PMID: 40258827 PMCID: PMC12012066 DOI: 10.1038/s41467-025-58874-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
Identifying cell types and states remains a time-consuming, error-prone challenge for spatial biology. While deep learning increasingly plays a role, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we develop TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data. TACIT uses unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000 cells; 51 cell types) from three niches (brain, intestine, gland), TACIT outperforms existing unsupervised methods in accuracy and scalability. Integrating TACIT-identified cell types reveals new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discover under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.
Collapse
Affiliation(s)
- Khoa L A Huynh
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Katarzyna M Tyc
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
- Massey Cancer Center, Richmond, VA, USA
| | - Bruno F Matuck
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Quinn T Easter
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Aditya Pratapa
- Department of Cell Biology, Duke University, Durham, NC, USA
| | - Nikhil V Kumar
- Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
| | - Paola Pérez
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Rachel J Kulchar
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J F Pranzatelli
- Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Deiziane de Souza
- Department of Pathology, Medicine School of University of Sao Paulo, SP, BR, Sao Paulo, Brazil
| | - Theresa M Weaver
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - Xufeng Qu
- Massey Cancer Center, Richmond, VA, USA
| | | | - Marisa Dolhnokoff
- Department of Pathology, Medicine School of University of Sao Paulo, SP, BR, Sao Paulo, Brazil
| | - David E Kleiner
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Vanderson Geraldo Rocha
- Department of Hematology, Transfusion and Cell Therapy Service, University of Sao Paulo, Sao Paulo, Brazil
| | - Blake M Warner
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Kevin M Byrd
- Department of Oral and Craniofacial Molecular Biology, Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.
- Salivary Disorders Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| | - Jinze Liu
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA.
- Massey Cancer Center, Richmond, VA, USA.
| |
Collapse
|
28
|
Chen S, Liu R, Mo CK, Wendl MC, Houston A, Lal P, Zhao Y, Caravan W, Shinkle AT, Abedin-Do A, Naser Al Deen N, Sato K, Li X, Targino da Costa ALN, Li Y, Karpova A, Herndon JM, Artyomov MN, Rubin JB, Jain S, Li X, Stewart SA, Ding L, Chen F. Multi-omic and spatial analysis of mouse kidneys highlights sex-specific differences in gene regulation across the lifespan. Nat Genet 2025:10.1038/s41588-025-02161-x. [PMID: 40259083 DOI: 10.1038/s41588-025-02161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/11/2025] [Indexed: 04/23/2025]
Abstract
There is a sex bias in the incidence and progression of many kidney diseases. To better understand such sexual dimorphism, we integrated data from six platforms, characterizing 76 kidney samples from 68 mice at six developmental and adult time points, creating a molecular atlas of the mouse kidney across the lifespan for both sexes. We show that proximal tubules have the most sex-biased differentially expressed genes emerging after 3 weeks of age and are associated with hormonal regulations. We reveal potential mechanisms involving both direct and indirect regulation by androgens and estrogens. Spatial profiling identifies distinct sex-biased spatial patterns in the cortex and outer stripe of the outer medulla. Additionally, older mice exhibit more aging-related gene alterations in loops of Henle, proximal tubules and collecting ducts in a sex-dependent manner. Our results enhance the understanding of spatially resolved gene expression and hormone regulation underlying kidney sexual dimorphism across the lifespan.
Collapse
Affiliation(s)
- Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Ruiyang Liu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Chia-Kuei Mo
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael C Wendl
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew Houston
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Preet Lal
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrew T Shinkle
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Atieh Abedin-Do
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Kazuhito Sato
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - André Luiz N Targino da Costa
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - Alla Karpova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA
| | - John M Herndon
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Joshua B Rubin
- Department of Paediatrics, Washington University School of Medicine St Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine St Louis, St. Louis, MO, USA
| | - Sanjay Jain
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Paediatrics, Washington University School of Medicine St Louis, St. Louis, MO, USA
| | - Xue Li
- Samuel Oschin Comprehensive Cancer Institute, Department of Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sheila A Stewart
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA.
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
29
|
Liu C, Ding T, Zou R, Zhang A, Zhi Z, Wang S. Unravelling NK cell subset dynamics and specific gene signatures post-ibrutinib therapy in chronic lymphocytic leukaemia via single-cell transcriptomics. BMC Cancer 2025; 25:745. [PMID: 40259256 PMCID: PMC12013039 DOI: 10.1186/s12885-025-14166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 04/16/2025] [Indexed: 04/23/2025] Open
Abstract
BACKGROUND As part of the innate immune system, NK cells contribute to optimizing cancer immunotherapy strategies and are becoming a focal point in cancer research. However, limited research has been conducted to further investigate changes in NK cell subsets and their critical genes following ibrutinib treatment in CLL patients. METHODS Peripheral blood samples from patients clinically and pathologically diagnosed with monoclonal B-cell lymphocytosis (MBL), newly diagnosed with CLL (ND-CLL), postibrutinib-treated patients who achieved a complete response (CR) or partial response (PR), and those with Richter's syndrome (RS) were collected. Single-cell transcriptome sequencing was performed, followed by pseudotemporal analysis and functional enrichment to characterize the NK cell subsets. Mendelian randomization analysis and colocalization analysis were employed to identify key genes. Multiple algorithms were used for immune infiltration analysis, and drug sensitivity analysis was conducted to pinpoint potential therapeutic agents. RESULTS Three distinct NK cell subsets were identified: CD56bright_NK cells, CD56dim_NK cells, and a highly cytotoxic CLL_NK subset. The core genes of the CLL_NK subset were elucidated through Mendelian randomization and colocalization analyses. A cell subset-specific novel index (CNI) was constructed based on these core genes and was shown to be capable of predicting responses to immunotherapy. Oncopredictive algorithms and molecular docking screenings further identified semaxanib and ulixertinib as potential therapeutic candidates for CLL. CONCLUSION The CLL_NK subset plays a crucial role in the development and progression of CLL. The CNI, derived from its key genes, holds promise as a predictor of immune therapeutic responses, highlighting the significance of CLL_NK subset dynamics and their genetic underpinnings in CLL management.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Piperidines/therapeutic use
- Single-Cell Analysis/methods
- Transcriptome
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Male
- Female
- Indazoles/therapeutic use
- Gene Expression Profiling
- Middle Aged
- Aged
Collapse
Affiliation(s)
- Chunlan Liu
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Tianjian Ding
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rong Zou
- Xiamen Hong Ai Hospital, Xiamen, Fujian, China
| | - Aili Zhang
- Longyan Hospital of Fujian Province, Fujian, Longyan, China
| | - Zhengzhuo Zhi
- Department of Hematology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sili Wang
- Department of Hematology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
30
|
Wang X, Mu X, Li X, Yang C, Cai Y, Liu C, Liu Z, He Z. Construction of a deep learning model and identification of the pivotal characteristics of FGF7- and MGST1- positive fibroblasts in heart failure post-myocardial infarction. Int J Biol Macromol 2025; 310:143171. [PMID: 40258553 DOI: 10.1016/j.ijbiomac.2025.143171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/05/2025] [Accepted: 04/13/2025] [Indexed: 04/23/2025]
Abstract
Dysregulation of fibroblast function is closely associated with the occurrence of heart failure after myocardial infarction (post-MI HF). Myocardial fibrosis is a detrimental consequence of aberrant fibroblast activation and extracellular matrix deposition following myocardial infarction (MI). However, the heterogeneity of fibroblasts in normal cardiac tissue and heart failure tissue remains to be further investigated. We discovered that the abundance of FGF7+MGST1+ fibroblasts were down-regulated in post-MI HF according to scRNA-seq analysis. Key gene characteristics of FGF7+MGST1+ fibroblasts were uncovered through both differential expression analysis and hdWGCNA pipeline. Pseudotime analysis revealed that FGF7+MGST1+ fibroblasts were gradually decreased with the occurrence of heart failure. Cell-cell communication analysis indicated an enhanced secretory ability in FGF7+MGST1+ fibroblasts compared to other fibroblasts. Utilizing machine learning algorithms, we identified 17 feature genes of this cell population. A deep learning model capable of predicting heart failure was successfully built based on these feature genes and immune infiltration levels of post-MI HF. FGF7 was highly related to cardioprotective pathway terms, including "PI3K/AKT pathway" and "protein secretion". Parallelly, mendelian randomization analysis was adopted to better understand the causal relationships between feature genes and post-MI HF. Results indicated that MGST1 was causally associated with heart failure, consistent with single cell data. And the post-MI HF mouse model was constructed and qRT-PCR assays supported that both FGF7 and MGST1 were largely down-regulated in myocardial infarction area than other cardiac tissues. These findings provide new insights into the roles of FGF7+MGST1+ fibroblasts in post MI HF.
Collapse
Affiliation(s)
- Xicheng Wang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, PR China
| | - Xiaolan Mu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, PR China
| | - Xiuhua Li
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, PR China
| | - Chao Yang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, PR China
| | - Yongchao Cai
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, PR China
| | - Changcheng Liu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, PR China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, PR China.
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200123, PR China; Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai 200335, PR China; Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai 200120, PR China.
| |
Collapse
|
31
|
Lam T, Quach HT, Hall L, Abou Chakra M, Wong AP. A multidisciplinary approach towards modeling of a virtual human lung. NPJ Syst Biol Appl 2025; 11:38. [PMID: 40251169 PMCID: PMC12008392 DOI: 10.1038/s41540-025-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Integrating biological data with in silico modeling offers the transformative potential to develop virtual human models, or "digital twins." These models hold immense promise for deepening our understanding of diseases and uncovering new therapeutic strategies. This approach is especially valuable for diseases lacking reliable models. Here we review current modelling efforts in of human lung development, highlighting the role of interdisciplinary collaboration and key advances toward a digital lung twin.
Collapse
Affiliation(s)
- Timothy Lam
- Program in Developmental, Stem cell and Cancer Biology, Hospital for Sick Children, PGCRL 16-9420, Toronto, ON, Canada
| | - Henry T Quach
- Program in Developmental, Stem cell and Cancer Biology, Hospital for Sick Children, PGCRL 16-9420, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Lauren Hall
- Program in Developmental, Stem cell and Cancer Biology, Hospital for Sick Children, PGCRL 16-9420, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Maria Abou Chakra
- Donnelly Centre for Cellular and Biomedical Research, University of Toronto, Toronto, ON, Canada
| | - Amy P Wong
- Program in Developmental, Stem cell and Cancer Biology, Hospital for Sick Children, PGCRL 16-9420, Toronto, ON, Canada.
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
32
|
Zhou W, Xu C, Yang S, Li H, Pan C, Jiang Z, Xie L, Li X, Qiao H, Mi D, Tang Y, Zhang L, Xi Q. An oncohistone-driven H3.3K27M/CREB5/ID1 axis maintains the stemness and malignancy of diffuse intrinsic pontine glioma. Nat Commun 2025; 16:3675. [PMID: 40246858 PMCID: PMC12006333 DOI: 10.1038/s41467-025-58795-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 04/02/2025] [Indexed: 04/19/2025] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG), a lethal pediatric cancer driven by H3K27M oncohistones, exhibits aberrant epigenetic regulation and stem-like cell states. Here, we uncover an axis involving H3.3K27M oncohistones, CREB5/ID1, which sustains the stem-like state of DIPG cells, promoting malignancy. We demonstrate that CREB5 mediates elevated ID1 levels in the H3.3K27M/ACVR1WT subtype, promoting tumor growth; while BMP signaling regulates this process in the H3.1K27M/ACVR1MUT subtype. Furthermore, we reveal that H3.3K27M directly enhances CREB5 expression by reshaping the H3K27me3 landscape at the CREB5 locus, particularly at super-enhancer regions. Additionally, we elucidate the collaboration between CREB5 and BRG1, the SWI/SNF chromatin remodeling complex catalytic subunit, in driving oncogenic transcriptional changes in H3.3K27M DIPG. Intriguingly, disrupting CREB5 super-enhancers with ABBV-075 significantly reduces its expression and inhibits H3.3K27M DIPG tumor growth. Combined treatment with ABBV-075 and a BRG1 inhibitor presents a promising therapeutic strategy for clinical translation in H3.3K27M DIPG treatment.
Collapse
Affiliation(s)
- Wei Zhou
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuangrui Yang
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haocheng Li
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Luyang Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaohan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Huimin Qiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Da Mi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yujie Tang
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Qiaoran Xi
- MOE Key Laboratory of Protein Sciences, State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing, China.
- Joint Graduate Program of Peking-Tsinghua-NIBS, Tsinghua University, Beijing, China.
| |
Collapse
|
33
|
Daugelaite K, Lacour P, Winkler I, Koch ML, Schneider A, Schneider N, Coraggio F, Tolkachov A, Nguyen XP, Vilkaite A, Rehnitz J, Odom DT, Goncalves A. Granulosa cell transcription is similarly impacted by superovulation and aging and predicts early embryonic trajectories. Nat Commun 2025; 16:3658. [PMID: 40246835 PMCID: PMC12006393 DOI: 10.1038/s41467-025-58451-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/20/2025] [Indexed: 04/19/2025] Open
Abstract
In vitro fertilization efficiency is limited in part because a fraction of retrieved oocytes fails to fertilize. Accurately evaluating their quality could significantly improve in vitro fertilization efficiency, which would require better understanding how their maturation may be disrupted. Here, we quantitatively investigate the interplay between superovulation and aging in mouse oocytes and their paired granulosa cells using a newly adapted experimental methodology. We test the hypothesis that superovulation disrupts oocyte maturation, revealing the key intercellular communication pathways dysregulated at the transcriptional level by forced hormonal stimulation. We further demonstrate that granulosa cell transcriptional markers can prospectively predict an associated oocyte's early developmental potential. By using naturally ovulated old mice as a non-stimulated reference, we show that aging and superovulation dysregulate similar genes and interact with each other. By comparing mice and human transcriptional responses of granulosa cells, we find that age-related dysregulation of hormonal responses and cell cycle pathways are shared, though substantial divergence exists in other pathways.
Collapse
Affiliation(s)
- Klaudija Daugelaite
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karl-University Heidelberg, Heidelberg, Germany
| | - Perrine Lacour
- Faculty of Biosciences, Ruprecht-Karl-University Heidelberg, Heidelberg, Germany
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ivana Winkler
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marie-Luise Koch
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anja Schneider
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Schneider
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Francesca Coraggio
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Tolkachov
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Cardiology, Angiology and Pneumology, Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany
| | - Xuan Phuoc Nguyen
- Department of Gynecological Endocrinology and Fertility Disorders, University Women's Hospital Heidelberg, Heidelberg, Germany
| | - Adriana Vilkaite
- Department of Gynecological Endocrinology and Fertility Disorders, University Women's Hospital Heidelberg, Heidelberg, Germany
| | - Julia Rehnitz
- Department of Gynecological Endocrinology and Fertility Disorders, University Women's Hospital Heidelberg, Heidelberg, Germany
| | - Duncan T Odom
- Division of Regulatory Genomics and Cancer Evolution, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Angela Goncalves
- Division of Molecular and Computational Prevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
34
|
Kock KH, Tan LM, Han KY, Ando Y, Jevapatarakul D, Chatterjee A, Lin QXX, Buyamin EV, Sonthalia R, Rajagopalan D, Tomofuji Y, Sankaran S, Park MS, Abe M, Chantaraamporn J, Furukawa S, Ghosh S, Inoue G, Kojima M, Kouno T, Lim J, Myouzen K, Nguantad S, Oh JM, Rayan NA, Sarkar S, Suzuki A, Thungsatianpun N, Venkatesh PN, Moody J, Nakano M, Chen Z, Tian C, Zhang Y, Tong Y, Tan CTY, Tizazu AM, Loh M, Hwang YY, Ho RC, Larbi A, Ng TP, Won HH, Wright FA, Villani AC, Park JE, Choi M, Liu B, Maitra A, Pithukpakorn M, Suktitipat B, Ishigaki K, Okada Y, Yamamoto K, Carninci P, Chambers JC, Hon CC, Matangkasombut P, Charoensawan V, Majumder PP, Shin JW, Park WY, Prabhakar S. Asian diversity in human immune cells. Cell 2025; 188:2288-2306.e24. [PMID: 40112801 DOI: 10.1016/j.cell.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/03/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
The relationships of human diversity with biomedical phenotypes are pervasive yet remain understudied, particularly in a single-cell genomics context. Here, we present the Asian Immune Diversity Atlas (AIDA), a multi-national single-cell RNA sequencing (scRNA-seq) healthy reference atlas of human immune cells. AIDA comprises 1,265,624 circulating immune cells from 619 donors, spanning 7 population groups across 5 Asian countries, and 6 controls. Though population groups are frequently compared at the continental level, we found that sub-continental diversity, age, and sex pervasively impacted cellular and molecular properties of immune cells. These included differential abundance of cell neighborhoods as well as cell populations and genes relevant to disease risk, pathogenesis, and diagnostics. We discovered functional genetic variants influencing cell-type-specific gene expression, which were under-represented in non-Asian populations, and helped contextualize disease-associated variants. AIDA enables analyses of multi-ancestry disease datasets and facilitates the development of precision medicine efforts in Asia and beyond.
Collapse
Affiliation(s)
- Kian Hong Kock
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Le Min Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Kyung Yeon Han
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Yoshinari Ando
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Laboratory for Transcriptome Technology, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Damita Jevapatarakul
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ankita Chatterjee
- John C. Martin Centre for Liver Research and Innovations, Sonarpur, Kolkata 700150, India
| | - Quy Xiao Xuan Lin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Eliora Violain Buyamin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Radhika Sonthalia
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Deepa Rajagopalan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Yoshihiko Tomofuji
- Laboratory for Systems Genetics, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shvetha Sankaran
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Mi-So Park
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Mai Abe
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Juthamard Chantaraamporn
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Seiko Furukawa
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Supratim Ghosh
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Gyo Inoue
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Miki Kojima
- Laboratory for Transcriptome Technology, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsukasa Kouno
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jinyeong Lim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Keiko Myouzen
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Sarintip Nguantad
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jin-Mi Oh
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Nirmala Arul Rayan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Sumanta Sarkar
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Narita Thungsatianpun
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasanna Nori Venkatesh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Jonathan Moody
- Laboratory for Genome Information Analysis, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masahiro Nakano
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Ziyue Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Chi Tian
- Department of Pharmacy, Faculty of Science, National University of Singapore (NUS), Singapore 117543, Singapore
| | - Yuntian Zhang
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine (YLLSoM), NUS, Singapore 119228, Singapore
| | - Yihan Tong
- Department of Pharmacy, Faculty of Science, National University of Singapore (NUS), Singapore 117543, Singapore
| | - Crystal T Y Tan
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Anteneh Mehari Tizazu
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Marie Loh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Nanyang Technological University (NTU), Lee Kong Chian School of Medicine (LKCMedicine), 11 Mandalay Road, Singapore 308232, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Roger C Ho
- Department of Psychological Medicine, YLLSoM, NUS, 1E Kent Ridge Road, Singapore 119228, Singapore; Institute for Health Innovation & Technology, NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Tze Pin Ng
- Department of Geriatric Medicine, Khoo Teck Puat Hospital, Singapore 768828, Singapore; St Luke's Hospital, Singapore 659674, Singapore; Geriatric Education and Research Institute, Singapore 768024, Singapore
| | - Hong-Hee Won
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Fred A Wright
- Department of Biological Sciences, Bioinformatics Research Center, and Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, and Mass General Cancer Center, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34051, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Boxiang Liu
- Department of Pharmacy, Faculty of Science, National University of Singapore (NUS), Singapore 117543, Singapore; Department of Biomedical Informatics, Yong Loo Lin School of Medicine (YLLSoM), NUS, Singapore 119228, Singapore; Precision Medicine Translational Research Programme, NUS Centre for Cancer Research, and Cardiovascular-Metabolic Disease Translational Research Programme, YLLSoM, NUS, Singapore 119228, Singapore
| | - Arindam Maitra
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Manop Pithukpakorn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Bhoom Suktitipat
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yukinori Okada
- Laboratory for Systems Genetics, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita 565-0871, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Genomics Research Center, Fondazione Human Technopole, Viale Rita Levi-Montalcini, 1 - Area MIND, Milano, Lombardy 20157, Italy
| | - John C Chambers
- Nanyang Technological University (NTU), Lee Kong Chian School of Medicine (LKCMedicine), 11 Mandalay Road, Singapore 308232, Singapore
| | - Chung-Chau Hon
- Laboratory for Genome Information Analysis, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-3-2 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Ponpan Matangkasombut
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Varodom Charoensawan
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand; Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Partha P Majumder
- John C. Martin Centre for Liver Research and Innovations, Sonarpur, Kolkata 700150, India; Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| | - Jay W Shin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea.
| | - Shyam Prabhakar
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Nanyang Technological University (NTU), Lee Kong Chian School of Medicine (LKCMedicine), 11 Mandalay Road, Singapore 308232, Singapore; Cancer Science Institute of Singapore, NUS, 14 Medical Drive, Singapore 117599, Singapore.
| |
Collapse
|
35
|
Zhou X, Meng Y, Yang J, Wang H, Zhang Y, Jin Z, Feng C. Single-cell hdWGCNA reveals a novel diagnostic model and signature genes of macrophages associated with chronic obstructive pulmonary disease. Inflamm Res 2025; 74:66. [PMID: 40244418 DOI: 10.1007/s00011-025-02025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is the leading cause of respiratory system-related mortality worldwide. Although COPD is associated with immune regulation, its underlying mechanisms remain unclear. METHODS Cells from the single-cell RNA sequencing (scRNA-seq) datasets were subjected to clustering analysis and cell type identification to isolate immune cell subgroups specifically expressed in COPD. High-dimensional weighted gene co-expression network analysis (hdWGCNA) was used to identify hub genes related to the immune cell subpopulations. Machine learning algorithms were applied to identify diagnostic genes in the immune cell subpopulations and construct clinical diagnostic models for COPD. In bulk RNA sequencing data, AUC curves were used to assess the stability of the diagnostic models in predicting COPD. RESULTS Through 2 rounds of clustering analysis, the macrophage subgroups 1, 2, 7, 11, and 13 which specifically expressed in COPD (COPD_Mφ) were identified. HdWGCNA analysis revealed a hub set of genes closely related to COPD_Mφ from black, blue, yellow, and brown modules. Nonnegative Matrix Factorization (NMF) analysis separated the COPD samples into 2 clusters, with significant increases in the infiltration of Monocytic_lineage, Myeloid_dendritic_cells, and Neutrophils in cluster 1 (P < 0.001). Univariate logistic regression and LASSO regression analyses identified 11 feature genes associated with COPD_Mφ, including CST3, LGALS3, CSTB, S100A10, CYBA, S100A11, ARPC3, FTH1, PFN1, MAN2B1, and RPL39. The RF and convolutional neural network (CNN) models constructed using these feature genes effectively distinguished between normal and COPD patients. Among them, S100A10, RPL39, and FTH1 exhibited differential expression between COPD patients and normal individuals and could serve as potential clinical diagnostic markers for COPD. CONCLUSIONS The study provides new insights into the immune mechanisms of COPD and lays the theoretical foundation for its future clinical diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Xianqiang Zhou
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, 100032, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100871, China
| | - Yufeng Meng
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, 100032, China
| | - Jie Yang
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, 100032, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100871, China
| | - Hongtao Wang
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, 100032, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100871, China
| | - Yixin Zhang
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, 100032, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100871, China
| | - Zhengjie Jin
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, 100032, China
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100871, China
| | - Cuiling Feng
- Department of Traditional Chinese Medicine, Peking University People's Hospital, Beijing, 100032, China.
- Institute of Integrated Traditional Chinese and Western Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
36
|
Guo H, Zhang L, Tang H, Liu P, Hu B, Gong Y, Hou R, Wu Z. Exploring the Role of T-Cell Metabolism in Modulating Immunotherapy Efficacy for Non-Small Cell Lung Cancer Based on Clustering. J Clin Lab Anal 2025:e25020. [PMID: 40244859 DOI: 10.1002/jcla.25020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Immunotherapy, especially immune checkpoint blockade (ICB) therapy, has demonstrated noteworthy advancements in the realm of non-small cell lung cancer (NSCLC). However, the efficacy of ICB therapy is limited to a small subset of patients with NSCLC, and the underlying mechanisms remain poorly understood. STUDY DESIGN AND DISCOVERIES In this study, we conducted a comprehensive investigation of the metabolic profiles of infiltrating T cells in NSCLC tumors and revealed the metabolic heterogeneity, which associated with the prognosis of ICB therapy, in three T-cell subtypes. After metabolic clustering, we split these metabolic clusters into two groups: Nonresponse-associated (NR) clusters that enriched with cells from nonresponders, and response-associated (R) clusters that not belonging to NR clusters. Then, we elucidated their metabolic differences and specific functions. Notably, we discovered HSPA1A was significantly downregulated in NR clusters of all three T-cell subtypes. In addition, leveraging single-cell T-cell receptor sequencing data and pseudotime series analysis, we revealed the reciprocal interconversion between R and NR metabolic clusters within the same T-cell clone. This suggests a potential metabolic reprogramming capability of T cells. Furthermore, through the analysis of intercellular communication, we identified the specific intercellular signaling in the R clusters, which might promote the activation and regulation of signal transduction pathways that affect the prognosis of ICB therapy. CONCLUSION In conclusion, our study offers substantial insights into the mechanisms of relationships between T-cell metabolisms and ICB therapy outcomes, shedding light on the mechanism of immunotherapy efficacy in patients with NSCLC. Such investigations will contribute to overcoming treatment resistance.
Collapse
Affiliation(s)
- Hongzhe Guo
- School of Electrical and Information Engineering, Anhui University of Technology, Maanshan, China
| | - Liangyu Zhang
- Department of Medical Oncology, The General Hospital of Daqing Oil Field, Daqing, China
| | - Hu Tang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiwen Liu
- School of Science, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yue Gong
- Geneis Beijing Co., Ltd., Beijing, China
| | - Rui Hou
- Geneis Beijing Co., Ltd., Beijing, China
| | - Ziheng Wu
- School of Electrical and Information Engineering, Anhui University of Technology, Maanshan, China
| |
Collapse
|
37
|
Kalfon J, Samaran J, Peyré G, Cantini L. scPRINT: pre-training on 50 million cells allows robust gene network predictions. Nat Commun 2025; 16:3607. [PMID: 40240364 PMCID: PMC12003772 DOI: 10.1038/s41467-025-58699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
A cell is governed by the interaction of myriads of macromolecules. Inferring such a network of interactions has remained an elusive milestone in cellular biology. Building on recent advances in large foundation models and their ability to learn without supervision, we present scPRINT, a large cell model for the inference of gene networks pre-trained on more than 50 million cells from the cellxgene database. Using innovative pretraining tasks and model architecture, scPRINT pushes large transformer models towards more interpretability and usability when uncovering the complex biology of the cell. Based on our atlas-level benchmarks, scPRINT demonstrates superior performance in gene network inference to the state of the art, as well as competitive zero-shot abilities in denoising, batch effect correction, and cell label prediction. On an atlas of benign prostatic hyperplasia, scPRINT highlights the profound connections between ion exchange, senescence, and chronic inflammation.
Collapse
Affiliation(s)
- Jérémie Kalfon
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics group, F-75015, Paris, France
| | - Jules Samaran
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics group, F-75015, Paris, France
| | - Gabriel Peyré
- CNRS and DMA de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, Université PSL, 75005, Paris, France
| | - Laura Cantini
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Machine Learning for Integrative Genomics group, F-75015, Paris, France.
| |
Collapse
|
38
|
Li Y, Liu X, Guo L, Han K, Fang S, Wan X, Wang D, Xu X, Jiang L, Fan G, Xu M. SpaGRN: Investigating spatially informed regulatory paths for spatially resolved transcriptomics data. Cell Syst 2025; 16:101243. [PMID: 40179878 DOI: 10.1016/j.cels.2025.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/30/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
Cells spatially organize into distinct cell types or functional domains through localized gene regulatory networks. However, current spatially resolved transcriptomics analyses fail to integrate spatial constraints and proximal cell influences, limiting the mechanistic understanding of tissue organization. Here, we introduce SpaGRN, a statistical framework that reconstructs cell-type- or functional-domain-specific, dynamic, and spatial regulons by coupling intracellular spatial regulatory causality with extracellular signaling path information. Benchmarking across synthetic and real datasets demonstrates SpaGRN's superior precision over state-of-the-art tools in identifying context-dependent regulons. Applied to diverse spatially resolved transcriptomics platforms (Stereo-seq, STARmap, MERFISH, CosMx, Slide-seq, and 10x Visium), complex cancerous samples, and 3D datasets of developing Drosophila embryos and larvae, SpaGRN not only provides a versatile toolkit for decoding receptor-mediated spatial regulons but also reveals spatiotemporal regulatory mechanisms underlying organogenesis and inflammation.
Collapse
Affiliation(s)
- Yao Li
- BGI Research, Sanya 572025, China; BGI Research, Qingdao 266555, China
| | | | - Lidong Guo
- BGI Research, Qingdao 266555, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Han
- BGI Research, Qingdao 266555, China
| | - Shuangsang Fang
- BGI Research, Beijing 102601, China; BGI Research, Shenzhen 518083, China
| | - Xinjiang Wan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | - Xun Xu
- BGI Research, Wuhan 430074, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Guangyi Fan
- BGI Research, Sanya 572025, China; BGI Research, Qingdao 266555, China; BGI Research, Shenzhen 518083, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China.
| | - Mengyang Xu
- BGI Research, Sanya 572025, China; BGI Research, Qingdao 266555, China; BGI Research, Shenzhen 518083, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China.
| |
Collapse
|
39
|
Smith NR, Giske NR, Sengupta SK, Conley P, Swain JR, Nair A, Fowler KL, Klocke C, Yoo YJ, Anderson AN, Sanati N, Torkenczy K, Adey AC, Fischer JM, Wu G, Wong MH. Dual states of murine Bmi1-expressing intestinal stem cells drive epithelial development utilizing non-canonical Wnt signaling. Dev Cell 2025:S1534-5807(25)00177-7. [PMID: 40262610 DOI: 10.1016/j.devcel.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 11/07/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025]
Abstract
Intestinal epithelial development and homeostasis critically rely upon balanced stem cell proliferation, involving slow-cycling/label-retaining and active-cycling/canonical Wnt-dependent intestinal stem cell (ISC) subtypes. ISC regulation during development remains poorly understood but has important implications for establishing key mechanisms governing tissue maintenance. Herein, we identify Bmi1+ cells as functional stem cells present in early murine intestinal development, prior to Lgr5-expressing ISCs. Lineage tracing and single-cell RNA sequencing identify that Bmi1+ ISCs can trace to Lgr5+ ISCs and other differentiated lineages. Initially highly proliferative, Bmi1+ ISCs transition to slow-cycling states as Lgr5+ ISCs emerge. Non-canonical Wnt signaling regulates the proliferative Bmi1+ cell state. These findings highlight the dynamic interplay between stem cell populations and the opposing Wnt pathways that govern proliferation-ultimately having implications for tissue development, homeostasis, regeneration, and tumorigenesis. Understanding these fundamental developmental mechanisms is critical for understanding adult intestinal maintenance.
Collapse
Affiliation(s)
- Nicholas R Smith
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nicole R Giske
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John R Swain
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashvin Nair
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Kathryn L Fowler
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher Klocke
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yeon Jung Yoo
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Ashley N Anderson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nasim Sanati
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kristof Torkenczy
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Jared M Fischer
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR 97201 USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H Wong
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA; The Knight Cancer Institute, Oregon Health & Science University, Oregon Health & Science University, Portland, OR 97201, USA.
| |
Collapse
|
40
|
Li X, Pan L, Li W, Liu B, Xiao C, Chew V, Zhang X, Long W, Ginhoux F, Loscalzo J, Buggert M, Zhang X, Sheng R, Wang Z. Deciphering immune predictors of immunotherapy response: A multiomics approach at the pan-cancer level. Cell Rep Med 2025; 6:101992. [PMID: 40054456 DOI: 10.1016/j.xcrm.2025.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 04/18/2025]
Abstract
Immune checkpoint blockade (ICB) therapy has transformed cancer treatment, yet many patients fail to respond. Employing single-cell multiomics, we unveil T cell dynamics influencing ICB response across 480 pan-cancer and 27 normal tissue samples. We identify four immunotherapy response-associated T cells (IRATs) linked to responsiveness or resistance and analyze their pseudotemporal patterns, regulatory mechanisms, and T cell receptor clonal expansion profiles specific to each response. Notably, transforming growth factor β1 (TGF-β1)+ CD4+ and Temra CD8+ T cells negatively correlate with therapy response, in stark contrast to the positive response associated with CXCL13+ CD4+ and CD8+ T cells. Validation with a cohort of 23 colorectal cancer (CRC) samples confirms the significant impact of TGF-β1+ CD4+ and CXCL13+ CD4+ and CD8+ T cells on ICB efficacy. Our study highlights the effectiveness of single-cell multiomics in pinpointing immune markers predictive of immunotherapy outcomes, providing an important resource for crafting targeted immunotherapies for successful ICB treatment across cancers.
Collapse
Affiliation(s)
- Xuexin Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning 110032, China; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; Department of Physiology and Pharmacology, Karolinska Institutet, 171 65 Solna, Sweden.
| | - Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, 171 65 Solna, Sweden
| | - Weiyuan Li
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China; Department of Reproductive Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650021, China
| | - Bingyang Liu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, Yunnan 650091, China
| | - Valerie Chew
- Translational Immunology Institute (TII), SingHealth-Duke NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Xuan Zhang
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Wang Long
- Department of Pathology, Nihon University, Tokyo 102-0074, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore; Institut Gustave Roussy, INSERM U1015, Bâtiment de Médecine Moléculaire 114 rue Edouard Vaillant, 94800 Villejuif, France; Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marcus Buggert
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Xiaolu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, China.
| | - Ren Sheng
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110819, China; School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510000, China.
| | - Zhenning Wang
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning 110122, China; The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
41
|
Bernhard C, Geles K, Pawlak G, Dhifli W, Dispot A, Dusol J, Kondratova M, Martin S, Messé M, Reita D, Tulasne D, Van Seuningen I, Entz-Werle N, Ciafrè SA, Dontenwill M, Elati M. A coregulatory influence map of glioblastoma heterogeneity and plasticity. NPJ Precis Oncol 2025; 9:110. [PMID: 40234567 PMCID: PMC12000621 DOI: 10.1038/s41698-025-00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025] Open
Abstract
We present GBM-cRegMap, an online resource providing a comprehensive coregulatory influence network perspective on glioblastoma (GBM) heterogeneity and plasticity. Using representation learning algorithms, we derived two components of this resource: GBM-CoRegNet, a highly specific coregulatory network of tumor cells, and GBM-CoRegMap, a unified network influence map based on 1612 tumors from 16 studies. As a widely applicable closed-loop system connecting cellular models and tumors, GBM-cRegMap will provide the GBM research community with an easy-to-use web tool ( https://gbm.cregmap.com ) that maps any existing or newly generated transcriptomic "query" data to a reference coregulatory network and a large-scale manifold of disease heterogeneity. Using GBM-cRegMap, we demonstrated the synergy between the two components by refining the molecular classification of GBM, identifying potential key regulators, and aligning the transcriptional profiles of tumors and in vitro models. Through the amalgamation of a vast dataset, we validated the proneural (PN)-mesenchymal (MES) axis and identified three subclasses of classical (CL) tumors: astrocyte-like (CL-A), epithelial basal-like (CL-B), and cilium-rich (CL-C). We revealed the CL-C subclass, an intermediate state demonstrating the plasticity of GBM cells along the PN-MES axis under chemotherapy. We identified key regulators, such as PAX8, and NKX2.5, potentially involved in temozolomide (TMZ) resistance. Notably, NKX2.5, more expressed in higher-grade gliomas, negatively impacts patient survival, and regulates genes involved in glucose metabolism.
Collapse
Affiliation(s)
- Chloé Bernhard
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
| | - Konstantinos Geles
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Geoffrey Pawlak
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Wajdi Dhifli
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Aurélien Dispot
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Jules Dusol
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Maria Kondratova
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Sophie Martin
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
| | - Mélissa Messé
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
| | - Damien Reita
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
- Department of Cancer Molecular Genetics, Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67200, Strasbourg, France
| | - David Tulasne
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France
| | - Natacha Entz-Werle
- UMR7021 CNRS, University of Strasbourg, Illkirch, France
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098, Strasbourg, France
| | - Silvia Anna Ciafrè
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | | | - Mohamed Elati
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, F-59000, France.
| |
Collapse
|
42
|
Mimpen JY, Baldwin MJ, Paul C, Ramos-Mucci L, Kurjan A, Cohen CJ, Sharma S, Chevalier Florquin MSN, Hulley PA, McMaster J, Titchener A, Martin A, Costa ML, Gwilym SE, Cribbs AP, Snelling SJB. Exploring cellular changes in ruptured human quadriceps tendons at single-cell resolution. J Physiol 2025. [PMID: 40232153 DOI: 10.1113/jp287812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/21/2025] [Indexed: 04/16/2025] Open
Abstract
Tendon ruptures in humans have often been studied during the chronic phase of injury, particularly in the context of rotator cuff disease. However, the early response to acute tendon ruptures remains less investigated. Quadriceps tendons, which require prompt surgical treatment, offer a model to investigate this early response. Therefore, this study aimed to explore the early cellular changes in ruptured compared to healthy human quadriceps tendons. Quadriceps tendon samples were collected from patients undergoing fracture repair (healthy) or tendon repair surgery (collected 7-8 days post-injury). Nuclei were isolated for single-nucleus RNA sequencing, and comprehensive transcriptomic analysis was conducted. The transcriptomes of 12,808 nuclei (7268 from healthy and 5540 from ruptured quadriceps tendons) were profiled, revealing 12 major cell types and several cell subtypes and states. Rupture samples showed increased expression of genes related to extracellular matrix organisation and cell cycle signalling, and a decrease in expression of genes in lipid metabolism pathways. These changes were predominantly driven by gene expression changes in the fibroblast, vascular endothelial cell (VEC), mural cell, and macrophage populations: fibroblasts shift to an activated phenotype upon rupture and there is an increase in the proportion of capillary and dividing VECs. A diverse immune environment was observed, with a shift from homeostatic to activated macrophages following rupture. Cell-cell interactions increased in number and diversity in rupture, and primarily involved fibroblast and VEC populations. Collectively, this transcriptomic analysis suggests that fibroblasts and endothelial cells are key orchestrators of the early injury response within ruptured quadriceps tendon. KEY POINTS: Tendon ruptures in humans have regularly been studied during the chronic phase of injury, but less is known about the early injury response after acute tendon ruptures. This study explored the early cellular changes in ruptured compared to healthy human quadriceps tendons at single-cell resolution. Fibroblasts and endothelial cells seem to be the key orchestrators of the early injury response within ruptured quadriceps tendon. Therefore, these cell types are obvious targets for interventions to enhance tendon healing. Overall, this study highlights that the development of more effective therapeutic options for tendon injury requires better understanding of the cellular, extracellular, and mechanical landscape of tendon tissue.
Collapse
Affiliation(s)
- Jolet Y Mimpen
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mathew J Baldwin
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claudia Paul
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lorenzo Ramos-Mucci
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alina Kurjan
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Carla J Cohen
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Shreeya Sharma
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Philippa A Hulley
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - John McMaster
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | | | | | - Matthew L Costa
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Stephen E Gwilym
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Adam P Cribbs
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Brinkmeier ML, Wang SQ, Pittman HA, Cheung LY, Prasov L. Myelin regulatory factor (MYRF) is a critical early regulator of retinal pigment epithelial development. PLoS Genet 2025; 21:e1011670. [PMID: 40233131 DOI: 10.1371/journal.pgen.1011670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Myelin regulatory factor (Myrf) is a critical transcription factor in early retinal and retinal pigment epithelial development, and human variants in MYRF are a cause for nanophthalmos. Single cell RNA sequencing (scRNAseq) was performed on Myrf conditional knockout mice (Rx > Cre Myrffl/fl) at 3 developmental timepoints. Myrf was expressed specifically in the RPE, and expression was abrogated in Rx > Cre Myrffl/fl eyes. scRNAseq analysis revealed a loss of RPE cells at all timepoints resulting from cell death. GO-term analysis in the RPE revealed downregulation of melanogenesis and anatomic structure morphogenesis pathways, which were supported by electron microscopy and histologic analysis. Novel structural target genes including Ermn and Upk3b, along with macular degeneration and inherited retinal disease genes were identified as downregulated, and a strong upregulation of TGFß/BMP signaling and effectors was observed. Regulon analysis placed Myrf downstream or parallel to Pax6 and Mitf and upstream of Sox10 in RPE differentiation. Together, these results suggest a strong role for MYRF in the RPE maturation by regulating melanogenesis, cell survival, and cell structure, in part acting through suppression of TGFß signaling and activation of Sox10.
Collapse
Affiliation(s)
- Michelle L Brinkmeier
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Su Qing Wang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hannah A Pittman
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leonard Y Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
44
|
Lin Z, Guo Y, Bai H, Liu X, Lin M, Zhang Y, Tang R, Hu T, Yu L, Wang C, Cai S. Distinct mammary stem cells orchestrate long-term homeostasis of adult mammary gland. Cell Discov 2025; 11:39. [PMID: 40234382 PMCID: PMC12000503 DOI: 10.1038/s41421-025-00794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/16/2025] [Indexed: 04/17/2025] Open
Abstract
The murine mammary gland is sustained by distinct pools of stem cells that are limited in space and time, exhibiting both unipotency and bipotency. However, the specific identities of the bipotent and unipotent mammary stem cells remain unclear. In this study, we investigated spatial heterogeneity of the mammary gland at the single-cell transcriptional level. We found that mammary basal cells exhibited spatially distinct populations and characteristics, which can be further divided based on the expression of CD34 and CD200 markers. Notably, CD34-CD200+ basal cells enriched at the nipple region demonstrated strong long-term self-renewal ability and possessed the highest stem cell frequency, while CD34+CD200- basal cells enriched in the terminal end buds (TEBs) showed reduced stem cell potency. Through lineage tracing experiments based on their signature genes, we discovered that Bcl11b+ cells were enriched in the CD34-CD200+ population and exhibited bipotency even in the postnatal mammary gland, with an increasing contribution to mammary epithelia observed during long-term tracing and after multiple rounds of pregnancies. Conversely, lineage tracing of Sema3a+ cells, enriched in the CD34+CD200- population, predominantly revealed their unipotent nature and significant contribution during alveologenesis. Notably, the Bcl11b+ cells displayed a slow response to pregnancy but contributed to long-term mammary homeostasis, in contrast to the rapid response observed in Sema3a+ cells. In addition, Bcl11b progenies survived much better than Sema3a progenies during involution stage, thereby exhibiting increased coverage in the mammary gland after multiple rounds of pregnancies. Importantly, depletion of Bcl11b in Krt14+ mammary basal cells resulted in reduced bipotency of mammary stem cells and impaired their long-term contribution to the mammary gland. Overall, our study identifies distinct bipotent and unipotent populations of mammary basal cells with different dynamic properties that play critical roles in maintaining postnatal mammary homeostasis. These findings are crucial for advancing our understanding of breast health and breast cancer research.
Collapse
Affiliation(s)
- Zuobao Lin
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yajing Guo
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Huiru Bai
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaoqin Liu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meizhen Lin
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yue Zhang
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Ruolan Tang
- School of Life Sciences, Fudan University, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Tian'en Hu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lili Yu
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Chunhui Wang
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Shang Cai
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Disease Modeling lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
45
|
Zhou M, Zhao W, Zhang X, Cheng Y, Wang M, Chen Y, Zhao L. Nicotinamide metabolism affects the prognosis of hepatocellular carcinoma by influencing the tumor microenvironment. Cytokine 2025; 191:156939. [PMID: 40228405 DOI: 10.1016/j.cyto.2025.156939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/15/2025] [Accepted: 04/05/2025] [Indexed: 04/16/2025]
Abstract
In this study, we utilized the public database along with single-cell genomics techniques to systematically analyze the expression patterns and clinical significance of key genes in the nicotinamide metabolism pathway in liver cancer samples. The findings indicate that differential nicotinamide metabolism-related key genes are expressed in liver cancer samples. The liver cancer samples were put into separate subgroups using consistency clustering analysis based on differential gene expression levels observed. Additionally, immune infiltration and drug sensitivity analysis also revealed differences between the two subgroups. Survival analysis suggested that the key genes were associated with prognosis. Finally, a prognostic model was established using the key genes, offering a fresh viewpoint on the molecular mechanism investigating liver cancer. This study demonstrated the significant correlation between key genes in the nicotinamide metabolism pathway and the occurrence and progression of liver cancer and indicated that these key genes could serve as prognostic markers and tailored treatment targets for liver cancer.
Collapse
Affiliation(s)
- Min Zhou
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210000, China
| | - Wenhui Zhao
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210000, China
| | - Xiaobo Zhang
- School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Ye Cheng
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210000, China
| | - Mengxiang Wang
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210000, China
| | - Yan Chen
- Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210000, China.
| | - Lingrui Zhao
- School of Life Sciences, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
46
|
Wiarda JE, Davila KMS, Trachsel JM, Loving CL, Boggiatto P, Lippolis JD, Putz EJ. Single-cell RNA sequencing characterization of Holstein cattle blood and milk immune cells during a chronic Staphylococcus aureus mastitis infection. Sci Rep 2025; 15:12689. [PMID: 40221598 PMCID: PMC11993596 DOI: 10.1038/s41598-025-96657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
Mastitis remains the most prevalent and costly disease to dairy producers. Granulocytes are the primary host innate immune cell responders during infectious mastitis. Here we examine three mid-lactation Holsteins challenged with ~ 150 CFU of Staphylococcus aureus (Newbould) that developed chronic mastitis as assessed by bacteria and somatic cell counts in a single quarter. Single-cell RNA-sequencing (scRNA-seq) of blood and milk cells identified immune cell populations of interest from both tissues, and the proportion of cell types recovered via scRNA-seq were highly similar to those recovered via flow cytometry. Granulocytes were the predominating cell type in both blood and milk samples; however granulocytes identified via scRNA-seq revealed several clusters comprised primarily of milk-derived cells. Milk-enriched granulocyte clusters were further investigated to identify gene signatures indicative of the granulocyte-specific localized immune responses in the mammary gland during chronic mastitis infection. Biological process enrichment analysis of gene signatures further revealed relevant networks such as granulocyte migration, myeloid cell differentiation, and inflammatory responses. In total, the work describes the immune landscape occurring at both peripheral and local sites of cattle with mastitis and identified important granulocyte-specific features of the localized immune response occurring during chronic infection.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Kaitlyn M Sarlo Davila
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Julian M Trachsel
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Paola Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - John D Lippolis
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Ellie J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.
| |
Collapse
|
47
|
Zhao S, Wu D, Lu Y, Zhu L, Wang S, Li Z, Peng X, Li H, Xu X, Su W. Single-cell RNA sequencing indicates AP-1 as a potential therapeutic target for autoimmune uveitis. Biochem Pharmacol 2025; 237:116945. [PMID: 40228638 DOI: 10.1016/j.bcp.2025.116945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/06/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Autoimmune uveitis (AU) is a sight-threatening eye disease, marked by a complex pathogenesis and limited treatment options. Herein, we conducted single-cell RNA sequencing (scRNA-seq) on the spleen and cervical draining lymph nodes (CDLNs) of both normal and experimental autoimmune uveitis (EAU) mice and found common alterations in celluar composition and transcriptional regulation occurred throughout the EAU process. Moreover, we identified activator protein-1 (AP-1) as a pivotal disease-related molecule in the pathogenesis of EAU. Inhibiting AP-1 alleviated symptoms of EAU and reduced the retina infiltration of T helper 17 cells (Th17) and Th1 cells. Additionally, following treatment with the AP-1 inhibitor, both the spleen and CDLNs showed decreased Th17 and Th1 cell proportions. Meanwhile, in vitro studies revealed that treatment with AP-1 inhibitor reduced the level of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-23 (IL-23), two pivotal molecules implicated in the Th17 cell pathogenicity, during EAU. The adoptive transfer experiment also showed that inhibiting AP-1 in CD4+ T cells suppressed their ability to elicit EAU. Altogether, our study demonstrates that AP-1 might involved in EAU pathogenesis by supporting Th17 cell pathogenicity via the GM-CSF/IL-23 feedback loop. Thus, AP-1 inhibition might be a novel treatment strategy for uveitis.
Collapse
Affiliation(s)
- Sichen Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Dongting Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Yao Lu
- National Clinical Research Center for Eye Diseases, Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | | | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Xuening Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - He Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xiaofang Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China.
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
48
|
Hao T, Pei Z, Hu S, Zhao Z, He W, Wang J, Jiang L, Ariben J, Wu L, Yang X, Wang L, Wu Y, Chen X, Li Q, Yang H, Li S, Wang X, Sun M, Zhang B. Identification of osteoarthritis-associated chondrocyte subpopulations and key gene-regulating drugs based on multi-omics analysis. Sci Rep 2025; 15:12448. [PMID: 40216809 PMCID: PMC11992032 DOI: 10.1038/s41598-025-90694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 04/14/2025] Open
Abstract
The mechanism by which chondrocytes respond to mechanical stress in joints significantly affects the balance and function of cartilage. This study aims to characterize osteoarthritis-associated chondrocyte subpopulations and key gene targets for regulatory drugs. To begin, single-cell and transcriptome datasets were obtained from the Gene Expression Omnibus (GEO) database. Cell communication and pseudo-temporal analysis, as well as High-dimensional Weighted Gene Co-expression Network Analysis (hdWGCNA), were conducted on the single-cell data to identify key chondrocyte subtypes and module genes. Subsequently, Consensus Cluster Plus analysis was utilized to identify distinct disease subgroups within the osteoarthritis (OA) training dataset based on the key module genes. Furthermore, differential gene expression analysis and GO/KEGG pathway enrichment analysis were performed on the identified subgroups. To screen for hub genes associated with OA, a combination of 10 machine learning algorithms and 113 algorithm compositions was integrated. Additionally, the immune and pathway scores of the training dataset samples were evaluated using the ESTIMATE, MCP-counter, and ssGSEA algorithms to establish the relationship between the hub genes and immune and pathways. Following this, a network depicting the interaction between the hub genes and transcription factors was constructed based on the Network Analyst database. Moreover, the hub genes were subjected to drug prediction and molecular docking using the RNAactDrug database and AutoDockTools. Finally, real-time fluorescence quantitative PCR (RT-qPCR) was employed to detect the expression of hub genes in the plasma samples collected from osteoarthritis patients and healthy adults. In the OA sample, there is a significant increase in the proportion of prehypertrophic chondrocytes (preHTC), particularly in subgroups 6, 7, and 9. We defined these subgroups as OA_PreHTC subgroups. The OA_PreHTC subgroup exhibits a higher communication intensity with proliferative-related pathways such as ANGPTL and TGF-β. Furthermore, two OA disease subgroups were identified in the training set samples. This led to the identification of 411 differentially expressed genes (DEGs) related to osteoarthritis, 2485 DEGs among subgroups, as well as 238 intersecting genes and 5 hub genes (MMP13, FAM26F, CHI3L1, TAC1, and CKS2). RT-qPCR results indicate significant differences in the expression levels of five hub genes and their related TFs in the clinical blood samples of OA patients compared to the healthy control group (NC). Moreover, these five hub genes are positively associated with inflammatory pathways such as TNF-α, JAK-STAT3, and inflammatory response, while being negatively associated with proliferation pathways like WNT and KRAS. Additionally, the five hub genes are positively associated with neutrophils, activated CD4 T cell, gamma delta T cell, and regulatory T cell, while being negatively associated with CD56dim natural killer cell and Type 17T helper cell. Molecular docking results reveal that CAY10603, Tenulin, T0901317, and Nonactin exhibit high binding activity to CHI3L1, suggesting their potential as therapeutic drugs for OA. The OA_PreHTC subgroups plays a crucial role in the occurrence and development of osteoarthritis (OA). Five hub genes may exert their effects on OA through interactions with PreHTC cells, other chondrocytes, and immune cells, playing a role in inhibiting cell proliferation and stimulating inflammation, thus having high diagnostic value for OA. Additionally, CAY10603, Tenulin, T0901317, and Nonactin have potential therapeutic effects for OA patients.
Collapse
Affiliation(s)
- Ting Hao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Zhiwei Pei
- Tianjin Hospital, Tianjin University, Jiefang Nan Road 406, Hexi District, Tianjin, 300211, People's Republic of China
| | - Sile Hu
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Zhenqun Zhao
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Wanxiong He
- Sanya People's Hospital, No. 558 Jiefang Road, Sanya City, Hainan Province, People's Republic of China
| | - Jing Wang
- Baotou Medical College Bayannur Clinical Medical College, Bayannur City, 015000, Inner Mongolia, People's Republic of China
| | - Liuchang Jiang
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Jirigala Ariben
- Bayannur City Hospital, Bayannur City, 015000, Inner Mongolia, People's Republic of China
| | - Lina Wu
- Aier Eye Hospital, Tianjin University, No. 102 Fukang Road, Tianjin, 300000, People's Republic of China
| | - Xiaolong Yang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Leipeng Wang
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Yonggang Wu
- Bayannur City Hospital, Bayannur City, 015000, Inner Mongolia, People's Republic of China
| | - Xiaofeng Chen
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Qiang Li
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Haobo Yang
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Siqin Li
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
- Bayannur City Hospital, Bayannur City, 015000, Inner Mongolia, People's Republic of China
| | - Xing Wang
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China.
- Bayannur City Hospital, Bayannur City, 015000, Inner Mongolia, People's Republic of China.
| | - Mingqi Sun
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China.
| | - Baoxin Zhang
- The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China.
- Tianjin Hospital, Tianjin University, Jiefang Nan Road 406, Hexi District, Tianjin, 300211, People's Republic of China.
- Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China.
| |
Collapse
|
49
|
Li P, Zhu T, Wang Y, Zhang X, Yang X, Fang S, Li W, Rui W, Yang A, Duan Y, Yan Y, Pan Q, Jia Z, Wang H, Yang Z, Yu P, Xu C. Natural variation in a cortex/epidermis-specific transcription factor bZIP89 determines lateral root development and drought resilience in maize. SCIENCE ADVANCES 2025; 11:eadt1113. [PMID: 40215297 PMCID: PMC11988453 DOI: 10.1126/sciadv.adt1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Lateral roots (LRs) branching is crucial for water and nutrient acquisition in plants, ultimately determining the overall plant performance and productivity. However, the transcriptional regulation of LR development in crops and its role in stress resilience remain largely unexplored. Leveraging integrated transcriptome-wide association study and single-cell RNA sequencing data, we identified a basic leucine zipper (bZIP) transcription factor ZmbZIP89 as an important regulator of LR elongation and mapped its spatial expression pattern in cortex/epidermis cell types. ZmbZIP89 can activate the expression of ZmPRX47 to regulate the production of root reactive oxygen species homeostasis, contributing to increased lateral root length (LRL) and enhanced drought resistance. Natural variations in the 3' untranslated region of ZmbZIP89 enhance gene expression by increasing mRNA stability, leading to increases in LRL and drought tolerance. These findings contribute to our understanding of the molecular mechanisms underlying LR development and provide potential gene targets for breeding stress-resilient crops.
Collapse
Affiliation(s)
- Pengcheng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Tianze Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yunyun Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Xiaomin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaoyi Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Shuai Fang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Wei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Wenye Rui
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Aiqing Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yamin Duan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yuxing Yan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Qingchun Pan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn 53113, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agriculture College of Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
50
|
Feng C, Wei Z, Li X. Identification of novel metabolism-related biomarkers of Kawasaki disease by integrating single-cell RNA sequencing analysis and machine learning algorithms. Front Immunol 2025; 16:1541939. [PMID: 40276515 PMCID: PMC12018418 DOI: 10.3389/fimmu.2025.1541939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/20/2025] [Indexed: 04/26/2025] Open
Abstract
Background The bile acid metabolism (BAM) and fatty acid metabolism (FAM) have been implicated in Kawasaki disease (KD), but their precise mechanisms remain unclear. Identifying signature cells and genes related to BAM and FAM could offer a deeper understanding of their role in the pathogenesis of KD. Method We analyzed the public single-cell RNA sequencing (scRNA-seq) dataset GSE1687323 to characterize the immune cell-type landscape in KD. Gene sets related to BAM and FAM were collected from the Gene Set Enrichment Analysis (GSEA) database and previous literature. We analyzed the cellular heterogeneity of BAM and FAM at the single-cell level using R packages. Through differential expressed genes (DEG) analysis, high-dimensional Weighted Correlation Network Analysis (hdWGCNA) and machine learning algorithms, we identified signature genes associated with both BAM and FAM. The cellular expression patterns of signature genes were further validated using our own scRNA-seq dataset. Finally, quantitative real-time PCR (qRT-PCR) was performed to validate the expression levels of signature genes in KD, and Receiver Operating Characteristic (ROC) curve analysis was conducted to evaluate their diagnostic potential. Results Enhanced BAM and FAM were detected in monocytes and natural killer (NK) cells from KD in the public scRNA-seq dataset. Our scRNA-seq data confirmed the signature genes identified by machine learning algorithms: Vimentin (VIM) and chloride intracellular channel 1 (CLIC1) were upregulated in monocytes, while integrin subunit beta 2 (ITGB2) was elevated in NK cells of KD. qRT-PCR results also validated the bioinformatic analysis. Moreover, these genes demonstrated significant diagnostic potential. In the training dataset (GSE68004), the area under the curve (AUC) values and 95% CI were as follows: VIM: 0.914 (0.863-0.966), ITGB2: 0.958 (0.925-0.991), and CLIC1: 0.985 (0.969-1). The validation dataset (GSE73461) yielded similarly robust results, with AUC values and 95% CI: VIM: 0.872 (0.811-0.934), ITGB2: 0.861 (0.795-0.928), and CLIC1: 0.893 (0.837-0.948). Conclusion This study successfully identified and validated VIM and CLIC1 in monocytes, as well as ITGB2 in NK cells, as novel metabolism-related genes in KD. These findings suggest that BAM and FAM may play crucial roles in KD pathogenesis. Furthermore, these signature genes hold promising potential as diagnostic biomarkers for KD.
Collapse
Affiliation(s)
- Chenhui Feng
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
| | - Zhimiao Wei
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| | - Xiaohui Li
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, China
- Department of Cardiovascular Medicine, Children’s Hospital Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|