1
|
Peng H, Jabbari JS, Tian L, Wang C, You Y, Chua CC, Anstee NS, Amin N, Wei AH, Davidson NM, Roberts AW, Huang DCS, Ritchie ME, Thijssen R. Single-cell Rapid Capture Hybridization sequencing reliably detects isoform usage and coding mutations in targeted genes. Genome Res 2025; 35:942-955. [PMID: 39794120 PMCID: PMC12047256 DOI: 10.1101/gr.279322.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Single-cell long-read sequencing has transformed our understanding of isoform usage and the mutation heterogeneity between cells. Despite unbiased in-depth analysis, the low sequencing throughput often results in insufficient read coverage, thereby limiting our ability to perform mutation calling for specific genes. Here, we developed a single-cell Rapid Capture Hybridization sequencing (scRaCH-seq) method that demonstrates high specificity and efficiency in capturing targeted transcripts using long-read sequencing, allowing an in-depth analysis of mutation status and transcript usage for genes of interest. The method includes creating a probe panel for transcript capture, using barcoded primers for pooling and efficient sequencing via Oxford Nanopore Technologies platforms. scRaCH-seq is applicable to stored and indexed single-cell cDNA, which allows analysis to be combined with existing short-read RNA-seq data sets. In our investigation of BTK and SF3B1 genes in samples from patients with chronic lymphocytic leukemia (CLL), we detect SF3B1 isoforms and mutations with high sensitivity. Integration with short-read single-cell RNA sequencing (scRNA-seq) data reveals significant gene expression differences in SF3B1-mutated CLL cells, although it does not impact the sensitivity of the anticancer drug venetoclax. scRaCH-seq's capability to study long-read transcripts of multiple genes makes it a powerful tool for single-cell genomics.
Collapse
Affiliation(s)
- Hongke Peng
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Jafar S Jabbari
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Luyi Tian
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Changqing Wang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Yupei You
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Chong Chyn Chua
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Monash Haematology, Monash Health, Melbourne 3168, Australia
- Clinical Haematology, Northern Health, Melbourne 3076, Australia
| | - Natasha S Anstee
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Noorul Amin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Andrew H Wei
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne 3052, Australia
| | - Nadia M Davidson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Andrew W Roberts
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne 3052, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Rachel Thijssen
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3052, Australia;
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Department of Hematology, Amsterdam UMC, Amsterdam 1081HV, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam 1081HV, the Netherlands
| |
Collapse
|
2
|
Wang Y, Zhang J, Wu X, Huang L, Xiao W, Guo C. The Potential of PARP Inhibitors as Antitumor Drugs and the Perspective of Molecular Design. J Med Chem 2025; 68:18-48. [PMID: 39723587 DOI: 10.1021/acs.jmedchem.4c02642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
PARP (poly-ADP ribose polymerase) has received widespread attention in cancer treatment. Research has shown that PARP plays a crucial role in DNA damage repair and has become a popular target for drug design. Based on the mechanism of "synthetic lethality", multiple PARPis (PARP inhibitors) have been launched for the treatment of BRCA deficient tumors. For example, the approved PARPis have shown significant potential in cancer treatment, particularly in breast cancer and cancers associated with BRCA1/BRCA2 deficiencies. However, the clinical efficacy and safety of PARP inhibitors in different cancers remain issues that cannot be overlooked. The design of PARPis aims to eliminate their resistance and broaden their application scope. Designing selective PARP-1 inhibitors is also a potential strategy. PROTACs (Proteolysis Targeting Chimeras) to degrade PARP have become a potential novel cancer treatment strategy.
Collapse
Affiliation(s)
- Yinghan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jingtao Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Longjiang Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenjing Xiao
- Department of Radiation Therapy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Chuanlong Guo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Kasprzyk R, Rieth S, Heid P, Stengel F, Marx A. Cell-Permeable Nicotinamide Adenine Dinucleotides for Exploration of Cellular Protein ADP-Ribosylation. Angew Chem Int Ed Engl 2024; 63:e202411203. [PMID: 39233478 DOI: 10.1002/anie.202411203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Posttranslational modifications (PTMs) greatly enhance the functional diversity of proteins, surpassing the number of gene-encoded variations. One intriguing PTM is ADP-ribosylation, which utilizes nicotinamide adenine dinucleotide (NAD+) as a substrate and is essential in cell signaling pathways regulating cellular responses. Here, we report the first cell-permeable NAD+ analogs and demonstrate their utility for investigating cellular ADP-ribosylation. Using a desthiobiotin-labelled analog for affinity enrichment of proteins that are ADP-ribosylated in living cells under oxidative stress, we identified protein targets associated with host-virus interactions, DNA damage and repair, protein biosynthesis, and ribosome biogenesis. Most of these targets have been noted in various literature sources, highlighting the potential of our probes for cellular ADP-ribosylome studies.
Collapse
Affiliation(s)
- Renata Kasprzyk
- Department of Chemistry, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
| | - Sonja Rieth
- Department of Chemistry, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
| | - Peter Heid
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätstraβe 10, 78464, Konstanz, Germany
| |
Collapse
|
4
|
Zhang L, Zhang XN, Ansari AJ, Zhang Y. An NAD + with Dually Modified Adenine for Labeling ADP-Ribosylation-Specific Proteins. Tetrahedron 2024; 168:134361. [PMID: 39553786 PMCID: PMC11563119 DOI: 10.1016/j.tet.2024.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein adenosine diphosphate (ADP)-ribosylation participates in various pivotal cellular events. Its readers and erasers play key roles in modulating ADP-ribosylation-based signaling pathways. Unambiguous assignments of readers and erasers to individual ADP-ribosylated proteins provide insightful knowledge on ADP-ribosylation biology and require the development of tools and technologies for this goal. Herein, we report the design and the synthesis of a nicotinamide adenine dinucleotide (NAD+) carrying a photoactive and a clickable group. Functioning as a substrate for poly-ADP-ribosylation (PARylation), this NAD+ mimic with dually modified adenine enables covalent crosslinking and labeling of proteins bound to PARylation, representing a new photoaffinity probe for studying this critical post-translational modification.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Arshad J. Ansari
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
5
|
Jahan F, Vasam G, Cariaco Y, Nik-Akhtar A, Green A, Menzies KJ, Bainbridge SA. NAD + depletion is central to placental dysfunction in an inflammatory subclass of preeclampsia. Life Sci Alliance 2024; 7:e202302505. [PMID: 39389781 PMCID: PMC11467044 DOI: 10.26508/lsa.202302505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy and a major cause of maternal/perinatal adverse health outcomes with no effective therapeutic strategies. Our group previously identified distinct subclasses of PE, one of which exhibits heightened placental inflammation (inflammation-driven PE). In non-pregnant populations, chronic inflammation is associated with decreased levels of cellular NAD+, a vitamin B3 derivative involved in energy metabolism and mitochondrial function. Interestingly, specifically in placentas from women with inflammation-driven PE, we observed the increased activity of NAD+-consuming enzymes, decreased NAD+ content, decreased expression of mitochondrial proteins, and increased oxidative damage. HTR8 human trophoblasts likewise demonstrated increased NAD+-dependent ADP-ribosyltransferase (ART) activity, coupled with decreased mitochondrial respiration rates and invasive function under inflammatory conditions. Such adverse effects were attenuated by boosting cellular NAD+ levels with nicotinamide riboside (NR). Finally, in an LPS-induced rat model of inflammation-driven PE, NR administration (200 mg/kg/day) from gestational days 1-19 prevented maternal hypertension and fetal/placental growth restriction, improved placental mitochondrial function, and reduced inflammation and oxidative stress. This study demonstrates the critical role of NAD+ in maintaining placental function and identifies NAD+ boosting as a promising preventative strategy for PE.
Collapse
Affiliation(s)
- Fahmida Jahan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Goutham Vasam
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Yusmaris Cariaco
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Abolfazl Nik-Akhtar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Alex Green
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Keir J Menzies
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Canada
| | - Shannon A Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
6
|
Stephens E, Chen LC, Ansari AJ, Shen K, Zhang L, Guillen SG, Wang CCC, Zhang Y. Discovery of PARP1-Sparing Inhibitors for Protein ADP-Ribosylation. ACS Med Chem Lett 2024; 15:1940-1946. [PMID: 39563804 PMCID: PMC11571001 DOI: 10.1021/acsmedchemlett.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Poly-ADP-ribose polymerases (PARPs) that catalyze cellular ADP-ribosylation play important roles in human health. PARP inhibitors have found success in the clinic for cancer treatment. However, isoform-specific inhibitors are needed for improved safety. Here, we report the unexpected discovery of nicotinamide mimics that block non-PARP1-catalyzed ADP-ribosylation at micromolar concentrations. These PARP1-sparing PARP inhibitors represent first-in-class probes for ADP-ribosylation, shedding light on the selective inhibition of PARPs.
Collapse
Affiliation(s)
- Elisa
N. Stephens
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Liang-Chieh Chen
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Arshad J. Ansari
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Kaiyu Shen
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Lei Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Steven G. Guillen
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C. C. Wang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Yong Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
- Norris
Comprehensive Cancer Center, University
of Southern California, Los Angeles, California 90089, United States
- Research
Center for Liver Diseases, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
7
|
Jeong KY, Kang JH. Poly (ADP-ribose): A double-edged sword governing cancer cell survival and death. World J Clin Oncol 2024; 15:806-810. [PMID: 39071462 PMCID: PMC11271724 DOI: 10.5306/wjco.v15.i7.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Poly (ADP-ribose) (PAR), a polymer of ADP-ribose, is synthesized by PAR polymerase and is crucial for the survival of cancer cells due to its vital functions in DNA repair and post-translational modifications. Beyond its supportive role, PAR also triggers cancer cell death by excessive accumulation of PAR leading to an energy crisis and parthanatos. This phenomenon underscores the potential of targeting PAR regulation as a novel anticancer strategy, and the rationale would present an engaging topic in the field of anticancer research. Therefore, this editorial provides an overview of the mechanisms determining cancer cell fate, emphasizing the central role of PAR. It further introduces promising methods for modulating PAR concentrations that may pave the way for innovative anticancer therapies.
Collapse
Affiliation(s)
| | - Ji-Hyuk Kang
- Department of Biomedical Laboratory Science, College of Health and Medical Science, Daejeon University, Daejeon 34520, South Korea
| |
Collapse
|
8
|
Pushkarev SV, Kirilin EM, Švedas VK, Nilov DK. Mechanism of PARP1 Elongation Reaction Revealed by Molecular Modeling. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1202-1210. [PMID: 39218019 DOI: 10.1134/s0006297924070046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 09/04/2024]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) plays a major role in the DNA damage repair and transcriptional regulation, and is targeted by a number of clinical inhibitors. Despite this, catalytic mechanism of PARP1 remains largely underexplored because of the complex substrate/product structure. Using molecular modeling and metadynamics simulations we have described in detail elongation of poly(ADP-ribose) chain in the PARP1 active site. It was shown that elongation reaction proceeds via the SN1-like mechanism involving formation of the intermediate furanosyl oxocarbenium ion. Intriguingly, nucleophilic 2'A-OH group of the acceptor substrate can be activated by the general base Glu988 not directly but through the proton relay system including the adjacent 3'A-OH group.
Collapse
Affiliation(s)
- Sergey V Pushkarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Vytas K Švedas
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitry K Nilov
- Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
9
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
10
|
Szántó M, Yélamos J, Bai P. Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1? Expert Rev Mol Med 2024; 26:e13. [PMID: 38698556 PMCID: PMC11140550 DOI: 10.1017/erm.2024.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/05/2024]
Abstract
PARP2, that belongs to the family of ADP-ribosyl transferase enzymes (ART), is a discovery of the millennium, as it was identified in 1999. Although PARP2 was described initially as a DNA repair factor, it is now evident that PARP2 partakes in the regulation or execution of multiple biological processes as inflammation, carcinogenesis and cancer progression, metabolism or oxidative stress-related diseases. Hereby, we review the involvement of PARP2 in these processes with the aim of understanding which processes are specific for PARP2, but not for other members of the ART family. A better understanding of the specific functions of PARP2 in all of these biological processes is crucial for the development of new PARP-centred selective therapies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - José Yélamos
- Hospital del Mar Research Institute, Barcelona, Spain
| | - Péter Bai
- HUN-REN-UD Cell Biology and Signaling Research Group, Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| |
Collapse
|
11
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
12
|
Rieth S, Spliesgar D, Orth J, Lehner M, Kasprzyk R, Stengel F, Marx A. A desthiobiotin labelled NAD + analogue to uncover Poly(ADP-ribose) polymerase 1 protein targets. Chembiochem 2024; 25:e202300797. [PMID: 38236015 DOI: 10.1002/cbic.202300797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
ADP-ribosylation is a post-translational modification catalyzed by the enzyme family of polyadenosine diphosphate (ADP)-ribose) polymerases (PARPs). This enzymatic process involves the transfer of single or multiple ADP-ribose molecules onto proteins, utilizing nicotinamide adenine dinucleotide (NAD+ ) as a substrate. It, thus, plays a pivotal role in regulating various biological processes. Unveiling PARP-selective protein targets is crucial for a better understanding of their biological functions. Nonetheless, this task proves challenging due to overlapping targets shared among PARP family members. Therefore, we applied the "bump-and-hole" strategy to modify the nicotinamide binding site of PARP1 by introducing a hydrophobic pocket ("hole"). This PARP1-mutant binds an orthogonal NAD+ (Et-DTB-NAD+ ) containing an ethyl group ("bump") at the nicotinamide moiety. Furthermore, we added a desthiobiotin (DTB) tag directly to the adenosine moiety, enabling affinity enrichment of ADP-ribosylated proteins. Employing this approach, we successfully identified protein targets modified by PARP1 in cell lysate. This strategy expands the arsenal of chemically modified NAD+ analogs available for studying ADP-ribosylation, providing a powerful tool to study these critical post-translational modifications.
Collapse
Affiliation(s)
- Sonja Rieth
- Department of Chemistry, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
| | - Daniel Spliesgar
- Department of Chemistry, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
| | - Jan Orth
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
| | - Maike Lehner
- Department of Chemistry, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
| | - Renata Kasprzyk
- Department of Chemistry, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
- Department of Biology, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße10, 78457, Konstanz, Germany
| |
Collapse
|
13
|
Ishii S, Kakizuka T, Park SJ, Tagawa A, Sanbo C, Tanabe H, Ohkawa Y, Nakanishi M, Nakai K, Miyanari Y. Genome-wide ATAC-see screening identifies TFDP1 as a modulator of global chromatin accessibility. Nat Genet 2024; 56:473-482. [PMID: 38361031 DOI: 10.1038/s41588-024-01658-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
Chromatin accessibility is a hallmark of active regulatory regions and is functionally linked to transcriptional networks and cell identity. However, the molecular mechanisms and networks that govern chromatin accessibility have not been thoroughly studied. Here we conducted a genome-wide CRISPR screening combined with an optimized ATAC-see protocol to identify genes that modulate global chromatin accessibility. In addition to known chromatin regulators like CREBBP and EP400, we discovered a number of previously unrecognized proteins that modulate chromatin accessibility, including TFDP1, HNRNPU, EIF3D and THAP11 belonging to diverse biological pathways. ATAC-seq analysis upon their knockouts revealed their distinct and specific effects on chromatin accessibility. Remarkably, we found that TFDP1, a transcription factor, modulates global chromatin accessibility through transcriptional regulation of canonical histones. In addition, our findings highlight the manipulation of chromatin accessibility as an approach to enhance various cell engineering applications, including genome editing and induced pluripotent stem cell reprogramming.
Collapse
Affiliation(s)
- Satoko Ishii
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Taishi Kakizuka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Sung-Joon Park
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ayako Tagawa
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Chiaki Sanbo
- National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hideyuki Tanabe
- Research Center for Integrative Evolutionary Science, SOKENDAI, Hayama, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Kenta Nakai
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Miyanari
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan.
- Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
14
|
Zhao L, Tang P, Lin Y, Du M, Li H, Jiang L, Xu H, Sun H, Han J, Sun Z, Xu R, Lou H, Chen Z, Kopylov P, Liu X, Zhang Y. MiR-203 improves cardiac dysfunction by targeting PARP1-NAD + axis in aging murine. Aging Cell 2024; 23:e14063. [PMID: 38098220 PMCID: PMC10928583 DOI: 10.1111/acel.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 03/13/2024] Open
Abstract
Heart aging is a prevalent cause of cardiovascular diseases among the elderly. NAD+ depletion is a hallmark feature of aging heart, however, the molecular mechanisms that affect NAD+ depletion remain unclear. In this study, we identified microRNA-203 (miR-203) as a senescence-associated microRNA that regulates NAD+ homeostasis. We found that the blood miR-203 level negatively correlated with human age and its expression significantly decreased in the hearts of aged mice and senescent cardiomyocytes. Transgenic mice with overexpressed miR-203 (TgN (miR-203)) showed resistance to aging-induced cardiac diastolic dysfunction, cardiac remodeling, and myocardial senescence. At the cellular level, overexpression of miR-203 significantly prevented D-gal-induced cardiomyocyte senescence and mitochondrial damage, while miR-203 knockdown aggravated these effects. Mechanistically, miR-203 inhibited PARP1 expression by targeting its 3'UTR, which helped to reduce NAD+ depletion and improve mitochondrial function and cell senescence. Overall, our study first identified miR-203 as a genetic tool for anti-heart aging by restoring NAD+ function in cardiomyocytes.
Collapse
Affiliation(s)
- Limin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Pingping Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Lin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Menghan Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huimin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lintong Jiang
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Henghui Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Heyang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingjing Han
- Department of Pharmacy, Caoxian People's Hospital, Heze, China
| | - Zeqi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Run Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Han Lou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhouxiu Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Philipp Kopylov
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Xin Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
15
|
Jeppesen TE, Shao T, Chen J, Patel JS, Zhou X, Kjaer A, Liang SH. Poly(ADP-ribose) polymerase (PARP)-targeted PET imaging in non-oncology application: a pilot study in preclinical models of nonalcoholic steatohepatitis. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:41-47. [PMID: 38500745 PMCID: PMC10944370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/01/2024] [Indexed: 03/20/2024]
Abstract
Poly(ADP-ribose) polymerase (PARP) activation often indicates a disruptive signal to lipid metabolism, the physiological alteration of which may be implicated in the development of non-alcoholic fatty liver disease. The objective of this study was to evaluate the capability of [68Ga]DOTA-PARPi PET to detect hepatic PARP expression in a non-alcoholic steatohepatitis (NASH) mouse model. In this study, male C57BL/6 mice were subjected to a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for a 12-week period to establish preclinical NASH models. [68Ga]DOTA-PARPi PET imaging of the liver was conducted at the 12-week mark after CDAHFD feeding. Comprehensive histopathological analysis, covering hepatic steatosis, inflammation, fibrosis, along with blood biochemistry, was performed in both NASH models and control groups. Despite the induction of severe inflammation, steatosis and fibrosis in the liver of mice with the CDAHFD-NASH model, PET imaging of NASH with [68Ga]-DOTA-PARPi did not reveal a significantly higher uptake in NASH models compared to the control. This underscores the necessity for further development of new chelator-based PARP1 tracers with high binding affinity to enable the visualization of PARP1 changes in NASH pathology.
Collapse
Affiliation(s)
- Troels E Jeppesen
- Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Massachusetts General HospitalBoston, MA, USA
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital - RigshospitaletCopenhagen, Denmark
- Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Tuo Shao
- Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Massachusetts General HospitalBoston, MA, USA
- Division of Liver Center and Gastrointestinal, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Jiahui Chen
- Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Massachusetts General HospitalBoston, MA, USA
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA, USA
| | - Jimmy S Patel
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA, USA
- Department of Radiation Oncology, Winship Cancer Institute of Emory UniversityAtlanta, GA, USA
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA, USA
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET and Cluster for Molecular Imaging, Copenhagen University Hospital - RigshospitaletCopenhagen, Denmark
- Department of Biomedical Sciences, University of CopenhagenCopenhagen, Denmark
| | - Steven H Liang
- Division of Nuclear Medicine, Department of Radiology, Harvard Medical School and Massachusetts General HospitalBoston, MA, USA
- Department of Radiology and Imaging Sciences, Emory UniversityAtlanta, GA, USA
| |
Collapse
|
16
|
Chini CCS, Cordeiro HS, Tran NLK, Chini EN. NAD metabolism: Role in senescence regulation and aging. Aging Cell 2024; 23:e13920. [PMID: 37424179 PMCID: PMC10776128 DOI: 10.1111/acel.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
The geroscience hypothesis proposes that addressing the biology of aging could directly prevent the onset or mitigate the severity of multiple chronic diseases. Understanding the interplay between key aspects of the biological hallmarks of aging is essential in delivering the promises of the geroscience hypothesis. Notably, the nucleotide nicotinamide adenine dinucleotide (NAD) interfaces with several biological hallmarks of aging, including cellular senescence, and changes in NAD metabolism have been shown to be involved in the aging process. The relationship between NAD metabolism and cellular senescence appears to be complex. On the one hand, the accumulation of DNA damage and mitochondrial dysfunction induced by low NAD+ can promote the development of senescence. On the other hand, the low NAD+ state that occurs during aging may inhibit SASP development as this secretory phenotype and the development of cellular senescence are both highly metabolically demanding. However, to date, the impact of NAD+ metabolism on the progression of the cellular senescence phenotype has not been fully characterized. Therefore, to explore the implications of NAD metabolism and NAD replacement therapies, it is essential to consider their interactions with other hallmarks of aging, including cellular senescence. We propose that a comprehensive understanding of the interplay between NAD boosting strategies and senolytic agents is necessary to advance the field.
Collapse
Affiliation(s)
- Claudia Christiano Silva Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Heidi Soares Cordeiro
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| | - Ngan Le Kim Tran
- Center for Clinical and Translational Science and Mayo Clinic Graduate School of Biomedical SciencesMayo ClinicJacksonvilleFloridaUSA
| | - Eduardo Nunes Chini
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineRochesterMinnesotaUSA
- Metabolism and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative MedicineMayo Clinic College of MedicineJacksonvilleFloridaUSA
| |
Collapse
|
17
|
Thakur A, Rana M, Ritika, Mathew J, Nepali S, Pan CH, Liou JP, Nepali K. Small molecule tractable PARP inhibitors: Scaffold construction approaches, mechanistic insights and structure activity relationship. Bioorg Chem 2023; 141:106893. [PMID: 37783100 DOI: 10.1016/j.bioorg.2023.106893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Diverse drug design strategies viz. molecular hybridization, substituent installation, scaffold hopping, isosteric replacement, high-throughput screening, induction and separation of chirality, structure modifications of phytoconstituents and use of structural templates have been exhaustively leveraged in the last decade to load the chemical toolbox of PARP inhibitors. Resultantly, numerous promising scaffolds have been pinpointed that in turn have led to the resuscitation of the credence to PARP inhibitors as cancer therapeutics. This review briefly presents the physiological functions of PARPs, the pharmacokinetics, and pharmacodynamics, and the interaction profiles of FDA-approved PARP inhibitors. Comprehensively covered is the section on the drug design strategies employed by drug discovery enthusiasts for furnishing PARP inhibitors. The impact of structural variations in the template of designed scaffolds on enzymatic and cellular activity (structure-activity relationship studies) has been discussed. The insights gained through the biological evaluation such as profiling of physicochemical properties andin vitroADME properties, PK assessments, and high-dose pharmacology are covered.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Ritika
- College of Medicine, Taipei Medical University, Taipei 110031, Taiwan
| | - Jacob Mathew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan
| | - Sanya Nepali
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Chun-Hsu Pan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
18
|
Stephens EN, Zhang XN, Lam AT, Li J, Pei H, Louie SG, Wang CCC, Zhang Y. A ribose-functionalized NAD + with versatile activity for ADP-ribosylation. Chem Commun (Camb) 2023; 59:13843-13846. [PMID: 37921487 PMCID: PMC10841986 DOI: 10.1039/d3cc04343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
An NAD+ featuring an adenosyl 4'-azido functions as a general substrate for poly-ADP-ribose polymerases. Its derived mono- and poly-ADP-ribosylated proteins can be adequately recognized by distinct ADP-ribosylation-specific readers. This molecule represents the first ribose-functionalized NAD+ with versatile activities across different ADP-ribosyltransferases and provides insight into developing new probes for ADP-ribosylation.
Collapse
Affiliation(s)
- Elisa N Stephens
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Albert T Lam
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Jiawei Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G Louie
- Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
19
|
Jankó L, Tóth E, Laczik M, Rauch B, Janka E, Bálint BL, Bai P. PARP2 poly(ADP-ribosyl)ates nuclear factor erythroid 2-related factor 2 (NRF2) affecting NRF2 subcellular localization. Sci Rep 2023; 13:7869. [PMID: 37188809 DOI: 10.1038/s41598-023-35076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023] Open
Abstract
PARP2 is a member of the PARP enzyme family. Although, PARP2 plays role in DNA repair, it has regulatory roles in mitochondrial and lipid metabolism, it has pivotal role in bringing about the adverse effects of pharmacological PARP inhibitors. Previously, we showed that the ablation of PARP2 induces oxidative stress and, consequently, mitochondrial fragmentation. In attempt to identify the source of the reactive species we assessed the possible role of a central regulator of cellular antioxidant defense, nuclear factor erythroid 2-related factor 2 (NRF2). The silencing of PARP2 did not alter either the mRNA or the protein expression of NRF2, but changed its subcellular localization, decreasing the proportion of nuclear, active fraction of NRF2. Pharmacological inhibition of PARP2 partially restored the normal localization pattern of NRF2 and in line with that, we showed that NRF2 is PARylated that is absent in the cells in which PARP2 was silenced. Apparently, the PARylation of NRF2 by PARP2 has pivotal role in regulating the subcellular (nuclear) localization of NRF2. The silencing of PARP2 rearranged the expression of genes encoding proteins with antioxidant function, among these a subset of NRF2-dependent genes.
Collapse
Affiliation(s)
- Laura Jankó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary
| | - Miklós Laczik
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Boglárka Rauch
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Bálint L Bálint
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
- Department of Bioinformatics, Semmelweis University, Tűzoltó Utca 7-9., Budapest, 1094, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary.
- MTA-DE Cell Biology and Signaling Research Group ELKH, Debrecen, Hungary.
| |
Collapse
|
20
|
Cheng Q, Zhang XN, Li J, Chen J, Wang Y, Zhang Y. Synthesis of Bispecific Antibody Conjugates Using Functionalized Poly-ADP-ribose Polymers. Biochemistry 2023; 62:1138-1144. [PMID: 36821831 PMCID: PMC10033384 DOI: 10.1021/acs.biochem.2c00718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Poly-ADP-ribose (PAR) is a natural type of polymer derived from enzymatic reactions catalyzed by cellular poly(ADP-ribose) polymerases (PARPs). Given its notable solubility and biocompatibility, the PAR polymer may function as effective carriers for therapeutics in addition to modulating biomolecular interactions in cells. To explore its therapeutic potential, we herein developed a PAR polymer-based bispecific antibody targeting both human epidermal growth factor receptor 2 (HER2) and T-cell CD3 antigens. This was accomplished by conjugating anti-HER2 and anti-CD3 monoclonal antibodies to azido-functionalized PAR polymers through click chemistry. The generated PAR polymer-anti-HER2/anti-CD3 antibody conjugate could not only bind specifically to both HER2- and CD3-expressing target cells but also display potent cytotoxicity against HER2-positive breast cancer cells in the presence of non-activated human peripheral blood mononuclear cells (PBMCs). Functionalized PAR polymers provide a new strategy for synthesizing bispecific antibodies and may enable generation of PAR polymer-based conjugates with unique pharmacological activities for biomedical applications.
Collapse
Affiliation(s)
- Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Jiawei Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Jingwen Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Yiling Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
21
|
Association between CHFR and PARP-1, and Their Roles in Regulation of Proliferation and Apoptosis of B Cell Lymphoma. Anal Cell Pathol (Amst) 2023. [DOI: 10.1155/2023/7940316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Background. Aberrant methylation of checkpoint with forkhead and ring finger domains (CHFR) was found in B-cell non-Hodgkin lymphoma (NHL), whereas its role in carcinogenesis is not clear. CHFR can control poly (ADP-ribose) polymerase levels by causing its degradation. The study was aimed to explore the roles and mechanisms of CHFR in the pathogenesis of B-cell NHL. Methods. Short hairpin ribonucleic acid (ShRNAs) targeting CHFR and poly (ADP-ribose) polymerase 1 (PARP-1) were transduced into Raji cells, and real-time polymerase chain reaction (PCR) and western blotting were carried out to determine their expression. Afterwards, the CCK-8 assay and flow cytometry were used to evaluate the cell growth and apoptosis. Tumor size and weight were determined using a xenograft model, and decitabine (5-Aza-dC) was used to further determine the methylation status of CHFR through a methylation specificity-PCR assay. Results. 5-Aza-dC-treatment promoted the expression of CHFR and decreased the expression of PARP-1 at both messenger ribonucleic acid (mRNA) and protein levels. 5-Aza-dC also accelerated Raji-cell apoptosis and restrained its growth in vitro and in vivo (
). These results were contrary to those observed in the shRNA-CHFR group but consistent with those observed in the shRNA-PARP-1 group. The expression profiles of CHFR and PARP-1 in the xenograft model were consistent with those in the cellular model. Treatment with 5-Aza-dC led to demethylation of CHFR in nude mice. Besides, there may be a negative correlation between CHFR and PARP-1 in B-cell NHL cells. Conclusion. Our findings indicated that 5-Aza-dC could lead to the demethylation of the CHFR promoter and suppress Raji cell growth.
Collapse
|
22
|
Mono-ADP-ribosylation by PARP10 inhibits Chikungunya virus nsP2 proteolytic activity and viral replication. Cell Mol Life Sci 2023; 80:72. [PMID: 36840772 PMCID: PMC9959937 DOI: 10.1007/s00018-023-04717-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Replication of viruses requires interaction with host cell factors and repression of innate immunity. Recent findings suggest that a subset of intracellular mono-ADP-ribosylating PARPs, which are induced by type I interferons, possess antiviral activity. Moreover, certain RNA viruses, including Chikungunya virus (CHIKV), encode mono-ADP-ribosylhydrolases. Together, this suggests a role for mono-ADP-ribosylation (MARylation) in host-virus conflicts, but the relevant substrates have not been identified. We addressed which PARP restricts CHIKV replication and identified PARP10 and PARP12. For PARP10, this restriction was dependent on catalytic activity. Replication requires processing of the non-structural polyprotein nsP1-4 by the protease located in nsP2 and the assembly of the four individual nsP1-nsP4 into a functional replication complex. PARP10 and PARP12 inhibited the production of nsP3, indicating a defect in polyprotein processing. The nsP3 protein encodes a macrodomain with de-MARylation activity, which is essential for replication. In support for MARylation affecting polyprotein processing, de-MARylation defective CHIKV replicons revealed reduced production of nsP2 and nsP3. We hypothesized that MARylation regulates the proteolytic function of nsP2. Indeed, we found that nsP2 is MARylated by PARP10 and, as a consequence, its proteolytic activity was inhibited. NsP3-dependent de-MARylation reactivated the protease. Hence, we propose that PARP10-mediated MARylation prevents polyprotein processing and consequently virus replication. Together, our findings provide a mechanistic explanation for the role of the viral MAR hydrolase in CHIKV replication.
Collapse
|
23
|
Kevorkian ML, Vilchez Larrea SC, Fernández Villamil SH. Trypanosoma cruzi PARP is enriched in the nucleolus and is present in a thread connecting nuclei during mitosis. PLoS One 2022; 17:e0267329. [PMID: 36584038 PMCID: PMC9803098 DOI: 10.1371/journal.pone.0267329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) is responsible for the synthesis of ADP-ribose polymers, which are involved in a wide range of cellular processes such as preservation of genome integrity, DNA damage signaling and repair, molecular switches between distinct cell death pathways, and cell cycle progression. Previously, we demonstrated that the only PARP present in T. cruzi migrates to the nucleus upon genotoxic stimulus. In this work, we identify the N-terminal domain as being sufficient for TcPARP nuclear localization and describe for the first time that TcPARP is enriched in the parasite's nucleolus. We also describe that TcPARP is present in a thread-like structure that connects two dividing nuclei and co-localizes with nucleolar material and microtubules. Furthermore, ADP-ribose polymers could also be detected in this thread during mitosis. These findings represent a first approach to new potential TcPARP functions inside the nucleus and will help understand its role well beyond the largely described DNA damage response protein in trypanosomatids.
Collapse
Affiliation(s)
- María Laura Kevorkian
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Salomé C. Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia H. Fernández Villamil
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres”, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail: ,
| |
Collapse
|
24
|
Mossa EAM, Sayed KM, Awny I, Mohamed NA, Ali T, Hemdan SB, Helaly AA, Abdellatif MG, Farag RM, Alsmman AH, Mounir A. Expression of poly(ADP-ribose) polymerase-1 gene and optical coherence tomography angiographic parameters among patients with multiple sclerosis. BMJ Open Ophthalmol 2022. [DOI: 10.1136/bmjophth-2022-001157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Back ground/aimsTo analyse different parameters of the macula, disc and their vascular affection using optical coherence tomography (OCT) and angiography (OCT-A) in patients with multiple sclerosis (MS) correlating these changes to PARP-1 gene expression in blood.MethodsThis cross-sectional study included 80 eyes of the clinically diagnosed relapsing-remitting phenotype of MS. The study included three groups; group (A) included 40 eyes of 20 patients with MS with a history of optic neuritis (MS+ON), group (B) included 40 eyes of 20 patients with MS without a history of ON (MS-ON) and group (C) (the control group) consisted of 40 eyes of 20 matched participants not suffering from any ocular or systemic disease. OCT and OCT-A, RTVue (Optovue, Fermont, California, USA) were done for all eyes for evaluating the macular and disc changes. Qualitative real-time PCR for estimation of PARP1 gene expression level was performed for all patients.ResultsPARP-1 gene expression level showed a significant difference in comparing the three groups, with the highest level being for the (ON+) group (p<0.0009). Significant negative correlations were found between PARP-1 gene expression level and central macular thickness, total macular volume and full foveal vessel density thickness. ROC curve constructed by plotting the area under the receiver operating characteristic curve value was (0.9) for PARP-1 gene expression level.ConclusionsPARP-1 may play an important role in the development of the ON cascade in patients with MS and may be a biomarker for diagnosing and a potential molecular target of ON in MS patients’ therapy. In addition to the OCT and OCT-angio changes that could be detected retrospectively, PARP-1 gene expression level could be considered a prospective detector to complete the full-blown picture of MS (ON+) early and prevent blindness.
Collapse
|
25
|
POLLARD CL, GIBB Z, SWEGEN A, GRUPEN CG. NAD +, Sirtuins and PARPs: enhancing oocyte developmental competence. J Reprod Dev 2022; 68:345-354. [PMID: 36171094 PMCID: PMC9792654 DOI: 10.1262/jrd.2022-052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oocyte quality is the limiting factor in female fertility. It is well known that maternal nutrition plays a role in reproductive function, and manipulating nutrition to improve fertility in livestock has been common practice in the past, particularly with respect to negative energy balance in cattle. A deficiency in nicotinamide adenine dinucleotide (NAD+) production has been associated with increased incidences of miscarriage and congenital defects in humans and mice, while elevating NAD+ through dietary supplements in aged subjects improved oocyte quality and embryo development. NAD+ is consumed by Sirtuins and poly-ADP-ribose polymerases (PARPs) within the cell and thus need constant replenishment in order to maintain various cellular functions. Sirtuins and PARPs play important roles in oocyte maturation and embryo development, and their activation may prove beneficial to in vitro embryo production and livestock breeding programs. This review examines the roles of NAD+, Sirtuins and PARPs in aspects of fertility, providing insights into the potential use of NAD+-elevating treatments in livestock breeding and embryo production programs.
Collapse
Affiliation(s)
- Charley-Lea POLLARD
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, 2570, Australia
| | - Zamira GIBB
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Aleona SWEGEN
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Christopher G. GRUPEN
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, NSW, 2570, Australia
| |
Collapse
|
26
|
Vitali L, Merlini A, Galvagno F, Proment A, Sangiolo D. Biological and Exploitable Crossroads for the Immune Response in Cancer and COVID-19. Biomedicines 2022; 10:2628. [PMID: 36289890 PMCID: PMC9599827 DOI: 10.3390/biomedicines10102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022] Open
Abstract
The outbreak of novel coronavirus disease 2019 (COVID-19) has exacted a disproportionate toll on cancer patients. The effects of anticancer treatments and cancer patients' characteristics shared significant responsibilities for this dismal outcome; however, the underlying immunopathological mechanisms are far from being completely understood. Indeed, despite their different etiologies, SARS-CoV-2 infection and cancer unexpectedly share relevant immunobiological connections. In the pathogenesis and natural history of both conditions, there emerges the centrality of the immune response, orchestrating the timed appearance, functional and dysfunctional roles of multiple effectors in acute and chronic phases. A significant number (more than 600) of observational and interventional studies have explored the interconnections between COVID-19 and cancer, focusing on aspects as diverse as psychological implications and prognostic factors, with more than 4000 manuscripts published so far. In this review, we reported and discussed the dynamic behavior of the main cytokines and immune system signaling pathways involved in acute vs. early, and chronic vs. advanced stages of SARS-CoV-2 infection and cancer. We highlighted the biological similarities and active connections within these dynamic disease scenarios, exploring and speculating on possible therapeutic crossroads from one setting to the other.
Collapse
Affiliation(s)
- Letizia Vitali
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessandra Merlini
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Federica Galvagno
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Alessia Proment
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142 Km 3.95, 10060 Candiolo, Italy
- Department of Oncology, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy
| |
Collapse
|
27
|
Hagino R, Mozaki K, Komura N, Imamura A, Ishida H, Ando H, Tanaka HN. Straightforward Synthesis of the Poly(ADP-ribose) Branched Core Structure. ACS OMEGA 2022; 7:32795-32804. [PMID: 36119971 PMCID: PMC9476175 DOI: 10.1021/acsomega.2c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification that produces poly(ADP-ribose) with a branched structure every 20-50 units; such branching structure has been previously suggested to be involved in regulating chromatin remodeling. To elucidate its detailed functions, we developed a straightforward method for the synthesis of the poly(ADP-ribose) branched core structure, α-d-ribofuranosyl-(1‴ → 2″)-α-d-ribofuranosyl-(1″ → 2')-adenosine 5',5'',5‴-trisphosphate 1, from 6-chloropurine ribofuranoside 4 in 10 steps and 6.1% overall yield. The structure poses synthetic challenges for constructing iterative α-1,2-cis-glycosidic bonds in the presence of a purine base and the installation of three phosphate groups at primary hydroxyl groups. Iterative glycosidic bonds were formed by α-1,2-cis-selective ribofuranosylation using 2-O-(2-naphthylmethyl)-protected thioglycoside donor 6 and a thiophilic bismuth promoter. After the construction of diribofuranosyl adenosine 5 had been constructed, it was chemo- and regioselectively phosphorylated at a later stage. Subsequent deprotection provided the synthetic target 1.
Collapse
Affiliation(s)
- Rui Hagino
- The
United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department
of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Keita Mozaki
- Department
of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Naoko Komura
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The
United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department
of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The
United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department
of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiromune Ando
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The
United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The
United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
28
|
Ling X, Pan Z, Zhang H, Wu M, Gui Z, Yuan Q, Chen J, Peng J, Liu Z, Tan Q, Huang D, Xiu L, Liu L. PARP-1 modulates the expression of miR-223 through histone acetylation to involve in the hydroquinone-induced carcinogenesis of TK6 cells. J Biochem Mol Toxicol 2022; 36:e23142. [PMID: 35698848 DOI: 10.1002/jbt.23142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/31/2022] [Indexed: 11/12/2022]
Abstract
The upstream regulators of microRNAs were rarely reported. Hydroquinone (HQ) is the main metabolite of benzene, one of the important environmental factors contributing to leukemia and lymphoma. In HQ-induced malignant transformed TK6 (TK6-HT) cells, the expression of PARP-1 and miR-223 were upregulated. When in PARP-1 silencing TK6-HT cells, miR-223 was downregulated and the apoptotic cell number correspondingly increased. In TK6 cells treated with HQ for different terms, the expression of miR-223 and PARP-1 were dynamically observed and found to be decreased and increased, respectively. Trichostatin A could increase the expression of miR-223, then the expression of HDAC1-2 and nuclear factor kappa B were found to be increased, but that of mH2A was decreased. PARP-1 silencing inhibited the protein expression of H3Ac, mH2A, and H3K27ac. By co-immunoprecipitation experiment, PARP-1 and HDAC2 were found to form a regulatory complex. In conclusion, we demonstrated that the upregulation of PARP-1 mediated activation of acetylation to promote the transcription of miR-223 possibly via coregulating with HDAC2, an epigenetic regulation mechanism involved in cell malignant transformation resulting from long-term exposure to HQ, in which course, H3K27ac might be a specific marker for the activation of histone H3, which also gives hints for benzene exposure research.
Collapse
Affiliation(s)
- Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zhijie Pan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Haiqiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Minhua Wu
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, China
| | - Zhiming Gui
- Department of Urology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qian Yuan
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jialong Chen
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jianming Peng
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, China
| | - Zhidong Liu
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, China
| | - Qiang Tan
- Foshan Institute of Occupational Disease Prevention and Control, Foshan, China
| | - Dongsheng Huang
- Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Liangchang Xiu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
29
|
Gan Y, Sha H, Zou R, Xu M, Zhang Y, Feng J, Wu J. Research Progress on Mono-ADP-Ribosyltransferases in Human Cell Biology. Front Cell Dev Biol 2022; 10:864101. [PMID: 35652091 PMCID: PMC9149570 DOI: 10.3389/fcell.2022.864101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
ADP-ribosylation is a well-established post-translational modification that is inherently connected to diverse processes, including DNA repair, transcription, and cell signaling. The crucial roles of mono-ADP-ribosyltransferases (mono-ARTs) in biological processes have been identified in recent years by the comprehensive use of genetic engineering, chemical genetics, and proteomics. This review provides an update on current methodological advances in the study of these modifiers. Furthermore, the review provides details on the function of mono ADP-ribosylation. Several mono-ARTs have been implicated in the development of cancer, and this review discusses the role and therapeutic potential of some mono-ARTs in cancer.
Collapse
Affiliation(s)
- Yujie Gan
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Huanhuan Sha
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Renrui Zou
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
| | - Miao Xu
- Nanjing Medical University, Nanjing, China
| | - Yuan Zhang
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
- Nanjing Medical University, Nanjing, China
- *Correspondence: Jifeng Feng,
| | - Jianzhong Wu
- Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
30
|
Lehner M, Rieth S, Höllmüller E, Spliesgar D, Mertes B, Stengel F, Marx A. Profiling of the ADP-Ribosylome in Living Cells. Angew Chem Int Ed Engl 2022; 61:e202200977. [PMID: 35188710 PMCID: PMC9315028 DOI: 10.1002/anie.202200977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 12/12/2022]
Abstract
Post-translational modification (PTM) with ADP-ribose and poly(ADP-ribose) using nicotinamide adenine dinucleotide (NAD+ ) as substrate is involved in the regulation of numerous cellular pathways in eukaryotes, notably the response to DNA damage caused by cellular stress. Nevertheless, due to intrinsic properties of NAD+ e.g., high polarity and associated poor cell passage, these PTMs are difficult to characterize in cells. Here, two new NAD+ derivatives are presented, which carry either a fluorophore or an affinity tag and, in combination with developed methods for mild cell delivery, allow studies in living human cells. We show that this approach allows not only the imaging of ADP-ribosylation in living cells but also the proteome-wide analysis of cellular adaptation by protein ADP-ribosylation as a consequence of environmental changes such as H2 O2 -induced oxidative stress or the effect of the approved anti-cancer drug olaparib. Our results therefore pave the way for further functional and clinical studies of the ADP-ribosylated proteome in living cells in health and disease.
Collapse
Affiliation(s)
- Maike Lehner
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Sonja Rieth
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Eva Höllmüller
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Daniel Spliesgar
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Bastian Mertes
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Florian Stengel
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| | - Andreas Marx
- Departments of Chemistry and BiologyKonstanz Research School Chemical BiologyUniversitätsstraße 1078457KonstanzGermany
| |
Collapse
|
31
|
Lehner M, Rieth S, Höllmüller E, Spliesgar D, Mertes B, Stengel F, Marx A. Profiling of the ADP‐Ribosylome in Living Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maike Lehner
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Sonja Rieth
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Eva Höllmüller
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Daniel Spliesgar
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Bastian Mertes
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Florian Stengel
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| | - Andreas Marx
- Departments of Chemistry and Biology Konstanz Research School Chemical Biology Universitätsstraße 10 78457 Konstanz Germany
| |
Collapse
|
32
|
Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 2022; 82:2315-2334. [PMID: 35271815 DOI: 10.1016/j.molcel.2022.02.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification of proteins catalyzed by ADP-ribosyl transferase (ART) enzymes, including nuclear PARPs (e.g., PARP1 and PARP2). Historically, studies of ADPRylation and PARPs have focused on DNA damage responses in cancers, but more recent studies elucidate diverse roles in a broader array of biological processes. Here, we summarize the expanding array of molecular mechanisms underlying the biological functions of nuclear PARPs with a focus on PARP1, the founding member of the family. This includes roles in DNA repair, chromatin regulation, gene expression, ribosome biogenesis, and RNA biology. We also present new concepts in PARP1-dependent regulation, including PAR-dependent post-translational modifications, "ADPR spray," and PAR-mediated biomolecular condensate formation. Moreover, we review advances in the therapeutic mechanisms of PARP inhibitors (PARPi) as well as the progress on the mechanisms of PARPi resistance. Collectively, the recent progress in the field has yielded new insights into the expanding universe of PARP1-mediated molecular and therapeutic mechanisms in a variety of biological processes.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Huang J, Ralph D, Boraldi F, Quaglino D, Uitto J, Li Q. Inhibition of the DNA Damage Response Attenuates Ectopic Calcification in Pseudoxanthoma Elasticum. J Invest Dermatol 2022; 142:2140-2148.e1. [PMID: 35143822 PMCID: PMC9329183 DOI: 10.1016/j.jid.2022.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
Pseudoxanthoma elasticum (PXE) is a heritable ectopic calcification disorder with multi-organ clinical manifestations. The gene at default, ABCC6, encodes an efflux transporter, ABCC6, which is a new player regulating the homeostasis of inorganic pyrophosphate (PPi), a potent endogenous anti-calcification factor. Previous studies suggested that systemic PPi deficiency is the major, but not the exclusive, cause of ectopic calcification in PXE. In this study, we demonstrate that the DNA damage response (DDR) and poly(ADP-ribose) (PAR) pathways are involved locally in PXE at sites of ectopic calcification. Genetic inhibition of PARP1, the predominant PAR-producing enzyme, showed a 54% reduction of calcification in the muzzle skin in Abcc6-/-Parp1-/- mice, as compared to age-matched Abcc6-/-Parp1+/+ littermates. Subsequently, oral administration of minocycline, an inhibitor of DDR/PAR signaling, resulted in an 86% reduction of calcification in the muzzle skin of Abcc6-/- mice. Minocycline treatment also attenuated the DDR/PAR signaling and reduced calcification of dermal fibroblasts derived from PXE patients. The anti-calcification effect of DDR/PAR inhibition was not accompanied by alterations in plasma PPi concentrations. These results suggest that local DDR/PAR signaling in calcification-prone tissues contributes to PXE pathogenesis, and its inhibition might provide a promising treatment strategy for ectopic calcification in PXE, a currently intractable disease.
Collapse
Affiliation(s)
- Jianhe Huang
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Douglas Ralph
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA; Genetics, Genomics and Cancer Biology Ph.D. Program, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Federica Boraldi
- Department of Life Science, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Daniela Quaglino
- Department of Life Science, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Jouni Uitto
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Qiaoli Li
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA; Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA; PXE international Center of Excellence in Research and Clinical Care, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
34
|
Zhang XN, Lam AT, Cheng Q, Courouble VV, Strutzenberg TS, Li J, Wang Y, Pei H, Stiles BL, Louie SG, Griffin PR, Zhang Y. Discovery of an NAD+ analogue with enhanced specificity for PARP1. Chem Sci 2022; 13:1982-1991. [PMID: 35308855 PMCID: PMC8848837 DOI: 10.1039/d1sc06256e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/21/2022] [Indexed: 12/23/2022] Open
Abstract
Among various protein posttranslational modifiers, poly-ADP-ribose polymerase 1 (PARP1) is a key player for regulating numerous cellular processes and events through enzymatic attachments of target proteins with ADP-ribose units donated by nicotinamide adenine dinucleotide (NAD+). Human PARP1 is involved in the pathogenesis and progression of many diseases. PARP1 inhibitors have received approvals for cancer treatment. Despite these successes, our understanding about PARP1 remains limited, partially due to the presence of various ADP-ribosylation reactions catalyzed by other PARPs and their overlapped cellular functions. Here we report a synthetic NAD+ featuring an adenosyl 3′-azido substitution. Acting as an ADP-ribose donor with high activity and specificity for human PARP1, this compound enables labelling and profiling of possible protein substrates of endogenous PARP1. It provides a unique and valuable tool for studying PARP1 in biology and pathology and may shed light on the development of PARP isoform-specific modulators. An analogue of nicotinamide adenine dinucleotide (NAD+) featuring an azido group at 3′-OH of adenosine moiety is found to possess high specificity for human PARP1-catalyzed protein poly-ADP-ribosylation.![]()
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Albert T. Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Valentine V. Courouble
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Jiawei Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yiling Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Bangyan L. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G. Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
35
|
Chen WJ, Cheng Y, Li W, Dong XK, Wei JL, Yang CH, Jiang YH. Quercetin Attenuates Cardiac Hypertrophy by Inhibiting Mitochondrial Dysfunction Through SIRT3/PARP-1 Pathway. Front Pharmacol 2021; 12:739615. [PMID: 34776960 PMCID: PMC8581039 DOI: 10.3389/fphar.2021.739615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac hypertrophy is an important characteristic in the development of hypertensive heart disease. Mitochondrial dysfunction plays an important role in the pathology of cardiac hypertrophy. Recent studies have shown that sirtuin 3 (SIRT3)/poly (ADP-ribose) polymerase-1 (PARP-1) pathway modulation inhibits cardiac hypertrophy. Quercetin, a natural flavonol agent, has been reported to attenuate cardiac hypertrophy. However, the molecular mechanism is not completely elucidated. In this study, we aimed to explore the mechanism underlying the protective effect of quercetin on cardiac hypertrophy. Spontaneously hypertensive rats (SHRs) were treated with quercetin (20 mg/kg/d) for 8 weeks to evaluate the effects of quercetin on blood pressure and cardiac hypertrophy. Additionally, the mitochondrial protective effect of quercetin was assessed in H9c2 cells treated with Ang II. SHRs displayed aggravated cardiac hypertrophy and fibrosis, which were attenuated by quercetin treatment. Quercetin also improved cardiac function, reduced mitochondrial superoxide and protected mitochondrial structure in vivo. In vitro, Ang II increased the mRNA level of hypertrophic markers including atrial natriuretic factor (ANF) and β-myosin heavy chain (β-MHC), whereas quercetin ameliorated this hypertrophic response. Moreover, quercetin prevented mitochondrial function against Ang II induction. Importantly, mitochondrial protection and PARP-1 inhibition by quercetin were partly abolished after SIRT3 knockdown. Our results suggested that quercetin protected mitochondrial function by modulating SIRT3/PARP-1 pathway, contributing to the inhibition of cardiac hypertrophy.
Collapse
Affiliation(s)
- Wen-Jing Chen
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Cheng
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Kang Dong
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jian-Liang Wei
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuan-Hua Yang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Hua Jiang
- Central Laboratory, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
36
|
Jeong KY, Lee H. Inhibition of poly (ADP-Ribose) polymerase: A promising strategy targeting pancreatic cancer with BRCAness phenotype. World J Gastrointest Oncol 2021. [PMID: 34853635 DOI: 10.4251/wjgo.v13.i11.1544.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of chemotherapeutic regimens for the treatment of pancreatic cancer is still limited because pancreatic cancer is usually diagnosed at an advanced stage as a refractory disease in which symptoms are difficult to recognize in the early stages. Furthermore, at advanced stages, there are important challenges to achieve clinical benefit and symptom resolution, even with the use of an expanded spectrum of anticancer drugs. Recently, a point of reduced susceptibility to conventional chemotherapies by breast cancer susceptibility gene (BRCA) mutations led to a new perspective for overcoming the resistance of pancreatic cancer within the framework of increased genome instability. Poly (ADP-Ribose) polymerase (PARP) -1 is an enzyme that can regulate intrinsic functions, such as response to DNA damage. Therefore, in an environment where germline mutations in BRCAs (BRCAness) inhibit homologous recombination in DNA damage, resulting in a lack of DNA damage response, a key role of PARP-1 for the adaptation of the genome instability could be further emphasized. Here, we summarized the key functional role of PARP-1 in genomic instability of pancreatic cancer with the BRCAness phenotype and listed clinical applications and outcomes of PARP-1 inhibitors to highlight the importance of targeting PARP-1 activity.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- R&D Center, Metimedi Pharmaceuticals, Incheon 22006, South Korea.
| | - Haejun Lee
- Department of Nuclear Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
37
|
Jeong KY, Lee H. Inhibition of poly (ADP-Ribose) polymerase: A promising strategy targeting pancreatic cancer with BRCAness phenotype. World J Gastrointest Oncol 2021; 13:1544-1550. [PMID: 34853635 PMCID: PMC8603447 DOI: 10.4251/wjgo.v13.i11.1544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
The use of chemotherapeutic regimens for the treatment of pancreatic cancer is still limited because pancreatic cancer is usually diagnosed at an advanced stage as a refractory disease in which symptoms are difficult to recognize in the early stages. Furthermore, at advanced stages, there are important challenges to achieve clinical benefit and symptom resolution, even with the use of an expanded spectrum of anticancer drugs. Recently, a point of reduced susceptibility to conventional chemotherapies by breast cancer susceptibility gene (BRCA) mutations led to a new perspective for overcoming the resistance of pancreatic cancer within the framework of increased genome instability. Poly (ADP-Ribose) polymerase (PARP) -1 is an enzyme that can regulate intrinsic functions, such as response to DNA damage. Therefore, in an environment where germline mutations in BRCAs (BRCAness) inhibit homologous recombination in DNA damage, resulting in a lack of DNA damage response, a key role of PARP-1 for the adaptation of the genome instability could be further emphasized. Here, we summarized the key functional role of PARP-1 in genomic instability of pancreatic cancer with the BRCAness phenotype and listed clinical applications and outcomes of PARP-1 inhibitors to highlight the importance of targeting PARP-1 activity.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- R&D Center, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Haejun Lee
- Department of Nuclear Medicine, Gil Medical Center, Incheon 21565, South Korea
| |
Collapse
|
38
|
Kliza KW, Liu Q, Roosenboom LWM, Jansen PWTC, Filippov DV, Vermeulen M. Reading ADP-ribosylation signaling using chemical biology and interaction proteomics. Mol Cell 2021; 81:4552-4567.e8. [PMID: 34551281 DOI: 10.1016/j.molcel.2021.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
ADP-ribose (ADPr) readers are essential components of ADP-ribosylation signaling, which regulates genome maintenance and immunity. The identification and discrimination between monoADPr (MAR) and polyADPr (PAR) readers is difficult because of a lack of suitable affinity-enrichment reagents. We synthesized well-defined ADPr probes and used these for affinity purifications combined with relative and absolute quantitative mass spectrometry to generate proteome-wide MAR and PAR interactomes, including determination of apparent binding affinities. Among the main findings, MAR and PAR readers regulate various common and distinct processes, such as the DNA-damage response, cellular metabolism, RNA trafficking, and transcription. We monitored the dynamics of PAR interactions upon induction of oxidative DNA damage and uncovered the mechanistic connections between ubiquitin signaling and ADP-ribosylation. Taken together, chemical biology enables exploration of MAR and PAR readers using interaction proteomics. Furthermore, the generated MAR and PAR interaction maps significantly expand our current understanding of ADPr signaling.
Collapse
Affiliation(s)
- Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| | - Qiang Liu
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, Netherlands
| | - Laura W M Roosenboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
39
|
Szántó M, Gupte R, Kraus WL, Pacher P, Bai P. PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
Affiliation(s)
- Magdolna Szántó
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Rebecca Gupte
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | - Peter Bai
- Department Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Hungary.
| |
Collapse
|
40
|
Zheng M, Lupoli TJ. Modulation of a Mycobacterial ADP-Ribosyltransferase to Augment Rifamycin Antibiotic Resistance. ACS Infect Dis 2021; 7:2604-2611. [PMID: 34355905 DOI: 10.1021/acsinfecdis.1c00297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The rifamycins are broad-spectrum antibiotics that are primarily utilized to treat infections caused by mycobacteria, including tuberculosis. Interestingly, various species of bacteria are known to contain an enzyme called Arr that catalyzes ADP-ribosylation of rifamycin antibiotics as a mechanism of resistance. Here, we study Arr modulation in relevant Gram-positive and -negative species. We show that a C-terminal truncation of Arr (ArrC), encoded in the genome of Mycobacterium smegmatis, activates Arr-mediated rifamycin modification. Through structural comparisons of mycobacterial Arr and human poly(ADP-ribose) polymerases (PARPs), we identify a known small molecule PARP inhibitor that can act as an adjuvant to sensitize M. smegmatis to the rifamycin antibiotic rifampin via inhibition of Arr, even in the presence of ArrC. Finally, we demonstrate that this rifampin/adjuvant combination treatment is effective at inhibiting growth of the multidrug-resistant (MDR) nontuberculosis pathogen Mycobacterium abscessus, which has become a growing cause of human infections in the clinic.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
41
|
Cao Y, Tang L, Du K, Paraiso K, Sun Q, Liu Z, Ye X, Fang Y, Yuan F, Chen H, Chen Y, Wang X, Yu C, Blitz IL, Wang PH, Huang L, Cheng H, Lu X, Cho KW, Seldin M, Fang Z, Yang Q. Anterograde regulation of mitochondrial genes and FGF21 signaling by hepatic LSD1. JCI Insight 2021; 6:e147692. [PMID: 34314389 PMCID: PMC8492328 DOI: 10.1172/jci.insight.147692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/21/2021] [Indexed: 01/14/2023] Open
Abstract
Mitochondrial biogenesis and function are controlled by anterograde regulatory pathways involving more than 1000 nuclear-encoded proteins. Transcriptional networks controlling the nuclear-encoded mitochondrial genes remain to be fully elucidated. Here, we show that histone demethylase LSD1 KO from adult mouse liver (LSD1-LKO) reduces the expression of one-third of all nuclear-encoded mitochondrial genes and decreases mitochondrial biogenesis and function. LSD1-modulated histone methylation epigenetically regulates nuclear-encoded mitochondrial genes. Furthermore, LSD1 regulates gene expression and protein methylation of nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), which controls the final step of NAD+ synthesis and limits NAD+ availability in the nucleus. Lsd1 KO reduces NAD+-dependent SIRT1 and SIRT7 deacetylase activity, leading to hyperacetylation and hypofunctioning of GABPβ and PGC-1α, the major transcriptional factor/cofactor for nuclear-encoded mitochondrial genes. Despite the reduced mitochondrial function in the liver, LSD1-LKO mice are protected from diet-induced hepatic steatosis and glucose intolerance, partially due to induction of hepatokine FGF21. Thus, LSD1 orchestrates a core regulatory network involving epigenetic modifications and NAD+ synthesis to control mitochondrial function and hepatokine production.
Collapse
Affiliation(s)
- Yang Cao
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Lingyi Tang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.,Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Kang Du
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Kitt Paraiso
- Department of Developmental & Cell Biology, UCI, Irvine, California, USA
| | - Qiushi Sun
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA.,Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Liu
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Xiaolong Ye
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Yuan Fang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Fang Yuan
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Hank Chen
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Yumay Chen
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Xiaorong Wang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Clinton Yu
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Ira L. Blitz
- Department of Developmental & Cell Biology, UCI, Irvine, California, USA
| | - Ping H. Wang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Lan Huang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| | - Haibo Cheng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital of Nanjing Medical University, Nanjing, China
| | - Ken W.Y. Cho
- Department of Developmental & Cell Biology, UCI, Irvine, California, USA
| | - Marcus Seldin
- Department of Biological Chemistry, UCI, Irvine, California, USA
| | - Zhuyuan Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qin Yang
- Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, University of California Irvine (UCI), Irvine, California, USA
| |
Collapse
|
42
|
Levine DC, Ramsey KM, Bass J. Circadian NAD(P)(H) cycles in cell metabolism. Semin Cell Dev Biol 2021; 126:15-26. [PMID: 34281771 DOI: 10.1016/j.semcdb.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Intrinsic circadian clocks are present in all forms of photosensitive life, enabling daily anticipation of the light/dark cycle and separation of energy storage and utilization cycles on a 24-h timescale. The core mechanism underlying circadian rhythmicity involves a cell-autonomous transcription/translation feedback loop that in turn drives rhythmic organismal physiology. In mammals, genetic studies have established that the core clock plays an essential role in maintaining metabolic health through actions within both brain pacemaker neurons and peripheral tissues and that disruption of the clock contributes to disease. Peripheral clocks, in turn, can be entrained by metabolic cues. In this review, we focus on the role of the nucleotide NAD(P)(H) and NAD+-dependent sirtuin deacetylases as integrators of circadian and metabolic cycles, as well as the implications for this interrelationship in healthful aging.
Collapse
Affiliation(s)
- Daniel C Levine
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kathryn M Ramsey
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
43
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021. [PMID: 34163574 DOI: 10.4251/wjgo.v13.i6.574.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea.
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
44
|
Jeong KY, Park M. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. World J Gastrointest Oncol 2021; 13:574-588. [PMID: 34163574 PMCID: PMC8204356 DOI: 10.4251/wjgo.v13.i6.574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
The development of colorectal cancer (CRC) can result from changes in a variety of cellular systems within the tumor microenvironment. Particularly, it is primarily associated with genomic instability that is the gradual accumulation of genetic and epigenetic changes consisting of a characteristic set of mutations crucial for pathways in CRC progression. Based on this background, the potential to focus on poly [adenosine diphosphate (ADP)-ribose] polymerase (PARP)-1 and poly-ADP ribosylation (PARylation) as the main causes of malignant formation of CRC may be considered. One of the important functions of PARP-1 and PARylation is its deoxyribonucleic acid (DNA) repair function, which plays a pivotal role in the DNA damage response and prevention of DNA damage maintaining the redox homeostasis involved in the regulation of oxidation and superoxide. PARP-1 and PARylation can also alter epigenetic markers and chromatin structure involved in transcriptional regulation for the oncogenes or tumor suppressor genes by remodeling histone and chromatin enzymes. Given the high importance of these processes in CRC, it can be considered that PARP-1 and PARylation are at the forefront of the pathological changes required for CRC progression. Therefore, this review addresses the current molecular biological features for understanding the multifactorial function of PARP-1 and PARylation in CRC related to the aforementioned roles; furthermore, it presents a summary of recent approaches with PARP-1 inhibition in non-clinical and clinical studies targeting CRC. This understanding could help embrace the importance of targeting PARP-1 and PARylation in the treatment of CRC, which may present the potential to identify various research topics that can be challenged both non-clinically and clinically.
Collapse
Affiliation(s)
- Keun-Yeong Jeong
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| | - Minhee Park
- Research and Development, Metimedi Pharmaceuticals, Incheon 22006, South Korea
| |
Collapse
|
45
|
van Beek L, McClay É, Patel S, Schimpl M, Spagnolo L, Maia de Oliveira T. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. Int J Mol Sci 2021; 22:ijms22105112. [PMID: 34066057 PMCID: PMC8150716 DOI: 10.3390/ijms22105112] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/30/2022] Open
Abstract
Poly (ADP-ribose) polymerases (PARP) 1-3 are well-known multi-domain enzymes, catalysing the covalent modification of proteins, DNA, and themselves. They attach mono- or poly-ADP-ribose to targets using NAD+ as a substrate. Poly-ADP-ribosylation (PARylation) is central to the important functions of PARP enzymes in the DNA damage response and nucleosome remodelling. Activation of PARP happens through DNA binding via zinc fingers and/or the WGR domain. Modulation of their activity using PARP inhibitors occupying the NAD+ binding site has proven successful in cancer therapies. For decades, studies set out to elucidate their full-length molecular structure and activation mechanism. In the last five years, significant advances have progressed the structural and functional understanding of PARP1-3, such as understanding allosteric activation via inter-domain contacts, how PARP senses damaged DNA in the crowded nucleus, and the complementary role of histone PARylation factor 1 in modulating the active site of PARP. Here, we review these advances together with the versatility of PARP domains involved in DNA binding, the targets and shape of PARylation and the role of PARPs in nucleosome remodelling.
Collapse
Affiliation(s)
- Lotte van Beek
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
| | - Éilís McClay
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1QQ, UK;
| | - Saleha Patel
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK;
| | - Marianne Schimpl
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
| | - Laura Spagnolo
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1QQ, UK;
- Correspondence: (L.S.); (T.M.d.O.)
| | - Taiana Maia de Oliveira
- Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, UK; (L.v.B.); (M.S.)
- Correspondence: (L.S.); (T.M.d.O.)
| |
Collapse
|
46
|
Wasyluk W, Zwolak A. PARP Inhibitors: An Innovative Approach to the Treatment of Inflammation and Metabolic Disorders in Sepsis. J Inflamm Res 2021; 14:1827-1844. [PMID: 33986609 PMCID: PMC8110256 DOI: 10.2147/jir.s300679] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Sepsis is not only a threat to the health of individual patients but also presents a serious epidemiological problem. Despite intensive research, modern sepsis therapy remains based primarily on antimicrobial treatment and supporting the functions of failing organs. Finding a cure for sepsis represents a great and as yet unfulfilled need in modern medicine. Research results indicate that the activity of poly (adenosine diphosphate (ADP)-ribose) polymerase (PARP) may play an important role in the inflammatory response and the cellular metabolic disorders found in sepsis. Mechanisms by which PARP-1 may contribute to inflammation and metabolic disorders include effects on the regulation of gene expression, impaired metabolism, cell death, and the release of alarmins. These findings suggest that inhibition of this enzyme may be a promising solution for the treatment of sepsis. In studies using experimental sepsis models, inhibition of PARP-1 has been shown to ameliorate the inflammatory response and increase survival. This action was described, among others, for olaparib, a PARP-1 inhibitor approved for use in oncology. While the results of current research are promising, the use of PARP inhibitors in non-oncological diseases raises some concerns, mainly related to the enzyme's role in deoxyribonucleic acid (DNA) repair. However, the results of studies on experimental models indicate the effectiveness of even short-term PARP-1 inhibition and do not confirm concerns regarding its impact on the integrity of nuclear DNA. Current research presents PARP inhibition as a potential solution for the treatment of sepsis and indicates the need for further research.
Collapse
Affiliation(s)
- Weronika Wasyluk
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland.,Doctoral School, Medical University of Lublin, Lublin, Poland
| | - Agnieszka Zwolak
- Chair of Internal Medicine and Department of Internal Medicine in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
47
|
Li Q, Liu W, Zhao ZK. Synthesis of proteogenic amino acid-based NAD analogs. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Lam AT, Zhang XN, Courouble VV, Strutzenberg TS, Pei H, Stiles BL, Louie SG, Griffin PR, Zhang Y. A Bifunctional NAD + for Profiling Poly-ADP-Ribosylation-Dependent Interacting Proteins. ACS Chem Biol 2021; 16:389-396. [PMID: 33524253 DOI: 10.1021/acschembio.0c00937] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein poly-ADP-ribosylation (PARylation) is a heterogeneous and dynamic post-translational modification regulated by various writers, readers, and erasers. It participates in a variety of biological events and is involved in many human diseases. Currently, tools and technologies have yet to be developed for unambiguously defining readers and erasers of individual PARylated proteins or cognate PARylated proteins for known readers and erasers. Here, we report the generation of a bifunctional nicotinamide adenine dinucleotide (NAD+) characterized by diazirine-modified adenine and clickable ribose. By serving as an excellent substrate for poly-ADP-ribose polymerase 1 (PARP1)-catalyzed PARylation, the generated bifunctional NAD+ enables photo-cross-linking and enrichment of PARylation-dependent interacting proteins for proteomic identification. This bifunctional NAD+ provides an important tool for mapping cellular interaction networks centered on protein PARylation, which are essential for elucidating the roles of PARylation-based signals or activities in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Albert T. Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Valentine V. Courouble
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Timothy S. Strutzenberg
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Bangyan L. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Stan G. Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
- Research Center for Liver Diseases, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
49
|
Rudolph J, Roberts G, Luger K. Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs. Nat Commun 2021; 12:736. [PMID: 33531508 PMCID: PMC7854685 DOI: 10.1038/s41467-021-20998-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Poly-(ADP-ribose) polymerase 1 and 2 (PARP1 and PARP2) are key enzymes in the DNA damage response. Four different inhibitors (PARPi) are currently in the clinic for treatment of ovarian and breast cancer. Recently, histone PARylation Factor 1 (HPF1) has been shown to play an essential role in the PARP1- and PARP2-dependent poly-(ADP-ribosylation) (PARylation) of histones, by forming a complex with both enzymes and altering their catalytic properties. Given the proximity of HPF1 to the inhibitor binding site both PARPs, we hypothesized that HPF1 may modulate the affinity of inhibitors toward PARP1 and/or PARP2. Here we demonstrate that HPF1 significantly increases the affinity for a PARP1 - DNA complex of some PARPi (i.e., olaparib), but not others (i.e., veliparib). This effect of HPF1 on the binding affinity of Olaparib also holds true for the more physiologically relevant PARP1 - nucleosome complex but does not extend to PARP2. Our results have important implications for the interpretation of PARP inhibition by current PARPi as well as for the design and analysis of the next generation of clinically relevant PARP inhibitors.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Genevieve Roberts
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
50
|
Palavalli Parsons LH, Challa S, Gibson BA, Nandu T, Stokes MS, Huang D, Lea JS, Kraus WL. Identification of PARP-7 substrates reveals a role for MARylation in microtubule control in ovarian cancer cells. eLife 2021; 10:e60481. [PMID: 33475085 PMCID: PMC7884071 DOI: 10.7554/elife.60481] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
PARP-7 (TiPARP) is a mono(ADP-ribosyl) transferase whose protein substrates and biological activities are poorly understood. We observed that PARP7 mRNA levels are lower in ovarian cancer patient samples compared to non-cancerous tissue, but PARP-7 protein nonetheless contributes to several cancer-related biological endpoints in ovarian cancer cells (e.g. growth, migration). Global gene expression analyses in ovarian cancer cells subjected to PARP-7 depletion indicate biological roles for PARP-7 in cell-cell adhesion and gene regulation. To identify the MARylated substrates of PARP-7 in ovarian cancer cells, we developed an NAD+ analog-sensitive approach, which we coupled with mass spectrometry to identify the PARP-7 ADP-ribosylated proteome in ovarian cancer cells, including cell-cell adhesion and cytoskeletal proteins. Specifically, we found that PARP-7 MARylates α-tubulin to promote microtubule instability, which may regulate ovarian cancer cell growth and motility. In sum, we identified an extensive PARP-7 ADP-ribosylated proteome with important roles in cancer-related cellular phenotypes.
Collapse
Affiliation(s)
- Lavanya H Palavalli Parsons
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Sridevi Challa
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bryan A Gibson
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Tulip Nandu
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - MiKayla S Stokes
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Cardiology, Clinical Center for Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jayanthi S Lea
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical CenterDallasUnited States
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|