1
|
Guo Y, Shang S, Liang L, Liu E. ZNF385A was identified as a novel colorectal cancer-related functional gene by analysis of the interaction and immune characteristics of oxidative stress and the inflammatory response. Discov Oncol 2025; 16:290. [PMID: 40064736 PMCID: PMC11893970 DOI: 10.1007/s12672-025-02024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Recently, oxidative stress and inflammatory responses have been shown to directly impact tumor growth and the tumor microenvironment (TME). However, more research is necessary to fully understand the relationship between oxidative stress and inflammatory responses and colorectal cancer (CRC). METHODS The FindCluster algorithm was used to extract CRC Single-cell RNA sequencing (scRNA-seq) data and identify tumor cell groupings. From the MSigDB database, genes associated with oxidative stress and the inflammatory response were taken. We identified molecular subtypes and built a predictive risk model with the LASSO-Cox method using the ConsensusClusterPlus software suite. We incorporated the prognostic risk model and other clinicopathological parameters into a column-line chart. Finally, we used Quantitative Polymerase Chain Reaction (qPCR) and immunohistochemistry to check the expression of the unreported hub model genes. Cell proliferation was assessed using EDU and colony formation assays. Reactive Oxygen Species (ROS) tests were used to quantitatively determine the ROS content in CRC cells. The ability of CRC cells to invade and migrate was examined using transwell experiments. The regulatory functions of hub model genes were discovered in vivo using a xenograft model tumor assay. RESULTS Oxidative stress and inflammatory response factors in monocytic/macrophages of CRC were significantly upregulated, and their oxidative stress and inflammatory response functions were significantly higher than those of other cell subgroups, as indicated by the enrichment score. These factors showed significant synergistic overexpression and enrichment in this cell population. We constructed a prognostic risk model consisting of seven signatures. The good and stable prognostic evaluation efficacy of the model was confirmed, and risk scores were determined to be independent prognostic factors for CRC. We explored the relationship between the risk score model and malignant progression of tumor cells, tumor immune microenvironment, genomic variation, chemotherapy resistance, and immune response. Further qPCR and immunohistochemistry analysis showed that the expression of ZNF385A was high in CRC tissues. The functional experiment results indicated that interfering with the expression of ZNF385A could suppress the proliferation, ROS, migration and invasion of SW620 cells in vitro and the growth of xenograft tumors in vivo. CONCLUSION In this study, we investigated the critical expression patterns of oxidative stress- and inflammatory response-related genes in CRC, which may contribute to the prognosis and immunotherapy of CRC. Additionally, we discovered ZNF385A to be a novel oncogene in CRC. These findings imply that this model may be applied to assess prognostic risk and identify potential therapeutic targets for CRC patients.
Collapse
Affiliation(s)
- Yaqi Guo
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Shipeng Shang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Leilei Liang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Enrui Liu
- Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Xu J, Li N, Xie H, Duan C, Liao X, Li R, Zhang H, Pan Y, Ma X, Du S, Sheng J, Wang X, Yang L, Jin P. CSF3 promotes colorectal cancer progression by activating p65/NF-κB signaling pathway and inducing an immunosuppressive microenvironment. Transl Oncol 2025; 53:102310. [PMID: 39929064 PMCID: PMC11849657 DOI: 10.1016/j.tranon.2025.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Colony-stimulating factor 3 (CSF3) is a cytokine that promotes inflammation by stimulating the maturation, proliferation, and trafficking of myeloid progenitor cells. However, the functional importance of CSF3 in colorectal cancer (CRC) remains unclear. METHODS CSF3 expression levels in CRC cells and tissues were detected by quantitative real-time PCR (qRT-PCR), western blot and immunohistochemistry (IHC). In vitro and in vivo assays were performed to investigate the oncogenic function of CSF3 in the tumor associated malignant phenotypes and the tumorigenic capability of CRC cells. Immunocoprecipitation was performed to verify the regulatory effects of CSF3 on IκBα ubiquitination. RESULTS We found that CSF3 was overexpressed in CRC tissues compared to adjacent normal tissues, which correlated with poor patient survival. In vitro, silencing CSF3 significantly impaired cell proliferation, colony formation, and migration, while enhancing apoptosis. In vivo, silencing CSF3 resulted in reduced tumor growth, weight, and volume, indicating its potential as a therapeutic target. Mechanistically, CSF3 was found to mediate CRC development by activating the NF-κB signaling pathway, as evidenced by the decreased phosphorylation of p65 and reduced IκBα ubiquitination in CSF3-silenced cells. Furthermore, CSF3 silencing modulated immune infiltration in CRC, promoting an anti-tumor immune response and altering the tumor microenvironment. CONCLUSION CSF3 modulated the NF-κB signaling pathway through a distinct mechanism involving p65 phosphorylation and the activation of NF-κB by enhancing IκBα ubiquitination, thereby effectively promoting CRC development, and CSF3 may serve as a potential therapeutic target for repressing CRC advance and metastasis.
Collapse
Affiliation(s)
- Junfeng Xu
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, PR China
| | - Na Li
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, PR China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China
| | - Hui Xie
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China
| | - Changwei Duan
- Medical School of Chinese PLA, Beijing 100853, PR China
| | - Xingchen Liao
- Medical School of Chinese PLA, Beijing 100853, PR China
| | - Ruoran Li
- Medical School of Chinese PLA, Beijing 100853, PR China
| | - Heng Zhang
- Medical School of Chinese PLA, Beijing 100853, PR China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, PR China
| | - Xianzong Ma
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, PR China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China
| | - Shuwen Du
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China
| | - Jianqiu Sheng
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China
| | - Xin Wang
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China.
| | - Lang Yang
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, PR China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China.
| | - Peng Jin
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, PR China; Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, PR China.
| |
Collapse
|
3
|
Daily ZA, Mohammed NB, Mohammed SM, Hussein HM. Correlation Between Periodontal Disease and Oral, Oropharyngeal, and Parapharyngeal Cancers. Clin Cosmet Investig Dent 2025; 17:147-158. [PMID: 40027983 PMCID: PMC11869753 DOI: 10.2147/ccide.s512557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Background Periodontitis is an inflammatory disease, and contributes to several inflammatory conditions, such as cancer. The relationship between periodontal disorders and different human malignancies is not well understood. The purpose of this study is to assess the association of periodontitis severity with cancers in the oral cavity, oropharyngeal and parapharyngeal regions. Methods The sample comprised 300 participants divided into four case groups: 75 oral, oropharyngeal, or parapharyngeal cancer patients with periodontitis (CA-with-P); 75 oral, oropharyngeal, or parapharyngeal cancer patients without periodontitis (CA-without-P); 75 periodontitis (P) patients without cancers; and a control (C) group of 75 healthy individuals. All participants were subjected to a periodontal examination that considered parameters such as bleeding on probing (BOP), plaque index (PI), probing pocket depth (PPD), and clinical attachment loss (CAL). The type of tumours was identified via a histological analysis of a biopsy sample. Saliva samples were also collected, and an enzyme-linked immunosorbent assay (ELISA) kit was used to determine interleukin 8 (IL-8) and nuclear factor kappa B (NF-κB) levels. Results The research findings indicated a significant increase in the number of sites with clinical observations of BOP (85.11,73.84), PI (87.23.88.14), PPD (8.03,6.82), and CAL (8.67,7.34) in groups CA-with-P and P. The CA-with-P, CA-without-P, and P groups had higher levels of salivary IL-8 (192.03, 121.89,89.22) and NF-κB (10.242, 8.172, 6.324) than the C group. Moreover, there was a significant correlation between the severity of periodontitis and the malignancies in the oral, oropharynx, and parapharyngeal regions. Conclusion This study assessed the mechanisms underlying the correlation between these two disorders, as elucidated by higher levels of salivary IL-8, NF-κB and an increase in clinical periodontal parameters. Periodontal bacteria, which contributes to the development of periodontal disorders, could have a major impact on the onset of oral cancers.
Collapse
Affiliation(s)
- Zina Ali Daily
- Periodontics Department, College of Dentistry, University of Al-Ameed, Karbala, Iraq
| | - Nawres Bahaa Mohammed
- Maxillofacial Surgery Department, Dentistry College, University of Al-Ameed, Karbala, Iraq
| | - Samer Majeed Mohammed
- Maxillofacial Surgery Department, Dentistry College, University of Al-Ameed, Karbala, Iraq
| | - Hashim Mueen Hussein
- Department of Conservative Dentistry, College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
4
|
Zhang H, Tang J, Cao H, Wang C, Shen C, Liu J. Effect and mechanism of Magnolia officinalis in colorectal cancer: Multi-component-multi-target approach. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119007. [PMID: 39471878 DOI: 10.1016/j.jep.2024.119007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Colorectal cancer (CRC) is a prevalent malignant tumor of the digestive tract. Traditional Chinese medicine (TCM) has a long history of treating CRC, with advantages such as effectiveness, multi-target, multi-pathway, and minimal side effects. TCM Magnolia officinalis (M. officinalis) refers to the dried bark, root bark, and branch bark of either Magnolia officinalis Rehd.et Wils. or Magnolia officinalis Rehd.et Wils. var. biloba Rehd.et Wils. It is commonly utilized to alleviate the side effects of chemotherapy for CRC, owing to its anti-inflammatory and anti-tumor properties. However, current research primarily focuses on the individual components and does not take into consideration the characteristics of multi-component-multi-target action. AIM OF THE STUDY Our aim is to study the new action characteristics of M. officinalis in the treatment of CRC. MATERIALS AND METHODS Utilizing network pharmacology to identify potential active ingredients, key targets, and main signaling pathways of M. officinalis for the treatment of CRC. The binding effect was further validated through molecular docking analysis. Furthermore, the aforementioned components were identified using liquid chromatography-mass spectrometry (LC-MS), and the cleavage pathways of the main components were analyzed. Subsequently, both in vitro and in vivo experiments were carried out to investigate the anti-CRC effect of the active ingredients of M. officinalis and its potential mechanism. RESULTS Network pharmacology and Molecular docking identified 5 main active ingredients and 6 core targets of M. officinalis for the treatment of CRC. Then, LC-MS identified the active components of M. officinalis. At the same time, both in vitro and in vivo experiments have confirmed the ability of Eucalyptol (Euc) and Obovatol (Obo)to inhibit inflammation and tumor cell proliferation. The possible mechanism involved is that Euc and Obo counteract CRC by inhibiting the over-activation of NF-κBp65/JAK and Bcl-2/Caspase signaling pathways, respectively. They also play a role in the anti-CRC effect of M. officinalis. CONCLUSION Magnolol (MAG), Honokiol (HK), Euc, Obo, and Neohesperidin (NHP) in M. officinalis may be the pharmacological substance basis for its anti-cancer effect on CRC. The treatment of CRC with M. officinalis is characterized by its multi-component, multi-target, and multi-pathway approach. These findings provide a theoretical basis for further inspiring the clinical application of M. officinalis and the development of efficacy targets.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Huiliang Cao
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chenguang Wang
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China
| | - Chong Shen
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, School of Instrument and Electronics, North University of China, Taiyuan, 030051, China.
| |
Collapse
|
5
|
Huang H, Zhao L, Kong X, Zhu J, Lu J. Vinegar powder exerts immunomodulatory effects through alleviating immune system damage and protecting intestinal integrity and microbiota homeostasis. FOOD BIOSCI 2025; 63:105687. [DOI: 10.1016/j.fbio.2024.105687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Peng C, Li X, Yao Y, Nie Y, Fan L, Zhu C. MiR-135b-5p promotes cetuximab resistance in colorectal cancer by regulating FOXN3. Cancer Biol Ther 2024; 25:2373497. [PMID: 38967961 PMCID: PMC11229718 DOI: 10.1080/15384047.2024.2373497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/06/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Despite advances in targeted therapies, primary and acquired resistance make the treatment of colorectal cancer (CRC) a pressing issue to be resolved. According to reports, the development of CRC is linked to miRNA dysregulation. Multiple studies have demonstrated that miR-135b-5p has an aberrant expression level between CRC tissues and adjacent tissues. However, it is unclear whether there is a correlation between miR-135b-5p and cetuximab (CTx) resistance in CRC. Use the GEO database to measure miR-135b-5p expression in CRC. Additionally, RT-qPCR was applied to ascertain the production level of miR-135b-5p in three human CRC cells and NCM460 cells. The capacity of cells to migrate and invade was examined utilizing the wound-healing and transwell assays, while the CCK-8 assay served for evaluating cell viability, as well as colony formation assays for proliferation. The expected target protein of miR-135b-5p in CRC cell cetuximab resistance has been investigated using western blot. Suppression of miR-135b-5p could increase the CTx sensitivity of CTx-resistant CRC cells, as manifested by the attenuation of proliferation, migration, and invasion ability. Mechanistic studies revealed miR-135b-5p regulates the epithelial-to-mesenchymal transition (EMT) process and Wnt/β-catenin signaling pathway through downgulating FOXN3. In short, knockdowning miR-135b-5p could increase FOXN3 expression in CRC cells, promote the EMT process, and simultaneously activate the Wnt/β-catenin signaling pathway to elevate CTx resistance in CRC cells.
Collapse
Affiliation(s)
- Chun Peng
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoqing Li
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuhui Yao
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu Nie
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lingyao Fan
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuandong Zhu
- Department of Oncology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Xu Y, Cai Q, Zhao C, Zhang W, Xu X, Lin H, Lin Y, Chen D, Lin S, Jia P, Wang M, Zhang L, Lin W. Gegen Qinlian Decoction Attenuates Colitis-Associated Colorectal Cancer via Suppressing TLR4 Signaling Pathway Based on Network Pharmacology and In Vivo/In Vitro Experimental Validation. Pharmaceuticals (Basel) 2024; 18:12. [PMID: 39861077 PMCID: PMC11768880 DOI: 10.3390/ph18010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Gegen Qinlian Decoction (GQD), is used for intestinal disorders like ulcerative colitis, irritable bowel syndrome, and colorectal cancer. But the precise mechanisms underlying its anti-inflammatory and anti-tumor effects are not fully elucidated. Methods: Use network pharmacology to identify targets and pathways of GQD. In vivo (azoxymethane/dextran sodium sulfate (AOM/DSS)-induced colitis-associated colorectal cancer (CAC) mouse model) and in vitro (lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages) experiments were conducted to explore GQD's anti-inflammatory and anti-tumor effects. We monitored mouse body weight and disease activity index (DAI), and evaluated colon cancer tissues using hematoxylin and eosin staining. Expression of Ki67 and F4/80 was determined by immunohistochemistry analysis. The protein levels of TLR4 signaling pathway were assessed by western blotting analysis. Enzyme-linked immunosorbent assay measured IL-1β, IL-6, and TNF-α levels. Immunofluorescence (IF) staining visualized NF-κB and IRF3 translocation. Results: There were 18, 9, 24 and 77 active ingredients in the four herbs of GQD, respectively, targeting 435, 156, 485 and 691 genes. Through data platform analysis, it was concluded that there were 1104 target genes of GQD and 2022 target genes of CAC. Moreover, there were 99 intersecting genes between GQD and CAC. The core targets of GQD contained NFKB1, IL1B, IL6, TLR4, and TNF, and GQD reduced inflammation by inhibiting the TLR4 signaling pathway. In vivo experiment, GQD increased mouse body weight, lowered DAI scores, while also alleviating histopathological changes in the colon and decreasing the expressions of Ki67 and F4/80 in the AOM/DSS-induced mice. GQD reduced IL-1β, IL-6, and TNF-α levels in the serum and downregulated TLR4, MyD88, and phosphorylation of IκBα, P65, and IRF3 in the colon tissue from AOM/DSS-induced mice. In vitro, GQD suppressed pro-inflammatory cytokines and TLR4 signaling pathway in the LPS-induced RAW264.7 cells, and combined with TAK242, it further reduced the phosphorylation of IκBα, P65. Conclusions: GQD mitigated CAC by inhibiting the TLR4 signaling pathway, offering a potential therapeutic approach for CAC management.
Collapse
Affiliation(s)
- Yaoyao Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chunyu Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Weixiang Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Xinting Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Haowei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Yuxing Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Daxin Chen
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Peizhi Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Meiling Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (Y.X.); (Q.C.); (C.Z.); (W.Z.); (X.X.); (H.L.); (Y.L.); (S.L.); (P.J.); (M.W.)
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Wei Lin
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| |
Collapse
|
8
|
Bahrami A, Khalaji A, Bahri Najafi M, Sadati S, Raisi A, Abolhassani A, Eshraghi R, Khaksary Mahabady M, Rahimian N, Mirzaei H. NF-κB pathway and angiogenesis: insights into colorectal cancer development and therapeutic targets. Eur J Med Res 2024; 29:610. [PMID: 39702532 DOI: 10.1186/s40001-024-02168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Colorectal cancer (CRC) is currently ranked as the third most common type of cancer, contributing significantly to mortality and morbidity worldwide. Epigenetic and genetic changes occurred during CRC progression resulted in the cell proliferation, cancer progression, angiogenesis, and invasion. Angiogenesis is one of the crucial steps during cancer progression required for the delivery of essential nutrients to cancer cells and removes metabolic waste. During angiogenesis, different molecules are secreted from tumoral cells to trigger vascular formation including epidermal growth factor and the vascular endothelial growth factor (VEGF). The production and regulation of the secretion of these molecules are modulated by different subcellular pathways such as NF-κB. NF-κB is involved in regulation of different homeostatic pathways including apoptosis, cell proliferation, inflammation, differentiation, tumor migration, and angiogenesis. Investigation of different aspects of this pathway and its role in angiogenesis could provide a comprehensive overview about the underlying mechanisms and could be used for development of further therapeutic targets. In this review of literature, we comprehensively reviewed the current understanding and potential of NF-κB-related angiogenesis in CRC. Moreover, we explored the treatments that are based on the NF-κB pathway.
Collapse
Affiliation(s)
- Ashkan Bahrami
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Khalaji
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majed Bahri Najafi
- Applied Physiology Research Center, Cardiovascular Research Institute, Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Sadati
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Reza Eshraghi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Neda Rahimian
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Department of Internal Medicine, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Wang S, Li Z, Chen C, Guo T, Zhao S, Zhao J, Zhang W, Qi Y, Zhang J, Wang Y, Lv Y, Gu C. MACC1 enhances an oncogenic RNA splicing of IRAK1 through interacting with HNRNPH1 in lung adenocarcinoma. J Cell Physiol 2024; 239:e31426. [PMID: 39221900 DOI: 10.1002/jcp.31426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Dysregulation of alternative pre-mRNA splicing plays a critical role in the progression of cancers, yet the underlying molecular mechanisms remain largely unknown. It is reported that metastasis-associated in colon cancer 1 (MACC1) is a novel prognostic and predictive marker in many types of cancers, including lung adenocarcinoma. Here, we reveal that the oncogene MACC1 specifically drives the progression of lung adenocarcinoma through its control over cancer-related splicing events. MACC1 depletion inhibits lung adenocarcinoma progression through triggering IRAK1 from its long isoform, IRAK1-L, to the shorter isoform, IRAK1-S. Mechanistically, MACC1 interacts with splicing factor HNRNPH1 to prevent the production of the short isoform of IRAK1 mRNA. Specifically, the interaction between MACC1 and HNRNPH1 relies on the involvement of MACC1's SH3 domain and HNRNPH1's GYR domain. Further, HNRNPH1 can interact with the pre-mRNA segment (comprising exon 11) of IRAK1, thereby bridging MACC1's regulation of IRAK1 splicing. Our research not only sheds light on the abnormal splicing regulation in cancer but also uncovers a hitherto unknown function of MACC1 in tumor progression, thereby presenting a novel potential therapeutic target for clinical treatment.
Collapse
Affiliation(s)
- Shiqing Wang
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhuoshi Li
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Chaoqun Chen
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Tao Guo
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Shilei Zhao
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Wang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuesheng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chundong Gu
- Department of Thoracic Surgery & Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Almouh M, Pakravan K, Ghazimoradi MH, Motamed R, Bakhshinejad B, Hassan ZM, Babashah S. Exosomes released by oxidative stress-induced mesenchymal stem cells promote murine mammary tumor progression through activating the STAT3 signaling pathway. Mol Cell Biochem 2024; 479:3375-3391. [PMID: 38349465 DOI: 10.1007/s11010-024-04934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/06/2024] [Indexed: 10/26/2024]
Abstract
Mesenchymal stem cells (MSCs) may play a pivotal role in shaping the tumor microenvironment (TME), influencing tumor growth. Nonetheless, conflicting evidence exists regarding the distinct impacts of MSCs on tumor progression, with some studies suggesting promotion while others indicate suppression of tumor cell growth. Considering that oxidative stress is implicated in the dynamic interaction between components of the TME and tumor cells, we investigated the contribution of exosomes released by hydrogen peroxide (H2O2)-treated MSCs to murine mammary tumor growth and progression. Additionally, we aimed to identify the underlying mechanism through which MSC-derived exosomes affect breast tumor growth and angiogenesis. Our findings demonstrated that exosomes released by H2O2-treated, stress-induced MSCs (St-MSC Exo) promoted breast cancer cell progression by inducing the expression of vascular endothelial growth factor (VEGF) and markers associated with epithelial-to-mesenchymal transition. Further clarification revealed that the promoting effect of St-MSC Exo on VEGF expression may, in part, depend on activating STAT3 signaling in BC cells. In contrast, exosomes derived from untreated MSCs retarded JAK1/STAT3 phosphorylation and reduced VEGF expression. Additionally, our observations revealed that the activation of the transcription factor NF-κB in BC cells, stimulated with St-MSC Exo, occurs concurrently with an increase in intracellular ROS production. Moreover, we observed that the increase in VEGF secretion into the conditioned media of 4T1 BC, mediated by St-MSC Exo, positively influenced endothelial cell proliferation, migration, and vascular behavior in vitro. In turn, our in vivo studies confirmed that St-MSC Exo, but not exosomes derived from untreated MSCs, exhibited a significant promoting effect on breast tumorigenicity. Collectively, our findings provide new insights into how MSCs may contribute to modulating the TME. We propose a novel mechanism through which exosomes derived from oxidative stress-induced MSCs may contribute to tumor progression and angiogenesis.
Collapse
Affiliation(s)
- Mansour Almouh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Romina Motamed
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zuhair Mohammad Hassan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
11
|
Gharib E. Closing Editorial: Colorectal Cancer-A Molecular Genetics Perspective. Int J Mol Sci 2024; 25:12604. [PMID: 39684316 DOI: 10.3390/ijms252312604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, ranking third in incidence and second in mortality among all cancers [...].
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
12
|
Huang Z, Zheng Y, Wang W, Zhou W, Zhang Y, Wei C, Zhang X, Jin X, Yin J. Uncovering disease-related multicellular pathway modules on large-scale single-cell transcriptomes with scPAFA. Commun Biol 2024; 7:1523. [PMID: 39550507 PMCID: PMC11569158 DOI: 10.1038/s42003-024-07238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
Pathway analysis is a crucial analytical phase in disease research on single-cell RNA sequencing (scRNA-seq) data, offering biological interpretations based on prior knowledge. However, currently available tools for generating cell-level pathway activity scores (PAS) exhibit computational inefficacy in large-scale scRNA-seq datasets. Additionally, disease-related pathways are often identified through cross-condition comparisons within specific cell types, overlooking potential patterns that involve multiple cell types. Here, we present single-cell pathway activity factor analysis (scPAFA), a Python library designed for large-scale single-cell datasets allowing rapid PAS computation and uncovering biologically interpretable disease-related multicellular pathway modules, which are low-dimensional representations of disease-related PAS alterations in multiple cell types. Application on colorectal cancer (CRC) datasets and large-scale lupus atlas over 1.2 million cells demonstrated that scPAFA can achieve over 40-fold reductions in the runtime of PAS computation and further identified reliable and interpretable multicellular pathway modules that capture the heterogeneity of CRC and transcriptional abnormalities in lupus patients, respectively. Overall, scPAFA presents a valuable addition to existing research tools in disease research, with the potential to reveal complex disease mechanisms and support biomarker discovery at the pathway level.
Collapse
Affiliation(s)
- Zhuoli Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yuhui Zheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Weikai Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Wenwen Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yanbo Zhang
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Chen Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Xin Jin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jianhua Yin
- BGI Research, Shenzhen, 518083, China.
- Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
13
|
Li Y, Xu C, Weng W, Goel A. Combined treatment with Aronia berry extract and oligomeric proanthocyanidins exhibit a synergistic anticancer efficacy through LMNB1-AKT signaling pathways in colorectal cancer. Mol Carcinog 2024; 63:2145-2157. [PMID: 39282961 DOI: 10.1002/mc.23800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 10/04/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent and highly recurrent malignancies worldwide and currently ranks as the second leading cause of cancer-related deaths. The high degree of morbidity and mortality associated with CRC is primarily attributed to the limited effectiveness of current therapeutic approaches and the emergence of chemoresistance to standard treatment modalities. Recent research indicates that several natural products, including Aronia berry extracts (ABE) and oligomeric proanthocyanidins (OPCs), might offer a safe, cost-effective, and multitargeted adjunctive role to cancer treatment. Herein, we hypothesized a combined treatment with ABE and OPCs could synergistically modulate multiple oncogenic pathways in CRC, thereby enhancing their anticancer activity. We initially conducted a series of in vitro experiments to assess the synergistic anticancer effects of ABE and OPCs on CRC cell lines. We demonstrate that these two compounds exhibited a superior synergistic anticancer potential versus individual treatments in enhancing the ability to inhibit cell viability, suppress colony formation, and induce apoptosis (p < 0.05). Consistent with our in vitro findings, we validated this combinatorial anticancer effect in tumor-derived 3D organoids (PDOs; p < 0.01). Using genome-wide transcriptomic profiling, we identified that a specific gene, LMNB1, associated with the cell apoptosis pathway, was found to play a crucial role in exhibiting anticancer effects with these two products. Furthermore, the combined treatment of ABE and OPCs significantly impacted the expression of key proteins involved in apoptosis, including suppressed expression levels of LMNB1 in CRC cell lines (p < 0.05), which resulted in inhibiting downstream AKT phosphorylation. In conclusion, our study provides novel evidence of the synergistic anticancer effects of ABE and OPCs in CRC cells, partially mediated through the regulation of apoptosis and the oncogene LMNB1 within the AKT signaling pathway. These findings have the potential to better appreciate the anticancer potential of natural products in CRC and help improve treatment outcomes in this malignancy.
Collapse
Affiliation(s)
- Yuan Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California, USA
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Caiming Xu
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California, USA
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Biomedical Research Center, Monrovia, California, USA
- City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
14
|
Khan A, Zhang Y, Ma N, Shi J, Hou Y. NF-κB role on tumor proliferation, migration, invasion and immune escape. Cancer Gene Ther 2024; 31:1599-1610. [PMID: 39033218 DOI: 10.1038/s41417-024-00811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Nuclear factor kappa-B (NF-κB) is a nuclear transcription factor that plays a key factor in promoting inflammation, which can lead to the development of cancer in a long-lasting inflammatory environment. The activation of NF-κB is essential in the initial phases of tumor development and progression, occurring in both pre-malignant cells and cells in the microenvironment such as phagocytes, T cells, and B cells. In addition to stimulating angiogenesis, inhibiting apoptosis, and promoting the growth of tumor cells, NF-κB activation also causes the epithelial-mesenchymal transition, and tumor immune evasion. Therapeutic strategies that focus on immune checkpoint molecules have revolutionized cancer treatment by enabling the immune system to activate immunological responses against tumor cells. This review focused on understanding the NF-κB signaling pathway in the context of cancer.
Collapse
Affiliation(s)
- Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Ningna Ma
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, The People's Republic of China.
| |
Collapse
|
15
|
Pacifico T, Stolfi C, Tomassini L, Luiz‐Ferreira A, Franzè E, Ortenzi A, Colantoni A, Sica GS, Sambucci M, Monteleone I, Monteleone G, Laudisi F. Rafoxanide negatively modulates STAT3 and NF-κB activity and inflammation-associated colon tumorigenesis. Cancer Sci 2024; 115:3596-3611. [PMID: 39239848 PMCID: PMC11531958 DOI: 10.1111/cas.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024] Open
Abstract
In the colorectal cancer (CRC) niche, the transcription factors signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB) are hyperactivated in both malignant cells and tumor-infiltrating leukocytes (TILs) and cooperate to maintain cancer cell proliferation/survival and drive protumor inflammation. Through drug repositioning studies, the anthelmintic drug rafoxanide has recently emerged as a potent and selective antitumor molecule for different types of cancer, including CRC. Here, we investigate whether rafoxanide could negatively modulate STAT3/NF-κB and inflammation-associated CRC. The antineoplastic effect of rafoxanide was explored in a murine model of CRC resembling colitis-associated disease. Cell proliferation and/or STAT3/NF-κB activation were evaluated in colon tissues taken from mice with colitis-associated CRC, human CRC cells, and CRC patient-derived explants and organoids after treatment with rafoxanide. The STAT3/NF-κB activation and cytokine production/secretion were assessed in TILs isolated from CRC specimens and treated with rafoxanide. Finally, we investigated the effects of TIL-derived supernatants cultured with or without rafoxanide on CRC cell proliferation and STAT3/NF-κB activation. The results showed that rafoxanide restrains STAT3/NF-κB activation and inflammation-associated colon tumorigenesis in vivo without apparent effects on normal intestinal cells. Rafoxanide markedly reduces STAT3/NF-κB activation in cultured CRC cells, CRC-derived explants/organoids, and TILs. Finally, rafoxanide treatment impairs the ability of TILs to produce protumor cytokines and promote CRC cell proliferation. We report the novel observation that rafoxanide negatively affects STAT3/NF-κB oncogenic activity at multiple levels in the CRC microenvironment. Our data suggest that rafoxanide could potentially be deployed as an anticancer drug in inflammation-associated CRC.
Collapse
Affiliation(s)
- Teresa Pacifico
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Carmine Stolfi
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Lorenzo Tomassini
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Anderson Luiz‐Ferreira
- Inflammatory Bowel Disease Research Laboratory, Department of Biological Sciences, Institute of BiotechnologyFederal University of Catalão (UFCAT)CatalãoBrazil
| | - Eleonora Franzè
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Angela Ortenzi
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | - Alfredo Colantoni
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| | | | | | - Ivan Monteleone
- Department of Biomedicine and PreventionUniversity of Rome “Tor Vergata”RomeItaly
| | | | - Federica Laudisi
- Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
| |
Collapse
|
16
|
Shahgoli VK, Noorolyai S, Ahmadpour Youshanlui M, Saeidi H, Nasiri H, Mansoori B, Holmskov U, Baradaran B. Inflammatory bowel disease, colitis, and cancer: unmasking the chronic inflammation link. Int J Colorectal Dis 2024; 39:173. [PMID: 39465427 PMCID: PMC11513726 DOI: 10.1007/s00384-024-04748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Chronic inflammation is a significant driver in the development of various diseases, including cancer. Colitis-associated colorectal cancer (CA-CRC) refers to the increased risk of colorectal cancer in individuals with chronic inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease. METHODS This narrative review examines the link between chronic inflammation and CA-CRC. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science, focusing on studies published between 2000 and 2024. Studies were selected based on relevance to the role of inflammation in CA-CRC, specifically targeting molecular pathways and clinical implications. Both clinical and mechanistic studies were reviewed. CONCLUSION Sustained inflammation in the colon fosters a pro-tumorigenic environment, leading to the initiation and progression of CA-CRC. Prevention strategies must focus on controlling chronic inflammation, optimizing IBD management, and implementing regular screenings. Emerging therapies targeting key inflammatory pathways and immune responses, along with microbiome modulation, hold promise for reducing CA-CRC risk. Understanding these molecular mechanisms provides a path toward personalized treatment and better outcomes for patients with IBD at risk of colorectal cancer.
Collapse
Affiliation(s)
- Vahid Khaze Shahgoli
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Saeed Noorolyai
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hossein Saeidi
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Uffe Holmskov
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Behzad Baradaran
- Faculty of Medicine, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Jiang Z, Yang G, Wang G, Wan J, Zhang Y, Song W, Zhang H, Ni J, Zhang H, Luo M, Wang K, Peng B. SEC14L3 knockdown inhibited clear cell renal cell carcinoma proliferation, metastasis and sunitinib resistance through an SEC14L3/RPS3/NFκB positive feedback loop. J Exp Clin Cancer Res 2024; 43:288. [PMID: 39425205 PMCID: PMC11490128 DOI: 10.1186/s13046-024-03206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) arises from the renal parenchymal epithelium and is the predominant malignant entity of renal cancer, exhibiting increasing incidence and mortality rates over time. SEC14-like 3 (SEC14L3) has emerged as a compelling target for cancer intervention; nevertheless, the precise clinical implications and molecular underpinnings of SEC14L3 in ccRCC remain elusive. METHODS By leveraging clinical data and data from the TCGA-ccRCC and GEO datasets, we investigated the association between SEC14L3 expression levels and overall survival rates in ccRCC patients. The biological role and mechanism of SEC14L3 in ccRCC were investigated via in vivo and in vitro experiments. Moreover, siRNA-SEC14L3@PDA@MUC12 nanoparticles (SSPM-NPs) were synthesized and assessed for their therapeutic potential against SEC14L3 through in vivo and in vitro assays. RESULTS Our investigation revealed upregulated SEC14L3 expression in ccRCC tissues, and exogenous downregulation of SEC14L3 robustly suppressed the malignant traits of ccRCC cells. Mechanistically, knocking down SEC14L3 facilitated the ubiquitination-mediated degradation of ribosomal protein S3 (RPS3) and augmented IκBα accumulation in ccRCC. This concerted action thwarted the nuclear translocation of P65, thereby abrogating the activation of the nuclear factor kappa B (NFκB) signaling pathway and impeding ccRCC cell proliferation and metastasis. Furthermore, diminished SEC14L3 levels exerted a suppressive effect on NFKB1 expression within the NFκB signaling cascade. NFKB1 functions as a transcriptional regulator capable of binding to the SEC14L3 enhancer and promoter, thereby promoting SEC14L3 expression. Consequently, the inhibition of SEC14L3 expression was further potentiated, thus forming a positive feedback loop. Additionally, we observed that downregulation of SEC14L3 significantly increased the sensitivity of ccRCC cells to sunitinib. The evaluation of SSPM-NPs nanotherapy highlighted its effectiveness in combination with sunitinib for inhibiting ccRCC growth. CONCLUSION Our findings not only underscore the promise of SEC14L3 as a therapeutic target but also unveil an SEC14L3/RPS3/NFκB positive feedback loop that curtails ccRCC progression. Modulating SEC14L3 expression to engage this positive feedback loop might herald novel avenues for ccRCC treatment.
Collapse
Affiliation(s)
- Ziming Jiang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guangcan Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiayi Wan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yifan Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wei Song
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Houliang Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinliang Ni
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Haipeng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ming Luo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
18
|
Manickasamy MK, Kumar A, BharathwajChetty B, Alqahtani MS, Abbas M, Alqahtani A, Unnikrishnan J, Bishayee A, Sethi G, Kunnumakkara AB. Synergistic enhancement: Exploring the potential of piperine in cancer therapeutics through chemosensitization and combination therapies. Life Sci 2024; 354:122943. [PMID: 39117139 DOI: 10.1016/j.lfs.2024.122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/15/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Despite significant advancements in chemotherapy, effective treatments for advanced cancer stages remain largely elusive due to chemoresistance. Resistance to anticancer agents in cancer cells can arise through various mechanisms, including multi-drug resistance, inhibition of apoptosis, modification of drug targets, and enhancement of DNA repair capabilities. Consequently, there is a critical need for agents that can suppress the molecular signatures responsible for drug resistance. Piperine, an active alkaloid extracted from Piper nigrum L. (black pepper), is one such agent that has been extensively studied for its potential in addressing chronic diseases, including cancer. Piperine's antineoplastic properties are mediated through the regulation of numerous key cellular signaling pathways and the modulation of various biological processes. Its capability to enhance drug bioavailability and counteract mechanisms of drug resistance, such as the inhibition of P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP-1), emphasizes its potential as an adjunct in cancer therapy. Research across various cancer types has demonstrated piperine's role in chemosensitization by targeting P-gp and MRP-1 and altering drug-metabolizing enzymes. This review provides a comprehensive analysis of piperine's pharmacological characteristics and its capacity to modulate several cellular signaling pathways involved in drug resistance. Furthermore, the review emphasizes how piperine, when used in conjunction with other chemotherapeutic agents or natural compounds, can enhance therapeutic effects, leading to improved outcomes in cancer treatment.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States of America
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India.
| |
Collapse
|
19
|
Galbraith NJ, Quinn JA, Al-Badran SS, Pennel KAF, Hillson LVS, Hatthakarnkul P, McKenzie M, Maka N, Loi L, Frixou M, Steele CW, Roxburgh CS, Horgan PG, McMillan DC, Edwards J. TAK1 expression is associated with increased PD-L1 and decreased cancer-specific survival in microsatellite-stable colorectal cancer. Transl Oncol 2024; 48:102064. [PMID: 39068768 PMCID: PMC11338118 DOI: 10.1016/j.tranon.2024.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Transforming growth factor β-activated protein kinase-1 (TAK1) plays an important role in MAPK and NFκB pathways and has been associated with colorectal cancer. The aim of this study was to determine how cytoplasmic and juxtanuclear punctate staining of TAK1 relates to immune checkpoint expression and cancer specific survival in colorectal cancer. METHODS Protein expression was assessed by immunohistochemistry on tissue microarrays from primary curative colorectal cancer resected specimens. Expression levels of cytoplasmic TAK1 by QuPath digital quantification and punctate TAK1 staining was scored using a manual point scoring technique and correlated with clinicopathological features, immune checkpoint expression and cancer-specific survival. Bulk RNA sequencing was performed in specimens to determine mutational profiles and differentially expressed genes. RESULTS A cohort of 875 patients who had undergone colorectal cancer resection were assessed for TAK1 expression. Higher levels of cytoplasmic TAK1 expression correlated with elevated PD1 and PD-L1 expression (p < 0.010). High punctate TAK1 expression was more commonly identified in poorly differentiated colorectal cancers (p = 0.036), had dysregulated mutational and transcriptional profiles with decreased insulin-like growth factor 2(IGF2) expression (p < 0.010), and independently predicted poor cancer-specific survival (HR 2.690, 95% CI 1.419-5.100, p = 0.002). The association of punctate TAK1 expression and recurrence remained after subgroup analysis for microsatellite-stable colorectal cancer (p = 0.028). DISCUSSION Punctate TAK1 expression is associated with worse cancer specific survival. TAK1 signalling may be an important pathway to investigate underlying mechanisms for recurrence in microsatellite-stable colorectal cancer.
Collapse
Affiliation(s)
- Norman J Galbraith
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom; Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom.
| | - Jean A Quinn
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Sara Sf Al-Badran
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn A F Pennel
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Lily V S Hillson
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Phimmada Hatthakarnkul
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Molly McKenzie
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Noori Maka
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Lynette Loi
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Mikaela Frixou
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Colin W Steele
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom; Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Campbell S Roxburgh
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom; Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Paul G Horgan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Donald C McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson-Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
20
|
Suzauddula M, Kobayashi K, Park S, Sun XS, Wang W. Bioengineered Anthocyanin-Enriched Tomatoes: A Novel Approach to Colorectal Cancer Prevention. Foods 2024; 13:2991. [PMID: 39335919 PMCID: PMC11430996 DOI: 10.3390/foods13182991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Colorectal cancer (CRC) remains a significant global health challenge, with barriers to effective prevention and treatment including tumor recurrence, chemoresistance, and limited overall survival rates. Anthocyanins, known for their strong anti-cancer properties, have shown promise in preventing and suppressing various cancers, including CRC. However, natural sources of anthocyanins often fail to provide sufficient quantities needed for therapeutic effects. Bioengineered crops, particularly anthocyanin-enriched tomatoes, offer a viable solution to enhance anthocyanin content. Given its large-scale production and consumption, tomatoes present an ideal target for bioengineering efforts aimed at increasing dietary anthocyanin intake. This review provides an overview of anthocyanins and their health benefits, elucidating the mechanisms by which anthocyanins modulate the transcription factors involved in CRC development. It also examines case studies demonstrating the successful bioengineering of tomatoes to boost anthocyanin levels. Furthermore, the review discusses the effects of anthocyanin extracts from bioengineered tomatoes on CRC prevention, highlighting their role in altering metabolic pathways and reducing tumor-related inflammation. Finally, this review addresses the challenges associated with bioengineering tomatoes and proposes future research directions to optimize anthocyanin enrichment in tomatoes.
Collapse
Affiliation(s)
- Md Suzauddula
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Kaori Kobayashi
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| | - Sunghun Park
- Department of Horticulture and Nature Resources, Kansas State University, Manhattan, KS 66506, USA;
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA;
| | - Weiqun Wang
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS 66506, USA; (M.S.); (K.K.)
| |
Collapse
|
21
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
22
|
Deng X, Yang Z, Chan KW, Ismail N, Abu Bakar MZ. 5-Fluorouracil in Combination with Calcium Carbonate Nanoparticles Loaded with Antioxidant Thymoquinone against Colon Cancer: Synergistically Therapeutic Potential and Underlying Molecular Mechanism. Antioxidants (Basel) 2024; 13:1030. [PMID: 39334689 PMCID: PMC11429434 DOI: 10.3390/antiox13091030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Colon cancer is the third most common cancer worldwide, with high mortality. Adverse side effects and chemoresistance of the first-line chemotherapy 5-fluorouracil (5-FU) have promoted the widespread use of combination therapies. Thymoquinone (TQ) is a natural compound with potent antioxidant activity. Loading antioxidants into nano delivery systems has been a major advance in enhancing their bioavailability to improve clinical application. Hence, this study aimed to prepare the optimal TQ-loaded calcium carbonate nanoparticles (TQ-CaCO3 NPs) and investigate their therapeutic potential and underlying molecular mechanisms of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Firstly, we developed purely aragonite CaCO3 NPs with a facile mechanical ball-milling method. The pH-sensitive and biocompatible TQ-CaCO3 NPs with sustained release properties were prepared using the optimal synthesized method (a high-speed homogenizer). The in vitro study revealed that the combination of TQ-CaCO3 NPs (15 μM) and 5-FU (7.5 μM) inhibited CT26 cell proliferation and migration, induced cell apoptosis and cell cycle arrest in the G0/G1 phase, and suppressed the CT26 spheroid growth, exhibiting a synergistic effect. Finally, network pharmacology and molecular docking results indicated the potential targets and crucial signaling pathways of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Therefore, TQ-CaCO3 NPs combined with 5-FU could enhance the anti-colon cancer effects of 5-FU with broader therapeutic targets, warranting further application for colon cancer treatment.
Collapse
Affiliation(s)
- Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
23
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
24
|
López-Gómez L, Uranga JA. Polyphenols in the Prevention and Treatment of Colorectal Cancer: A Systematic Review of Clinical Evidence. Nutrients 2024; 16:2735. [PMID: 39203871 PMCID: PMC11357634 DOI: 10.3390/nu16162735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Polyphenols are plant metabolites with potential anti-inflammatory and anti-proliferative effects, which may be advantageous for disorders like colorectal cancer (CRC). Despite promising in vitro and in vivo evidence, human clinical trials have yielded mixed results. The present study aimed to evaluate the clinical evidence of polyphenols for CRC prevention or treatment. A systematic review was performed according to PRISMA. Based on a PROSPERO registered protocol (CRD42024560044), online databases (PubMed and COCHRANE) were utilized for the literature search. A total of 100 studies articles were initially identified. After reviewing, 12 studies with a low risk of bias were selected, examining the effect of a variety of compounds. Curcumin demonstrated promise in various trials, mainly decreasing inflammatory cytokines, though results varied, and it did not lower intestinal adenomas or improve outcomes after chemotherapy. Neither epigallocatechin gallate nor artepillin C reduced the incidence of adenomas. Finally, fisetin seemed to improve the inflammatory status of patients under chemotherapy (5-fluorouracil). In summary, although certain polyphenols appear to exert some effect, their role in the prevention or treatment of CRC is inconclusive, and more clinical studies under more controlled conditions are needed.
Collapse
Affiliation(s)
- Laura López-Gómez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain;
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Jose Antonio Uranga
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain;
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| |
Collapse
|
25
|
Mestrovic A, Perkovic N, Bozic D, Kumric M, Vilovic M, Bozic J. Precision Medicine in Inflammatory Bowel Disease: A Spotlight on Emerging Molecular Biomarkers. Biomedicines 2024; 12:1520. [PMID: 39062093 PMCID: PMC11274502 DOI: 10.3390/biomedicines12071520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) remain challenging in terms of understanding their causes and in terms of diagnosing, treating, and monitoring patients. Modern diagnosis combines biomarkers, imaging, and endoscopic methods. Common biomarkers like CRP and fecal calprotectin, while invaluable tools, have limitations and are not entirely specific to IBD. The limitations of existing markers and the invasiveness of endoscopic procedures highlight the need to discover and implement new markers. With an ideal biomarker, we could predict the risk of disease development, as well as the possibility of response to a particular therapy, which would be significant in elucidating the pathogenesis of the disease. Recent research in the fields of machine learning, proteomics, epigenetics, and gut microbiota provides further insight into the pathogenesis of the disease and is also revealing new biomarkers. New markers, such as BAFF, PGE-MUM, oncostatin M, microRNA panels, αvβ6 antibody, and S100A12 from stool, are increasingly being identified, with αvβ6 antibody and oncostatin M being potentially close to being presented into clinical practice. However, the specificity of certain markers still remains problematic. Furthermore, the use of expensive and less accessible technology for detecting new markers, such as microRNAs, represents a limitation for widespread use in clinical practice. Nevertheless, the need for non-invasive, comprehensive markers is becoming increasingly important regarding the complexity of treatment and overall management of IBD.
Collapse
Affiliation(s)
- Antonio Mestrovic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Nikola Perkovic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Dorotea Bozic
- Department of Gastroenterology, University Hospital of Split, Spinciceva 2, 21000 Split, Croatia; (A.M.); (N.P.); (D.B.)
| | - Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia;
- Laboratory for Cardiometabolic Research, University of Split School of Medicine, Soltanska 2A, 21000 Split, Croatia
| |
Collapse
|
26
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15:1428920. [PMID: 39015566 PMCID: PMC11249567 DOI: 10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
Affiliation(s)
- Yu Cao
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Chang Lu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Narasimha M. Beeraka
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Chiyyedu, Andhra Pradesh, India
| | - Sergey Efetov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Mikhail Enikeev
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Yu Fu
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Mysore, Karnataka, India
| | - Mingze He
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zhi Li
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
27
|
Cao Y, Lu C, Beeraka NM, Efetov S, Enikeev M, Fu Y, Yang X, Basappa B, He M, Li Z. Exploring the relationship between anastasis and mitochondrial ROS-mediated ferroptosis in metastatic chemoresistant cancers: a call for investigation. Front Immunol 2024; 15. [DOI: https:/doi.org/10.3389/fimmu.2024.1428920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
Abstract
Ferroptosis induces significant changes in mitochondrial morphology, including membrane condensation, volume reduction, cristae alteration, and outer membrane rupture, affecting mitochondrial function and cellular fate. Recent reports have described the intrinsic cellular iron metabolism and its intricate connection to ferroptosis, a significant kind of cell death characterized by iron dependence and oxidative stress regulation. Furthermore, updated molecular insights have elucidated the significance of mitochondria in ferroptosis and its implications in various cancers. In the context of cancer therapy, understanding the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting the molecular pathways involved in anastasis may enhance the efficacy of ferroptosis inducers, providing a synergistic approach to overcome chemoresistance. Research into how DNA damage response (DDR) proteins, metabolic changes, and redox states interact during anastasis and ferroptosis can offer new insights into designing combinatorial therapeutic regimens against several cancers associated with stemness. These treatments could potentially inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the likelihood of cancer cells evading death and developing resistance to chemotherapy. The objective of this study is to explore the intricate interplay between anastasis, ferroptosis, EMT and chemoresistance, and immunotherapeutics to better understand their collective impact on cancer therapy outcomes. We searched public research databases including google scholar, PubMed, relemed, and the national library of medicine related to this topic. In this review, we discussed the interplay between the tricarboxylic acid cycle and glycolysis implicated in modulating ferroptosis, adding complexity to its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered significant attention. Lipid metabolism, particularly involving GPX4 and System Xc- plays a significant role in both the progression of ferroptosis and cancer. There is a need to investigate the intricate interplay between anastasis, ferroptosis, and chemoresistance to better understand cancer therapy clinical outcomes. Integrating anastasis, and ferroptosis into strategies targeting chemoresistance and exploring its potential synergy with immunotherapy represent promising avenues for advancing chemoresistant cancer treatment. Understanding the intricate interplay among mitochondria, anastasis, ROS, and ferroptosis is vital in oncology, potentially revolutionizing personalized cancer treatment and drug development.
Collapse
|
28
|
Liu T, Wang C, Xia Z. Overexpressed FKBP5 mediates colorectal cancer progression and sensitivity to FK506 treatment via the NF-κB signaling pathway. FEBS J 2024; 291:3128-3146. [PMID: 38602236 DOI: 10.1111/febs.17126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Colorectal cancer (CRC) is a common and deadly tumor. FK506-binding protein 5 (FKBP5) is associated with some cancers, but the role of FKBP5 in CRC is not clear. The present study aimed to reveal the relationship between FKBP5 and CRC and to uncover the roles of FK506 in CRC. In total, 96 CRC patients were recruited. Survival analysis was conducted using the Kaplan-Meier method and COX regression analyses. Bioinformatics analyses were performed to explore the functions of FKBP5. The mechanisms of FKBP5 and the roles of FK506 in CRC progression were clarified by immunohistochemistry, MTS, scratch assay, transwell and flow cytometric analyses via in vitro and in vivo experiments. FKBP5 was overexpressed in 77 cancer tissues compared to that in matched normal tissues, and the overall survival rate of these patients was relatively shorter. Bioinformatics analyses showed that FKBP5 regulates proliferation, invasion, migration, epithelial-mesenchymal transition and nuclear factor-kappa B (NF-κB) signaling. The upregulation or downregulation of FKBP5 dramatically increases or decreases the proliferation, invasion and migration abilities of CRC cells. The expression of NF-κB, inhibitor B kinase α, matrix metalloproteinase-2 and metalloproteinase-9 positively correlated with FKBP5. FK506 inhibits the progression of CRC via the FKBP5/NF-κB signaling pathway. Our study identified a regulatory role for FKBP5 in CRC progression. Therefore, targeting FKBP5 may provide a novel treatment approach for CRC. FK506 can inhibit the progression of CRC by restraining the FKBP5/NF-κB signaling pathway and is expected to become a new drug for the treatment of CRC.
Collapse
Affiliation(s)
- Tiancong Liu
- Department of Otolaryngology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Changliang Wang
- The People's Procuratorate of Liaoning Province, Judicial Authentication Center, Shenyang, China
- Collaborative Laboratory of Intelligentized Forensic Science (CLIFS), Shenyang, China
| | - Zhixiu Xia
- Colorectal Tumor Surgery Ward, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
McKenzie M, Lian GY, Pennel KA, Quinn JA, Jamieson NB, Edwards J. NFκB signalling in colorectal cancer: Examining the central dogma of IKKα and IKKβ signalling. Heliyon 2024; 10:e32904. [PMID: 38975078 PMCID: PMC11226910 DOI: 10.1016/j.heliyon.2024.e32904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The NFκB pathway, known as the central regulator of inflammation, has a well-established role in colorectal cancer (CRC) initiation, progression, and therapy resistance. Due to the pathway's overarching roles in CRC, there have been efforts to characterise NFκB family members and target the pathway for therapeutic intervention. Initial research illustrated that the canonical NFκB pathway, driven by central kinase IKKβ, was a promising target for drug intervention. However, dose limiting toxicities and specificity concerns have resulted in failure of IKKβ inhibitors in clinical trials. The field has turned to look at targeting the less dominant kinase, IKKα, which along with NFκB inducing kinase (NIK), drives the lesser researched non-canonical NFκB pathway. However prognostic studies of the non-canonical pathway have produced conflicting results. There is emerging evidence that IKKα is involved in other signalling pathways, which lie outside of canonical and non-canonical NFκB signalling. Evidence suggests that some of these alternative pathways involve a truncated form of IKKα, and this may drive poor cancer-specific survival in CRC. This review aims to explore the multiple components of NFκB signalling, highlighting that NIK may be the central kinase for non-canonical NFκB signalling, and that IKKα is involved in novel pathways which promote CRC.
Collapse
Affiliation(s)
- Molly McKenzie
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Guang-Yu Lian
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Kathryn A.F. Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Jean A. Quinn
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Nigel B. Jamieson
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
30
|
Liu S, Liu M, Li Y, Song Q. N6-methyladenosine-dependent signaling in colorectal cancer: Functions and clinical potential. Crit Rev Oncol Hematol 2024; 198:104360. [PMID: 38615872 DOI: 10.1016/j.critrevonc.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent malignancy worldwide. Despite the gradual expansion of therapeutic options for CRC, its clinical management remains a formidable challenge. And, because of the current dearth of technical means for early CRC screening, most patients are diagnosed at an advanced stage. Therefore, it is imperative to develop novel diagnostic and therapeutic tools for this disease. N6-methyladenosine (m6A), the predominant RNA modification in eukaryotes, can be recognized by m6A-specific methylated reading proteins to modulate gene expression. Studies have revealed that CRC disrupts m6A homeostasis through various mechanisms, thereby sustaining aberrant signal transduction and promoting its own progression. Consequently, m6A-based diagnostic and therapeutic strategies have garnered widespread attention. Although utilizing m6A as a biomarker and drug target has demonstrated promising feasibility, existing observations primarily stem from preclinical models; henceforth necessitating further investigation and resolution of numerous outstanding issues.
Collapse
Affiliation(s)
- Shaojun Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Min Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Yuxuan Li
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Qing Song
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China.
| |
Collapse
|
31
|
Turizo-Smith AD, Córdoba-Hernandez S, Mejía-Guarnizo LV, Monroy-Camacho PS, Rodríguez-García JA. Inflammation and cancer: friend or foe? Front Pharmacol 2024; 15:1385479. [PMID: 38799159 PMCID: PMC11117078 DOI: 10.3389/fphar.2024.1385479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic inflammation plays a crucial role in the onset and progression of pathologies like neurodegenerative and cardiovascular diseases, diabetes, and cancer, since tumor development and chronic inflammation are linked, sharing common signaling pathways. At least 20% of breast and colorectal cancers are associated with chronic inflammation triggered by infections, irritants, or autoimmune diseases. Obesity, chronic inflammation, and cancer interconnection underscore the importance of population-based interventions in maintaining healthy body weight, to disrupt this axis. Given that the dietary inflammatory index is correlated with an increased risk of cancer, adopting an anti-inflammatory diet supplemented with nutraceuticals may be useful for cancer prevention. Natural products and their derivatives offer promising antitumor activity with favorable adverse effect profiles; however, the development of natural bioactive drugs is challenging due to their variability and complexity, requiring rigorous research processes. It has been shown that combining anti-inflammatory products, such as non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and statins, with plant-derived products demonstrate clinical utility as accessible adjuvants to traditional therapeutic approaches, with known safety profiles. Pharmacological approaches targeting multiple proteins involved in inflammation and cancer pathogenesis emerge as a particularly promising option. Given the systemic and multifactorial nature of inflammation, comprehensive strategies are essential for long term success in cancer therapy. To gain insights into carcinogenic phenomena and discover diagnostic or clinically relevant biomarkers, is pivotal to understand genetic variability, environmental exposure, dietary habits, and TME composition, to establish therapeutic approaches based on molecular and genetic analysis. Furthermore, the use of endocannabinoid, cannabinoid, and prostamide-type compounds as potential therapeutic targets or biomarkers requires further investigation. This review aims to elucidate the role of specific etiological agents and mediators contributing to persistent inflammatory reactions in tumor development. It explores potential therapeutic strategies for cancer treatment, emphasizing the urgent need for cost-effective approaches to address cancer-associated inflammation.
Collapse
Affiliation(s)
- Andrés David Turizo-Smith
- Doctorado en Oncología, Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Semillero de Investigación en Cannabis y Derivados (SICAD), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Samantha Córdoba-Hernandez
- Semillero de Investigación en Cannabis y Derivados (SICAD), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Lidy Vannessa Mejía-Guarnizo
- Facultad de Ciencias, Maestría en Ciencias, Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
- Grupo de investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | |
Collapse
|
32
|
Zhang J, Ma F, Li Z, Li Y, Sun X, Song M, Yang F, Wu E, Wei X, Wang Z, Yang L. NFKB2 mediates colorectal cancer cell immune escape and metastasis in a STAT2/PD‐L1‐dependent manner. MedComm (Beijing) 2024; 5:e521. [PMID: 38660687 PMCID: PMC11042535 DOI: 10.1002/mco2.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024] Open
Abstract
This study systematically analyzed the molecular mechanism and function of nuclear factor kappa B subunit 2 (NFKB2) in colorectal cancer (CRC) to investigate the potential of NFKB2 as a therapeutic target for CRC. Various experimental techniques, including RNA sequencing, proteome chip assays, and small molecule analysis, were used to obtain a deeper understanding of the regulation of NFKB2 in CRC. The results revealed that NFKB2 was upregulated in a significant proportion of patients with advanced hepatic metastasis of CRC. NFKB2 played an important role in promoting tumor growth through CD8+ T-cell exhaustion. Moreover, NFKB2 directly interacted with signal transducer and activator of transcription 2 (STAT2), leading to increased phosphorylation of STAT2 and the upregulation of programmed death ligand 1 (PD-L1). Applying a small molecule inhibitor of NFKB2 (Rg5) led to a reduction in PD-L1 expression and improved response to programmed death-1 blockade-based immunotherapy. In conclusion, the facilitated NFKB2-STAT2/PD-L1 axis may suppress immune surveillance in CRC and targeting NFKB2 may enhance the efficacy of immunotherapeutic strategies. Our results provide novel insights into the molecular mechanisms underlying the contribution of NFKB2 in CRC immune escape.
Collapse
Affiliation(s)
- Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Fen Ma
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhe Li
- Academy of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yuan Li
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xun Sun
- Gastrointestinal SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mingxu Song
- Human Reproductive and Genetic CenterAffiliated Hospital of Jiangnan UniversityJiangsuChina
| | - Fan Yang
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaohui Wei
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese MedicinesThe MOE Key Laboratory for Standardization of Chinese MedicinesInstitute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
33
|
Ma L, Yin Y, Yu Z, Xu N, Ma L, Qiao W, Zhen X, Yang F, Zhang N, Yu Y. Toll-like receptor 6 inhibits colorectal cancer progression by suppressing NF-κB signaling. Heliyon 2024; 10:e26984. [PMID: 38509947 PMCID: PMC10951511 DOI: 10.1016/j.heliyon.2024.e26984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/20/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Background Toll-like receptors (TLRs) are implicated in the pathogenesis and progression of inflammation-associated cancers, except their role in regulating innate immunity. Specifically, a berrant expression of TLR6 has been observed in colorectal cancers (CRC). However, the effect of abnormal TLR6 expression on CRC remians unclear. Therefore, the present study evaluated TLR6 expression in CRC, its effect on CRC proliferation, and its underlying mechanism. Methods The expression of TLR6 in CRC was assessed using data from TCGA, GTEx, and HPA datasets and immunohistochemical assays of tumor tissues from patients with CRC. In human CRC cell lines, TLR6 signaling was activated using the TLR6 agonist Pam2CSK4 and was blocked using antiTLR6-IgG; subsequently, cell growth, migration, invasion, cell cycle, and apoptosis were compared in CRC cells. The levels of the anti-apoptotic protein Bcl-2 and the apoptotic protein Bax were identified using western blotting. In addition, the effect of TLR6 knockdown by shRNAs in CRC cells was observed both in vitro and in vivo. Nuclear factor κB (NF-κB) level was evaluated using immunofluorescence and western bolt. Results TLR6 expression was significantly downregulated in CRC tissues. The activation of TLR6 by Pam2CSK4 (100 pg/mL to 10 ng/mL) inhibited the proliferation of CRC cells. Compared with blocking TLR6 signaling using antiTLR6-IgG, activating TLR6 signaling significantly inhibited CRC cell growth, migration, and invasion as well as decreased the proportion of cells in the S and G2/M phases and promoted apoptosis. Furthermore, the knockdown of TLR6 by shRNA promoted the biological activity of CRC cells both in vitro and in vivo. Moreover, the activation of TLR6 signaling by Pam2CSK4 significantly downregulated NF-κB and Bcl-2 levels but upregulated Bax levels. Conclusion The findings of this study demonstrate that TLR6 may play a inhibitive role in CRC tumorigenesis by suppressing the activity of NF-κB signaling.
Collapse
Affiliation(s)
- Lina Ma
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Yancun Yin
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Zhenhai Yu
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Yantai, Shandong, 264100, China
| | - Lianhuan Ma
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Weiwei Qiao
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Xiaowen Zhen
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Fan Yang
- Department of Diagnostics, The Second School of Medicine, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Naili Zhang
- Department of Human Anatomy, School of Basic Medical Science, Binzhou Medical University, 346 Guanhai Road, Laishan, Yantai, Shandong, 264003, China
| | - Yue Yu
- Cheeloo College of Medicine, Shandong University, 44 Wenhua West Road, Jinan, Shandong, 250012, China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| |
Collapse
|
34
|
Yang Z, Zhang X, Bai X, Xi X, Liu W, Zhong W. Anti-angiogenesis in colorectal cancer therapy. Cancer Sci 2024; 115:734-751. [PMID: 38233340 PMCID: PMC10921012 DOI: 10.1111/cas.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
The morbidity of colorectal cancer (CRC) has risen to third place among malignant tumors worldwide. In addition, CRC is a common cancer in China whose incidence increases annually. Angiogenesis plays an important role in the development of tumors because it can bring the nutrients that cancer cells need and take away metabolic waste. Various mechanisms are involved in the formation of neovascularization, and vascular endothelial growth factor is a key mediator. Meanwhile, angiogenesis inhibitors and drug resistance (DR) are challenges to consider when formulating treatment strategies for patients with different conditions. Thus, this review will discuss the molecules, signaling pathways, microenvironment, treatment, and DR of angiogenesis in CRC.
Collapse
Affiliation(s)
- Zhenni Yang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xuqian Zhang
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
- Department of Gastroenterology and HepatologyChina Aerospace Science and Industry CorporationBeijingChina
| | - Xiaozhe Bai
- Department of Gastroenterology and HepatologyXing'an League People's HospitalXing'an LeagueChina
| | - Xiaonan Xi
- State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Wentian Liu
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| | - Weilong Zhong
- Department of Gastroenterology and HepatologyGeneral Hospital, Tianjin Medical University, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive DiseasesTianjinChina
| |
Collapse
|
35
|
Pan K, Li X, He J, Lei Y, Yang Y, Jiang D, Tang Y. Value of the NF-κB signalling pathway and the DNA repair gene PARP1 in predicting distant metastasis after breast cancer surgery. Sci Rep 2024; 14:4402. [PMID: 38388665 PMCID: PMC10883999 DOI: 10.1038/s41598-023-49156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/05/2023] [Indexed: 02/24/2024] Open
Abstract
The DNA repair gene PARP1 and NF-κB signalling pathway affect the metastasis of breast cancer by influencing the drug resistance of cancer cells. Therefore, this study focused on the value of the DNA repair gene PARP1 and NF-κB pathway proteins in predicting the postoperative metastasis of breast cancer. A nested case‒control study was performed. Immunohistochemical methods were used to detect the expression of these genes in patients. ROC curves were used to analyse the predictive effect of these factors on distant metastasis. The COX model was used to evaluate the effects of PARP1 and TNF-α on distant metastasis. The results showed that the expression levels of PARP1, IKKβ, p50, p65 and TNF-α were significantly increased in the metastasis group (P < 0.001). PARP1 was correlated with IKKβ, p50, p65 and TNF-α proteins (P < 0.001). There was a correlation between IKKβ, p50, p65 and TNF-α proteins (P < 0.001). ROC curve analysis showed that immunohistochemical scores for PARP1 of > 6, IKKβ of > 4, p65 of > 4, p50 of > 2, and TNF-α of > 4 had value in predicting distant metastasis (SePARP1 = 78.35%, SpPARP1 = 79.38%, AUCPARP1 = 0.843; Sep50 = 64.95%, Spp50 = 70.10%, AUCp50 = 0.709; SeTNF-α = 60.82%, SpTNF-α = 69.07%, AUCTNF-α = 0.6884). Cox regression analysis showed that high expression levels of PARP1 and TNF-α were a risk factor for distant metastasis after breast cancer surgery (RRPARP1 = 4.092, 95% CI 2.475-6.766, P < 0.001; RRTNF-α = 1.825, 95% CI 1.189-2.799, P = 0.006). Taken together, PARP1 > 6, p50 > 2, and TNF-α > 4 have a certain value in predicting breast cancer metastasis, and the predictive value is better when they are combined for diagnosis (Secombine = 97.94%, Spcombine = 71.13%).
Collapse
Affiliation(s)
- Kaiyong Pan
- School of Public Health, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, Sichuan, China
| | - Xiabin Li
- Department of Pathology, The First Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou, 646000, Sichuan, China
| | - Junfang He
- School of Public Health, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, Sichuan, China
| | - Yuxi Lei
- School of Public Health, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, Sichuan, China
| | - Yongxin Yang
- Guizhou QianNan People's Hospital, 9 Enfeng Road, Duyun, 558099, Guizhou, China
| | - Deyong Jiang
- Sichuan Luzhou Center for Disease Control, 31 Datong Road, Luzhou, 646000, Sichuan, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, 1 Xianglin Road, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
36
|
Azizan S, Cheng KJ, Mejia Mohamed EH, Ibrahim K, Faruqu FN, Vellasamy KM, Khong TL, Syafruddin SE, Ibrahim ZA. Insights into the molecular mechanisms and signalling pathways of epithelial to mesenchymal transition (EMT) in colorectal cancer: A systematic review and bioinformatic analysis of gene expression. Gene 2024; 896:148057. [PMID: 38043836 DOI: 10.1016/j.gene.2023.148057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of mortality worldwide, mainly due to metastasis. Epithelial to mesenchymal transition (EMT) is a complex cellular process that drives CRC metastasis, regulated by changes in EMT-associated gene expression. However, while numerous genes have been identified as EMT regulators through various in vivo and in vitro studies, little is known about the genes that are differentially expressed in CRC tumour tissue and their signalling pathway in regulating EMT. Using an integration of systematic search and bioinformatic analysis, gene expression profiles of CRC tumour tissues were compared to non-tumour adjacent tissues to identify differentially expressed genes (DEGs), followed by performing systematic review on common identified DEGs. Fifty-eight common DEGs were identified from the analysis of 82 tumour tissue samples obtained from four gene expression datasets (NCBI GEO). These DEGS were then systematically searched for their roles in modulating EMT in CRC based on previously published studies. Following this, 10 common DEGs (CXCL1, CXCL8, MMP1, MMP3, MMP7, TACSTD2, VIP, HPGD, ABCG2, CLCA4) were included in this study and subsequently subjected to further bioinformatic analysis. Their roles and functions in modulating EMT in CRC were discussed in this review. This study enhances our understanding of the molecular mechanisms underlying EMT and uncovers potential candidate genes and pathways that could be targeted in CRC.
Collapse
Affiliation(s)
- Suha Azizan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kim Jun Cheng
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Kamariah Ibrahim
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Farid Nazer Faruqu
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kumutha Malar Vellasamy
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tak Loon Khong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Zaridatul Aini Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
37
|
Li R, Wu Y, Li Y, Shuai W, Wang A, Zhu Y, Hu X, Xia Y, Ouyang L, Wang G. Targeted regulated cell death with small molecule compounds in colorectal cancer: Current perspectives of targeted therapy and molecular mechanisms. Eur J Med Chem 2024; 265:116040. [PMID: 38142509 DOI: 10.1016/j.ejmech.2023.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
Colorectal cancer (CRC), a tumor of the digestive system, is characterized by high malignancy and poor prognosis. Currently, targeted therapy of CRC is far away from satisfying. The molecular mechanisms of regulated cell death (RCD) have been clearly elucidated, which can be intervened by drug or genetic modification. Numerous studies have provided substantial evidence linking these mechanisms to the progression and treatment of CRC. The RCD includes apoptosis, autophagy-dependent cell death (ADCD), ferroptosis, necroptosis, and pyroptosis, and immunogenic cell death, etc, which provide potential targets for anti-cancer treatment. For the last several years, small-molecule compounds targeting RCD have been a well concerned therapeutic strategy for CRC. This present review aims to describe the function of small-molecule compounds in the targeted therapy of CRC via targeting apoptosis, ADCD, ferroptosis, necroptosis, immunogenic dell death and pyroptosis, and their mechanisms. In addition, we prospect the application of newly discovered cuproptosis and disulfidptosis in CRC. Our review may provide references for the targeted therapy of CRC using small-molecule compounds targeting RCD, including the potential targets and candidate compounds.
Collapse
Affiliation(s)
- Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yumeng Zhu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yong Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Department of Rehabilitation Medicine, Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, Management Department of Scientific Research Laboratory, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
38
|
Wang J, Wu Z, Peng J, You F, Ren Y, Li X, Xiao C. Multiple roles of baicalin and baicalein in the regulation of colorectal cancer. Front Pharmacol 2024; 15:1264418. [PMID: 38375035 PMCID: PMC10875017 DOI: 10.3389/fphar.2024.1264418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The prevalence of colorectal cancer is increasing worldwide, and despite advances in treatment, colorectal cancer (CRC) remains in the top three for mortality due to several issues, including drug resistance and low efficiency. There is increasing evidence that baicalin and baicalein, novel small molecule inhibitor extracts of the Chinese herb Scutellaria baicalensis, have better anti-colorectal cancer effects and are less likely to induce drug resistance in cancer cells. The present review article explains the anti-proliferative properties of baicalin and baicalein in the context of against CRC. Additionally, it explores the underlying mechanisms by which these compounds modulate diverse signaling pathways associated with apoptosis, cell proliferation, tumor angiogenesis, invasion, metastasis, and tumor microenvironment. Moreover, this review article highlights the inhibitory effect of colorectal inflammatory-cancer transformation and the near-term therapeutic strategy of using them as adjuvant agents in chemotherapy.
Collapse
Affiliation(s)
- Jiamei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zihong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayuan Peng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yifeng Ren
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chong Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Oncology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Oncology Teaching and Research Department of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Azevedo PHRDA, Peçanha BRDB, Flores-Junior LAP, Alves TF, Dias LRS, Muri EMF, Lima CHDS. In silico drug repurposing by combining machine learning classification model and molecular dynamics to identify a potential OGT inhibitor. J Biomol Struct Dyn 2024; 42:1417-1428. [PMID: 37054524 DOI: 10.1080/07391102.2023.2199868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/01/2023] [Indexed: 04/15/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a unique intracellular post-translational glycosylation at the hydroxyl group of serine or threonine residues in nuclear, cytoplasmic and mitochondrial proteins. The enzyme O-GlcNAc transferase (OGT) is responsible for adding GlcNAc, and anomalies in this process can lead to the development of diseases associated with metabolic imbalance, such as diabetes and cancer. Repurposing approved drugs can be an attractive tool to discover new targets reducing time and costs in the drug design. This work focuses on drug repurposing to OGT targets by virtual screening of FDA-approved drugs through consensus machine learning (ML) models from an imbalanced dataset. We developed a classification model using docking scores and ligand descriptors. The SMOTE approach to resampling the dataset showed excellent statistical values in five of the seven ML algorithms to create models from the training set, with sensitivity, specificity and accuracy over 90% and Matthew's correlation coefficient greater than 0.8. The pose analysis obtained by molecular docking showed only H-bond interaction with the OGT C-Cat domain. The molecular dynamics simulation showed the lack of H-bond interactions with the C- and N-catalytic domains allowed the drug to exit the binding site. Our results showed that the non-steroidal anti-inflammatory celecoxib could be a potentially OGT inhibitor.
Collapse
Affiliation(s)
| | | | | | - Tatiana Fialho Alves
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiza Rosaria Sousa Dias
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Estela Maris Freitas Muri
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | |
Collapse
|
40
|
Gong H, Chen S, Liu S, Hu Q, Li Y, Li Y, Li G, Huang K, Li R, Fang L. Overexpressing lipid raft protein STOML2 modulates the tumor microenvironment via NF-κB signaling in colorectal cancer. Cell Mol Life Sci 2024; 81:39. [PMID: 38214751 PMCID: PMC10786741 DOI: 10.1007/s00018-023-05105-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/12/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Colorectal cancer (CRC) is characterized by a complex tumor inflammatory microenvironment, while angiogenesis and immunosuppression frequently occur concomitantly. However, the exact mechanism that controls angiogenesis and immunosuppression in CRC microenvironment remains unclear. Herein, we found that expression levels of lipid raft protein STOML2 were increased in CRC and were associated with advanced disease stage and poor survival outcomes. Intriguingly, we revealed that STOML2 is essential for CRC tumor inflammatory microenvironment, which induces angiogenesis and facilitates tumor immune escape simultaneously both in vitro and in vivo. Moreover, tumors with STOML2 overexpression showed effective response to anti-angiogenesis treatment and immunotherapy in vivo. Mechanistically, STOML2 regulates CRC proliferation, angiogenesis, and immune escape through activated NF-κB signaling pathway via binding to TRADD protein, resulting in upregulation of CCND1, VEGF, and PD-L1. Furthermore, treatment with NF-κB inhibitor dramatically reversed the ability of proliferation and angiogenesis. Clinically, we also observed a strong positive correlation between STOML2 expression and Ki67, CD31, VEGFC and PD-1 of CD8+T cell expression. Taken together, our results provided novel insights into the role of STOML2 in CRC inflammatory microenvironment, which may present a therapeutic opportunity for CRC.
Collapse
Affiliation(s)
- Hui Gong
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People's Hospital/The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, Guangdong, China
| | - Shaojing Chen
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Qianying Hu
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Yixuan Li
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China
| | - Yifan Li
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People's Hospital/The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, Guangdong, China
| | - Guiqiu Li
- Clinical Laboratory, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan People's Hospital/The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, 518052, Guangdong, China.
| | - Kaimeng Huang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Riqing Li
- Shenzhen Agricultural Technology Promotion Center, Shenzhen, 518005, China.
| | - Lishan Fang
- Medical Research Center, The Eighth Affiliated Hospital, Sun Yat-Sun University, Shenzhen, 518033, China.
| |
Collapse
|
41
|
Wang L, Ni B, Wang J, Zhou J, Wang J, Jiang J, Sui Y, Tian Y, Gao F, Lyu Y. Research Progress of Scutellaria baicalensis in the Treatment of Gastrointestinal Cancer. Integr Cancer Ther 2024; 23:15347354241302049. [PMID: 39610320 PMCID: PMC11605761 DOI: 10.1177/15347354241302049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
Gastrointestinal (GI) cancer stands as one of the most prevalent forms of cancer globally, presenting a substantial medical and economic burden on cancer treatment. Despite advancements in therapies, it continues to exhibit the second highest mortality rate, primarily attributed to drug resistance and post-treatment side effects. There is an urgent need for novel therapeutic approaches to tackle this persistent challenge. Scutellaria baicalensis, widely used in Traditional Chinese Medicine (TCM), holds a profound pharmaceutical legacy. Modern pharmacological studies have unveiled its anticancer, antioxidant, and immune-enhancing properties. S. baicalensis contains hundreds of active ingredients, with flavonoids, polysaccharides, phenylethanoid glycosides, terpenoids, and sterols being the principal components. These constituents contribute to the treatment of GI cancer by inducing apoptosis in tumor cells, arresting the cell cycle, inhibiting tumor proliferation and metastasis, regulating the tumor microenvironment, modulating epigenetics, and reversing drug resistance. Furthermore, the utilization of modern drug delivery technologies can enhance the bioavailability and therapeutic efficacy of TCM. The treatment of GI cancer with S. baicalensis is characterized by its multi-component, multi-target, and multi-pathway advantages, and S. baicalensis has a broad prospect of becoming a clinical adjuvant or even the main therapy for GI cancer.
Collapse
Affiliation(s)
- Lankang Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Baoyi Ni
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Jilai Zhou
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Junyi Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiakang Jiang
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yutong Sui
- Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Yaoyao Tian
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng Gao
- Mudanjiang Hospital of Chinese Medicine, Mudanjiang, China
| | - Yufeng Lyu
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
42
|
Yang Y, Liu P, Zhou M, Yin L, Wang M, Liu T, Jiang X, Gao H. Small-molecule drugs of colorectal cancer: Current status and future directions. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166880. [PMID: 37696461 DOI: 10.1016/j.bbadis.2023.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the world's fourth most deadly cancer. CRC, as a genetic susceptible disease, faces significant challenges in optimizing prognosis through optimal drug treatment modalities. In recent decades, the development of innovative small-molecule drugs is expected to provide targeted interventions that accurately address the different molecular characteristics of CRC. Although the clinical application of single-target drugs is limited by the heterogeneity and high metastasis of CRC, novel small-molecule drug treatment strategies such as dual/multiple-target drugs, drug repurposing, and combination therapies can help overcome these challenges and provide new insights for improving CRC treatment. In this review, we focus on the current status of a range of small molecule drugs that are being considered for CRC therapy, including single-target drugs, dual/multiple-target drugs, drug repurposing and combination strategies, which will pave the way for targeting CRC vulnerabilities with small-molecule drugs in future personalized treatment.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingyang Zhou
- University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Linzhou Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ting Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
43
|
Samandari-Bahraseman MR, Ismaili A, Esmaeili-Mahani S, Ebrahimie E, Loit E. Bunium persicum Seeds Extract in Combination with Vincristine Mediates Apoptosis in MCF-7 Cells through Regulation of Involved Genes and Proteins Expression. Anticancer Agents Med Chem 2024; 24:213-223. [PMID: 38038013 DOI: 10.2174/0118715206277444231124051035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Bunium persicum seeds, a member of the Apiaceae family, have historically been consumed as part of the Iranian diet. OBJECTIVE While many of this herb's biological properties have been fully investigated, there is currently no reliable information about its anticancer/cytotoxic properties. METHODS Herein, we first determined the major bioactive compounds of B. persicum seed extract (BPSE) via GC-Mass analysis. We evaluated the cytotoxicity of the extract alone as well as in combination with vincristine (VCR), a commonly used chemotherapy drug, using MTT assays on two breast cancer cell lines, MCF-7 and MDA-MB-231, as well as a normal breast cancer cell line, MCF-10A. Moreover, these compounds were evaluated in vitro for their anticancer activity using ROS assays, Real-Time PCR, Western blots, flow cytometry, and cell cycle assays. RESULTS As a result of our investigation, it was determined that the extract significantly reduced the viability of cancerous cells while remaining harmless to normal cells. The combination of BPSE and VCR also resulted in synergistic effects. BPSE and/or BPSE-VCR treatment increased the intracellular ROS of MCF-7 cells by over twofold. Moreover, the IC30 of BPSE (100 μg/ml) significantly increased the BAX/BCL-2 and P53 gene expression while reducing the expression of the MYC gene. Moreover, treated cells were arrested in the G2 phase of the cell cycle. The BPSE-VCR combination synergistically reduced the NF-κB and increased the Caspase-7 proteins' expression. The percent of apoptosis in the cells treated with the extract, VCR, and their combination was 27, 11, and 50, respectively. CONCLUSIONS The present study demonstrated the anticancer activity of the BPSE and its potential for application in combination therapy with VCR.
Collapse
Affiliation(s)
| | - Ahmad Ismaili
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, Lorestan University, Khorramabad, Iran Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Esmaeil Ebrahimie
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC 3086, Australia
| | - Evelin Loit
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
44
|
Zhang WJ, Yue KL, Wang JZ, Zhang Y. Association between heat shock factor protein 4 methylation and colorectal cancer risk and potential molecular mechanisms: A bioinformatics study. World J Gastrointest Oncol 2023; 15:2150-2168. [PMID: 38173437 PMCID: PMC10758642 DOI: 10.4251/wjgo.v15.i12.2150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND We previously demonstrated that heat shock factor protein 4 (HSF4) facilitates colorectal cancer (CRC) progression. DNA methylation, a major modifier of gene expression and stability, is involved in CRC development and outcome. AIM To investigate the correlation between HSF4 methylation and CRC risk, and to uncover the underlying molecular mechanisms. METHODS Differences in β values of HSF4 methylation loci in multiple malignancies and their correlation with HSF4 mRNA expression were analyzed based on Shiny Methylation Analysis Resource Tool. HSF4 methylation-related genes were identified by LinkedOmics in CRC, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed. Protein-protein interaction network of HSF4 methylation-related genes was constructed by String database and MCODE algorithm. RESULTS A total of 19 CpG methylation loci were identified in HSF4, and their β values were significantly increased in CRC tissues and exhibited a positive correlation with HSF4 mRNA expression. Unfortunately, the prognostic and diagnostic performance of these CpG loci in CRC patients was mediocre. In CRC, there were 1694 HSF4 methylation-related genes; 1468 of which displayed positive and 226 negative associations, and they were involved in regulating phenotypes such as immune, inflammatory, and metabolic reprogramming. EGFR, RELA, STAT3, FCGR3A, POLR2K, and AXIN1 are hub genes among the HSF4 methylation-related genes. CONCLUSION HSF4 is highly methylated in CRC, but there is no significant correlation between it and the prognosis and diagnosis of CRC. HSF4 methylation may serve as one of the ways in which HSF4 mediates the CRC process.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- Department of Medical Oncology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Ke-Lin Yue
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Jing-Zhai Wang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| | - Yu Zhang
- Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, Yunnan Province, China
| |
Collapse
|
45
|
Liu Y, Lu L, Yang H, Wu X, Luo X, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Deng S, Cho CH, Li Q, Li X, Li W, Wang F, Sun Y, Gu L, Chen M, Li M. Dysregulation of immunity by cigarette smoking promotes inflammation and cancer: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122730. [PMID: 37838314 DOI: 10.1016/j.envpol.2023.122730] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Smoking is a serious global health issue. Cigarette smoking contains over 7000 different chemicals. The main harmful components include nicotine, acrolein, aromatic hydrocarbons and heavy metals, which play the key role for cigarette-induced inflammation and carcinogenesis. Growing evidences show that cigarette smoking and its components exert a remarkable impact on regulation of immunity and dysregulated immunity promotes inflammation and cancer. Therefore, this comprehensive and up-to-date review covers four interrelated topics, including cigarette smoking, inflammation, cancer and immune system. The known harmful chemicals from cigarette smoking were summarized. Importantly, we discussed in depth the impact of cigarette smoking on the formation of inflammatory or tumor microenvironment, primarily by affecting immune effector cells, such as macrophages, neutrophils, and T lymphocytes. Furthermore, the main molecular mechanisms by which cigarette smoking induces inflammation and cancer, including changes in epigenetics, DNA damage and others were further summarized. This article will contribute to a better understanding of the impact of cigarette smoking on inducing inflammation and cancer.
Collapse
Affiliation(s)
- Yubin Liu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Lan Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Huan Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Xinyue Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanping Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuhong Sun
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Gu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, China.
| |
Collapse
|
46
|
Yan Y, Lv Q, Zhou F, Jian Y, Xinhua L, Chen X, Hu Y. Discovery of an effective anti-inflammatory agent for inhibiting the activation of NF-κB. J Enzyme Inhib Med Chem 2023; 38:2225135. [PMID: 37325874 PMCID: PMC10281321 DOI: 10.1080/14756366.2023.2225135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023] Open
Abstract
In this study, based on the effect of compounds on the activation of NF-κB and NO release, compound 51 was discovered as the best one with NO release inhibition IC50 value was 3.1 ± 1.1 μM and NF-κB activity inhibition IC50 value was 172.2 ± 11.4 nM. Compound 51 could inhibit the activation of NF-κB through suppressing phosphorylation and nuclear translocation of NF-κB, and suppress LPS-induced inflammatory response in RAW264.7 cells, such as the over-expression of TNF-α and IL-6, which were target genes of NF-κB. This compound also showed preferable anti-inflammatory activity in vivo, including alleviating significantly gastric distention and splenomegaly caused by LPS stimulation, reducing the level of oxidative stress induced by LPS, and inhibiting the expression of IL-6 and TNF-α in serum. Thus, it's reasonable to consider that this compound is a promising small molecule with anti-inflammatory effect for inhibiting the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Yaoyao Yan
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Qi Lv
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Feilong Zhou
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Yujie Jian
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Liu Xinhua
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases Anhui Medical University, Hefei, PR China
| | - Xing Chen
- School of Public Health, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, PR China
| | - Yong Hu
- Anhui Academy of Agricultural Sciences, Agricultural Products Processing Institute, Hefei, P. R. China
| |
Collapse
|
47
|
Li W, Han F, Tang K, Ding C, Xiong F, Xiao Y, Li C, Liang Q, Lee KY, Lee IS, Gao H. Inhibiting NF-κB-S100A11 signaling and targeting S100A11 for anticancer effects of demethylzeylasteral in human colon cancer. Biomed Pharmacother 2023; 168:115725. [PMID: 37879212 DOI: 10.1016/j.biopha.2023.115725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Colon cancer is a common and deadly malignancy of the gastrointestinal tract. Targeting proteins that inhibit tumor proliferation could lead to innovative treatment strategies for this disease. Demethylzeylasteral, extracted naturally from Tripterygium wilfordii Hook. f., demonstrates incredible anti-colon cancer activity. However, the molecular mechanism behind this requires further investigation. This study aims to identify crucial targets and mechanisms of demethylzeylasteral in treating colon cancer, making it a promising candidate for anti-tumor therapy. Through gene knockout, overexpression techniques, and double Luciferase experiments, we confirmed that demethylzeylasteral reduces S100A11 expression in HT29 cells and in vivo tumor models to anti-colon cancer. By conducting Surface Plasmon Resonance, immunofluorescence staining, and confocal laser microscopy observations, we verified the direct interaction between demethylzeylasteral and S100A11, and explored the impact of S100A11's subcellular localization on cell proliferation. Demethylzeylasteral inhibited S100A11 expression and exhibited anti-cancer activity in both in vitro and in vivo colon cancer models. Conversely, overexpression of S100A11 hindered apoptosis induced by demethylzeylasteral. Additionally, we found that knockdown or overexpression of NF-κB respectively decreased or increased S100A11 expression, subsequently affecting cell proliferation. The dual Luciferase reporting experiment revealed that NF-κB is an upstream transcription factor regulating S100A11 expression. And Surface plasmon resonance confirmed that S100A11 can directly interact with demethylzeylasteral, this interaction limited the transport of S100A11 from the cytoplasm to nucleus, attenuation S100A11 mediated cell proliferation effect.
Collapse
Affiliation(s)
- Wenqing Li
- Oujiang Laboratory, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, PR China; College of Pharmacy, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Fubo Han
- College of Pharmacy, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Kaifan Tang
- Oujiang Laboratory, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Chengjie Ding
- Oujiang Laboratory, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Fen Xiong
- Oujiang Laboratory, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yina Xiao
- College of Pharmacy, Chonnam National University, Gwangju 61186, the Republic of Korea
| | - Chen Li
- Oujiang Laboratory, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qian Liang
- Oujiang Laboratory, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Kwang Youl Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, the Republic of Korea.
| | - Ik-Soo Lee
- College of Pharmacy, Chonnam National University, Gwangju 61186, the Republic of Korea.
| | - Hongchang Gao
- Oujiang Laboratory, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
48
|
Zhang W, Huang Z, Xiao Z, Wang H, Liao Q, Deng Z, Wu D, Wang J, Li Y. NF-κB downstream miR-1262 disturbs colon cancer cell malignant behaviors by targeting FGFR1. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1819-1832. [PMID: 37867436 PMCID: PMC10686795 DOI: 10.3724/abbs.2023235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/23/2023] [Indexed: 10/24/2023] Open
Abstract
Despite substantial advancements in screening, surgery, and chemotherapy, colorectal cancer remains the second most lethal form of the disease. Nuclear factor kappa B (NF-κB) signaling is a critical driver facilitating the malignant transformation of chronic inflammatory bowel diseases. In this study, deregulated miRNAs that could play a role in colon cancer are analyzed and investigated for specific functions in vitro using cancer cells and in vivo using a subcutaneous xenograft model. miRNA downstream targets are analyzed, and predicted binding and regulation are verified. miR-1262, an antitumor miRNA, is downregulated in colon cancer tissue samples and cell lines. miR-1262 overexpression suppresses colon cancer malignant behaviors in vitro and tumor development and metastasis in a subcutaneous xenograft model and a lung metastasis mouse model in vivo. miR-1262 directly targets fibroblast growth factor receptor 1 (FGFR1) and inhibits FGFR1 expression. FGFR1 overexpression shows oncogenic functions through the regulation of cancer cell proliferation, invasion, and migration; when cotransfected, lv-FGFR1 partially attenuates the antitumor effects of agomir-1262. NF-κB binds to the miR-1262 promoter region and inhibits transcription activity. The NF-κB inhibitor CAPE exerts antitumor effects; miR-1262 inhibition partially reverses CAPE effects on colon cancer cells. Conclusively, miR-1262 serves as an antitumor miRNA in colon cancer by targeting FGFR1. The NF-κB/miR-1262/FGFR1 axis modulates colon cancer cell phenotypes, including proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Weilin Zhang
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Zhongcheng Huang
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Zhigang Xiao
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Hui Wang
- Department of Cardiovascular MedicineHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Qianchao Liao
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Zhengru Deng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Deqing Wu
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Junjiang Wang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Yong Li
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| |
Collapse
|
49
|
Deris Zayeri Z, Parsi A, Shahrabi S, Kargar M, Davari N, Saki N. Epigenetic and metabolic reprogramming in inflammatory bowel diseases: diagnostic and prognostic biomarkers in colorectal cancer. Cancer Cell Int 2023; 23:264. [PMID: 37936149 PMCID: PMC10631091 DOI: 10.1186/s12935-023-03117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND AND AIM "Inflammatory bowel disease" (IBD) is a chronic, relapsing inflammatory disease of the intestinal tract that typically begins at a young age and might transit to colorectal cancer (CRC). In this manuscript, we discussed the epigenetic and metabolic change to present a extensive view of IBDs transition to CRC. This study discusses the possible biomarkers for evaluating the condition of IBDs patients, especially before the transition to CRC. RESEARCH APPROACH We searched "PubMed" and "Google Scholar" using the keywords from 2000 to 2022. DISCUSSION In this manuscript, interesting titles associated with IBD and CRC are discussed to present a broad view regarding the epigenetic and metabolic reprogramming and the biomarkers. CONCLUSION Epigenetics can be the main reason in IBD transition to CRC, and Hypermethylation of several genes, such as VIM, OSM4, SEPT9, GATA4 and GATA5, NDRG4, BMP3, ITGA4 and plus hypomethylation of LINE1 can be used in IBD and CRC management. Epigenetic, metabolisms and microbiome-derived biomarkers, such as Linoleic acid and 12 hydroxy 8,10-octadecadienoic acid, Serum M2-pyruvate kinase and Six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK and ADCY5) expression are valuable biomarkers for early detection and transition to CRC condition. Some miRs, such as miR-31, miR-139-5p, miR -155, miR-17, miR-223, miR-370-3p, miR-31, miR -106a, miR -135b and miR-320 can be used as biomarkers to estimate IBD transition to CRC condition.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Alimentary Tract Research Center, Clinical Sciences Research Inistitute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Masoud Kargar
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
50
|
Wang S, Kuperman LL, Song Z, Chen Y, Liu K, Xia Z, Xu Y, Yu Q. An overview of limonoid synthetic derivatives as promising bioactive molecules. Eur J Med Chem 2023; 259:115704. [PMID: 37544186 DOI: 10.1016/j.ejmech.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/07/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Limonoids, a class of abundant natural tetracyclic triterpenoids, present diverse biological activity and provide a versatile platform amenable by chemical modifications for clinical use. Among all of the limonoids isolated from natural sources, obacunone, nomilin, and limonin are the primary hub of limonoid-based chemical modification research. To date, more than 800 limonoids analogs have been synthesized, some of which possess promising biological activities. This review not only discusses the synthesis of limonoid derivatives as promising therapeutic candidates and details the pharmacological studies of their underlying mechanisms from 2002 to 2022, but also proposes a preliminary limonoid synthetic structure-activity relationship (SAR) and provides future direction of limonoid derivatization research.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Zhihui Song
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Yutian Chen
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Kun Liu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zongping Xia
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|