1
|
Lauwers Y, De Groof TWM, Vincke C, Van Craenenbroeck J, Jumapili NA, Barthelmess RM, Courtoy G, Waelput W, De Pauw T, Raes G, Devoogdt N, Van Ginderachter JA. Imaging of tumor-associated macrophage dynamics during immunotherapy using a CD163-specific nanobody-based immunotracer. Proc Natl Acad Sci U S A 2024; 121:e2409668121. [PMID: 39693339 DOI: 10.1073/pnas.2409668121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Immunotherapies have emerged as an effective treatment option for immune-related diseases, such as cancer and inflammatory diseases. However, variations in patient responsiveness limit the broad applicability and success of these immunotherapies. Noninvasive whole-body imaging of the immune status of individual patients during immunotherapy could enable the prediction and monitoring of the patient's response, resulting in more personalized treatments. In this study, we developed a nanobody-based immunotracer targeting CD163, a receptor specifically expressed on macrophages. This anti-CD163 immunotracer bound to human and mouse CD163 with high affinity and specificity without competing for ligand binding. Furthermore, the tracer showed no unwanted immune cell activation and was nonimmunogenic. Upon radiolabeling of the anti-CD163 immunotracer, specific imaging of CD163+ macrophages using micro-single-photon emission computerized tomography/computed tomography or micro-positron emission tomography/CT was performed. The anti-CD163 immunotracer was able to stratify immunotherapy responders from nonresponders (NR) by visualizing differences in the intratumoral CD163+ TAM distribution in Lewis lung carcinoma-ovalbumin tumor-bearing mice receiving an anti-programmed cell death protein-1 (PD-1)/CSF1R combination treatment. Immunotherapy-responding mice showed a more homogeneous distribution of the PET signal in the middle of the tumor, while CD163+ TAMs were located at the tumor periphery in NR. As such, visualization of CD163+ TAM distribution in the tumor microenvironment could allow a prediction or follow-up of therapy response. Altogether, this study describes an immunotracer, specific for CD163+ macrophages, that allows same-day imaging and follow-up of these immune cells in the tumor microenvironment, providing a good basis for the prediction and follow-up of immunotherapy responses in cancer patients.
Collapse
Affiliation(s)
- Yoline Lauwers
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Timo W M De Groof
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Cécile Vincke
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Jolien Van Craenenbroeck
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Neema Ahishakiye Jumapili
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Romina Mora Barthelmess
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Guillaume Courtoy
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels B-1090, Belgium
- Laboratory of Experimental Pathology, Supporting Clinical Sciences, Vrije Universiteit Brussel, Brussels B-1090, Belgium
| | - Wim Waelput
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels B-1090, Belgium
- Laboratory of Experimental Pathology, Supporting Clinical Sciences, Vrije Universiteit Brussel, Brussels B-1090, Belgium
| | - Tessa De Pauw
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geert Raes
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Nick Devoogdt
- Molecular Imaging and Therapy Research Group, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie Center for Inflammation Research, Brussels 1050, Belgium
- Laboratory of Cellular and Molecular Immunology, Brussels Center for Immunology, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
2
|
Jin X, Tian Y, Zhu H, Sun Y, Zhang Z. Computer-aided analysis reveals metallothionein-positive cancer-associated fibroblasts promote angiogenesis in gastric adenocarcinoma. Discov Oncol 2024; 15:751. [PMID: 39636347 PMCID: PMC11621267 DOI: 10.1007/s12672-024-01614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Gastric adenocarcinoma (GC), along with its tumor microenvironment (TME), poses great challenges for clinical treatment strategies. Single-cell sequencing has become an important tool for analyzing TME heterogeneity, cell subpopulation, and gene expression patterns. 56 GC single-cell sequencing samples were analyzed, focusing on TME by delineating cancer cells, cancer-associated fibroblasts (CAFs), and macrophages. The spatial transcriptome was used to clarify the distribution characteristics of each cellular component in the tissue slice. Despite the widespread genetic mutations observed in cancer cells, certain recurrent alterations were identified in specific chromosomal regions. The heterogeneity among GC cells is profound, four cancer cell subpopulations were identified through drug sensitivity profiling. Subtype 4, although only present in some samples, demonstrates the strongest stemness and metabolic activity, possibly indicative of an early-stage cancer subpopulation. Their drug sensitivity profiles may hold promise for guiding clinical intervention. In addition, robust spatial co-localization patterns were observed between CAFs, M2 macrophages, and endothelial cells. CAFs were further categorized into six subgroups, among which a novel subgroup termed metallothionein(mt)-positive CAF (mtCAF), characterized by elevated expression of metallothionein 1X (MT1X) and subsequent vascular endothelial growth factor A (VEGFA) secretion, was identified. Immunohistochemistry preliminary confirmed the presence of this unique CAF subgroup. Additionally, M2d macrophages, besides exhibiting high VEGFA expression, also demonstrated various growth factors such as Aamphiregulin (AREG). The M2d-mtCAF axis may play an important role in GC angiogenesis. This study not only enhances our understanding of the TME heterogeneity in GC but also sheds light on the interaction between CAFs and tumor-associated macrophages (TAMs) in tumor angiogenesis.
Collapse
Affiliation(s)
- Xiaolong Jin
- Department of Gastroenterology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Yu Tian
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haoran Zhu
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuewen Sun
- Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenxing Zhang
- Department of Stomatology, Taizhou Central Hospital (Taizhou University Hospital), No. 999, Donghai Avenue, Taizhou, 318000, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Fan Q, Fu ZW, Xu M, Lv F, Shi JS, Zeng QQ, Xiong DH. Research progress of tumor-associated macrophages in immune checkpoint inhibitor tolerance in colorectal cancer. World J Gastrointest Oncol 2024; 16:4064-4079. [DOI: 10.4251/wjgo.v16.i10.4064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/03/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
The relevant mechanism of tumor-associated macrophages (TAMs) in the treatment of colorectal cancer patients with immune checkpoint inhibitors (ICIs) is discussed, and the application prospects of TAMs in reversing the treatment tolerance of ICIs are discussed to provide a reference for related studies. As a class of drugs widely used in clinical tumor immunotherapy, ICIs can act on regulatory molecules on cells that play an inhibitory role-immune checkpoints-and kill tumors in the form of an immune response by activating a variety of immune cells in the immune system. The sensitivity of patients with different types of colorectal cancer to ICI treatment varies greatly. The phenotype and function of TAMs in the colorectal cancer microenvironment are closely related to the efficacy of ICIs. ICIs can regulate the phenotypic function of TAMs, and TAMs can also affect the tolerance of colorectal cancer to ICI therapy. TAMs play an important role in ICI resistance, and making full use of this target as a therapeutic strategy is expected to improve the immunotherapy efficacy and prognosis of patients with colorectal cancer.
Collapse
Affiliation(s)
- Qi Fan
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Zheng-Wei Fu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Ming Xu
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Feng Lv
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Jia-Song Shi
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qi-Qi Zeng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - De-Hai Xiong
- Intestinal Center, Chongqing University Three Gorges Hospital, Chongqing 404000, China
| |
Collapse
|
4
|
Kathuria I, Singla B. Anti-tumor efficacy of Calculus bovis: Suppressing liver cancer by targeting tumor-associated macrophages. World J Gastroenterol 2024; 30:4249-4253. [PMID: 39493325 PMCID: PMC11525873 DOI: 10.3748/wjg.v30.i38.4249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
Despite significant advances in our understanding of the molecular pathogenesis of liver cancer and the availability of novel pharmacotherapies, liver cancer remains the fourth leading cause of cancer-related mortality worldwide. Tumor relapse, resistance to current anti-cancer drugs, metastasis, and organ toxicity are the major challenges that prevent considerable improvements in patient survival and quality of life. Calculus bovis (CB), an ancient Chinese medicinal drug, has been used to treat various pathologies, including stroke, convulsion, epilepsy, pain, and cancer. In this editorial, we discuss the research findings recently published by Huang et al on the therapeutic effects of CB in inhibiting the development of liver cancer. Utilizing the comprehensive transcriptomic analyses, in vitro experiments, and in vivo studies, the authors demonstrated that CB treatment inhibits the tumor-promoting M2 phenotype of tumor-associated macrophages via downregulating Wnt pathway. While multiple studies have been performed to explore the molecular mechanisms regulated by CB, this study uniquely shows its role in modulating the M2 phenotype of macrophages present within the tumor microenvironment. This study opens new avenues of future investigations aimed at investigating this drug's efficacy in various mouse models including the effects of combination therapy, and against drug-resistant tumors.
Collapse
Affiliation(s)
- Ishita Kathuria
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38103, United States
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, Memphis, TN 38103, United States
| |
Collapse
|
5
|
Hong L, Tanaka M, Yasui M, Hara-Chikuma M. HSP90 promotes tumor associated macrophage differentiation during triple-negative breast cancer progression. Sci Rep 2024; 14:22541. [PMID: 39341960 PMCID: PMC11438890 DOI: 10.1038/s41598-024-73394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Tumor-associated macrophages (TAMs) originating from monocytes are crucial for cancer progression; however, the mechanism of TAM differentiation is unclear. We investigated factors involved in the differentiation of monocytes into TAMs within the tumor microenvironment of triple-negative breast cancer (TNBC). We screened 172 compounds and found that a heat shock protein 90 (HSP90) inhibitor blocked TNBC-induced monocyte-to-TAM differentiation in human monocytes THP-1. TNBC-derived conditional medium (CM) activated cell signaling pathways, including MAP kinase, AKT and STAT3, and increased the expression of TAM-related genes and proteins. These inductions were suppressed by HSP90 inhibition or by knockdown of HSP90 in TNBC. Additionally, we confirmed that TNBC secreted HSP90 extracellularly and that HSP90 itself promoted TAM differentiation. In a mouse tumor model, treatment with an HSP90 inhibitor suppressed tumor growth and reduced TAMs in the tumor microenvironment. Our findings demonstrate the role of HSP90 in TAM differentiation, suggesting HSP90 as a potential target for TNBC immunotherapy due to its regulatory role in monocyte-to-TAM differentiation.
Collapse
Affiliation(s)
- Lingjia Hong
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Manami Tanaka
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masato Yasui
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Mariko Hara-Chikuma
- Department of Pharmacology, School of Medicine, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
6
|
Shao Y, Han S, Hou Z, Yang C, Zhao Y. Tumor-associated macrophages within the immunological milieu: An emerging focal point for therapeutic intervention. Heliyon 2024; 10:e36839. [PMID: 39281573 PMCID: PMC11401039 DOI: 10.1016/j.heliyon.2024.e36839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Tumor-associated macrophages play an important role in the tumor immune microenvironment, and regulating the function of tumor-associated macrophages has important therapeutic potential in tumor therapy. Mature macrophages could migrate to the tumor microenvironment, influencing multiple factors such as tumor cell proliferation, invasion, metastasis, extracellular matrix remodeling, immune suppression, and drug resistance. As a major component of the tumor microenvironment, tumor-associated macrophages crosstalk with other immune cells. Currently, tumor-associated macrophages have garnered considerable attention in tumor therapy, broadening the spectrum of drug selection to some extent, thereby aiding in mitigating the prevailing clinical drug resistance dilemma. This article summarizes the recent advances in tumor-associated macrophages concerning immunology, drug targeting mechanisms for tumor-associated macrophages treatment, new developments, and existing challenges, offering insights for future therapeutic approaches. In addition, this paper summarized the impact of tumor-associated macrophages on current clinical therapies, discussed the advantages and disadvantages of targeted tumor-associated macrophages therapy compared with existing tumor therapies, and predicted and discussed the future role of targeted tumor-associated macrophages therapy and the issues that need to be focused on.
Collapse
Affiliation(s)
- Yanchi Shao
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Song Han
- The First Hospital of Jilin University, Changchun, China
| | - Zhenxin Hou
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chen Yang
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yanbin Zhao
- Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Souza IDF, Vieira JPDJ, Bonifácio ED, Avelar Freitas BAD, Torres LAG. The Microenvironment of Solid Tumors: Components and Current Challenges of Tumor-on-a-Chip Models. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39007523 DOI: 10.1089/ten.teb.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Solid tumors represent the most common type of cancer in humans and are classified into sarcomas, lymphomas, and carcinomas based on the originating cells. Among these, carcinomas, which arise from epithelial and glandular cells lining the body's tissues, are the most prevalent. Around the world, a significant increase in the incidence of solid tumors is observed during recent years. In this context, efforts to discover more effective cancer treatments have led to a deeper understanding of the tumor microenvironment (TME) and its components. Currently, the interactions between cancer cells and elements of the TME are being intensely investigated. Remarkable progress in research is noted, largely owing to the development of advanced in vitro models, such as tumor-on-a-chip models that assist in understanding and ultimately discovering new effective treatments for a specific type of cancer. The purpose of this article is to provide a review of the TME and cancer cell components, along with the advances on tumor-on-a-chip models designed to mimic tumors, offering a perspective on the current state of the art. Recent studies using this kind of microdevices that reproduce the TME have allowed a better understanding of the cancer and its treatments. Nevertheless, current applications of this technology present some limitations that must be overcome to achieve a broad application by researchers looking for a deeper knowledge of cancer and new strategies to improve current therapies.
Collapse
Affiliation(s)
- Ilva de Fátima Souza
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - João Paulo de Jesus Vieira
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- School of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Elton Diêgo Bonifácio
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Bethânia Alves de Avelar Freitas
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- School of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Libardo Andres Gonzalez Torres
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
- School of Medicine, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| |
Collapse
|
8
|
Zhao L, Wang G, Qi H, Yu L, Yin H, Sun R, Wang H, Zhu X, Yang A. LINC00330/CCL2 axis-mediated ESCC TAM reprogramming affects tumor progression. Cell Mol Biol Lett 2024; 29:77. [PMID: 38769475 PMCID: PMC11103861 DOI: 10.1186/s11658-024-00592-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) significantly influence the progression, metastasis, and recurrence of esophageal squamous cell carcinoma (ESCC). The aberrant expression of long noncoding RNAs (lncRNAs) in ESCC has been established, yet the role of lncRNAs in TAM reprogramming during ESCC progression remains largely unexplored. METHODS ESCC TAM-related lncRNAs were identified by intersecting differentially expressed lncRNAs with immune-related lncRNAs and performing immune cell infiltration analysis. The expression profile and clinical relevance of LINC00330 were examined using the TCGA database and clinical samples. The LINC00330 overexpression and interference sequences were constructed to evaluate the effect of LINC00330 on ESCC progression. Single-cell sequencing data, CIBERSORTx, and GEPIA were utilized to analyze immune cell infiltration within the ESCC tumor microenvironment and to assess the correlation between LINC00330 and TAM infiltration. ESCC-macrophage coculture experiments were conducted to investigate the influence of LINC00330 on TAM reprogramming and its subsequent effect on ESCC progression. The interaction between LINC00330 and C-C motif ligand 2 (CCL2) was confirmed through transcriptomic sequencing, subcellular localization analysis, RNA pulldown, silver staining, RNA immunoprecipitation, and other experiments. RESULTS LINC00330 is significantly downregulated in ESCC tissues and strongly associated with poor patient outcomes. Overexpression of LINC00330 inhibits ESCC progression, including proliferation, invasion, epithelial-mesenchymal transition, and tumorigenicity in vivo. LINC00330 promotes TAM reprogramming, and LINC00330-mediated TAM reprogramming inhibits ESCC progression. LINC00330 binds to the CCL2 protein and inhibits the expression of CCL2 and downstream signaling pathways. CCL2 is critical for LINC00330-mediated TAM reprogramming and ESCC progression. CONCLUSIONS LINC00330 inhibited ESCC progression by disrupting the CCL2/CCR2 axis and its downstream signaling pathways in an autocrine fashion; and by impeding CCL2-mediated TAM reprogramming in a paracrine manner. The new mechanism of TAM reprogramming mediated by the LINC00330/CCL2 axis may provide potential strategies for targeted and immunocombination therapies for patients with ESCC.
Collapse
Affiliation(s)
- Lijun Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Gengchao Wang
- State Key Laboratory of Liver Research, Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haonan Qi
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Lili Yu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Huilong Yin
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ruili Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hongfei Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaofei Zhu
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Angang Yang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shanxi, China.
| |
Collapse
|
9
|
Chen W, Liu X, Wang H, Dai J, Li C, Hao Y, Jiang D. Exploring the immune escape mechanisms in gastric cancer patients based on the deep AI algorithms and single-cell sequencing analysis. J Cell Mol Med 2024; 28:e18379. [PMID: 38752750 PMCID: PMC11097712 DOI: 10.1111/jcmm.18379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 05/19/2024] Open
Abstract
Gastric cancer is a prevalent and deadly malignancy, and the response to immunotherapy varies among patients. This study aimed to develop a prognostic model for gastric cancer patients and investigate immune escape mechanisms using deep machine learning and single-cell sequencing analysis. Data from public databases were analysed, and a prediction model was constructed using 101 algorithms. The high-AIDPS group, characterized by increased AIDPS expression, exhibited worse survival, genomic variations and immune cell infiltration. These patients also showed immunotherapy tolerance. Treatment strategies targeting the high-AIDPS group identified three potential drugs. Additionally, distinct cluster groups and upregulated AIDPS-associated genes were observed in gastric adenocarcinoma cell lines. Inhibition of GHRL expression suppressed cancer cell activity, inhibited M2 polarization in macrophages and reduced invasiveness. Overall, AIDPS plays a critical role in gastric cancer prognosis, genomic variations, immune cell infiltration and immunotherapy response, and targeting GHRL expression holds promise for personalized treatment. These findings contribute to improved clinical management in gastric cancer.
Collapse
Affiliation(s)
- Wenli Chen
- Department of General SurgeryThe Affiliated Bozhou Hospital of Anhui Medical UniversityBozhouAnhuiChina
| | - Xiaohui Liu
- Department of Nursing, Xiangya HospitalCentral South UniversityChangshaChina
| | - Houhong Wang
- Department of General SurgeryThe Affiliated Bozhou Hospital of Anhui Medical UniversityBozhouAnhuiChina
| | - Jingyou Dai
- Department of Pediatric SurgeryThe Affiliated Bozhou Hospital of Anhui Medical UniversityBozhouAnhuiChina
| | - Changquan Li
- Department of General SurgeryThe Affiliated Bozhou Hospital of Anhui Medical UniversityBozhouAnhuiChina
| | - Yanyan Hao
- Department of Articular SurgeryThe Affiliated Bozhou Hospital of Anhui Medical UniversityBozhouAnhuiChina
| | - Dandan Jiang
- The Second Affiliated Hospital, Department of Emergency, Hengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
10
|
Wang H, Wang R, Shen K, Huang R, Wang Z. Biological Roles and Clinical Applications of Exosomes in Breast Cancer: A Brief Review. Int J Mol Sci 2024; 25:4620. [PMID: 38731840 PMCID: PMC11083446 DOI: 10.3390/ijms25094620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; they have a double-layered lipid membrane structure and contain rich biological information. They mediate intercellular communication and have pivotal roles in tumor development, progression, and metastasis and drug resistance. Exosomes are important cell communication mediators in the tumor microenvironment (TME). Exosomes are utilized as diagnostic and prognostic biomarkers for estimating the treatment efficacy of BC and have the potential to function as tools to enable the targeted delivery of antitumor drugs. This review introduces recent progress in research on how exosomes influence tumor development and the TME. We also present the research progress on the application of exosomes as prognostic and diagnostic biomarkers and drug delivery tools.
Collapse
Affiliation(s)
| | | | | | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.W.); (R.W.); (K.S.)
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.W.); (R.W.); (K.S.)
| |
Collapse
|
11
|
Baş Y, Yilmaz B, Acar SF, Karadağ İ. Programmed Cell Death Ligand 1 Expression in CD163 + Tumor-associated Macrophages in Cancer Gland Rupture Microenvironment. Appl Immunohistochem Mol Morphol 2024; 32:176-182. [PMID: 38314768 DOI: 10.1097/pai.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024]
Abstract
In this study, we aimed to examine the relationship among cancer gland rupture microenvironment, programmed cell death ligand 1 (PD-L1) expression in CD163 + tumor-associated macrophages (TAMs), and prognosis in colon adenocarcinoma. A total of 122 patients were diagnosed with colon adenocarcinoma between 2010 and 2019. PD-L1 + (clone 22C3) "macrophage scores" in the microenvironment of cancer gland rupture were calculated. The effects of these variables on prognosis were statistically analyzed. CD163 + TAMs were denser in the cancer gland rupture microenvironment. PD-L1 + TAMs were observed in the tumor periphery, and there was a significant difference between the rates of PD-L1 expression in TAMs and survival time (log-rank = 10.46, P = 0.015), clinical stage 2 ( P = 0.038), and primary tumor 3 and primary tumor 4 cases ( P = 0.004, P = 0.013). The risk of mortality was 4.070 times higher in patients with a PD-L1 expression rate of ≥1% in CD163 + TAMs. High PD-L1 expression in CD163 + TAMs is associated with poor overall survival. Therefore, blocking PD-L1 in CD163 + TAMs can be used as a target for immunotherapy.
Collapse
Affiliation(s)
- Yilmaz Baş
- Department of Pathology, Faculty of Medicine
| | | | | | - İbrahim Karadağ
- Department of Oncology, Erol Olçok Education and Research Hospital, Hitit University, Çorum, Turkey
| |
Collapse
|
12
|
Mierke CT. Phenotypic Heterogeneity, Bidirectionality, Universal Cues, Plasticity, Mechanics, and the Tumor Microenvironment Drive Cancer Metastasis. Biomolecules 2024; 14:184. [PMID: 38397421 PMCID: PMC10887446 DOI: 10.3390/biom14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Tumor diseases become a huge problem when they embark on a path that advances to malignancy, such as the process of metastasis. Cancer metastasis has been thoroughly investigated from a biological perspective in the past, whereas it has still been less explored from a physical perspective. Until now, the intraluminal pathway of cancer metastasis has received the most attention, while the interaction of cancer cells with macrophages has received little attention. Apart from the biochemical characteristics, tumor treatments also rely on the tumor microenvironment, which is recognized to be immunosuppressive and, as has recently been found, mechanically stimulates cancer cells and thus alters their functions. The review article highlights the interaction of cancer cells with other cells in the vascular metastatic route and discusses the impact of this intercellular interplay on the mechanical characteristics and subsequently on the functionality of cancer cells. For instance, macrophages can guide cancer cells on their intravascular route of cancer metastasis, whereby they can help to circumvent the adverse conditions within blood or lymphatic vessels. Macrophages induce microchannel tunneling that can possibly avoid mechanical forces during extra- and intravasation and reduce the forces within the vascular lumen due to vascular flow. The review article highlights the vascular route of cancer metastasis and discusses the key players in this traditional route. Moreover, the effects of flows during the process of metastasis are presented, and the effects of the microenvironment, such as mechanical influences, are characterized. Finally, the increased knowledge of cancer metastasis opens up new perspectives for cancer treatment.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
13
|
Jääskeläinen MM, Tumelius R, Hämäläinen K, Rilla K, Oikari S, Rönkä A, Selander T, Mannermaa A, Tiainen S, Auvinen P. High Numbers of CD163+ Tumor-Associated Macrophages Predict Poor Prognosis in HER2+ Breast Cancer. Cancers (Basel) 2024; 16:634. [PMID: 38339385 PMCID: PMC10854814 DOI: 10.3390/cancers16030634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are associated with a poor outcome in breast cancer (BC), but their prognostic value in different BC subtypes has remained somewhat unclear. Here, we investigated the prognostic value of M2-like TAMs (CD163+) and all TAMs (CD68+) in a patient cohort of 278 non-metastatic BC patients, half of whom were HER2+ (n = 139). The survival endpoints investigated were overall survival (OS), breast cancer-specific survival (BCSS) and disease-free survival (DFS). In the whole patient cohort (n = 278), a high CD163+ TAM count and a high CD68+ TAM count were associated with a worse outcome (p ≤ 0.023). In HER2+ BC, a high CD163+ TAM count was an independent factor for a poor prognosis across all the investigated survival endpoints (p < 0.001). The prognostic effect was evident in both the HER2+/hormone receptor-positive (p < 0.001) and HER2+/hormone receptor-negative (p ≤ 0.012) subgroups and regardless of the provision of adjuvant trastuzumab (p ≤ 0.002). In HER2-negative BC, the CD163+ TAM count was not significantly associated with survival. These results suggest that a high CD163+ TAM count predicts an inferior outcome, especially in HER2+ BC patients, and as adjuvant trastuzumab did not overcome the poor prognostic effect, combination treatments including therapies targeting the macrophage function could represent an effective therapeutic approach in HER2+ BC.
Collapse
Affiliation(s)
- Minna M. Jääskeläinen
- Cancer Center, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Ritva Tumelius
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
| | - Kirsi Hämäläinen
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Imaging Center, Clinical Pathology, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
- Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, 70211 Kuopio, Finland
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Sanna Oikari
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Aino Rönkä
- Cancer Center, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Tuomas Selander
- Science Services Center, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
| | - Arto Mannermaa
- Institute of Clinical Medicine, Clinical Pathology and Forensic Medicine, University of Eastern Finland, 70211 Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Wellbeing Services County of North Savo, 700029 Kuopio, Finland
| | - Satu Tiainen
- Cancer Center, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| | - Päivi Auvinen
- Cancer Center, Kuopio University Hospital, Wellbeing Services County of North Savo, 70029 Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|
14
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front Immunol 2024; 14:1264774. [PMID: 38347955 PMCID: PMC10859433 DOI: 10.3389/fimmu.2023.1264774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are present in almost all solid tumor tissues. 16They play critical roles in immune regulation, tumor angiogenesis, tumor stem cell activation, tumor invasion and metastasis, and resistance to therapy. However, it is unclear how TAMs perform these functions. With the application of single-cell RNA sequencing (scRNA-seq), it has become possible to identify TAM subpopulations associated with distinct functions. In this review, we discuss four novel TAM subpopulations in distinct solid tumors based on core gene signatures by scRNA-seq, including FCN1 +, SPP1 +, C1Q + and CCL18 + TAMs. Functional enrichment and gene expression in scRNA-seq data from different solid tumor tissues found that FCN1 + TAMs may induce inflammation; SPP1 + TAMs are potentially involved in metastasis, angiogenesis, and cancer cell stem cell activation, whereas C1Q + TAMs participate in immune regulation and suppression; And CCL18 + cells are terminal immunosuppressive macrophages that not only have a stronger immunosuppressive function but also enhance tumor metastasis. SPP1 + and C1Q + TAM subpopulations can be further divided into distinct populations with different functions. Meanwhile, we will also present emerging evidence highlighting the separating macrophage subpopulations associated with distinct functions. However, there exist the potential disconnects between cell types and subpopulations identified by scRNA-seq and their actual function.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
15
|
Yerolatsite M, Torounidou N, Gogadis A, Kapoulitsa F, Ntellas P, Lampri E, Tolia M, Batistatou A, Katsanos K, Mauri D. TAMs and PD-1 Networking in Gastric Cancer: A Review of the Literature. Cancers (Basel) 2023; 16:196. [PMID: 38201623 PMCID: PMC10778110 DOI: 10.3390/cancers16010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common and aggressive types of cancer. Immune checkpoint inhibitors (ICIs) have proven effective in treating various types of cancer. The use of ICIs in GC patients is currently an area of ongoing research. The tumor microenvironment (TME) also seems to play a crucial role in cancer progression. Tumor-associated macrophages (TAMs) are the most abundant population in the TME. TAMs are capable of displaying programmed cell death protein 1 (PD-1) on their surface and can form a ligand with programmed death ligand 1 (PD-L1), which is found on the surface of cancer cells. Therefore, it is expected that TAMs may significantly influence the immune response related to immune checkpoint inhibitors (ICIs). AIM OF THE STUDY Understanding the role of TAMs and PD-1/PD-L1 networking in GC. METHODS A systematic review of published data was performed using MEDLINE (PubMed), Embase, and Cochrane databases. We retrieved articles investigating the co-existence of TAMs and PD-1 in GC and the prognosis of patients expressing high levels of PD-1+ TAMs. RESULTS Ten articles with a total of 2277 patients were included in the systematic review. The examined data suggest that the expression of PD-L1 has a positive correlation with the infiltration of TAMs and that patients who express high levels of PD-1+ TAMs may have a worse prognosis than those who express low levels of PD-1+ TAMs. CONCLUSIONS TAMs play a pivotal role in the regulation of PD-1/PD-L1 networking and the progression of GC cells. Nevertheless, additional studies are needed to better define the role of TAMs and PD-1/PD-L1 networking in GC.
Collapse
Affiliation(s)
- Melina Yerolatsite
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Nanteznta Torounidou
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Aristeidis Gogadis
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Fani Kapoulitsa
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| | - Panagiotis Ntellas
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
| | - Evangeli Lampri
- Department of Pathology, University of Ioannina, 45500 Ioannina, Greece; (E.L.); (A.B.)
| | - Maria Tolia
- Department of Radiotherapy, University of Crete, 71003 Heraklion, Greece;
| | - Anna Batistatou
- Department of Pathology, University of Ioannina, 45500 Ioannina, Greece; (E.L.); (A.B.)
| | | | - Davide Mauri
- Department of Medical Oncology, University of Ioannina, 45500 Ioannina, Greece; (N.T.); (A.G.); (F.K.); (P.N.); (D.M.)
- Society for Study of Clonal Heterogeneity of Neoplasia (EMEKEN), 45445 Ioannina, Greece
| |
Collapse
|
16
|
Rodrigues WF, Miguel CB, de Abreu MCM, Neto JM, Oliveira CJF. Potential Associations between Vascular Biology and Hodgkin's Lymphoma: An Overview. Cancers (Basel) 2023; 15:5299. [PMID: 37958472 PMCID: PMC10649902 DOI: 10.3390/cancers15215299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Hodgkin's lymphoma (HL) is a lymphatic neoplasm typically found in the cervical lymph nodes. The disease is multifactorial, and in recent years, the relationships between various vascular molecules have been explored in the field of vascular biology. The connection between vascular biology and HL is intricate and the roles of several pathways remain unclear. This review summarizes the cellular and molecular relationships between vascular biology and HL. Proteins associated with various functions in vascular biology, including cytokines (TNF-α, IL-1, IL-13, and IL-21), chemokines (CXCL10, CXCL12, and CCL21), adhesion molecules (ELAM-1/VCAM-1), and growth factors (BDNF/NT-3, platelet-derived growth factor receptor-α), have been linked to tumor activity. Notable tumor activities include the induction of paracrine activation of NF-kB-dependent pathways, upregulation of adhesion molecule regulation, genome amplification, and effective loss of antigen presentation mediated by MHC-II. Preclinical study models, primarily those using cell culture, have been optimized for HL. Animal models, particularly mice, are also used as alternatives to complex biological systems, with studies primarily focusing on the physiopathogenic evaluation of the disease. These biomolecules warrant further study because they may shed light on obscure pathways and serve as targets for prevention and/or treatment interventions.
Collapse
Affiliation(s)
- Wellington Francisco Rodrigues
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | - Camila Botelho Miguel
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | | | - Jamil Miguel Neto
- University Center of Mineiros, Unifimes, Mineiros 75833-130, GO, Brazil; (M.C.M.d.A.); (J.M.N.)
| | - Carlo José Freire Oliveira
- Postgraduate Course in Tropical Medicine and Infectious Diseases, Federal University of Triangulo Mineiro, UFTM, Uberaba 38025-440, MG, Brazil; (C.B.M.); (C.J.F.O.)
| |
Collapse
|