1
|
Xiao X, Wang QW, Zhou ZY, Wang LS, Huang P. Precision treatment for human epidermal growth factor receptor 2-amplified advanced rectal cancer: A case report. World J Gastrointest Oncol 2025; 17:102690. [DOI: 10.4251/wjgo.v17.i4.102690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/23/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Although targeted therapy provides survival benefits for patients with metastatic colorectal cancer, some patients develop resistance to these treatments. Human epidermal growth factor receptor 2 (HER2) is overexpressed in a subset of patients with colorectal cancer and has been established as a therapeutic target.
CASE SUMMARY This case report describes a Chinese patient with HER2-amplified advanced rectal cancer who showed no response to chemotherapy and targeted therapies against epidermal growth factor receptor and vascular endothelial growth factor but achieved a remarkable response following treatment with immune checkpoint inhibitors (ICIs) in combination with pyrotinib. The combination of oxaliplatin and ICIs with pyrotinib demonstrates synergistic effects after late-stage disease progression.
CONCLUSION ICIs and pyrotinib may be effective in treating HER2-amplified advanced rectal cancer. Chemotherapy following disease progression could enhance efficacy synergistically.
Collapse
Affiliation(s)
- Xia Xiao
- Department of Oncology, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Qing-Wen Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Zheng-Yang Zhou
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Lei-Sheng Wang
- Wuxi Medical College, Jiangnan University, Wuxi 214122, Jiangsu Province, China
| | - Pei Huang
- Department of Oncology, Wuxi No. 2 People’s Hospital, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| |
Collapse
|
2
|
Uniyal P, Kashyap VK, Behl T, Parashar D, Rawat R. KRAS Mutations in Cancer: Understanding Signaling Pathways to Immune Regulation and the Potential of Immunotherapy. Cancers (Basel) 2025; 17:785. [PMID: 40075634 PMCID: PMC11899378 DOI: 10.3390/cancers17050785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
The Kirsten rat sarcoma viral oncogene homologue (KRAS) mutation is one of the most prevailing mutations in various tumors and is difficult to cure. Long-term proliferation in carcinogenesis is primarily initiated by oncogenic KRAS-downstream signaling. Recent research suggests that it also activates the autocrine effect and interplays the tumor microenvironment (TME). Here, we discuss the emerging research, including KRAS mutations to immune evasion in TME, which induce immunological modulation that promotes tumor development. This review gives an overview of the existing knowledge of the underlying connection between KRAS mutations and tumor immune modulation. It also addresses the mechanisms to reduce the effect of oncogenes on the immune system and recent advances in clinical trials for immunotherapy in KRAS-mutated cancers.
Collapse
Affiliation(s)
- Priyanka Uniyal
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, UPES, Dehradun 248007, India;
| | - Vivek Kumar Kashyap
- Division of Cancer Immunology and Microbiology, Medicine, and Oncology Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
- South Texas Center of Excellence in Cancer Research (ST-CECR), School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali 140306, India;
| | - Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravi Rawat
- Department of Pharmaceutical Technology, School of Health Sciences and Technology, UPES, Dehradun 248007, India;
| |
Collapse
|
3
|
Zhang L, Shi J, Zhu MH, Huang Y, Lu Q, Sun P, Chen HZ, Lai X, Fang C. Liposomes-enabled cancer chemoimmunotherapy. Biomaterials 2025; 313:122801. [PMID: 39236630 DOI: 10.1016/j.biomaterials.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.
Collapse
Affiliation(s)
- Lele Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiangpei Shi
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhu Huang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
4
|
Wang H, Wang T, Yan S, Tang J, Zhang Y, Wang L, Xu H, Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: from mechanisms to clinical implication. Mol Cancer 2024; 23:268. [PMID: 39614288 PMCID: PMC11607834 DOI: 10.1186/s12943-024-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
In the realm of cancer research, the tumor microenvironment (TME) plays a crucial role in tumor initiation and progression, shaped by complex interactions between cancer cells and surrounding non-cancerous cells. Cytokines, as essential immunomodulatory agents, are secreted by various cellular constituents within the TME, including immune cells, cancer-associated fibroblasts, and cancer cells themselves. These cytokines facilitate intricate communication networks that significantly influence tumor initiation, progression, metastasis, and immune suppression. Pyroptosis contributes to TME remodeling by promoting the release of pro-inflammatory cytokines and sustaining chronic inflammation, impacting processes such as immune escape and angiogenesis. However, challenges remain due to the complex interplay among cytokines, pyroptosis, and the TME, along with the dual effects of pyroptosis on cancer progression and therapy-related complications like cytokine release syndrome. Unraveling these complexities could facilitate strategies that balance inflammatory responses while minimizing tissue damage during therapy. This review delves into the complex crosstalk between cytokines, pyroptosis, and the TME, elucidating their contribution to tumor progression and metastasis. By synthesizing emerging therapeutic targets and innovative technologies concerning TME, this review aims to provide novel insights that could enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shuxiang Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410011, China.
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Shenzhen Research Institute of Central South University, Guangdong, 518063, China.
- Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
5
|
Santoro A, Pilar G, Tan DSW, Zugazagoitia J, Shepherd FA, Bearz A, Barlesi F, Kim TM, Overbeck TR, Felip E, Cai C, Simantini E, McCulloch T, Schaefer ES. Spartalizumab in combination with platinum-doublet chemotherapy with or without canakinumab in patients with PD-L1-unselected, metastatic NSCLC. BMC Cancer 2024; 24:1307. [PMID: 39448966 PMCID: PMC11515544 DOI: 10.1186/s12885-024-12841-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Despite promising outcomes of treatment with anti-programmed cell death (PD)-1/PD-ligand (L)1 agents in combination with platinum-doublet chemotherapy (PDC) in the first-line setting, a significant unmet medical need remains in patients with PD-L1-unselected non-small cell lung cancer (NSCLC). METHODS This multicenter, open-label, phase 1b study comprising dose-confirmation and dose-expansion parts investigated the combination of spartalizumab and various PDC regimens, with or without canakinumab, in treatment-naïve patients with PD-L1-unselected, metastatic NSCLC. The primary objectives were to determine maximum tolerated dose (MTD) and/or recommended dose for expansion (RDE) of spartalizumab, with or without canakinumab, in combination with PDC in the dose-confirmation part and antitumor activity of spartalizumab in the dose-expansion part. RESULTS The MTD/RDE of spartalizumab was 300 mg every 3 weeks (Q3W) when administered with either gemcitabine (1250 mg/m2)/cisplatin (75 mg/m2) (group A; no dose-limiting toxicities [DLTs]), pemetrexed (500 mg/m2)/cisplatin (group B; 2 DLTs: grade 2 posterior reversible encephalopathy syndrome and grade 4 hyponatremia), or paclitaxel (200 mg/m2)/carboplatin area under the curve 6 min*mg/mL (group C; 1 DLT: grade 4 neutropenic colitis). The RDE of canakinumab combined with spartalizumab and pemetrexed/cisplatin (group E; no DLTs) was 200 mg Q3W (no dose-expansion part was initiated). No new safety signals were identified. In groups A, B, C, and E, the overall response rates were 57.6%, 55.3%, 51.5%, and 57.1%, respectively. Group B compared with other groups had the longest median progression-free survival (10.4 months vs. 6.2-7.5 months), overall survival (29.7 months vs. 16.1-21.0 months), and duration of response (30.1 months vs. 6.0-8.2 months). CONCLUSIONS The combination of spartalizumab and PDC, with or without canakinumab, was well tolerated across treatment groups. The antitumor activity across treatment groups was comparable with that of pembrolizumab and pemetrexed combination. Canakinumab did not appear to improve the antitumor activity when combined with spartalizumab, pemetrexed and cisplatin. TRIAL REGISTRATION The trial was registered in Clinicaltrials.gov with identifier no. NCT03064854. Date of Registration: 06 February 2017.
Collapse
Affiliation(s)
- Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Via Manzoni 56, Rozzano-Milan, 20089, Italy.
| | - Garrido Pilar
- Department of Medical Oncology, Hospital Ramón Y Cajal, Madrid, Spain
| | - Daniel S W Tan
- Department of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | - Jon Zugazagoitia
- Department of Medical Oncology, University Hospital 12 de Octubre, Madrid, Spain
| | - Frances A Shepherd
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico - CRO, Aviano, Italy
| | - Fabrice Barlesi
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Aix Marseille University, CNRS, INSERM, CRCM, APHM, CEPCM, CLIP, Marseille, France
- Faculté de Médecine, Université Paris Saclay, Kremlin Bicêtre, France
- Medical Oncology Department, Gustave Roussy, Villejuif, France
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Tobias R Overbeck
- Department of Hematology and Medical Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Enriqueta Felip
- Department of Medical Oncology Service, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Can Cai
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Eddy Simantini
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | - Eric S Schaefer
- Department of Medical Oncology, Highlands Oncology Group, Fayetteville, AZ, USA
| |
Collapse
|
6
|
Song L, Liang Y, Li Y, Guo T, Li H, Liang S. Development of an LC-TOF/MS Method to Quantify Camrelizumab in Human Serum. Molecules 2024; 29:4862. [PMID: 39459229 PMCID: PMC11510712 DOI: 10.3390/molecules29204862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/28/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
With the advantages of a high specificity, a long half-life, and a high safety, the use of antibody biologic drugs, including camrelizumab, has been rapidly increasing in clinical practice. Camrelizumab, an immune checkpoint inhibitor and humanized monoclonal antibody, is used to treat several advanced solid cancers. Measuring its concentration supports personalized dosage adjustments, influences treatment decisions for patients, strengthens the control of disease activity through therapeutic drug monitoring, and helps evaluate and prevent drug interactions in combination therapy. Because antibodies are present in complex biological matrices, quantifying monoclonal antibody drugs is challenging, and must rely on precise, selective, and reliable analytical methods. In this study, a quadrupole time-of-flight mass spectrometry TripleTOF 6600+ (AB SCIEX, Framingham, MA, USA) system equipped with a Turbo V ion source was used for the qualitative analysis of monoclonal antibodies using the data-dependent acquisition (IDA) MS/MS mode, followed by quantitative analysis using a targeted MRMHR workflow. This method showed a good linear relationship within the range of 4-160 μg/mL, with a correlation coefficient of R2 ≥ 0.996. It demonstrated an acceptable accuracy (88.95-101.18%) and precision (≤15%). Furthermore, the lower limit of quantification was found to be 4 μg/mL, with the lowest detection limit of 0.3217 μg/mL, indicating that this method is rapid, accurate, and reliable for the quantitative analysis of camrelizumab in human serum.
Collapse
Affiliation(s)
- Li Song
- College of Chemistry and Materials Science, Hebei University, Baoding 071000, China
| | - Yan Liang
- College of Pharmacy, Hebei Medical University, Shijiazhuang 050000, China
| | - Yilin Li
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Tingting Guo
- College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China
| | - Hui Li
- Hebei Institute of Drug and Medical Device Inspection, Shijiazhuang 050000, China
| | - Shuxuan Liang
- College of Chemistry and Materials Science, Hebei University, Baoding 071000, China
| |
Collapse
|
7
|
Cai S, Zhao M, Yang G, Li C, Hu M, Yang L, Xing L, Sun X. Modified spatial architecture of regulatory T cells after neoadjuvant chemotherapy in non-small cell lung cancer patients. Int Immunopharmacol 2024; 137:112434. [PMID: 38889507 DOI: 10.1016/j.intimp.2024.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
It is crucial to decipher the modulation of regulatory T cells (Tregs) in tumor microenvironment (TME) induced by chemotherapy, which may contribute to improving the efficacy of neoadjuvant chemoimmunotherapy in resectable non-small cell lung cancer (NSCLC). We retrospectively collected specimens from patients with II-III NSCLC, constituting two cohorts: a neoadjuvant chemotherapy (NAC) cohort (N = 141) with biopsy (N = 58) and postoperative specimens (N = 141), and a surgery-only cohort (N = 122) as the control group. Then, the cell density (Dens), infiltration score (InS), and Treg-cell proximity score (TrPS) were conducted using a panel of multiplex fluorescence staining (Foxp3, CD4, CD8, CK, CD31, ɑSMA). Subsequently, the association of Tregs with cancer microvessels (CMVs) and cancer-associated fibroblasts (CAFs) was analyzed. Patients with NAC treatment have a higher density of Tregs in both paired (P < 0.001) and unpaired analysis (P = 0.022). Additionally, patients with NAC treatment showed higher infiltration score (paired, P < 0.001; unpaired, P = 0.014) and more CD8+T cells around Tregs (paired/unpaired, both P < 0.001). Subgroup analysis indicated that tumors with a diameter of ≤ 5 cm exhibited increase in both Dens(Treg) and InS(Treg), and gemcitabine, pemetrexed and taxel enhanced Dens(Treg) and TrPS(CD8) following NAC. Multivariate analysis identified that the Dens(Tregs), InS(Tregs) and TrPS(CD8) were significantly associated with better chemotherapy response [OR = 8.54, 95%CI (1.69, 43.14), P = 0.009; OR = 7.14, 95%CI (1.70, 30.08), P = 0.024; OR = 5.50, 95%CI (1.09, 27.75), P = 0.039, respectively] and positive recurrence-free survival [HR = 3.23, 95%CI (1.47, 7.10), P = 0.004; HR = 2.70; 95%CI (1.27, 5.72); P = 0.010; HR = 2.55, 95%CI (1.21, 5.39), P = 0.014, respectively]. Moreover, TrPS(CD8) and TrPS(CD4) were negatively correlated with the CMVs and CAFs. These discoveries have deepened our comprehension of the immune-modulating impact of chemotherapy and underscored that the modified spatial landscape of Tregs after chemotherapy should be taken into account for personalized immunotherapy, aiming to ultimately improve clinical outcomes in patients with NSCLC.
Collapse
Affiliation(s)
- Siqi Cai
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guanqun Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chaozhuo Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mengyu Hu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liying Yang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaorong Sun
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China; Department of Nuclear Medicine, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
8
|
Chong X, Madeti Y, Cai J, Li W, Cong L, Lu J, Mo L, Liu H, He S, Yu C, Zhou Z, Wang B, Cao Y, Wang Z, Shen L, Wang Y, Zhang X. Recent developments in immunotherapy for gastrointestinal tract cancers. J Hematol Oncol 2024; 17:65. [PMID: 39123202 PMCID: PMC11316403 DOI: 10.1186/s13045-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.
Collapse
Affiliation(s)
- Xiaoyi Chong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yelizhati Madeti
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jieyuan Cai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Cong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jialin Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Liyang Mo
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Huizhen Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Siyi He
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Chao Yu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhiruo Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Boya Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yanshuo Cao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yakun Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
9
|
Eleftheriadou ED, Saroglou M, Syrigos N, Kotteas E, Kouvela M. The role of immunotherapy in patients with lung cancer and brain metastases: a narrative review of the literature. Monaldi Arch Chest Dis 2024. [PMID: 39077863 DOI: 10.4081/monaldi.2024.2967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024] Open
Abstract
Worldwide, approximately half of the patients diagnosed with lung cancer (LC) will develop, simultaneously or asynchronously, brain metastases (BMs). The existence of BMs negatively affects the quality of life and constitutes a poor prognostic factor, linked with high mortality. Locoregional therapy with surgery or radiation is, until now, the treatment of choice, especially for symptomatic patients; however, both options are linked to a high complication rate. The question arising here is whether, in asymptomatic patients, the benefit outweighs the risk and whether an alternative method can be used to treat this special category of patients. Over the last decade, immune checkpoint inhibitors (ICIs) have represented a major breakthrough in the field of oncology, and several molecules have been approved as a treatment option for LC. This review tried to analyze the tumor microenvironment of both the primary lung tumor and the BMs in order to evaluate the intracranial activity of ICIs, outline the main challenges of including these agents in the treatment of LC with BMs, highlight the available information from the main clinical trials, and mark the potential positive effect of choosing a combination therapy. In conclusion, it appears that immunotherapy has a positive effect, inhibiting the progression of BMs, but more data should be published specifically for this category of patients.
Collapse
Affiliation(s)
- Eleni D Eleftheriadou
- Department of Pulmonary Medicine, George Papanikolaou General Hospital, Thessaloniki.
| | - Maria Saroglou
- Department of Pulmonary Medicine, George Papanikolaou General Hospital, Thessaloniki.
| | - Nikolaos Syrigos
- Oncology Unit, 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens.
| | - Ellias Kotteas
- Oncology Unit, 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens.
| | - Marousa Kouvela
- Oncology Unit, 3rd Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens.
| |
Collapse
|
10
|
Dou Y, Zheng J, Kang J, Wang L, Huang D, Liu Y, He C, Lin C, Lu C, Wu D, Han R, Li L, Tang L, He Y. Mesoporous manganese nanocarrier target delivery metformin for the co-activation STING pathway to overcome immunotherapy resistance. iScience 2024; 27:110150. [PMID: 39040065 PMCID: PMC11261061 DOI: 10.1016/j.isci.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Targeting the stimulator of interferon genes (STING) pathway is a promising strategy to overcome primary resistance to immune checkpoint inhibitors in non-small cell lung cancer with the STK11 mutation. We previously found metformin enhances the STING pathway and thus promotes immune response. However, its low concentration in tumors limits its clinical use. Here, we constructed high-mesoporous Mn-based nanocarrier loading metformin nanoparticles (Mn-MSN@Met-M NPs) that actively target tumors and respond to release higher concentration of Mn2+ ions and metformin. The NPs significantly enhanced the T cells to kill lung cancer cells with the STK11 mutant. The mechanism shows that enhanced STING pathway activation promotes STING, TBKI, and IRF3 phosphorylation through Mn2+ ions and metformin release from NPs, thus boosting type I interferon production. In vivo, NPs in combination with a PD-1 inhibitor effectively decreased tumor growth. Collectively, we developed a Mn-MSN@Met-M nanoactivator to intensify immune activation for potential cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanyao Dou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Jun Kang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liping Wang
- Department of pain treatment, the seventh people’s Hospital of Chongqing, Chongqing 401320, China
| | - Daijuan Huang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chao He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Xie T, Huang C, Wang Y, Zhang H, Guo P, Phann TT, Cheng Y, Lei L, Tao Z, Gao Q, Wei H, Yu CY. An "All-In-One" Immunomodulator-Engineered Clinical Translatable Immunotherapy of Advanced Hepatocellular Carcinoma. Adv Healthc Mater 2024; 13:e2304476. [PMID: 38519415 DOI: 10.1002/adhm.202304476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Clinical treatment of advanced hepatocellular carcinoma (HCC) remains a significant challenge. Utilizing 1-bromoacetyl-3,3-dinitroazetidine (RRx-001) to downregulate the expression of innate immune checkpoint molecule, cluster of differentiation 47 (CD47), provides a powerful means for treating advanced HCC containing abundant immunosuppressive macrophages. Herein engineering of a previously optimized Doxorubicin (DOX)-delivery nanoplatform based on sodium alginate is reported to further co-deliver RRx-001 (biotinylated aldehyde alginate-doxorubicin micelle prodrug nanoplatform, BEA-D@R) for efficient immunotherapy of advanced HCC. This groundbreaking technique reveals the "all-in-one" immunotherapeutic functionalities of RRx-001. Besides the previously demonstrated functions of downregulating CD47 expression and increasing reactive nitrogen species (RNS) generation, another key function of RRx-001 for downregulating the expression of the adaptive immune checkpoint molecule programmed cell death 1 ligand 1 (PDL1) is first uncovered here. Combined with the reactive oxygen species (ROS) generation and an upregulated "eat me" signal level of DOX, BEA-D@R collectively increases RNS generation, enhances T-cell infiltration, and maximizes macrophage phagocytosis, leading to an average of 40% tumor elimination in a mice model bearing an initial tumor volume of ≈300 mm3 that mimics advanced HCC. Overall, the "all-in-one" immunotherapeutic functionalities of a clinical translatable nanoplatform are uncovered for enhanced immunotherapy of advanced HCC.
Collapse
Affiliation(s)
- Ting Xie
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cong Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yuqing Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Haitao Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Pei Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Thuy Thu Phann
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yao Cheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Zhenghao Tao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Qing Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
12
|
Zhang X, Chen R, Huo Z, Li W, Jiang M, Su G, Liu Y, Cai Y, Huang W, Xiong Y, Wang S. Blood-based molecular and cellular biomarkers of early response to neoadjuvant PD-1 blockade in patients with non-small cell lung cancer. Cancer Cell Int 2024; 24:225. [PMID: 38951894 PMCID: PMC11218110 DOI: 10.1186/s12935-024-03412-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Despite the improved survival observed in PD-1/PD-L1 blockade therapy, a substantial proportion of cancer patients, including those with non-small cell lung cancer (NSCLC), still lack a response. METHODS Transcriptomic profiling was conducted on a discovery cohort comprising 100 whole blood samples, as collected multiple times from 48 healthy controls (including 43 published data) and 31 NSCLC patients that under treatment with a combination of anti-PD-1 Tislelizumab and chemotherapy. Differentially expressed genes (DEGs), simulated immune cell subsets, and germline DNA mutational markers were identified from patients achieved a pathological complete response during the early treatment cycles. The predictive values of mutational markers were further validated in an independent immunotherapy cohort of 1661 subjects, and then confirmed in genetically matched lung cancer cell lines by a co-culturing model. RESULTS The gene expression of hundreds of DEGs (FDR p < 0.05, fold change < -2 or > 2) distinguished responders from healthy controls, indicating the potential to stratify patients utilizing early on-treatment features from blood. PD-1-mediated cell abundance changes in memory CD4 + and regulatory T cell subset were more significant or exclusively observed in responders. A panel of top-ranked genetic alterations showed significant associations with improved survival (p < 0.05) and heightened responsiveness to anti-PD-1 treatment in patient cohort and co-cultured cell lines. CONCLUSION This study discovered and validated peripheral blood-based biomarkers with evident predictive efficacy for early therapy response and patient stratification before treatment for neoadjuvant PD-1 blockade in NSCLC patients.
Collapse
Affiliation(s)
- Xi Zhang
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 710069, Shaanxi, Xi'an, China.
| | - Rui Chen
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Zirong Huo
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wenqing Li
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Mengju Jiang
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Guodong Su
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yuru Liu
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yu Cai
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Wuhao Huang
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, 300060, China
| | - Yuyan Xiong
- School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 710069, Shaanxi, Xi'an, China
| | - Shengguang Wang
- Department of Lung Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Tianjin, 300060, China.
| |
Collapse
|
13
|
Zhang X, Wu M, Chen J, Zheng K, Du H, Li B, Gu Y, Jiang J. Comparative efficacy of immune checkpoint inhibitors combined with chemotherapy in patients with advanced driver-gene negative non-small cell lung cancer: A systematic review and network meta-analysis. Heliyon 2024; 10:e30809. [PMID: 38774326 PMCID: PMC11107224 DOI: 10.1016/j.heliyon.2024.e30809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
Objective To evaluate the efficacy of different combinations of immune checkpoint inhibitors (ICIs) and chemotherapy (CT) in the treatment of advanced non-small cell lung cancer (NSCLC). Methods We obtained relevant randomized controlled trials (RCTs) from databases such as PubMed, Embase, Web of Science, and The Cochrane Library up to May 31, 2023. The analysis of clinical prognostic factors was performed using R 4.2.3 and STATA 15.0. The main outcomes measured were overall survival (OS) and progression-free survival (PFS), while secondary outcomes included the objective response rate (ORR), disease control rate (DCR), and treatment-related adverse events of grade 3-5 severity (Grade ≥3 TRAE). Results A total of 17 randomized controlled trials (RCTs) were conducted between 2012 and 2023, involving 7792 patients. These trials evaluated 11 different treatment methods. The results of these trials showed that in terms of overall survival (OS) and progression-free survival (PFS), the combination of tislelizumab with chemotherapy and the combination of camrelizumab with chemotherapy were particularly effective. Moreover, when compared with other combination therapies, pembrolizumab combined with chemotherapy showed superiority in terms of disease control rate (DCR) and objective response rate (ORR). Subgroup analyses further demonstrated that the addition of immune checkpoint inhibitors (ICIs) to chemotherapy significantly improved PFS and OS in patients without liver metastasis and in those with brain metastasis. Additionally, carboplatin-based combination therapy was found to confer favorable survival benefits in terms of PFS, while cisplatin-based combination therapy showed the most favorable outcomes in terms of OS. The results of subgroup analyses for overall survival (OS) showed that the combination of immunotherapy and chemotherapy yielded positive outcomes in specific subgroups. These subgroups were characterized by PD-L1 Tumor Proportion Score (TPS) of 50 % or higher, usage of anti-PD-1 medications, age below 65, male gender, smoking history, and non-squamous cell carcinoma histology. Superior effectiveness was demonstrated only in extending the progression-free survival (PFS) of female patients and patients with squamous carcinoma. Meanwhile, other patient cohorts did not show the same level of improvement. Conclusions Tislelizumab, camrelizumab or pembrolizumab combined with chemotherapy may be the optimal first-line treatment strategies for NSCLC.
Collapse
Affiliation(s)
- Xuewen Zhang
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Min Wu
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Jie Chen
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Kaiman Zheng
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Huchen Du
- Department of Oncology, 903 Hosptial, Sichuan, China
| | - Bo Li
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Yujia Gu
- Department of Oncology, Graduate School of Qinghai University, Qinghai, China
| | - Jun Jiang
- Division III, Department of Medical Oncology, Affiliated Hospital of Qinghai University, Qinghai, China
| |
Collapse
|
14
|
Han Y, Tian X, Zhai J, Zhang Z. Clinical application of immunogenic cell death inducers in cancer immunotherapy: turning cold tumors hot. Front Cell Dev Biol 2024; 12:1363121. [PMID: 38774648 PMCID: PMC11106383 DOI: 10.3389/fcell.2024.1363121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Immunotherapy has emerged as a promising cancer treatment option in recent years. In immune "hot" tumors, characterized by abundant immune cell infiltration, immunotherapy can improve patients' prognosis by activating the function of immune cells. By contrast, immune "cold" tumors are often less sensitive to immunotherapy owing to low immunogenicity of tumor cells, an immune inhibitory tumor microenvironment, and a series of immune-escape mechanisms. Immunogenic cell death (ICD) is a promising cellular process to facilitate the transformation of immune "cold" tumors to immune "hot" tumors by eliciting innate and adaptive immune responses through the release of (or exposure to) damage-related molecular patterns. Accumulating evidence suggests that various traditional therapies can induce ICD, including chemotherapy, targeted therapy, radiotherapy, and photodynamic therapy. In this review, we summarize the biological mechanisms and hallmarks of ICD and introduce some newly discovered and technologically innovative inducers that activate the immune system at the molecular level. Furthermore, we also discuss the clinical applications of combing ICD inducers with cancer immunotherapy. This review will provide valuable insights into the future development of ICD-related combination therapeutics and potential management for "cold" tumors.
Collapse
Affiliation(s)
| | | | | | - Zhenyong Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Zhang Y, Zhang H, Xu H, Wang Y, Feng L, Yi F. Efficacy and safety of hepatic arterial infusion chemotherapy combined with lenvatinib and PD-1 inhibitors for advanced hepatocellular carcinoma with macrovascular invasion. World J Surg Oncol 2024; 22:122. [PMID: 38711095 PMCID: PMC11071192 DOI: 10.1186/s12957-024-03396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND AND AIMS The prognosis of hepatocellular carcinoma (HCC) with macrovascular invasion(MaVI)is poor, and the treatment is limited. This study aims to explore the efficacy and safety of hepatic arterial infusion chemotherapy (HAIC), combined with lenvatinib and programmed cell death-1(PD-1) inhibitor in the first-line treatment of HCC with MaVI. METHODS From July 2020 to February 2022, we retrospectively analyzed consecutive patients with HCC with MaVI who received hepatic arterial infusion FOLFOX(oxaliplatin, 5-fluorouracil, and leucovorin)combined with lenvatinib and PD-1 inhibitor. The efficacy was evaluated by RECIST 1.1. Kaplan-Meier was used to explore the overall survival and progression-free survival (PFS), and the COX regression model was used to analyze the risk factors of PFS. Adverse events (AEs) were evaluated according to CTCAE5.0. RESULTS Thirty-two patients with HCC complicated with MaVI were recruited from the Second Affiliated Hospital of Nanchang University. Among the patients treated with HAIC combined with lenvatinib and PD-1 inhibitor, ten patients (31.25%) got partial response, eighteen patients (56.25%) maintained stable disease and four patients (12.50%) suffered progressive disease during follow-up; and objective response rate was 31.25%, and disease control rate was 87.5%. The median PFS was 179 days. Univariate and multivariate Cox analysis showed that the extrahepatic metastases and Child-Pugh score were independent prognostic factors of PFS. Twenty-two (68.75%) patients suffered adverse reactions. The main AEs were elevated transaminase (46.87%), thrombocytopenia (40.63%), hypoalbuminemia (28.13%), nausea and vomiting (21.88%), leukopenia (18.76%), abdominal pain (15.63%), hypertension (15.63%) and fever (15.63%). There were seven cases (21.88%) that had grade 3 or above AEs; Among them, two cases with elevated transaminase (6.25%), leukopenia, thrombocytopenia, nausea and vomiting, abdominal pain, and diarrhea occurred in one case respectively. Moreover, no treatment-related death was observed. CONCLUSIONS Hepatic arterial infusion of FOLFOX combined with lenvatinib and PD-1 inhibitor as the first-line treatment for HCC complicated with MaVI is effective, and adverse reactions are tolerable.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. of China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, P.R. of China
| | - Haiyan Zhang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. of China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, P.R. of China
| | - Haoqian Xu
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. of China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, P.R. of China
| | - Ying Wang
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. of China
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, P.R. of China
| | - Long Feng
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. of China.
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, P.R. of China.
| | - Fengming Yi
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, 330006, P.R. of China.
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Nanchang, 330006, P.R. of China.
| |
Collapse
|
16
|
Zhu L, Yu X, Tang X, Hu C, Wu L, Liu Y, Zhou Q. Evolving landscape of treatments targeting the microenvironment of liver metastases in non-small cell lung cancer. Chin Med J (Engl) 2024; 137:1019-1032. [PMID: 38251678 PMCID: PMC11062672 DOI: 10.1097/cm9.0000000000002981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
ABSTRACT Liver metastases (LMs) are common in lung cancer. Despite substantial advances in diagnosis and treatment, the survival rate of patients with LM remains low as the immune-suppressive microenvironment of the liver allows tumor cells to evade the immune system. The impact of LMs on the outcomes of immune checkpoint inhibitors in patients with solid tumors has been the main focus of recent translational and clinical research. Growing evidence indicates that the hepatic microenvironment delivers paracrine and autocrine signals from non-parenchymal and parenchymal cells. Overall, these microenvironments create pre- and post-metastatic conditions for the progression of LMs. Herein, we reviewed the epidemiology, physiology, pathology and immunology, of LMs associated with non-small cell lung cancer and the role and potential targets of the liver microenvironment in LM in each phase of metastasis. Additionally, we reviewed the current treatment strategies and challenges that should be overcome in preclinical and clinical investigations. These approaches target liver elements as the basis for future clinical trials, including combinatorial interventions reported to resolve hepatic immune suppression, such as immunotherapy plus chemotherapy, immunotherapy plus radiotherapy, immunotherapy plus anti-angiogenesis therapy, and surgical resection.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan 610041, China
| | - Xiaojun Tang
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qinghua Zhou
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
17
|
Ma Z, Xiao Z, Yin P, Wen K, Wang W, Yan Y, Lin Z, Li Z, Wang H, Zhang J, Mao K. Comparison of survival benefit and safety between surgery following conversion therapy versus surgery alone in patients with surgically resectable hepatocellular carcinoma at CNLC IIb/IIIa stage: a propensity score matching study. Int J Surg 2024; 110:2910-2921. [PMID: 38353702 DOI: 10.1097/js9.0000000000001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/31/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE The objective of this study is to evaluate and compare the survival benefit and safety of surgery following conversion therapy versus surgery alone in patients diagnosed with surgically resectable hepatocellular carcinoma (HCC) at China Liver Cancer Staging (CNLC) IIb/IIIa stage. METHODS A total of 95 patients diagnosed with surgically resectable CNLC IIb/IIIa HCC were retrospectively enrolled in our study from November 2018 to December 2022. Among them, 30 patients underwent conversion therapy followed by hepatectomy, while the remaining 65 received surgery alone. The primary endpoint was recurrence-free survival (RFS). Propensity score matching was employed to minimize bias in the retrospective analysis. RESULTS Compared to the surgery alone group, the conversion therapy group demonstrated a significantly prolonged median RFS (17.1 vs. 7.0 months; P =0.014), a reduced incidence of microvascular invasion (MVI, 23.3 vs. 81.5%; P <0.001), and a comparable rate of achieving Textbook Outcome in Liver Surgery (TOLS, 83.3 vs. 76.9%; P =0.476). Multivariate analysis indicated that conversion therapy was independently associated with improved RFS after hepatectomy (HR=0.511, P =0.027). The same conclusions were obtained after propensity score matching. CONCLUSIONS The findings of our study offer preliminary evidence that preoperative conversion therapy significantly prolongs RFS in patients with surgically resectable HCC at CNLC IIb/IIIa stage. Furthermore, combining conversion therapy and hepatectomy represents a relatively safe treatment strategy.
Collapse
Affiliation(s)
- Zifeng Ma
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Pengfei Yin
- Department of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Zijian Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Zonglin Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Haikuo Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Jianlong Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou
| |
Collapse
|
18
|
Yang X, Li Q, Zeng T. Peripheral CD4 + T cells correlate with response and survival in patients with advanced non-small cell lung cancer receiving chemo-immunotherapy. Front Immunol 2024; 15:1364507. [PMID: 38650951 PMCID: PMC11033411 DOI: 10.3389/fimmu.2024.1364507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Background The aim of the present study was to explore the potential of peripheral immune cells in predicting the response and prognosis of patients with advanced non-small cell lung cancer (NSCLC) receiving anti-PD-1 immunotherapy and platinum-based chemotherapy. Participants and Methods We utilized flow cytometry to examine the levels and dynamics of blood immune cells in 79 advanced NSCLC patients treated with the chemoimmunotherapy between December 2019 and January 2022. The pre- and post-treatment blood samples were collected within 3 days prior to the initiation of the first and third cycle of combination treatment, respectively. Progression-free survival (PFS) and overall survival (OS) analyses were conducted using Kaplan-Meier method and Cox regression models. Results The pre-treatment CD4+/Total T cells ratio was significantly higher in responders than non-responders (P < 0.05). The levels of pre-treatment total lymphocytes (P = 0.012), total B lymphocytes (P = 0.025), and NK cells (P = 0.022), and post-treatment NK cells (P = 0.011) and NKT cells (P = 0.035) were significantly associated with OS. Post-treatment CD8+/Total T cells ratio was positively correlated with OS (P = 0.038). In multivariate analysis, post-treatment NK cells and post-treatment CD4+CD8+/Total T cells ratio were negatively associated with OS (hazard ratio [HR] = 10.30, P = 0.038) and PFS (HR = 1.95, P = 0.022), respectively. Notably, significantly positive correlations were observed between CD4+/Total T cells ratio and prognosis both before and after treatment (P < 0.05). Conclusion To summarize, our finding reveals that high CD4+/total T cells ratio was associated with favorable response and prognosis, highlighting its potential as a predictive biomarker to guide the selection of likely responders to platinum and anti-PD-1 combination therapy.
Collapse
Affiliation(s)
- Xin Yang
- Department of Cardio-Thoracic Surgery, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Qiao Li
- Department of Pathology, Deyang People’s Hospital, Deyang, Sichuan, China
| | - Tianyang Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Seo HS, Han JH, Lim J, Bae GH, Byun MJ, Wang CPJ, Han J, Park J, Park HH, Shin M, Park TE, Kim TH, Kim SN, Park W, Park CG. Enhanced Postsurgical Cancer Treatment Using Methacrylated Glycol Chitosan Hydrogel for Sustained DNA/Doxorubicin Delivery and Immunotherapy. Biomater Res 2024; 28:0008. [PMID: 38532906 PMCID: PMC10964224 DOI: 10.34133/bmr.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/09/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.
Collapse
Affiliation(s)
- Hee Seung Seo
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jun-Hyeok Han
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jaesung Lim
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Ga-Hyun Bae
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth,
SKKU Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Min Ji Byun
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Jieun Han
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine,
University of Hawai'i at Manoa, Honolulu, HI 96813, USA
| | - Hee Ho Park
- Department of Bioengineering,
Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering,
Ulsan National Institute of Science and Technology, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering,
Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Se-Na Kim
- Research and Development Center,
MediArk Inc., 1, Chungdae-ro, Seowon-gu, Cheongju, Chungcheongbuk 28644, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering,
SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of MetaBioHealth,
SKKU Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Institute of Biotechnology and Bioengineering, College of Biotechnology and Bioengineering, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Biomaterials Research Center,
Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering,
SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence,
Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
- Biomedical Institute for Convergence, SKKU, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Republic of Korea
| |
Collapse
|
20
|
Kozai H, Ogino H, Mitsuhashi A, Nguyen NT, Tsukazaki Y, Yabuki Y, Ozaki R, Yoneda H, Sato S, Hanibuchi M, Shinohara T, Nokihara H, Nishioka Y. Potential of fluoropyrimidine to be an immunologically optimal partner of immune checkpoint inhibitors through inducing immunogenic cell death for thoracic malignancies. Thorac Cancer 2024; 15:369-378. [PMID: 38146645 PMCID: PMC10864125 DOI: 10.1111/1759-7714.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are a revolutionary paradigm in the treatment of thoracic malignancies and chemoimmunotherapy is a current standard care in this field. Chemotherapeutic agents are known to induce not only direct cytotoxic effects on tumor cells but also immune modulating effects, such as stimulating immunogenic cell death (ICD). Currently, either pemetrexed (PEM) or taxane plus platinum are combined with ICIs for patients with non-small cell lung cancer (NSCLC); however, it is still unknown whether these agents are immunologically optimal partners for ICIs. METHODS To determine the immunologically optimal chemotherapeutic agent, we first evaluated the ability of several chemotherapeutic agents, including platinum, PEM, taxane, and 5-fluorouracil (5-FU) to induce ICD using several thoracic tumor cell lines in vitro. ICD was evaluated by the cell surface expression of calreticulin (CRT) and adenosine-triphosphate (ATP) secretion. We further performed an antitumor vaccination assay in vivo. RESULTS 5-FU induced cell surface expression of CRT and ATP secretion most efficiently among the several chemotherapeutic agents. This effect was enhanced when it was combined with platinum. In the antitumor vaccination assay in vivo, we found that vaccination with dying-AB1-HA (a murine malignant mesothelioma cell line) cells treated with 5-FU, but neither PEM nor PTX, reduced the tumor growth of living-AB1-HA cells inoculated 1 week after vaccination by recruiting CD3+ CD8+ T cells into the tumor microenvironment. CONCLUSION Our findings indicate that fluoropyrimidine can be an immunologically optimal partner of ICIs through the induction of ICD for thoracic malignancies.
Collapse
Affiliation(s)
- Hiroyuki Kozai
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Hirokazu Ogino
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Atsushi Mitsuhashi
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Na Thi Nguyen
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Yuki Tsukazaki
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Yohei Yabuki
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Ryohiko Ozaki
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Hiroto Yoneda
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Seidai Sato
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Masaki Hanibuchi
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
- Department of Community Medicine for RespirologyHematology, and Metabolism, Graduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Tsutomu Shinohara
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
- Department of Community Medicine for RespirologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| | - Hiroshi Nokihara
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
- Respiratory Medicine, Center Hospital of the National Center for Global Health and MedicineTokyoJapan
| | - Yasuhiko Nishioka
- Department of Respiratory Medicine and RheumatologyGraduate School of Biomedical Sciences, Tokushima UniversityTokushimaJapan
| |
Collapse
|
21
|
Li HF, Zhu N, Wu JJ, Shi YN, Gu J, Qin L. Celastrol Elicits Antitumor Effects through Inducing Immunogenic Cell Death and Downregulating PD-L1 in ccRCC. Curr Pharm Des 2024; 30:1265-1278. [PMID: 38584553 DOI: 10.2174/0113816128288970240321073436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Targeting immunogenic cell death (ICD) is considered a promising therapeutic strategy for cancer. However, the commonly identified ICD inducers promote the expression of programmed cell death ligand 1 (PD-L1) in tumor cells, thus aiding them to evade the recognition and killing by the immune system. Therefore, the finding of novel ICD inducers to avoid enhanced PD-L1 expression is of vital significance for cancer therapy. Celastrol (CeT), a triterpene isolated from Tripterygium wilfordii Hook. F induces various forms of cell death to exert anti-cancer effects, which may make celastrol an attractive candidate as an inducer of ICD. METHODS In the present study, bioinformatics analysis was combined with experimental validation to explore the underlying mechanism by which CeT induces ICD and regulates PD-L1 expression in clear cell renal cell carcinoma (ccRCC). RESULTS The results showed that EGFR, IKBKB, PRKCQ and MAPK1 were the crucial targets for CeT-induced ICD, and only MAPK1 was an independent prognostic factor for the overall survival (OS) of ccRCC patients. In addition, CeT triggered autophagy and up-regulated the expressions of HMGB1 and CRT to induce ICD in 786-O cells in vitro. Importantly, CeT can down-regulate PD-L1 expression through activating autophagy. At the molecular level, CeT suppressed PD-L1 via the inhibition of MAPK1 expression. Immunologically, the core target of celastrol, MAPK1, was tightly correlated with CD8+ T cells and CD4+ T cells in ccRCC. CONCLUSION These findings indicate that CeT not only induces ICD but also suppresses PD-L1 by down-regulating MAPK1 expression, which will provide an attractive strategy for ccRCC immunotherapy.
Collapse
Affiliation(s)
- Hong-Fang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Department of Clinical Pharmacy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Jia-Jun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Department of Clinical Pharmacy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Ya-Ning Shi
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Department of Clinical Pharmacy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and its Application, Department of Clinical Pharmacy, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
- Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China
| |
Collapse
|
22
|
Ge Y, Li J, Gong W, Wang J, Wei X, Liu J, Wang S, Wang L, Sun H, Cheng Q, Sun Y, Dang Q, Sun Y, Gao A. Efficacy of first-line treatment options beyond RET-TKIs in advanced RET-rearranged non-small cell lung cancer: A multi-center real-world study. Cancer Med 2024; 13:e6960. [PMID: 38349001 PMCID: PMC10832335 DOI: 10.1002/cam4.6960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Although RET-tyrosine kinase inhibitors (RET-TKIs) are the preferred first-line therapy for advanced RET-arranged NSCLC, most patients cannot afford them. In this population, bevacizumab, immunotherapy, and chemotherapy are the most commonly used regimens. However, the optimal scheme beyond RET-TKIs has not been defined in the first-line setting. METHODS This retrospective study included 86 stage IV NSCLC patients harboring RET rearrangement from six cancer centers between May 2017 and October 2022. RET-TKIs, chemotherapy, or one of the combination therapies (including immune checkpoint inhibitor (ICI) combined with chemotherapy (I + C), bevacizumab combined with chemotherapy (B + C), ICI and bevacizumab combined with chemotherapy (I + B + C)), were used as the first-line therapeutics. The clinical outcomes and safety were evaluated. RESULTS Fourteen of the 86 patients received RET-TKIs, 57 received combination therapies, and 15 received chemotherapy alone. Their medium PFS (mPFS) were 16.92 months (95% CI: 5.9-27.9 months), 8.7 months (95% CI: 6.5-11.0 months), and 5.55 months (95% CI: 2.4-8.7 months) respectively. Among all the combination schemes, B + C (p = 0.007) or I + B + C (p = 0.025) gave beneficial PFS compared with chemotherapy, while I + C treatment (p = 0.169) generated comparable PFS with chemotherapy. In addition, I + B + C treatment had a numerically longer mPFS (12.21 months) compared with B + C (8.74 months) or I + C (7.89 months) schemes. In terms of safety, I + B + C treatment led to the highest frequency of hematological toxicity (50%) and vomiting (75%), but no ≥G3 adverse effect was observed. CONCLUSIONS I + B + C might be a preferred option beyond RET-TKIs in the first-line therapy of RET-arranged NSCLC. Combination with Bevacizumab rather than with ICIs offered favorable survival compared with chemotherapy alone.
Collapse
Affiliation(s)
- Yihui Ge
- Phase I Clinical Research CenterShandong University Cancer CenterJinanChina
| | - Juan Li
- Phase I Clinical Research CenterShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Wenjing Gong
- Medical DepartmentThe Affiliated Yantai Yuhuangding Hospital of Qingdao UniversityYantaiChina
| | - Jian Wang
- Department of Medical OncologyQilu Hospital of Shandong UniversityJinanChina
| | - Xiaojuan Wei
- Department of OncologyThe Affiliated Hospital of Qingdao UniversityQingdaoChina
| | - Jing Liu
- Department of OncologyAffiliated Hospital of Weifang Medical UniversityWeifangP. R. China
| | - Shuyun Wang
- Phase I Clinical Research CenterShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Leirong Wang
- Phase I Clinical Research CenterShandong University Cancer CenterJinanChina
| | | | - Qinglei Cheng
- Phase I Clinical Research CenterShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | | | - Qi Dang
- Phase I Clinical Research CenterShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Yuping Sun
- Phase I Clinical Research CenterShandong University Cancer CenterJinanChina
| | - Aiqin Gao
- Department of Thoracic Radiation OncologyShandong University Cancer CenterJinanChina
| |
Collapse
|
23
|
Liang J, Qiao X, Qiu L, Xu H, Xiang H, Ding H, Chen Y. Engineering Versatile Nanomedicines for Ultrasonic Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305392. [PMID: 38041509 PMCID: PMC10797440 DOI: 10.1002/advs.202305392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Indexed: 12/03/2023]
Abstract
Due to the specific advantages of ultrasound (US) in therapeutic disease treatments, the unique therapeutic US technology has emerged. In addition to featuring a low-invasive targeted cancer-cell killing effect, the therapeutic US technology has been demonstrated to modulate the tumor immune landscape, amplify the therapeutic effect of other antitumor therapies, and induce immunosensitization of tumors to immunotherapy, shedding new light on the cancer treatment. Tremendous advances in nanotechnology are also expected to bring unprecedented benefits to enhancing the antitumor efficiency and immunological effects of therapeutic US, as well as therapeutic US-derived bimodal and multimodal synergistic therapies. This comprehensive review summarizes the immunological effects induced by different therapeutic US technologies, including ultrasound-mediated micro-/nanobubble destruction (UTMD/UTND), sonodynamic therapy (SDT), and focused ultrasound (FUS), as well as the main underlying mechanisms involved. It is also discussed that the recent research progress of engineering intelligent nanoplatform in improving the antitumor efficiency of therapeutic US technologies. Finally, focusing on clinical translation, the key issues and challenges currently faced are summarized, and the prospects for promoting the clinical translation of these emerging nanomaterials and ultrasonic immunotherapy in the future are proposed.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| |
Collapse
|
24
|
Li J, Zhang H, Zhu H, Li H. Clinical outcomes and immunological evaluation of toripalimab combination for cancer treatment: A systematic review and meta-analysis of randomized controlled trials. Int Immunopharmacol 2023; 125:111176. [PMID: 37948860 DOI: 10.1016/j.intimp.2023.111176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE This study was performed to evaluate the efficacy, safety and immunological function of toripalimab combination therapy, aiming to provide a reference for the clinical combined use of toripalimab and the development of subsequent indications for cancer treatment. MATERIALS AND METHODS The meta-analysis was conducted by searching PubMed, Cochrane Library, Web of Science, EMBASE, CNKI database and Wanfang database until September 22, 2023. Only randomized controlled trials (RCTs) that involved cancer participants that received toripalimab combination therapy including a combination and control group were selected. The clinical outcomes of complete response rate (CR), objective response rate (ORR), overall survival (OS), progression-free survival (PFS), treatment related adverse effects (AEs) and immune-related adverse effects (irAEs) and immunological function index (CD3+, CD4+, CD8+ and CD4+/CD8+ T cells ratio) were extracted and evaluated. A random or fixed-effects models, as appropriate, were selected to calculate pooled effect estimates using Stata software (version 12.0). Subgroup analysis was done to estimate whether the effects of PD-L1 expression on PFS. Egger's test were carried out to measure publication bias. RESULTS A total of 11 RCTs involving 1856 patients met the inclusion criteria. Both toripalimab plus chemotherapy and toripalimab plus targeted therapy had a trend of better CR [RR = 1.74, 95%CI (1.23, 2.45), P = 0.002], OS [HR = 1.94, 95%CI (1.76, 2.15), P < 0.001] and PFS [HR = 1.70, 95%CI (1.57, 1.83), P < 0.001], and an improvement of ORR [RR = 1.21, 95%CI (1.09, 1.35), P = 0.001] was found with toripalimab plus chemotherapy while not that plus targeted therapy compared to monotherapy. Subgroup analysis showed that toripalimab plus chemotherapy extended PFS whether PD-L1 positive or negative [HR = 1.78, 95%CI (1.60, 1.98), P < 0.001; HR = 1.60, 95%CI (1.37, 1.87), P < 0.001]. Additionally, toripalimab combined regimens significantly increased the proportion of CD3+, CD4+, and CD4+/CD8+ T cells [SMD = 0.79, 95% CI (0.19, 1.40), p = 0.01; SMD = 1.40, 95% CI (0.72, 2.07), p < 0.001; SMD = 1.46, 95% CI (0.64, 2.28), p < 0.001]. The incidence of any grade [RR = 1.65, 95%CI (1.25, 2.18), P < 0.001] and grade 3 or worse irAEs [RR = 1.65, 95%CI (1.25, 2.18), P < 0.001] were higher with toripalimab combined regimens as compared to single treatment while no difference was found for treatment related AEs. Sensitivity analysis indicated that no individual study had influence on the pooled results. CONCLUSIONS Based on the available data, both toripalimab plus chemotherapy and toripalimab plus targeted therapy demonstrated superior clinical outcomes and regulation of cellular immunity at the cost of greater but manageable toxicity. More clinical trials need to be performed to further evaluate the efficacy and safety for other toripalimab combined regimens.
Collapse
Affiliation(s)
- Jing Li
- Pharmaceutical Department, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Zhang
- Pharmaceutical Department, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongda Zhu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan, China.
| | - Hongxia Li
- Pharmaceutical Department, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Ding Y, Wang S, Qiu Z, Zhu C, Wang Y, Zhao S, Qiu W, Wang K, Lv J, Qi W. The worthy role of hepatic arterial infusion chemotherapy in combination with anti-programmed cell death protein 1 monoclonal antibody immunotherapy in advanced hepatocellular carcinoma. Front Immunol 2023; 14:1284937. [PMID: 38022559 PMCID: PMC10644007 DOI: 10.3389/fimmu.2023.1284937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Systemic therapy remains the primary therapeutic approach for advanced hepatocellular carcinoma (HCC). Nonetheless, its efficacy in achieving control of intrahepatic lesions is constrained. Hepatic arterial infusion chemotherapy (HAIC) is a therapeutic approach that combines localized treatment with systemic antitumor effects, which aim is to effectively manage the progression of cancerous lesions within the liver, particularly in patients with portal vein tumor thrombosis (PVTT). Combining HAIC with anti-programmed cell death protein 1 (anti-PD-1) monoclonal antibody (mAb) immunotherapy is anticipated to emerge as a novel therapeutic approach aimed at augmenting the response inside the localized tumor site and achieving prolonged survival advantages. In order to assess the effectiveness, safety, and applicability of various therapeutic modalities and to address potential molecular mechanisms underlying the efficacy of HAIC-sensitizing immunotherapy, we reviewed the literature about the combination of HAIC with anti-PD-1 mAb therapies.
Collapse
Affiliation(s)
- Yixin Ding
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shasha Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Zhenkang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunyang Zhu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yan Wang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Shufen Zhao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wensheng Qiu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Kongjia Wang
- Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jing Lv
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Weiwei Qi
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Wang L, Geng H, Liu Y, Liu L, Chen Y, Wu F, Liu Z, Ling S, Wang Y, Zhou L. Hot and cold tumors: Immunological features and the therapeutic strategies. MedComm (Beijing) 2023; 4:e343. [PMID: 37638340 PMCID: PMC10458686 DOI: 10.1002/mco2.343] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/29/2023] Open
Abstract
The "hotness" or "coldness" of the tumors are determined by the information of the cancer cells themselves, tumor immune characteristics, tumor microenvironment, and signaling mechanisms, which are key factors affecting cancer patients' clinical efficacy. The switch mechanism of "hotness" and "coldness" and its corresponding pathological characteristics and treatment strategies are the frontier and hot spot of tumor treatment. How to distinguish the "hotness" or "coldness" effectively and clarify the causes, microenvironment state, and characteristics are very important for the tumor response and efficacy treatments. Starting from the concept of hot and cold tumor, this review systematically summarized the molecular characteristics, influencing factors, and therapeutic strategies of "hot and cold tumors," and analyzed the immunophenotypes, the tumor microenvironment, the signaling pathways, and the molecular markers that contribute to "hot and cold tumors" in details. Different therapeutic strategies for "cold and hot tumors" based on clinical efficacy were analyzed with drug targets and proteins for "cold and hot tumors." Furthermore, this review combines the therapeutic strategies of different "hot and cold tumors" with traditional medicine and modern medicine, to provide a basis and guidance for clinical decision-making of cancer treatment.
Collapse
Affiliation(s)
- Lianjie Wang
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hui Geng
- Department of Internal MedicineShanghai International Medical CenterShanghaiChina
| | - Yujie Liu
- Department of NephrologyShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lei Liu
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanhua Chen
- Department of the Tumor Research Center, Academy of Integrative MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Fanchen Wu
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhiyi Liu
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shiliang Ling
- Department of Medical OncologyNingbo Hospital of Traditional Chinese Medicine, Zhejiang ProvinceNingboChina
| | - Yan Wang
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lihong Zhou
- Department of Medical Oncology and Cancer InstituteShuguang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
27
|
Tian Y, Jin W, Sun H, Jin D, Kang D, Li Z, Piao L. Modified Hepatic Arterial Infusion Chemotherapy Combined with Lenvatinib and Camrelizumab for Advanced HCC: Two Case Reports. J Hepatocell Carcinoma 2023; 10:1587-1593. [PMID: 37791067 PMCID: PMC10542216 DOI: 10.2147/jhc.s426174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Background Advanced-stage hepatocellular carcinoma (HCC), especially huge HCC or portal vein tumour thrombus (PVTT), is difficult to treat, and the prognosis is poor. The advantages of hepatic artery infusion chemotherapy (HAIC) combined with targeted therapy and immunotherapy for this complex disease are gradually becoming apparent. However, HAIC still has some inevitable disadvantages, such as arterial perfusion therapy requiring a long time, which results in many patients having difficulty completing the procedure. Modified HAIC (mHAIC)-based oxaliplatin and S-1 is a new treatment option for huge HCC or PVTT that can reduce complications and improve patient compliance. We report two cases of huge HCC or PVTT that were successfully treated with mHAIC combined with lenvatinib and camrelizumab. The clinical presentations, treatment strategies, and outcomes of these cases are presented. Case Presentation Case 1: A 52-year-old female was found to have a huge HCC with a size of 14×11 cm. She was treated with one cycle of mHAIC combined with transcatheter arterial chemoembolization (TACE), lenvatinib and camrelizumab and 3 cycles of mHAIC in combination with lenvatinib and camrelizumab. The patient's follow-up maintenance therapy with lenvatinib and camrelizumab has been evaluated for efficacy in achieving complete response (CR). Case 2: A 57-year-old man was diagnosed with advanced HCC in combination with PVTT. He achieved partial remission (PR) after four cycles of mHAIC combined with lenvatinib and camrelizumab. This was followed by treatment with lenvatinib and camrelizumab with an efficacy assessment for CR, and progression-free survival (PFS) was 7 months. Conclusion For advanced HCC with a large mass or PVTT, mHAIC combined with lenvatinib and camrelizumab is a safe and effective treatment with good patient compliance.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Oncology, The Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, People’s Republic of China
| | - Wenbiao Jin
- Department of Oncology, The Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, People’s Republic of China
| | - Honghua Sun
- Department of Oncology, The Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, People’s Republic of China
| | - Dehao Jin
- Department of Radiology, Yanbian Maternal and Child Health Hospital, Yanji, Jilin Province, People’s Republic of China
| | - Dongxu Kang
- Department of Oncology, The Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, People’s Republic of China
| | - Zhiyu Li
- Department of Oncology, The Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, People’s Republic of China
| | - Longzhen Piao
- Department of Oncology, The Affiliated Hospital of Yanbian University, Yanji City, Jilin Province, People’s Republic of China
| |
Collapse
|
28
|
Ahmed Al-Madhagi H. Computational Identification of Most Deleterious Missense Mutations in Human PD-1 Gene. ScientificWorldJournal 2023; 2023:4360203. [PMID: 37583448 PMCID: PMC10425257 DOI: 10.1155/2023/4360203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/22/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
Traditional cancer treatment approaches are often hindered by the presence of toxic side effects and the high rate of relapse observed in treated organs. In contrast, novel immunotherapeutic strategies targeting immune checkpoint inhibitors, particularly PD-1, have demonstrated promising results with minimal adverse effects. However, the emergence of immunotherapeutic-resistant tumors, predominantly caused by intrinsic mutations, poses a significant obstacle to successful treatment outcomes. Consequently, the primary objective of this study was to screen for the most detrimental missense mutations in the PD-1 gene associated with immunotherapeutic resistance. To achieve this aim, a comprehensive screening process utilizing 20 web servers, incorporating both sequence- and structure-based methodologies, was undertaken. Through meticulous analysis and mutual disease association sorting, four specific missense mutations were successfully identified. These mutations, namely, R38C, D61V, R94C, and D117V, emerged as the leading contributors to genetic cancer progression and immunotherapeutic resistance against PD-1 blockers. The findings presented in this study are supported by multiple lines of evidence. A thorough examination of protein topology, structural alignment, docking interactions with PD-L1, and protein flexibility collectively confirmed the pathogenic nature of these sorted mutations. By considering these various aspects, we have gained a comprehensive understanding of the underlying mechanisms driving immunotherapeutic resistance. In conclusion, the comprehensive screening process undertaken in this study has successfully identified R38C, D61V, R94C, and D117V as the primary mutations contributing to genetic cancer progression and immunotherapeutic resistance against PD-1 blockers. The integration of protein topology analysis, structural alignment, docking studies with PD-L1, and assessment of protein flexibility have collectively provided robust evidence to support the pathogenic significance of these mutations.
Collapse
|
29
|
Wu Y, Li K, Liang S, Lou X, Li Y, Xu D, Wu Y, Wang Y, Cui W. An ICD-Associated DAMP Gene signature predicts survival and immunotherapy response of patients with lung adenocarcinoma. Respir Res 2023; 24:142. [PMID: 37259066 PMCID: PMC10230791 DOI: 10.1186/s12931-023-02443-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/07/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND While some lung adenocarcinoma (LUAD) patients benefit long-term from treatment with immune checkpoint inhibitors, the sad reality is that a considerable proportion of patients do not. The classification of the LUAD tumor microenvironment (TME) can be used to conceptually comprehend primary resistance mechanisms. In addition, the most recent research demonstrates that the release of damage-associated molecular pattern (DAMP) in TME by immunogenic cell death (ICD) may contribute to the adaptive immune response. Currently, however, there is no such comprehensive research on this topic in LUAD patients. Therefore, we set out to investigate how to reverse the poor infiltration characteristics of immune cells and boost antitumor immunity by identifying DAMP model. METHODS In this study, ICD-related DAMP genes were selected to investigate their effects on the prognosis of LUAD. To create a risk signature using the TCGA-LUAD cohort, the univariate COX regression and the least absolute shrinkage and selection operator regression were carried out, and the results were verified in a GEO dataset. Subsequently, the multivariate COX regression was applied to establish a prognostic nomogram. And the ESTIMATE and ssGSEA algorithms were utilized to analyze immune activity and the TIDE algorithm was for responsiveness to immunotherapy. Moreover, clinical tissue samples were used to verify the differential expression of 9 DAMP genes in the signature. RESULTS We identified two distinct DAMP molecular subtypes, and there are remarkable differences in survival probability between the two subtypes, and patients with higher levels of DAMP-related genes are "hot tumors" with increased immune activity. In addition, 9 DAMP genes were selected as prognostic signature genes, and clinical outcomes and immunotherapy response were better for participants in the low-risk group. Importantly, according to the area under the curve (AUC) value in evaluating the efficacy of immunotherapy, this signature is superior to existing predictors, such as PD-L1 and TIDE. CONCLUSIONS Our study suggests ICD plays an important part in modeling the TME of LUAD patients. And this signature could be utilized as a reliable predictor to estimate clinical outcomes and predict immunotherapy efficacy among LUAD patients.
Collapse
Affiliation(s)
- Yuxin Wu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Kexin Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Shuang Liang
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Xiaoying Lou
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Yiling Li
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Danfei Xu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Yue Wu
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Yuan Wang
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| | - Wei Cui
- State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021 China
| |
Collapse
|
30
|
Zhu D, Li B, Wang C, Jiang P, Tang F, Li Y. Echinocystic acid induces the apoptosis, and inhibits the migration and invasion of non-small cell lung cancer cells. Med Oncol 2023; 40:182. [PMID: 37202561 DOI: 10.1007/s12032-023-02029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 05/20/2023]
Abstract
An increasing amount of evidence has demonstrated the anticancer activity of triterpenes extracted from traditional medicines. Echinocystic acid (EA), a natural triterpene isolated from Eclipta prostrata (L.) L., has previously been shown to exhibit anticancer activity in HepG2 and HL-60 cells. The aim of the present study was to investigate the anticancer activity of EA in non-small cell lung cancer (NSCLC) cells. For this purpose, the viability and proliferation of A549 cells were determined using a Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine staining. The migratory and invasive ability of the A549 cells were measured using wound healing and Transwell assays. Hoechst staining was also performed to detect the apoptosis of A549 cells. The proliferation of A549 cells and the distributions of different growth phases were determined using a flow cytometer. Western blot analysis was used to detect the expression levels of cyclin D, partitioning defective 3 homolog (Par3), PI3K, Akt, mTOR, Bax, Bcl-2 and caspase-3. EA inhibited the proliferation, and the migratory and invasive abilities of cultured lung carcinoma cells (A549 cells), and induced cell cycle arrest in the G1 phase of the cell cycle. Treatment with EA upregulated Par3 expression and inhibited the PI3K/Akt/mTOR pathway in vitro. In addition, EA treatment inhibited tumor growth, suppressed proliferation and induced the apoptosis of tumor cells in NSCLC tumor xenografts in mice. On the whole, these results suggest that EA may represent a potential therapeutic agent for NSCLC.
Collapse
Affiliation(s)
- Duojie Zhu
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Bin Li
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Cheng Wang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Peng Jiang
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Futian Tang
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Yumin Li
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
31
|
Wang X, Cang W, Liu X, Cheng Y, Wan X, Feng F, Ren T, Zhao J, Jiang F, Cheng H, Gu Y, Chen L, Li C, Li X, Yang J, Lu X, Xiang Y. Anti-PD-1 therapy plus chemotherapy versus anti-PD-1 therapy alone in patients with high-risk chemorefractory or relapsed gestational trophoblastic neoplasia: a multicenter, retrospective study. EClinicalMedicine 2023; 59:101974. [PMID: 37152364 PMCID: PMC10154962 DOI: 10.1016/j.eclinm.2023.101974] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Background Synergistic antitumor effects of immunotherapy and chemotherapy have been demonstrated in several solid tumors. However, this combination strategy has not been addressed in gestational trophoblastic neoplasia (GTN) cases. We therefore compared the safety and therapeutic effect of anti-programmed cell death 1 (PD-1) therapy combined with chemotherapy versus anti-PD-1 monotherapy among high-risk chemorefractory or relapsed GTN patients. Methods This retrospective cohort study was conducted at three teaching hospitals in China. Chemorefractory or relapsed GTN cases receiving anti-PD-1 therapy combined with chemotherapy or anti-PD-1 monotherapy were selected from each center between August 2018 and March 2022. Study endpoints included objective response rate (ORR), treatment duration, overall survival (OS) and progression-free survival (PFS). The nature, prevalence and severity of treatment-related adverse events (TRAEs) were evaluated. Findings This work enrolled 66 cases. Thirty-five and 31 patients received anti-PD-1 therapy alone and combined with chemotherapy, respectively. The combined treatment dramatically increased the objective response rate from 62.9% (22/35) to 96.8% (30/31) (p < 0.001). The median durations until complete response were 2.2 (interquartile range [IQR], 1.4-4.2) and 2.8 (IQR, 1.8-2.8) months in the anti-PD-1 monotherapy and combined treatment cohorts, respectively (P = 0.299). The complete response rate (CRR) for anti-PD-1-refractory patients to salvage chemotherapy was 84.6% (11/13). No significant difference in OS [HR 0.50 (95% CI 0.07-3.24), p = 0.499] was detected between anti-PD-1 cohort and anti-PD-1 plus chemotherapy cohort. The PFS in combined group was significantly longer than in anti-PD-1 group [HR 0.06 (95% CI 0.02-0.16), p < 0.001]. TRAEs were observed in 27 (77.1%) and 25 (80.6%) patients receiving anti-PD-1 therapy monotherapy and combined therapy, respectively (p = 0.729). Interpretation Anti-PD-1 therapy combined with chemotherapy exhibits sustainably improved antitumor effect and tolerable toxic effects among high-risk chemorefractory or relapsed GTN cases. Patients not responding to PD-1 inhibitors can be effectively rescued with salvage chemotherapy. Funding The study was supported by National Natural Science Foundation of China (81971475 and 81972451), and the National High Level Hospital Clinical Research Funding (2022-PUMCH-B-083 and 2022-PUMCH-B-084).
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Wei Cang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Xiaomei Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Cheng
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xirun Wan
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Fengzhi Feng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Tong Ren
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Jun Zhao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Fang Jiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Yu Gu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Lihua Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Chen Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junjun Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
- Corresponding author. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan Road, Dongcheng District, Beijing 100730, China.
| | - Xin Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Corresponding author. Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, No.419 Fangxie Road, Shanghai 200011, China.
| | - Yang Xiang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, National Clinical Research Center for Obstetric and Gynecologic Diseases, Beijing, China
- Corresponding author. Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, No. 1 Shuaifuyuan Road, Dongcheng District, Beijing 100730, China.
| |
Collapse
|
32
|
Dehghani T, Shahrjerdi A, Kahrizi MS, Soleimani E, Ravandeh S, Merza MS, Rahnama N, Ebrahimzadeh F, Bakhshesh M. Targeting programmed cell death protein 1 (PD-1) for treatment of non-small-cell lung carcinoma (NSCLC); the recent advances. Pathol Res Pract 2023; 246:154470. [PMID: 37150133 DOI: 10.1016/j.prp.2023.154470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/09/2023]
Abstract
The immune system uses various immune checkpoint axes to adjust responses, support homeostasis, and deter self-reactivity and autoimmunity. Nevertheless, non-small-cell lung carcinoma (NSCLC) can use protective mechanisms to facilitate immune evasion, which leads to potentiated cancer survival and proliferation. In this light, many blocking anti-bodies have been developed to negatively regulate checkpoint molecules, in particular, programmed cell death protein 1 (PD-1) / PD-ligand 1 (L1), and bypass these immune suppressive mechanisms. Meanwhile, anti-PD-1 anti-bodies such as nivolumab, pembrolizumab, cemiplimab, and sintilimab have shown excellent competence in successfully inspiring immune responses versus NSCLC. Accordingly, the United States Food and Drug Administration (FDA) has recently approved nivolumab (alone or in combination with ipilimumab) and pembrolizumab (alone or in combination with chemotherapy) as first-line treatment for advanced NSCLC patients. However, PD-1 blockade monotherapy remains inefficient in more than 60% of NSCLC patients, and many patients don't respond or acquire resistance to this modality. Also, toxicities related to anti-PD-1 anti-body have been progressively identified in clinical trials and oncology practice. Herein, we will outline the clinical benefits of PD-1 blockade therapy alone or in combination with other treatments (e.g., chemotherapy, radiotherapy, anti-angiogenic therapy) in NSCLC patients. Moreover, we will take a glimpse into the recently identified predictive biomarkers to determine patients most likely to suffer serious adverse events to decrease untoward toxicity risk and diminish treatment costs.
Collapse
Affiliation(s)
- Tannaz Dehghani
- Department of Internal Medicine, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Alireza Shahrjerdi
- National Institute for Genetic Engineering and Biotechnology (NIGEB), P.O. Box: 14965/161, Tehran, Iran
| | | | - Elnaz Soleimani
- Departmant of Genetic, Babol University of Medical Science, Babol, Iran
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal university College, Babylon 51001, Iraq
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Morteza Bakhshesh
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran.
| |
Collapse
|
33
|
Ding Z, Liu Y, Huang Q, Cheng C, Song L, Zhang C, Cui X, Wang Y, Han Y, Zhang H. m6A‐ and immune‐related lncRNA signature confers robust predictive power for immune efficacy in lung squamous cell carcinoma. VIEW 2023. [DOI: 10.1002/viw.20220083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
34
|
The role of immune checkpoint inhibitors in patients with intracranial metastatic disease. J Neurooncol 2023; 161:469-478. [PMID: 36790654 DOI: 10.1007/s11060-023-04263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Intracranial metastatic disease (IMD) complicates the course of nearly 2-4% of patients with systemic cancer. The prevalence of IMD has been increasing over the past few decades. Historically, definitive treatment for brain metastases (BM) has been limited to radiation therapy or surgical resection. Chemotherapies have not typically proven valuable in the treatment of IMD, with the exception of highly chemotherapy-sensitive lesions. Recent data have supported a role for systemic targeted therapies and immune checkpoint inhibitors (ICIs) in the treatment of select patients with IMD. There remains, however, a clear clinical need for further investigation to delineate the role of ICIs in patients with BM. In this review, we outline and describe recent and current efforts to identify the efficacy of ICI therapy in patients with IMD.
Collapse
|
35
|
Troschke-Meurer S, Zumpe M, Meißner L, Siebert N, Grabarczyk P, Forkel H, Maletzki C, Bekeschus S, Lode HN. Chemotherapeutics Used for High-Risk Neuroblastoma Therapy Improve the Efficacy of Anti-GD2 Antibody Dinutuximab Beta in Preclinical Spheroid Models. Cancers (Basel) 2023; 15:cancers15030904. [PMID: 36765861 PMCID: PMC9913527 DOI: 10.3390/cancers15030904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Anti-disialoganglioside GD2 antibody ch14.18/CHO (dinutuximab beta, DB) improved the outcome of patients with high-risk neuroblastoma (HR-NB) in the maintenance phase. We investigated chemotherapeutic compounds used in newly diagnosed patients in combination with DB. Vincristine, etoposide, carboplatin, cisplatin, and cyclophosphamide, as well as DB, were used at concentrations achieved in pediatric clinical trials. The effects on stress ligand and checkpoint expression by neuroblastoma cells and on activation receptors of NK cells were determined by using flow cytometry. NK-cell activity was measured with a CD107a/IFN-γ assay. Long-term cytotoxicity was analyzed in three spheroid models derived from GD2-positive neuroblastoma cell lines (LAN-1, CHLA 20, and CHLA 136) expressing a fluorescent near-infrared protein. Chemotherapeutics combined with DB in the presence of immune cells improved cytotoxic efficacy up to 17-fold compared to in the controls, and the effect was GD2-specific. The activating stress and inhibitory checkpoint ligands on neuroblastoma cells were upregulated by the chemotherapeutics up to 9- and 5-fold, respectively, and activation receptors on NK cells were not affected. The CD107a/IFN-γ assay revealed no additional activation of NK cells by the chemotherapeutics. The synergistic effect of DB with chemotherapeutics seems primarily attributed to the combined toxicity of antibody-dependent cellular cytotoxicity and chemotherapy, which supports further clinical evaluation in frontline induction therapy.
Collapse
Affiliation(s)
- Sascha Troschke-Meurer
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Maxi Zumpe
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Lena Meißner
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Nikolai Siebert
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Piotr Grabarczyk
- Department of Internal Medicine, Clinic III—Hematology, Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Hannes Forkel
- Department of Internal Medicine, Clinic III—Hematology, Oncology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
| | - Claudia Maletzki
- Department of Medicine, Clinic III—Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Holger N. Lode
- Department of Pediatric Oncology and Hematology, University Medicine Greifswald, Ferdinand-Sauerbruch Strasse 1, 17475 Greifswald, Germany
- Correspondence: ; Tel.: +49-3834-86-6300; Fax: +49-3834-86-6410
| |
Collapse
|
36
|
Xu J, Xiong Y, Xu Z, Xing H, Zhou L, Zhang X. From targeted therapy to a novel way: Immunogenic cell death in lung cancer. Front Med (Lausanne) 2022; 9:1102550. [PMID: 36619616 PMCID: PMC9816397 DOI: 10.3389/fmed.2022.1102550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is one of the most incident malignancies and a leading cause of cancer mortality worldwide. Common tumorigenic drivers of LC mainly include genetic alterations of EGFR, ALK, KRAS, BRAF, ROS1, and MET. Small inhibitory molecules and antibodies selectively targeting these alterations or/and their downstream signaling pathways have been approved for treatment of LC. Unfortunately, following initial positive responses to these targeted therapies, a large number of patients show dismal prognosis due to the occurrence of resistance mechanisms, such as novel mutations of these genes and activation of alternative signaling pathways. Over the past decade, it has become clear that there is no possible cure for LC unless potent antitumor immune responses are induced by therapeutic intervention. Immunogenic cell death (ICD) is a newly emerged concept, a form of regulated cell death that is sufficient to activate adaptive immune responses against tumor cells. It transforms dying cancer cells into a therapeutic vaccine and stimulates long-lasting protective antitumor immunity. In this review, we discuss the key targetable genetic aberrations and the underlying mechanism of ICD in LC. Various agents inducing ICD are summarized and the possibility of harnessing ICD in LC immunotherapy is further explored.
Collapse
Affiliation(s)
- Jiawei Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiyi Xiong
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Hongquan Xing
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Lingyun Zhou
- International Education College, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Lingyun Zhou,
| | - Xinyi Zhang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, China,The Second Clinical Medical College of Nanchang University, Nanchang, China,Xinyi Zhang,
| |
Collapse
|
37
|
Mendes AS, Romão R, Febra J, Azevedo SX, Fidalgo P, Araújo A. Chemotherapy: A partnership with immunotherapy in non-small cell lung cancer. Thorac Cancer 2022; 14:437-441. [PMID: 36539276 PMCID: PMC9925346 DOI: 10.1111/1759-7714.14779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 02/15/2023] Open
Abstract
Chemotherapy (CT) and immunotherapy (IO) act synergically in the treatment of non-small cell lung cancer (NSCLC). However, the molecular basis of such interaction is poorly understood. The aim of this review was to explore the mechanisms of CT to potentiate the immune system and, consequently, the action of IO. The most up-to-date knowledge concerning the interaction of CT and IO in NSCLC was reviewed and a bibliographic search was made in PubMed/Medline database, using the mentioned keywords, with preference given to recently published articles in English. In addition to the direct cytotoxic effect, CT affects the immune system leading indirectly to cell death. The immune response triggered by PD-1 inhibition is enhanced by the cytotoxic immunogenic effects of CT. This potentiation phenomenon occurs due to an increase in effector cells relatively to regulatory cells, inhibition of myeloid derived suppressor cells, increased potential for cross-presentation by dendritic cells after the death of tumor cells or blocking the STAT6 pathway to increase dendritic cell activity. In conclusion, the effects of CT on the immune system work in synergy with the actions of IO, transforming "cold" tumors into "hot" tumors, which are more visible to the immune system.
Collapse
Affiliation(s)
- Ana Sofia Mendes
- Medical Oncology DepartmentCentro Hospitalar Universitário do PortoPortugal
| | - Raquel Romão
- Medical Oncology DepartmentCentro Hospitalar Universitário do PortoPortugal
| | - Joana Febra
- Medical Oncology DepartmentCentro Hospitalar Universitário do PortoPortugal
| | | | - Paula Fidalgo
- Medical Oncology DepartmentCentro Hospitalar Universitário do PortoPortugal
| | - António Araújo
- Medical Oncology DepartmentCentro Hospitalar Universitário do PortoPortugal,Oncology Research Unit, UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS ‐ School of Medicine and Biomedical Sciences, Universidade do Porto
| |
Collapse
|
38
|
Cell Therapy with Human Reprogrammed CD8 + T-Cells Has Antimetastatic Effects on Lewis Lung Carcinoma in C57BL/6 Mice. Int J Mol Sci 2022; 23:ijms232415780. [PMID: 36555420 PMCID: PMC9779156 DOI: 10.3390/ijms232415780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Using a model of Lewis lung carcinoma (LLC) in vitro and in vivo, we previously demonstrated increased antitumor activity in CD8+ T-cells reprogrammed with an MEK inhibitor and PD-1 blocker. In this follow-up study, we carried out the reprogramming of human CD8+ T-cells (hrT-cell) using the MEK inhibitor and PD-1 blocker and targeted LLC cells. The effects of hrT-cell therapy were studied in a mouse model of spontaneous metastasis of a solid LLC tumor. We found antimetastatic activity of hrT-cells, a decrease in the number of cancer cells and cancer stem cells in the lungs, and an increase in the number of T-cells in the blood (including effector T-cells). Thus, reprogramming of human CD8+ T-cells with an MEK inhibitor and PD-1 blocker with targeted training by tumor target cells is a potential platform for developing a new approach to targeted lung cancer therapy.
Collapse
|
39
|
Qiu L, Gao S, Du S, Sun S, Liang Y, Sun Z, Li T, Jia G, Li K, Sun X, Jiao S, Zhao X. Immune checkpoint inhibitors alone or in combination with chemotherapy for treatment of advanced non-small cell lung cancer after first-line platinum-based chemotherapy: A propensity score matching analysis. Front Oncol 2022; 12:974227. [DOI: 10.3389/fonc.2022.974227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
BackgroundImmune checkpoint inhibitors (ICIs) have changed the treatment landscape of several cancer types. However, data are lacking with regard to the clinical responsiveness of ICIs in patients with advanced non-small cell lung cancer (NSCLC) after standard first-line chemotherapy. Therefore, we aimed to evaluate the clinical efficacy of ICI alone or in combination with chemotherapy for patients with advanced NSCLC after first-line platinum-based chemotherapy.MethodsWe retrospectively collected patients with confirmed advanced NSCLC who underwent ICI monotherapy or ICI plus chemotherapy after first-line platinum-based chemotherapy between January 2018 and December 2020. A propensity score matching analysis was used to balance baseline characteristics between the two treatment groups. Kaplan-Meier methods and multivariable Cox regressions were used for survival analyses.ResultsAmong 832 eligible patients, 222 received ICI monotherapy and 610 received ICI plus chemotherapy. The median overall survival (OS) of patients who received ICI plus chemotherapy was 16.0 months compared with 13.1 months in patients who received ICI monotherapy (HR: 0.64, 95% CI: 0.49-0.85, P = 0.002). After 1:1 propensity score matching, all baseline characteristics were well-balanced between the two treatment groups. Patients who received ICI plus chemotherapy had significantly longer OS than those who received ICI monotherapy (NR vs. 13.1 months, HR: 0.50, 95% CI: 0.34-0.71, P < 0.001). Meanwhile, the median time to treatment discontinuation was 4.4 months in the ICI-chemo group and 3.5 months in the ICI-mono group (HR: 0.72, 95% CI: 0.58-0.89, P = 0.002). The multivariate analysis indicated that treatment regimen was an independent prognostic factor for OS (HR: 0.488, 95% CI: 0.337-0.707, P < 0.001). Moreover, a nomogram that integrated both treatment regimens and clinicopathological factors was created for survival prediction.ConclusionOur study indicated that patients with advanced NSCLC who received ICI plus chemotherapy after first-line platinum-based chemotherapy tended to have longer OS than those who received ICI monotherapy. The multivariate analysis showed that treatment regimen was an independent prognostic factor for OS. Future prospective studies are needed to confirm these findings.
Collapse
|
40
|
Liu B, Dong C, Chen Q, Fan Z, Zhang Y, Wu Y, Cui T, Liu F. Circ_0007534 as new emerging target in cancer: Biological functions and molecular interactions. Front Oncol 2022; 12:1031802. [PMID: 36505874 PMCID: PMC9730518 DOI: 10.3389/fonc.2022.1031802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Circular RNA (circRNAs), an important member of the non-coding RNA (ncRNA) family, are widely expressed in a variety of biological cells. Owing to their stable structures, sequence conservations, and cell- or tissue-specific expressions, these RNA have become a popular subject of scientific research. With the development of sequencing methods, it has been revealed that circRNAs exert their biological function by sponging microRNAs (miRNAs), regulating transcription, or binding to proteins. Humans have historically been significantly impacted by various types of cancer. Studies have shown that circRNAs are abnormally expressed in various cancers and are involved in the occurrence and development of malignant tumors, such as tumor cell proliferation, migration, and invasion. As one of its star molecules, circ_0007534 is upregulated in colorectal, cervical, and pancreatic cancers; is closely related to the occurrence, development, and prognosis of tumors; and is expected to become a novel tumor marker and therapeutic target. This article briefly reviews the expression and mechanism of circ_0007534 in malignant tumors based on the domestic and foreign literature.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fuquan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, Zhao X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol 2022; 13:915094. [PMID: 36189283 PMCID: PMC9520263 DOI: 10.3389/fimmu.2022.915094] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has rapidly transformed the treatment paradigm for various cancer types. Multiple single or combinations of ICB treatments have been approved by the US Food and Drug Administration, providing more options for patients with advanced cancer. However, most patients could not benefit from these immunotherapies due to primary and acquired drug resistance. Thus, a better understanding of the mechanisms of ICB resistance is urgently needed to improve clinical outcomes. Here, we focused on the changes in the biological functions of CD8+ T cells to elucidate the underlying resistance mechanisms of ICB therapies and summarized the advanced coping strategies to increase ICB efficacy. Combinational ICB approaches and individualized immunotherapies require further in-depth investigation to facilitate longer-lasting efficacy and a more excellent safety of ICB in a broader range of patients.
Collapse
|
42
|
Zhang N, Li J, Gao W, Zhu W, Yan J, He Z, Li L, Wu F, Pu Y, He B. Co-Delivery of Doxorubicin and Anti-PD-L1 Peptide in Lipid/PLGA Nanocomplexes for the Chemo-Immunotherapy of Cancer. Mol Pharm 2022; 19:3439-3449. [PMID: 35994700 DOI: 10.1021/acs.molpharmaceut.2c00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The combined delivery of chemotherapeutics with checkpoint inhibitors of the PD-1/PD-L1 pathway provides a new approach for cancer treatment. Small-molecule peptide inhibitors possess short production cycle, low immunogenicity, and fewer side effects; however, their potential in cancer therapy is hampered by the rapid biodegradation and a nanocarrier is needed for efficient drug delivery. Herein, anticancer drug doxorubicin (DOX) and PD-L1 inhibitor peptide P-12 are co-loaded by a lipid polymer nanocomplex based on poly(lactic-co-glycolic acid) (PLGA) and DSPE-PEG. Octaarginine (R8)-conjugated DSPE-PEG renders the LPN efficient internalization by cancer cells. The optimal nanomedicine LPN-30-R82K@DP shows a diameter of 125 nm and a DOX and P-12 loading content of 5.0 and 6.2%, respectively. LPN-30-R82K@DP exhibits good physiological stability and enhanced cellular uptake by cancer cells. It successfully induces immunogenic cell death and PD-L1 blockade in CT26 cancer cells. The in vivo antitumor study further suggests that co-loaded nanomedicine efficiently suppresses CT26 tumor growth and elicits antitumor immune response. This study manifests that lipid polymer nanocomplexes are promising drug carriers for the efficient chemo-immunotherapy of cancer.
Collapse
Affiliation(s)
- Nan Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wangwei Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jianqin Yan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Li Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
43
|
Lenvatinib, toripalimab plus hepatic arterial infusion chemotherapy in patients with high-risk advanced hepatocellular carcinoma: A biomolecular exploratory, phase II trial. Eur J Cancer 2022; 174:68-77. [PMID: 35981413 DOI: 10.1016/j.ejca.2022.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The combination of lenvatinib, toripalimab and hepatic arterial infusion chemotherapy (HAIC) with oxaliplatin, leucovorin, and 5-fluorouracil (FOLFOX) suggested encouraging antitumour activity in our retrospective study. We hereby prospectively establish the efficacy, safety and predictive biomarkers of the combination therapy as a first-line treatment in patients with high-risk advanced hepatocellular carcinoma (HCC). MATERIALS AND METHODS This phase II, single-centre, single-arm trial enrolled advanced HCC participants with high-risk. Of 51 screened participants, 36 received lenvatinib, toripalimab plus FOLFOX-HAIC. Participants received 21-day treatment cycles of lenvatinib, toripalimab, and FOLFOX-HAIC. The primary end-point was the progression-free survival (PFS) rate per RECIST at six months. RESULTS Thirty-six participants (86.1% with high-risk features) were enrolled in our study. The primary end-point was met with a PFS rate of 80.6% (95% CI, 64.0%-91.8%) at six months. The median PFS was 10.4 months (95% CI, 5.8-15.0), and the median OS was not reached at the prespecified final analysis and was 17.9 months (95% CI, 14.5-21.3) after follow-up was extended. The ORR per RECIST was 63.9%, and per mRECIST was 66.7%. The median duration of response was 14.4 months (95% CI, 8.9-19.9). The most common adverse events were thrombocytopenia, elevated aspartate aminotransferase, and hypertension, and no treatment-related death was reported. Participants with low levels of both CCL28 and BTC had unsatisfactory prognosis. CONCLUSIONS Lenvatinib, toripalimab and FOLFOX-HAIC showed safe and encouraging antitumour activity for advanced HCC with high-risk features. The levels of CCL28 and BTC might be the predictive biomarkers for the triple combination therapy.
Collapse
|
44
|
Zhang L, Zhou C, Zhang S, Chen X, Liu J, Xu F, Liang W. Chemotherapy reinforces anti-tumor immune response and enhances clinical efficacy of immune checkpoint inhibitors. Front Oncol 2022; 12:939249. [PMID: 36003765 PMCID: PMC9393416 DOI: 10.3389/fonc.2022.939249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/04/2022] [Indexed: 12/03/2022] Open
Abstract
New evidence suggests that the clinical success of chemotherapy is not merely due to tumor cell toxicity but also arises from the restoration of immunosurveillance, which has been immensely neglected in previous preclinical and clinical researches. There is an urgent need for novel insights into molecular mechanisms and regimens that uplift the efficacy of immunotherapy since only a minority of cancer patients are responsive to immune checkpoint inhibitors (ICIs). Recent findings on combination therapy of chemotherapy and ICIs have shown promising results. This strategy increases tumor recognition and elimination by the host immune system while reducing immunosuppression by the tumor microenvironment. Currently, several preclinical studies are investigating molecular mechanisms that give rise to the immunomodulation by chemotherapeutic agents and exploit them in combination therapy with ICIs in order to achieve a synergistic clinical activity. In this review, we summarize studies that exhibit the capacity of conventional chemotherapeutics to elicit anti-tumor immune responses, thereby facilitating anti-tumor activities of the ICIs. In conclusion, combining chemotherapeutics with ICIs appears to be a promising approach for improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacy, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, China
| | - Jian Liu
- Department of Hepatobiliary Surgery, Shanghai Oriental Hepatobiliary Hospital, Shanghai, China
| | - Fangming Xu
- Department of Gastroenterology, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
45
|
Xin Y, Cao F, Yang H, Zhang X, Chen Y, Cao X, Zhou X, Li X, Zhou J. Efficacy and safety of atezolizumab plus bevacizumab combined with hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma. Front Immunol 2022; 13:929141. [PMID: 35990634 PMCID: PMC9388744 DOI: 10.3389/fimmu.2022.929141] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Atezolizumab plus bevacizumab has been proved to have promising antitumor activity and tolerable safety in patients with unresectable hepatocellular carcinoma (HCC). Hepatic arterial infusion chemotherapy (HAIC) also demonstrated high response rates and favorable survival for patients with advanced HCC. This study aimed to explore the preliminary clinical efficacy and safety of atezolizumab plus bevacizumab combined with HAIC for patients with treatment-naive advanced HCC. Methods Between October 2020 and September 2021, patients with advanced HCC who initially received atezolizumab plus bevacizumab combined with HAIC of oxaliplatin, fluorouracil, and leucovorin (FOLFOX) from three hospitals in China were reviewed for eligibility. The efficacy was evaluated by tumor response rate and survival, and the safety was evaluated by the frequency of key adverse events (AEs). Results In total, 52 eligible patients with advanced HCC who received triple therapy were included in this study. The objective response rates (ORRs) based on mRECIST and RECIST1.1 criteria were 67.3% and 44.2%, respectively. The median progression-free survival (PFS) of patients was 10.6 months (95% CI, 8.37–13.8), and the overall survival (OS) was not reached. Extrahepatic metastasis was an independent risk factor associated with PFS. All AEs were controlled and no treatment-related deaths occurred. Conclusion Atezolizumab plus bevacizumab combined with HAIC-FOLFOX had a significant therapeutic effect and manageable AEs in patients with advanced HCC, which may be a potential treatment option for advanced HCC.
Collapse
Affiliation(s)
- Yujing Xin
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Cao
- Department of Interventional Radiology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Hongcai Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyuan Zhang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Chen
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaojing Cao
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Zhou
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiang Zhou, ; Xiao Li, ; Jinxue Zhou,
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiang Zhou, ; Xiao Li, ; Jinxue Zhou,
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiang Zhou, ; Xiao Li, ; Jinxue Zhou,
| |
Collapse
|
46
|
Cao H, Wei W, Lu Y. Camrelizumab plus chemotherapy in advanced non‐squamous non‐small cell lung cancer: Treatment response, survival pattern, and safety. J Clin Pharm Ther 2022; 47:1775-1782. [PMID: 35851702 DOI: 10.1111/jcpt.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Hui Cao
- Department of Pulmonary and Critical Care Medicine The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Wei Wei
- Department of Pulmonary and Critical Care Medicine The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Yang Lu
- Department of Pulmonary and Critical Care Medicine The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
47
|
Immunotherapy in NSCLC Patients with Brain Metastases. Int J Mol Sci 2022; 23:ijms23137068. [PMID: 35806080 PMCID: PMC9267075 DOI: 10.3390/ijms23137068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Approximately 40% of unselected non-small cell lung cancer (NSCLC) patients develop brain metastases (BMs) during their disease, with considerable morbidity and mortality. The management of BMs in patients with NSCLC is a clinical challenge and requires a multidisciplinary approach to gain effective intracranial disease control. Over the last decade, immune checkpoint inhibitors (ICIs) have emerged as a game-changer in the treatment landscape of advanced NSCLC, with significant improvements in survival outcomes, although patients with BMs are mostly underrepresented in randomized clinical trials. Moreover, the safety and activity of ICIs and radiotherapy combinations compared with single-agent or sequential modalities is still under evaluation to establish the optimal management of these patients. The aim of this review is to summarize the state-of-the-art of clinical evidence of ICIs intracranial activity and the main challenges of incorporating these agents in the treatment armamentarium of NSCLC patients with BMs.
Collapse
|
48
|
Zhou Z, Zhao Y, Chen S, Cui G, Fu W, Li S, Lin X, Hu H. Cisplatin Promotes the Efficacy of Immune Checkpoint Inhibitor Therapy by Inducing Ferroptosis and Activating Neutrophils. Front Pharmacol 2022; 13:870178. [PMID: 35784745 PMCID: PMC9240830 DOI: 10.3389/fphar.2022.870178] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/13/2022] [Indexed: 01/04/2023] Open
Abstract
The combination of immunotherapy with platinum-based chemotherapy has become the first-line treatment for patients with advanced non–small cell lung cancer (NSCLC) with negative driver gene mutations. However, finding an ideal chemotherapeutic regimen for immunotherapy and exploring the underlying mechanism have noticeably attracted clinicians’ attention. In this study, we found that cisplatin induced ferroptosis of tumor cells, followed by N1 neutrophil polarization in the tumor microenvironment, which in turn remodeled the “cold” tumor to a “hot” one through enhancing T-cell infiltration and Th1 differentiation. Based on the important role of tumor ferroptosis in the immune-promoting effect of cisplatin, we noticed that the combination of a ferroptosis activator showed a synergistic effect with chemoimmunotherapy of epidermal growth factor receptor (EGFR)-mutant NSCLC, which would be an effective strategy to overcome immunotherapy resistance in NSCLC patients harboring driver mutations.
Collapse
Affiliation(s)
- Ziwei Zhou
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yiming Zhao
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Phase I Clinical Trial Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guohui Cui
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenkui Fu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shouying Li
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Lin
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou, China
- *Correspondence: Xiaorong Lin, ; Hai Hu,
| | - Hai Hu
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Xiaorong Lin, ; Hai Hu,
| |
Collapse
|
49
|
Gartrell RD, Enzler T, Kim PS, Fullerton BT, Fazlollahi L, Chen AX, Minns HE, Perni S, Weisberg SP, Rizk EM, Wang S, Oh EJ, Guo XV, Chiuzan C, Manji GA, Bates SE, Chabot J, Schrope B, Kluger M, Emond J, Rabadán R, Farber D, Remotti HE, Horowitz DP, Saenger YM. Neoadjuvant chemoradiation alters the immune microenvironment in pancreatic ductal adenocarcinoma. Oncoimmunology 2022; 11:2066767. [PMID: 35558160 PMCID: PMC9090285 DOI: 10.1080/2162402x.2022.2066767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/21/2023] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) have a grim prognosis despite complete surgical resection and intense systemic therapies. While immunotherapies have been beneficial with many different types of solid tumors, they have almost uniformly failed in the treatment of PDAC. Understanding how therapies affect the tumor immune microenvironment (TIME) can provide insights for the development of strategies to treat PDAC. We used quantitative multiplexed immunofluorescence (qmIF) quantitative spatial analysis (qSA), and immunogenomic (IG) analysis to analyze formalin-fixed paraffin embedded (FFPE) primary tumor specimens from 44 patients with PDAC including 18 treated with neoadjuvant chemoradiation (CRT) and 26 patients receiving no treatment (NT) and compared them with tissues from 40 treatment-naïve melanoma patients. We find that relative to NT tumors, CD3+ T cell infiltration was increased in CRT treated tumors (p = .0006), including increases in CD3+CD8+ cytotoxic T cells (CTLs, p = .0079), CD3+CD4+FOXP3- T helper cells (Th, p = .0010), and CD3+CD4+FOXP3+ regulatory T cells (Tregs, p = .0089) with no difference in CD68+ macrophages. IG analysis from micro-dissected tissues indicated overexpression of genes involved in antigen presentation, T cell activation, and inflammation in CRT treated tumors. Among treated patients, a higher ratio of Tregs to total T cells was associated with shorter survival time (p = .0121). Despite comparable levels of infiltrating T cells in CRT PDACs to melanoma, PDACs displayed distinct spatial profiles with less T cell clustering as defined by nearest neighbor analysis (p < .001). These findings demonstrate that, while CRT can achieve high T cell densities in PDAC compared to melanoma, phenotype and spatial organization of T cells may limit benefit of T cell infiltration in this immunotherapy-resistant tumor.
Collapse
Affiliation(s)
- Robyn D. Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Enzler
- Rogel Cancer Center, University of Michigan Medicine, Ann Arbor, MI, USA
| | - Pan S. Kim
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Benjamin T. Fullerton
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Ladan Fazlollahi
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrew X. Chen
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Hanna E. Minns
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Subha Perni
- Harvard Radiation Oncology Program, Massachusetts General Hospital and Brigham and Women’s Hospital/Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stuart P. Weisberg
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Emanuelle M. Rizk
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Samuel Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Eun Jeong Oh
- Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xinzheng V. Guo
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Codruta Chiuzan
- Department of Biostatistics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gulam A. Manji
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Susan E. Bates
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - John Chabot
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Beth Schrope
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael Kluger
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Jean Emond
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Raul Rabadán
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna Farber
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Helen E. Remotti
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - David P. Horowitz
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | | |
Collapse
|
50
|
Yao Y, Chen H, Tan N. Cancer-cell-biomimetic nanoparticles systemically eliminate hypoxia tumors by synergistic chemotherapy and checkpoint blockade immunotherapy. Acta Pharm Sin B 2022; 12:2103-2119. [PMID: 35847496 PMCID: PMC9279713 DOI: 10.1016/j.apsb.2021.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Checkpoint blockade-based immunotherapy has shown unprecedented effect in cancer treatments, but its clinical implementation has been restricted by the low host antitumor response rate. Recently, chemotherapy is well recognized to activate the immune system during some chemotherapeutics-mediated tumor eradication. The enhancement of immune response during chemotherapy might further improve the therapeutic efficiency through the synergetic mechanism. Herein, a synergistic antitumor platform (designated as BMS/RA@CC-Liposome) was constructed by utilizing CT26 cancer-cell-biomimetic nanoparticles that combined chemotherapeutic drug (RA-V) and PD-1/PD-L1 blockade inhibitor (BMS-202) to remarkably enhance antitumor immunity. In this study, the cyclopeptide RA-V as chemotherapeutic drugs directly killing tumor cells and BMS-202 as anti-PD agents eliciting antitumor immune responses were co-encapsulated in a pH-sensitive nanosystem. To achieve the cell-specific targeting drug delivery, the combination therapy nanosystem was functionalized with cancer cell membrane camouflage. The biomimetic drug delivery system perfectly disguised as endogenous substances, and realized elongated blood circulation due to anti-phagocytosis capability. Moreover, the BMS/RA@CC-Liposome also achieved the selective targeting of CT26 cells by taking advantage of the inherent homologous adhesion property of tumor cells. The in vitro and in vivo experiments revealed that the BMS/RA@CC-Liposome realized PD-1/PD-L1 blockade-induced immune response, RA-V-induced PD-L1 down-regulation and apoptosis in cancer cells. Such a system combining the advantages of chemotherapy and checkpoint blockade-based immunotherapy to create an immunogenic tumor microenvironment systemically, demonstrated improved therapeutic efficacy against hypoxic tumor cells and offers an alternative strategy based on the immunology of the PD-1/PD-L1 pathway.
Collapse
|