1
|
Zhang T, Chen Y, Xiang Z. Machine learning-based integration develops a disulfidptosis-related lncRNA signature for improving outcomes in gastric cancer. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:1-13. [PMID: 39701937 DOI: 10.1080/21691401.2024.2440415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Gastric cancer remains one of the deadliest cancers globally due to delayed detection and limited treatment options, underscoring the critical need for innovative prognostic methods. Disulfidptosis, a recently discovered programmed cell death triggered by disulphide stress, presents a fresh avenue for therapeutic exploration. This research examines disulfidptosis-related long noncoding RNAs (DRLs) in gastric cancer, with the goal of leveraging these lncRNAs as potential markers to enhance patient outcomes and treatment approaches. Comprehensive genomic and clinical data from stomach adenocarcinoma (STAD) were obtained from The Cancer Genome Atlas (TCGA). Employing least absolute shrinkage and selection operator (LASSO) regression analysis, a prognostic model was devised incorporating five key DRLs to forecast survival rates. The effectiveness of this model was validated using Kaplan-Meier survival plots, receiver operating characteristic (ROC) curves, and extensive functional enrichment studies. The importance of select lncRNAs and the expression variability of genes tied to disulfidptosis were validated via quantitative real-time PCR (qRT-PCR) and Western blot tests, establishing a solid foundation for their prognostic utility. Analyses of functional enrichment and tumour mutation burden highlighted the biological importance of these DRLs, connecting them to critical cancer pathways and immune responses. These discoveries broaden our comprehension of the molecular framework of gastric cancer and bolster the development of tailored treatment plans, highlighting the substantial role of DRLs in clinical prognosis and therapeutic intervention.
Collapse
Affiliation(s)
- Tianze Zhang
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Yuqing Chen
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - Zhiping Xiang
- Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
2
|
Ji CF, Ji JF, Yu XB, Wang ZX. N‑methyladenosine reader YTHDF2‑mediated AC026691.1 degradation promotes gastric cancer cell proliferation, migration and M2 macrophage polarization. Mol Med Rep 2025; 31:120. [PMID: 40052573 PMCID: PMC11914866 DOI: 10.3892/mmr.2025.13485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/03/2025] [Indexed: 03/20/2025] Open
Abstract
The present study aimed to explore the effects of key N6‑methyladenosine (m6A)‑related long non‑coding RNAs (lncRNAs) on the malignant behavior and macrophage polarization of gastric cancer cells, and their preliminary mechanisms. Gastric cancer‑related lncRNA datasets were downloaded from The Cancer Genome Atlas database, and m6A‑related differentially expressed lncRNAs (DElncRNAs) were analyzed. Subsequently, Cox regression and lasso regression analyses were used to screen the m6A‑related DElncRNAs associated with the prognosis of patients with gastric cancer. Additionally, reverse transcription‑quantitative polymerase chain reaction (qPCR) was employed to detect the expression levels of m6A‑related lncRNAs in normal gastric epithelial cells (GES‑1) and human gastric cancer cells (AGS and MKN‑45). In addition, the methylation levels of lncRNAs were measured using a methylated RNA immunoprecipitation qPCR assay kit, and the interaction between m6A‑related lncRNAs and m6A‑related proteins was observed by RNA pull‑down assay. Subsequently, m6A‑related lncRNAs and proteins were knocked down separately or simultaneously in gastric cancer cell lines. Bioinformatics analysis revealed that m6A‑related AC026691.1 was significantly associated with the prognosis of patients with gastric cancer and had a potential binding site for YT521‑B homology domain family member 2 (YTHDF2). The RNA pull‑down assay indicated that YTHDF2 not only had binding sites with AC026691.1 but could also markedly promote the degradation of m6A‑related AC026691.1. Furthermore, AC026691.1 was lowly expressed in gastric cancer cells, whereas YTHDF2 was highly expressed. Knockdown of YTHDF2 inhibited the proliferation, migration and epithelial‑mesenchymal transition of gastric cancer cells, and reduced M2 macrophage polarization. By contrast, knocking down AC026691.1 showed the opposite trend. Knockdown of YTHDF2 and AC026691.1 further confirmed the stable impact of YTHDF2 on AC026691.1. In conclusion, the degradation of AC026691.1 modified by YTHDF2‑mediated m6A may promote gastric cancer cell proliferation, migration, epithelial‑mesenchymal transition and M2 macrophage polarization.
Collapse
Affiliation(s)
- Cong-Fei Ji
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jin-Feng Ji
- Department of Integrative Chinese and Western Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Xiao-Bing Yu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhen-Xin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
3
|
Wang D, Zhao H, Zhao Y, An X, Shi C, Pan Z, Zheng Q, Wang X, Lu J, Li D. Silencing LINC01547 induces hepatocellular carcinoma cell apoptosis and metastasis inhibition via the ADAR1/FAK and miR-146b-5p/RAC1 axes. Apoptosis 2025; 30:936-954. [PMID: 39904859 DOI: 10.1007/s10495-024-02070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 02/06/2025]
Abstract
Growing research indicates that long noncoding RNAs (lncRNAs) are pivotal in the development and advancement of hepatocellular carcinoma (HCC). Our research pinpointed LINC01547 as a notable lncRNA that was significantly downregulated in Hep3B cells treated with bufotalin, whereas it exhibited elevated expression levels in HCC tumor tissues. Further study found that silencing LINC01547 markedly suppressed proliferation, induced apoptosis, and inhibited migration and invasion in Hep3B and HepG2 cells. LINC01547 knockdown reduced ADAR1 expression, which led to apoptosis and suppressed metastasis via inhibition of the FAK signaling pathway. Additionally, silencing LINC01547 upregulated miR-146b-5p, which in turn decreased RAC1 levels, further promoting apoptosis and inhibiting metastasis in HCC cells. In vivo, a Hep3B tumor-bearing mouse model confirmed the antitumor effects of LINC01547 silencing. Our findings demonstrate that LINC01547 regulates HCC cell apoptosis and metastasis through the ADAR1/FAK and miR-146b-5p/RAC1 pathways, suggesting that LINC01547 may serve as a biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
| | - Huijie Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Ying Zhao
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Xuejing An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Chuanqin Shi
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255020, PR China
| | - Zhaohai Pan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, 264003, PR China
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China.
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, PR China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, 264003, PR China.
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| |
Collapse
|
4
|
Xie L, Feng L, Ren Y, Yang Q, Qu H, Li T, Jiang Y. Transcriptome-wide N 6-methyladenosinem modifications analysis of growth and fumonisins production in Fusarium proliferatum causing banana crown rot. Int J Biol Macromol 2025; 300:140385. [PMID: 39880236 DOI: 10.1016/j.ijbiomac.2025.140385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Crown rot caused by Fusarium proliferatum is a severe postharvest disease of banana fruit. The N6-methyladenosine (m6A) modification is the most common type of RNA modification and regulates gene expression in eukaryotes. Here, we analyzed transcriptome-wide changes in m6A methylation to investigate post-transcriptional regulation mechanisms of growth and fumonisin biosynthesis of F. proliferatum after fluopyram (Flu) treatment. The results demonstrated that Flu treatment inhibited F. proliferatum growth but induced fumonisins (FB1 and FB2) production both in vitro and in vivo. A transcriptome-wide m6A methylation profile showed that m6A hypomethylation was induced by Flu and enriched in start codons and the 3' untranslated region. FpAlkbh8 and FpYthdc1 may contribute to the decrease in m6A modifications after Flu treatment. The expression levels of m6A-containing mRNAs were higher than those of non-m6A-containing mRNAs. Furthermore, Flu decreased the acetyl-CoA content and regulated glycolysis and tricarboxylic acid cycle through m6A modifications, diverting the acetyl-CoA flux into fumonisin biosynthesis. Importantly, Flu-mediated regulation of energy and reactive oxygen species metabolism, cell wall and membrane, and transcription factors was associated with m6A modifications. Collectively, this study provides potential novel targets for improving fungicide efficiency to control fungal disease and highlights the potential of environmental risks of fungicides.
Collapse
Affiliation(s)
- Lihong Xie
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Linyan Feng
- Yangjiang Polytechnic, Yangjiang 529500, China
| | - Yanling Ren
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qiuxiao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hongxia Qu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Taotao Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
5
|
Dai C, Qianjiang H, Fu R, Yang H, Shi A, Luo H. Epigenetic and epitranscriptomic role of lncRNA in carcinogenesis (Review). Int J Oncol 2025; 66:29. [PMID: 40017127 PMCID: PMC11900940 DOI: 10.3892/ijo.2025.5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
Long non‑coding RNAs (lncRNAs) are key players in the regulation of gene expression by mediating epigenetic and epitranscriptomic modification. Dysregulation of lncRNAs is implicated in tumor initiation, progression and metastasis. lncRNAs modulate chromatin structure and gene transcription by recruiting epigenetic regulators, including DNA‑ or histone‑modifying enzymes. Additionally, lncRNAs mediate chromatin remodeling and enhancer‑promoter long‑range chromatin interactions to control oncogene expression by recruiting chromatin organization‑associated proteins, thereby promoting carcinogenesis. Furthermore, lncRNAs aberrantly induce oncogene expression by mediating epitranscriptomic modifications, including RNA methylation and RNA editing. The present study aimed to summarize the regulatory mechanisms of lncRNAs in cancer to unravel the complex interplay between lncRNAs and epigenetic/epitranscriptomic regulators in carcinogenesis. The present review aimed to provide a novel perspective on the epigenetic and epitranscriptomic roles of lncRNAs in carcinogenesis to facilitate identification of potential biomarkers and therapeutic targets for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chunfei Dai
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Haoyue Qianjiang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Ruishuang Fu
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Huimin Yang
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| | - Aiqin Shi
- Xianghu Laboratory, Hangzhou, Zhejiang 311231, P.R. China
| | - Huacheng Luo
- Zhejiang Cancer Hospital, The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of Medicine, The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
6
|
Zhao L, Guo J, Xu S, Duan M, Liu B, Zhao H, Wang Y, Liu H, Yang Z, Yuan H, Jiang X, Jiang X. Abnormal changes in metabolites caused by m 6A methylation modification: The leading factors that induce the formation of immunosuppressive tumor microenvironment and their promising potential for clinical application. J Adv Res 2025; 70:159-186. [PMID: 38677545 DOI: 10.1016/j.jare.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA methylation modifications have been widely implicated in the metabolic reprogramming of various cell types within the tumor microenvironment (TME) and are essential for meeting the demands of cellular growth and maintaining tissue homeostasis, enabling cells to adapt to the specific conditions of the TME. An increasing number of research studies have focused on the role of m6A modifications in glucose, amino acid and lipid metabolism, revealing their capacity to induce aberrant changes in metabolite levels. These changes may in turn trigger oncogenic signaling pathways, leading to substantial alterations within the TME. Notably, certain metabolites, including lactate, succinate, fumarate, 2-hydroxyglutarate (2-HG), glutamate, glutamine, methionine, S-adenosylmethionine, fatty acids and cholesterol, exhibit pronounced deviations from normal levels. These deviations not only foster tumorigenesis, proliferation and angiogenesis but also give rise to an immunosuppressive TME, thereby facilitating immune evasion by the tumor. AIM OF REVIEW The primary objective of this review is to comprehensively discuss the regulatory role of m6A modifications in the aforementioned metabolites and their potential impact on the development of an immunosuppressive TME through metabolic alterations. KEY SCIENTIFIC CONCEPTS OF REVIEW This review aims to elaborate on the intricate networks governed by the m6A-metabolite-TME axis and underscores its pivotal role in tumor progression. Furthermore, we delve into the potential implications of the m6A-metabolite-TME axis for the development of novel and targeted therapeutic strategies in cancer research.
Collapse
Affiliation(s)
- Liang Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Junchen Guo
- Department of Radiology, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Baiming Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - He Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Yihan Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| | - Hexue Yuan
- Department of Colorectal Anal Surgery, Shenyang Coloproctology Hospital, Shenyang 110002, China.
| | - Xiaodi Jiang
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang 110020, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
7
|
Sun HT. Helicobacter pylori-related serum indicators: Cutting-edge advances to enhance the efficacy of gastric cancer screening. World J Gastrointest Oncol 2025; 17:100739. [PMID: 40092953 PMCID: PMC11866254 DOI: 10.4251/wjgo.v17.i3.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection induces pathological changes via chronic inflammation and virulence factors, thereby increasing the risk of gastric cancer development. Compared with invasive examination methods, H. pylori-related serum indicators are cost-effective and valuable for the early detection of gastric cancer (GC); however, large-scale clinical validation and sufficient understanding of the specific molecular mechanisms involved are lacking. Therefore, a comprehensive review and analysis of recent advances in this field is necessary. In this review, we systematically analyze the relationship between H. pylori and GC and discuss the application of new molecular biomarkers in GC screening. We also summarize the screening potential and application of anti-H. pylori immunoglobulin G and virulence factor-related serum antibodies for identifying GC risk. These indicators provide early warning of infection and enhance screening accuracy. Additionally, we discuss the potential combination of multiple screening indicators for the comprehensive analysis and development of emerging testing methods to improve the accuracy and efficiency of GC screening. Although this review may lack sufficient evidence due to limitations in existing studies, including small sample sizes, regional variations, and inconsistent testing methods, it contributes to advancing personalized precision medicine in high-risk populations and developing GC screening strategies.
Collapse
Affiliation(s)
- Hao-Tian Sun
- Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
8
|
Lu Z, Lyu Z, Dong P, Liu Y, Huang L. N6-methyladenosine RNA modification in stomach carcinoma: Novel insights into mechanisms and implications for diagnosis and treatment. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167793. [PMID: 40088577 DOI: 10.1016/j.bbadis.2025.167793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
N6-methyladenosine (m6A) RNA methylation is crucially involved in the genesis and advancement of gastric cancer (GC) by controlling various pathobiological aspects including gene expression, signal transduction, metabolism, cell death, epithelial-mesenchymal transition, angiogenesis, and exosome function. Despite its importance, the exact mechanisms by which m6A modification influences GC biology remain inadequately explored. This review consolidates the latest advances in uncovering the mechanisms and diverse roles of m6A in GC and proposes new research and translational directions. Key regulators (writers, readers, and erasers) of m6A, such as METTL3/14/16 and WTAP, significantly affect cancer progression, anticancer immune response, and treatment outcomes. m6A modification also impacts immune cell infiltration and the tumor microenvironment, highlighting its potential as a diagnostic and prognostic marker. Interactions between m6A methylation and non-coding RNAs offer further novel insights into GC development and therapeutic targets. Targeting m6A regulators could enhance immunotherapy response, overcome treatment resistance, and improve oncological and clinical outcomes. Models based on m6A can precisely predict treatment response and prognosis in GC. Additional investigation is needed to fully understand the mechanisms of m6A methylation and its potential clinical applications and relevance (e.g., as precise markers for early detection, prediction of outcome, and response to therapy and as therapeutic targets) in GC. Future research should focus on in vivo studies, potential clinical trials, and the examination of m6A modification in other types of cancers.
Collapse
Affiliation(s)
- Zhengmao Lu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Zhaojie Lyu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Yunmei Liu
- School of Cultural Heritage and Information Management, Shanghai University, Shanghai, China.
| | - Lei Huang
- Department of Gastroenterology, National Clinical Research Center for Digestive Diseases, Shanghai Institute of Pancreatic Diseases, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai 200433, China; National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
9
|
Yang S, Jiang Y, Yang Z. Hypoxia-associated genes as predictors of outcomes in gastric cancer: a genomic approach. Front Immunol 2025; 16:1553477. [PMID: 40129974 PMCID: PMC11931070 DOI: 10.3389/fimmu.2025.1553477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Objective To investigate the effects of hypoxia-related genes in stomach adenocarcinoma (STAD) and construct an excellent prognostic model. Methods RNA expression data and clinical details were retrieved from the TCGA and GEO database dataset. scRNA-seq analysis was conducted on primary gastric cancer samples from GSE183904. Cellular hypoxia status was predicted using the CHPF software. WGCNA and GO-BP/KEGG enrichment of module genes analyses were performed to identify gene modules associated with hypoxia and biological pathway enrichment. A prognostic model was developed employing the LassoCox algorithm. GES-1, AGS, BGC823, and MGC803 cell lines were obtained for qRT-PCR analysis to identify the expression of model genes. Results Single-cell atlas within STAD delineated that most of neoplastic cells, fibroblasts, endothelial cells, and myeloid cells were hypoxic. Further analysis of neoplastic cell subpopulations identified four hypoxic subpopulations (H1-H4) and four non-hypoxic subpopulations (N1-N4), with H1 subpopulation had the highest degree of hypoxia. The prognostic model constructed by five H1-specific transcription factors EHF, EIF1AD, GLA, KEAPI, and MAGED2, was demonstrated efficacy in predicting overall survival (OS), with significantly worse OS in high-risk patients. qRT-PCR analysis determined the higher expression level of five H1-specific transcription factors in gastric cancer cell lines than that in normal gastric epithelial cell line. Conclusion Hypoxia exerts a profound influence on STAD due to the overexpression of hypoxic cellular subpopulations-specific transcription factors EHF, EIF1AD, GLA, KEAPI, and MAGED2. The novel prognostic model developed by these hypoxia-associated genes presents a novel approach to risk stratification, exhibiting an excellent prognostic value for STAD patients.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuhao Jiang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- NHC Key Laboratory of Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Qian YY, Xu M, Huang XK, Zhu B. Bioinformatic analysis indicated that LINC01150 might be a novel neutrophil extracellular traps-related biomarker of gastric cancer. Sci Rep 2025; 15:7875. [PMID: 40050656 PMCID: PMC11885803 DOI: 10.1038/s41598-025-92968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/04/2025] [Indexed: 03/09/2025] Open
Abstract
Gastric cancer (GC) is a highly aggressive malignancy associated with poor prognosis, particularly in its advanced stages. Neutrophil extracellular traps (NETs) have been implicated in cancer progression and immune therapy responses; however, the role of NETs-related long non-coding RNAs (lncRNAs) in GC remains poorly understood. This study used data from the Cancer Genome Atlas (TCGA) and previous research to identify NETs-related lncRNAs in GC. A prognostic signature comprising four NETs-related lncRNAs (NlncSig) was developed and validated, serving as a predictor for patient survival and response to immunotherapy. The NlncSig was correlated with poorer outcomes in high-risk patients and demonstrated that those with lower risk scores exhibited more favorable responses to immunotherapy. In vitro experiments confirmed that LINC01150 enhances GC cell proliferation, migration, and invasion. This robust NlncSig provides a reliable tool for predicting survival and immune characteristics in GC, with the potential to guide personalized therapeutic approaches and improve patient care.
Collapse
Affiliation(s)
- Yang-Yang Qian
- Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Min Xu
- Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China
| | - Xin-Kun Huang
- Department of General Surgery, Affiliated Tumor Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Bin Zhu
- Department of Central Laboratory, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China.
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng, China.
| |
Collapse
|
11
|
Lv M, Cai Y, Hou W, Peng K, Xu K, Lu C, Yu W, Zhang W, Liu L. KLF9, Epigenetic Silenced by DNMT1, Promotes ERK-Mediated Ferroptosis of Osteoarthritic Chondrocytes Through Transcriptionally Regulating CYP1B1. J Cell Mol Med 2025; 29:e70375. [PMID: 40016915 PMCID: PMC11867933 DOI: 10.1111/jcmm.70375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 03/01/2025] Open
Abstract
Ferroptosis plays a crucial role in the pathogenesis of osteoarthritis (OA), and inhibition of chondrocyte ferroptosis effectively alleviates OA progression. Krüppel-like factor 9 (KLF9) is demonstrated to be upregulated in OA, but its molecular mechanism remains unclear. The study aimed to investigate the role of KLF9 in OA progression. Primary chondrocytes were treated with IL-1β to establish an OA cell model, and showed that KLF9 was highly expressed in IL-1β-incubated chondrocytes. Knockdown of KLF9 alleviated IL-1β-induced chondrocyte degeneration. In addition, chondrocytes treated with IL-1β showed a decreased methylation proportion in the KLF9 gene promoter. DNA methyltransferase 1 (DNMT1) directly bound to the KLF9 promoter, and overexpression of DNMT1 inhibited KLF9 expression by promoting its promoter methylation in chondrocytes. Subsequently, KLF9 shRNA and pcDNA-CYP1B1 were individually or altogether transfected into chondrocytes. KLF9 shRNA inhibited Cytochrome P450 1B1 (CYP1B1) expression in chondrocytes, and pcDNA-CYP1B1 abrogated the inhibitory effect of KLF9 shRNA on IL-1β-induced chondrocyte ferroptosis. Moreover, Ferrostatin-1 (Fer-1, an inhibitor of ferroptosis) reversed the promotion of pcDNA-CYP1B1 on IL-1β-induced chondrocyte ferroptosis. Finally, in vivo experiments showed that KLF9 shRNA significantly suppressed the cartilage tissue damage, ferroptosis, and the IHC scores of KLF9 and CYP1B1 in rats. In conclusion, our results suggested that KLF9, epigenetic silenced by DNMT1, promoted extracellular signal-regulated kinase (ERK)-mediated ferroptosis of OA chondrocytes through transcriptionally regulating CYP1B1. Thus, KLF9 is expected to be a new target for the treatment of OA.
Collapse
Affiliation(s)
- Min Lv
- Osteonecrosis and Joint Reconstruction Ward, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Yuanzhen Cai
- Osteonecrosis and Joint Reconstruction Ward, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Weikun Hou
- Osteonecrosis and Joint Reconstruction Ward, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Kan Peng
- Osteonecrosis and Joint Reconstruction Ward, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ke Xu
- Osteonecrosis and Joint Reconstruction Ward, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Chao Lu
- Osteonecrosis and Joint Reconstruction Ward, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Wenxing Yu
- Osteonecrosis and Joint Reconstruction Ward, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Weisong Zhang
- Osteonecrosis and Joint Reconstruction Ward, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Lin Liu
- Osteonecrosis and Joint Reconstruction Ward, Honghui HospitalXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
12
|
Wang R, Liu Y, Fan L, Ma N, Yan Q, Chen C, Wang W, Ren Z, Ning X, Ku T, Sang N. Ultrafine Particulate Matter Exacerbates the Risk of Delayed Neural Differentiation: Modulation Role of METTL3-Mediated m 6A Modification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2974-2986. [PMID: 39903687 DOI: 10.1021/acs.est.4c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Air pollution, especially from ultrafine particles (PM0.1, ≤0.1 μm), is increasingly recognized for its detrimental effects on health. The influence of PM0.1 on neurodevelopmental disorders and its underlying mechanisms remain incompletely understood but are of significant concern. Through an investigation using mouse embryonic stem cells (mESCs), our study has uncovered disruptions in cell cycle dynamics, reduced neural precursor formation, and impaired neurogenesis during mESC neural differentiation as a result of PM0.1-induced neurodevelopmental toxicity. By employing N6-methyladenosine (m6A) methylated RNA immunoprecipitation sequencing and bioinformatics, we identified Zic1 as a key target of PM0.1-induced developmental disturbances. Our mechanistic findings indicate that PM0.1 enhances m6A methylation of Zic1 by upregulating Mettl3, leading to decreased mRNA stability and expression of this gene. Furthermore, the efficacy of the METTL3 inhibitor in alleviating nerve differentiation impairments emphasizes the significance of this pathway. In addition, source analysis, molecular docking, and toxicity analyses show that PAHs with higher ring structures in PM0.1 from combustion sources competitively bind to METTL3, potentially exacerbating neurodevelopmental toxicity. This study not only underscores the severe impact of PM0.1 on neurodevelopment but also reveals the pivotal role of m6A modification in mediating these effects, providing valuable insights and potential therapeutic targets for mitigating PM0.1-related health risks.
Collapse
Affiliation(s)
- Rui Wang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yutong Liu
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifan Fan
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nanxin Ma
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiqi Yan
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chen Chen
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wenhao Wang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhihua Ren
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingting Ku
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
13
|
Yan L, Guo L. The role and mechanism of m6A methylation in diabetic nephropathy. Life Sci 2025; 363:123355. [PMID: 39778764 DOI: 10.1016/j.lfs.2024.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes mellitus, characterized by progressive deterioration of renal structure and function, which may eventually lead to end-stage kidney disease (ESKD). The N6-methyladenosine (m6A) methylation, an important modality of RNA modification, involves three classes of key regulators, writers (e.g., METTL3), erasers (e.g., FTO, ALKBH5) and readers (e.g., YTHDF2), which play important roles in DN. Writers are responsible for introducing m6A modifications on RNAs, erasers remove m6A modifications and readers recognize and bind m6A-modified RNAs to regulate RNAs functions, such as mRNA stability, translation and localization. In DN, abnormal m6A modification may promote kidney injury and proteinuria by regulating key pathways involved in multiple processes, including lipid metabolism and inflammatory response, in kidney cells such as podocytes. Therefore, an in-depth study of the role and mechanism of m6A methylation that are regulated by "writers", "erasers" and "readers" in DN is expected to provide new targets and strategies for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Linjing Yan
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, PR China.
| |
Collapse
|
14
|
Li P, Fang X, Huang D. Exploring m6A modifications in gastric cancer: from molecular mechanisms to clinical applications. Eur J Med Res 2025; 30:98. [PMID: 39940056 PMCID: PMC11823136 DOI: 10.1186/s40001-025-02353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
The significance of m6A modifications in several biological processes has been increasingly recognized, particularly in the context of cancer. For instance, m6A modifications in gastric cancer (GC) have been significantly implicated in tumor progression, metastasis, and treatment resistance. GC is characterized by the differential expression of m6A regulators. High expression writers such as METTL3 and WTAP are associated with poor prognosis and aggressive clinical features. Conversely, low expression of METTL14 is linked to worse clinical outcomes, whereas elevated levels of demethylases, such as FTO and ALKBH5, correlate with better survival rates. These m6A regulators influence several cellular biological functions, including proliferation, invasion, migration, glycolysis, and chemotherapy resistance, thereby affecting tumor growth and therapeutic outcomes. The assessment of m6A modification patterns and the expression profiles of m6A-related genes hold substantial potential for improving the clinical diagnosis and treatment of GC. In this review, we provide an updated and comprehensive summary of the role of m6A modifications in GC, emphasizing their molecular mechanisms, clinical significance, and translational applications in developing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xiangjie Fang
- Department of General Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453100, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
15
|
Wang H, Han J, Kong H, Ma C, Zhang XA. The Emerging Role of m6A and Programmed Cell Death in Cardiovascular Diseases. Biomolecules 2025; 15:247. [PMID: 40001550 PMCID: PMC11853213 DOI: 10.3390/biom15020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal chemical modification in eukaryotic messenger RNA (mRNA), significantly impacting its lifecycle through dynamic and reversible processes involving methyltransferase, demethylase, and binding proteins. These processes regulate mRNA stability, splicing, nuclear export, translation, and degradation. Programmed cell death (PCD), a tightly controlled process encompassing apoptosis, pyroptosis, ferroptosis, autophagy, and necroptosis, plays a crucial role in maintaining cellular homeostasis, tissue development, and function. Recently, m6A modification has emerged as a significant research area due to its role in regulating PCD and its implications in cardiovascular diseases (CVDs). In this review, we delve into the intricate relationship between various PCD types and m6A modification, emphasizing their pivotal roles in the initiation and progression of CVDs such as myocardial ischemia-reperfusion (I/R), atherosclerosis (AS), pulmonary hypertension (PH), cardiomyopathy, doxorubicin (Dox)-induced cardiotoxicity (DIC), heart failure (HF), and myocardial infarction (MI). Our findings underscore the potential of elucidating the roles of m6A and PCD in CVD to pave new pathways for prevention and treatment strategies.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| | - Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| | - Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
- College of Exercise and Health, Shanghai Sport University, Shanghai 200438, China
| | - Ce Ma
- Sports Training Teaching and Research Office, Shenyang Sport University, Shenyang 110102, China;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.W.); (J.H.); (H.K.)
| |
Collapse
|
16
|
Xu L, Kong Y, Li K, Li J, Xu F, Xu Y, Liang S, Chen B. Neutrophil extracellular traps promote growth of lung adenocarcinoma by mediating the stability of m6A-mediated SLC2A3 mRNA-induced ferroptosis resistance and CD8(+) T cell inhibition. Clin Transl Med 2025; 15:e70192. [PMID: 39865544 PMCID: PMC11769710 DOI: 10.1002/ctm2.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
To investigate the potential mechanisms underlying neutrophil extracellular traps (NETs) confer ferroptosis resistance and CD8(+) T cell inhibition in lung adenocarcinoma (LUAD). By the intravenous injection of LLC cells into the tail vein, a LUAD mouse model was created. Phorbol-12-myristate-13-acetate (PMA) stimulated neutrophils to facilitate NETs formation and combined with NETs inhibitor DNase I to explore NETs mechanism on LLC cell proliferation, migration, ferroptosis resistance, and CD8(+) T cell activity. CitH3, myeloperoxidase (MPO), cell-free DNA, and MPO-DNA levels in LUAD were increased, indicating an increase in NETs formation in LUAD. PMA promoted NETs formation in tumours of mice, increased the number of CD3(+)CD4(+) T cells, decreased perforin, granzyme A, granzyme B, IFNγ, and TNF-α levels, and promoted LUAD growth and the number of lung tumour nodules, indicating that PMA promoted NETs formation, reduced the activity of CD8(+)T cells, and promoted LUAD growth. DNase I partially reversed the effects of PMA. NETs promoted LLC cell proliferation and migration, while DNase I reversed NETs effects. Erastin inhibited LLC cell proliferation and migration and promoted ferroptosis. NETs partially reversed Erastin effects. Further results showed that NETs promoted LLC cell proliferation and migration and inhibited ferroptosis by promoting YTHDF2-mediated SLC2A3 mRNA degradation. Sh-YTHDF2 partially reversed the effect of NETs on LLC cells, whereas si-SLC2A3 partially reversed sh-YTHDF2 effects on LLC cells. In addition, NETs inhibited LLC cell ferroptosis by inhibiting CD8(+) T cell activity. Sh-YTHDF2 and DNase I inhibited NETs formation in tumours, increased the activity of CD8(+) T cells and inhibited LUAD growth. Our results suggested that NETs promoted the growth of LUAD through inhibiting ferroptosis and CD8(+) T cell activity by promoting YTHDF2-mediated SLC2A3 mRNA degradation.
Collapse
Affiliation(s)
- Li Xu
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Yi Kong
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Kang Li
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Jia Li
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Fang Xu
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Yan Xu
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Shuzhi Liang
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| | - Bolin Chen
- The Second Department of Thoracic OncologyThe Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer HospitalChangshaHunan ProvinceP.R. China
| |
Collapse
|
17
|
Elahi MA, Tariq A, Malik A, Zhra M. Role of Hypoxia-Associated Long Noncoding RNAs in Cancer Chemo-Therapy Resistance. Int J Mol Sci 2025; 26:936. [PMID: 39940704 PMCID: PMC11817469 DOI: 10.3390/ijms26030936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/27/2024] [Accepted: 01/04/2025] [Indexed: 02/16/2025] Open
Abstract
Hypoxia is a well-known characteristic of the tumor microenvironment which significantly influences cancer development and is closely linked to unfavorable outcomes. Long noncoding RNAs (lncRNAs), which are part of the noncoding genome, have garnered increasing attention because of their varied functions in tumor metastasis. Long noncoding RNAs (lncRNAs) are defined as noncoding RNAs which are longer than 200 nucleotides, and they regulate diverse cellular processes by modulating gene expression at the transcriptional, post-transcriptional and epigenetic levels. Hypoxia is a well-established environmental factor which enhances the metastasis of solid tumors. Epithelial-mesenchymal transition (EMT) represents one of the key mechanisms triggered by hypoxia which contributes to metastasis. Numerous lncRNAs have been identified as being upregulated by hypoxia. These lncRNAs significantly contribute toward cancer cell migration, invasion and metastasis. Recent studies have identified a crucial role for these hypoxia-induced lncRNAs in chemotherapy resistance. These hypoxia-related lncRNAs can be plausible therapeutic targets for devising effective cancer therapies.
Collapse
Affiliation(s)
- Muhammad Affan Elahi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| | - Aamira Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan;
| | - Ambrin Malik
- Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan;
| | - Mahmoud Zhra
- Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
18
|
Mao D, Tang X, Zhang R, Hu S, Gou H, Zhang P, Li W, Pan Q, Shen B, Zhu X. Multichrome encoding-based multiplexed, spatially resolved imaging reveals single-cell RNA epigenetic modifications heterogeneity. Nat Commun 2025; 16:958. [PMID: 39843433 PMCID: PMC11754832 DOI: 10.1038/s41467-025-56331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Understanding the heterogeneity of epigenetic modifications within single cells is pivotal for unraveling the nature of the complexity of gene expression and cellular function. In this study, we have developed a strategy based on multichrome encoding and "AND" Boolean logic recognition for multiplexed, spatially resolved imaging of single-cell RNA epigenetic modifications, termed as PRoximity Exchange-assisted Encoding of Multichrome (PREEM). Through the implementation of this strategy, we can now map the expression and nuclear distribution of multiple site-specific RNA N6-methyladenosine (m6A) modifications at the single-molecule resolution level in single-cells, and reveal the previously unknown heterogeneity. Notably, we demonstrate how these patterns change after treatment with various drugs. Moreover, cyclic imaging with tailed DNA self-assembly further suggest the scalability and adaptability of PREEM's design. As an innovative epigenetic modification imaging tool, PREEM not only broadens the horizons of single-cell epigenetics research, enabling joint analysis of multiple targets beyond the limitations of imaging channels, but also reveals cell-to-cell variability, thereby enhancing our capacity to explore cellular functions.
Collapse
Affiliation(s)
- Dongsheng Mao
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Xiaochen Tang
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Runchi Zhang
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Song Hu
- Shanghai Pudong New Area People's Hospital, Shanghai, PR China
| | - Hongquan Gou
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China
| | - Penghui Zhang
- Shanghai Pudong New Area People's Hospital, Shanghai, PR China
| | - Wenxing Li
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| | - Qiuhui Pan
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Bing Shen
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| | - Xiaoli Zhu
- Shanghai Tenth People's Hospital of Tongji University, Shanghai, PR China.
| |
Collapse
|
19
|
Bai Z, Xia Q, Xu W, Wu Z, He X, Zhang X, Wang Z, Luo M, Sun H, Liu S, Wang J. N 6-Methylandenosine-related lncRNAs as potential biomarkers for predicting prognosis and the immunotherapy response in pancreatic cancer. Cell Mol Life Sci 2025; 82:48. [PMID: 39833465 PMCID: PMC11753445 DOI: 10.1007/s00018-024-05573-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025]
Abstract
Emerging evidence has shown that the N6-methyladenosine (m6A) modification of RNA plays key roles in tumorigenesis and the progression of various cancers. However, the potential roles of the m6A modification of long noncoding RNAs (lncRNAs) in pancreatic cancer (PaCa) are still unknown. To analyze the prognostic value of m6A-related lncRNAs in PaCa, an m6A-related lncRNA signature was constructed as a risk model via Pearson's correlation and univariate Cox regression analyses in The Cancer Genome Atlas (TCGA) database. The tumor microenvironment (TME), tumor mutation burden, and drug sensitivity of PaCa were investigated by m6A-related lncRNA risk score analyses. We established an m6A-related risk prognostic model consisting of five lncRNAs, namely, LINC01091, AC096733.2, AC092171.5, AC015660.1, and AC005332.6, which not only revealed significant differences in immune cell infiltration associated with the TME between the high-risk and low-risk groups but also predicted the potential benefit of immunotherapy for patients with PaCa. Drugs such as WZ8040, selumetinib, and bortezomib were also identified as more effective for high-risk patients. Our results indicate that the m6A-related lncRNA risk model could be an independent prognostic indicator, which may provide valuable insights for identifying therapeutic approaches for PaCa.
Collapse
Affiliation(s)
- Zhihui Bai
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Xiamen Key Laboratory of Biotherapy, Xiamen, 361015, China
| | - Qianlin Xia
- Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wanli Xu
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Zhirong Wu
- Department of General Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Xiaomeng He
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, China
| | - Xin Zhang
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Zhefeng Wang
- Xiamen Key Laboratory of Biotherapy, Xiamen, 361015, China
- Clinical Research Center for Precision Medicine of Abdominal Tumor of Fujian Province, Xiamen, China
| | - Mengting Luo
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Huaqin Sun
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
| | - Songmei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis & Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jin Wang
- Central Laboratory, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China.
- Xiamen Key Laboratory of Biotherapy, Xiamen, 361015, China.
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai, China.
| |
Collapse
|
20
|
Ou S, Nie X, Qiu X, Jin X, Wu G, Zhang R, Zhu J. Deciphering the mechanisms of long non-coding RNAs in ferroptosis: insights into its clinical significance in cancer progression and immunology. Cell Death Discov 2025; 11:14. [PMID: 39827195 PMCID: PMC11743196 DOI: 10.1038/s41420-025-02290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
A new type of nonapoptotic, iron-dependent cell death induced by lipid peroxidation is known as ferroptosis. Numerous pathological processes, including inflammation and cancer, have been demonstrated to be influenced by changes in the ferroptosis-regulating network. Long non-coding RNAs (LncRNAs) are a group of functional RNA molecules that are not translated into proteins, which can regulate gene expression in various manners. An increasing number of studies have shown that lncRNAs can interfere with the progression of ferroptosis by modulating ferroptosis-related genes directly or indirectly. Despite evidence implicating lncRNAs in cancer and inflammation, studies on their mechanisms and therapeutic potential remain scarce. We investigate the mechanisms of lncRNA-mediated regulation of inflammation and cancer immunity, assessing the feasibility and challenges of lncRNAs as therapeutic targets in these conditions.
Collapse
Affiliation(s)
- Shengming Ou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoya Nie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiangyu Qiu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Jin
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Geyan Wu
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provicial Clinical Research Center for Obsterics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Rongxin Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Jinrong Zhu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
21
|
Xie X, Fang Z, Zhang H, Wang Z, Li J, Jia Y, Shang L, Cao F, Li F. The role of N(6)-methyladenosine (m6a) modification in cancer: recent advances and future directions. EXCLI JOURNAL 2025; 24:113-150. [PMID: 39967906 PMCID: PMC11830918 DOI: 10.17179/excli2024-7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
N(6)-methyladenosine (m6A) modification is the most abundant and prevalent internal modification in eukaryotic mRNAs. The role of m6A modification in cancer has become a hot research topic in recent years and has been widely explored. m6A modifications have been shown to regulate cancer occurrence and progression by modulating different target molecules. This paper reviews the recent research progress of m6A modifications in cancer and provides an outlook on future research directions, especially the development of molecularly targeted drugs. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Xiaozhou Xie
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhen Fang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Zheng Z, Lin F, Zhao B, Chen G, Wei C, Chen X, Nie R, Zhang R, Zhao Z, Zhou Z, Li Y, Dai W, Lin Y, Chen Y. ALKBH5 suppresses gastric cancer tumorigenesis and metastasis by inhibiting the translation of uncapped WRAP53 RNA isoforms in an m6A-dependent manner. Mol Cancer 2025; 24:19. [PMID: 39815301 PMCID: PMC11734446 DOI: 10.1186/s12943-024-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025] Open
Abstract
The N6-methyladenosine (m6A) modification serves as an essential epigenetic regulator in eukaryotic cells, playing a significant role in tumorigenesis and cancer progression. However, the detailed biological functions and underlying mechanisms of m6A regulation in gastric cancer (GC) are poorly understood. Our research revealed that the m6A demethylase ALKBH5 was markedly downregulated in GC tissues, which was associated with poor patient prognosis. Functional studies demonstrated that suppressing ALKBH5 expression enhanced GC cell proliferation, migration, and invasion. Mechanistically, ALKBH5 removed m6A modifications from the 5' uncapped and polyadenylated transcripts (UPTs) of WRAP53. This demethylation decreased WRAP53 stability and translation efficiency. The lower level of WRAP53 disrupts the interaction between USP6 and RALBP1 protein, promoting RALBP1 degradation and thereby suppressing the PI3K/Akt/mTOR signaling cascade, ultimately attenuating the progression of GC. These findings highlight the pivotal role of ALKBH5-mediated m6A demethylation in inhibiting GC progression and the potential role of ALKBH5 as a promising biomarker and therapeutic target for GC intervention.
Collapse
Affiliation(s)
- Ziqi Zheng
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Feizhi Lin
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Baiwei Zhao
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Guoming Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Chengzhi Wei
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Xiaojiang Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Runcong Nie
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Ruopeng Zhang
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zhoukai Zhao
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Zhiwei Zhou
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China
| | - Yuanfang Li
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| | - Weigang Dai
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Guangzhou, 510060, P. R. China.
| | - Yijia Lin
- Department of General Surgery (Gastrointestinal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, NO. 26 Yuancun Erheng Road, Guangzhou, 510060, People's Republic of China.
| | - Yongming Chen
- Department of Gastric Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, No. 651 Dongfeng Road East, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
23
|
Yang Y, Yu S, Liu W, Zhuo Y, Qu C, Zeng Y. Ferroptosis-related signaling pathways in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:1. [PMID: 39935430 PMCID: PMC11813627 DOI: 10.20517/cdr.2024.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death induced by lipid peroxidation. This process is regulated by signaling pathways associated with redox balance, iron metabolism, and lipid metabolism. Cancer cells' increased iron demand makes them especially susceptible to ferroptosis, significantly influencing cancer development, therapeutic response, and metastasis. Recent findings indicate that cancer cells can evade ferroptosis by downregulating key signaling pathways related to this process, contributing to drug resistance. This underscores the possibility of modulating ferroptosis as an approach to counteract drug resistance and enhance therapeutic efficacy. This review outlines the signaling pathways involved in ferroptosis and their interactions with cancer-related signaling pathways. We also highlight the current understanding of ferroptosis in cancer drug resistance, offering insights into how targeting ferroptosis can provide novel therapeutic approaches for drug-resistant cancers. Finally, we explore the potential of ferroptosis-inducing compounds and examine the challenges and opportunities for drug development in this evolving field.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Simin Yu
- XiangYa School of Medicine, Central South University, Changsha 410013, Hunan, China
- Department of Urology, Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wanyao Liu
- XiangYa School of Medicine, Central South University, Changsha 410013, Hunan, China
| | - Yi Zhuo
- First Clinical Department of Changsha Medical University, Changsha 410219, Hunan, China
| | - Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
24
|
Wu H, Chen S, Li X, Li Y, Shi H, Qing Y, Shi B, Tang Y, Yan Z, Hao Y, Wang D, Liu W. RNA modifications in cancer. MedComm (Beijing) 2025; 6:e70042. [PMID: 39802639 PMCID: PMC11718328 DOI: 10.1002/mco2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation. Recent studies have highlighted their roles in metabolic reprogramming, signaling pathways, and cell cycle control, which are essential for tumor proliferation and survival. Despite these scientific advances, the precise mechanisms by which RNA modifications affect cancer remain inadequately understood. This review comprehensively examines the role RNA modifications play in cancer proliferation, metastasis, and programmed cell death, including apoptosis, autophagy, and ferroptosis. It explores their effects on epithelial-mesenchymal transition (EMT) and the immune microenvironment, particularly in cancer metastasis. Furthermore, RNA modifications' potential in cancer therapies, including conventional treatments, immunotherapy, and targeted therapies, is discussed. By addressing these aspects, this review aims to bridge current research gaps and underscore the therapeutic potential of targeting RNA modifications to improve cancer treatment strategies and patient outcomes.
Collapse
Affiliation(s)
- Han Wu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Shi Chen
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Xiang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yuyang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - He Shi
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yiwen Qing
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Bohe Shi
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yifei Tang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Zhuoyi Yan
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yang Hao
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Weiwei Liu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| |
Collapse
|
25
|
Xia J, Zhou C, Zhao H, Zhang J, Chai X. LINC01614 Accelerates CRC Progression via STAT1/LINC01614/miR-4443/PFKFB3-Mediated Aerobic Glycolysis. Dig Dis Sci 2025; 70:215-232. [PMID: 39641899 DOI: 10.1007/s10620-024-08756-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is an aggressive malignancy among malignant tumours, with a high incidence globally. LINC01614, a long non-coding RNA, has been identified as an essential regulator in multiple cancer types. However, its biological functions and underlying molecular mechanisms in CRC remain largely unknown. METHODS In this study, we employed RT-qPCR to assess the expression levels of LINC01614 in CRC samples. In vitro, glucose metabolism experiments were conducted to evaluate glucose metabolism in cells. The binding relationship between miR-4443, PFKFB3, and LINC01614 was confirmed through fluorescence reporter gene detection. The subcellular localization of LINC01614 in CRC cells was determined using FISH and subcellular fractionation experiments. Additionally, a mouse subcutaneous tumor model was established for in vivo experiments. RESULTS Our findings reveal that LINC01614 is upregulated in CRC tissues. Silencing of LINC01614 suppresses the malignant behaviors of CRC cells, including cell proliferation, invasion, migration, and aerobic glycolysis. Furthermore, we discovered that LINC01614 promotes the expression of PFKFB3. Additional experiments demonstrated that LINC01614 binds to miR-4443, leading to the upregulation of PFKFB3 expression. Further experiments confirmed that the LINC01614/miR-4443/PFKFB3 axis promotes CRC cell malignancy by enhancing aerobic glycolysis. Additionally, we found that STAT1 promotes the transcription of LINC01614. CONCLUSION These findings uncover a novel regulatory pathway wherein STAT1-induced LINC01614 enhances PFKFB3 expression by sponging miR-4443, thereby accelerating CRC development. This understanding may lead to novel therapeutic strategies for CRC treatment.
Collapse
Affiliation(s)
- Jiangyan Xia
- Department of Anesthesiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
| | - Chenglin Zhou
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Heng Zhao
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Jun Zhang
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China
| | - Xiaoming Chai
- Department of Anesthesiology, People's Hospital of Xuyi County, Xuyi, Huaian, Jiangsu, China.
| |
Collapse
|
26
|
Liu W, He Y, Chen K, Ye J, Yu L, Zhou C, Zhai W. YTHDF2 influences hepatic fibrosis by regulating ferroptosis in hepatic stellate cells by mediating the expression of ACSL4 in an m 6A-dependent manner. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39716886 DOI: 10.3724/abbs.2024162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Hepatic fibrosis (HF) is an abnormal reparative response of the liver to chronic injury and is histologically reversible. In recent years, increasing interest has been given to changes in m 6A in liver disease. In this study, we explore the role of the m 6A-modified reading protein YTHDF2 in HF and its regulatory mechanism. The HF mouse model is generated through CCl 4 injection, and the cell model is via TGF-β stimulation. The liver tissues are subjected to hematoxylin-eosin, Masson, and α-SMA immunohistochemical staining. Reactive oxygen species (ROS) and iron levels are examined via relevant kits. Quantitative real-time PCR, immunofluorescence staining, and western blot analysis were conducted to measure the YTHDF2 and ACSL4 levels. RNA immunoprecipitation, methylated RNA immunoprecipitation, RNA pull-down, and polysome fractionation were performed to understand the regulatory mechanism by which YTHDF2 affects ACSL4. The results show that YTHDF2 is highly expressed after HF induction, and the inhibition of YTHDF2 reduces fibrosis as well as ROS and iron levels. In vitro, overexpression of YTHDF2 increases hepatic stellate cell activation, as well as ROS and iron levels, and this effect is blocked by the silencing of ACSL4. YTHDF2 acts as a regulator of ACSL4 expression and is involved in m 6A modification. In addition, in vivo experiments indicate that overexpression of ACSL4 reverses the attenuating effect of YTHDF2 interference on HFs. Therefore, YTHDF2 mediates the expression of the ferroptosis marker protein ACSL4 in an m 6A-dependent manner, thereby affecting HF.
Collapse
|
27
|
Su Q, Orlandella FM, Smaldone G, Qi Y. Editorial: LncRNA and their role on epigenome in cancer. Front Mol Biosci 2024; 11:1533057. [PMID: 39698110 PMCID: PMC11652352 DOI: 10.3389/fmolb.2024.1533057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Affiliation(s)
- Qi Su
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | | | | | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| |
Collapse
|
28
|
Zhao P, Ren X, Zhang Z, Duan Z, Yang X, Jin J, Hu J. Blocking METTL3-mediated lncRNA FENDRR silence reverses cisplatin resistance of lung adenocarcinoma through activating TFRC-mediated ferroptosis pathway. J Mol Histol 2024; 56:21. [PMID: 39627631 DOI: 10.1007/s10735-024-10276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/09/2024] [Indexed: 02/07/2025]
Abstract
Targeting ferroptosis pathway becomes a new solution for cisplatin (DDP) resistance in lung adenocarcinoma (LUAD), and further research is required to explore the molecular mechanisms underlying ferroptosis and DDP resistance, providing biotargets for LUAD treatment. In this study, DDP-sensitive A549 cells and DDP-resistant A549/DDP cells were treated with DDP, DDP sensitivity was detected through using CCK-8 method and colony formation assay, ferroptosis-related markers were determined through commercial kits, and the molecular regulatory mechanism was analyzed through methylated RNA immunoprecipitation, RNA pull-down, dual luciferase assay, quantitative real-time polymerase chain reaction and western blotting assay. Results showed that compared to A549 cells, FENDRR was downregulated in A549/DDP cells, and FENDRR increased iron content, labile iron pool, lipid peroxidation, LDH release and ROS levels, accelerating ferroptosis to promote DDP sensitivity. Interestingly, we found that METTL3-mediated N6-methyladenosine modification YTHDF2 dependently resulted in FENDRR degradation, and FENDRR overexpression elevated TFRC expression through sponging miR-761. Mechanistically, METTL3 inhibited the FENDRR/TFRC axis to alleviate DDP-induced ferroptosis, promoting DDP resistance in LUAD cells. Collectively, our findings identify a novel molecular regulatory mechanism in DDP resistance of LUAD, and suggest that FENDRR might be an attractive target for addressing DDP resistance.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Thoracic Surgery, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Congtai District, Handan, 056000, Hebei, China
| | - Xiaoguo Ren
- Oncology Department, Shexian Hospital, Handan, 056400, China
| | - Zhenchao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Congtai District, Handan, 056000, Hebei, China
| | - Zhentao Duan
- Department of Thoracic Surgery, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Congtai District, Handan, 056000, Hebei, China
| | - Xiaogang Yang
- Department of Cardiac Surgery, Affiliated Hospital of Hebei Engineering University, Handan, 056000, China
| | - Jiatai Jin
- Department of Thoracic Surgery, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Congtai District, Handan, 056000, Hebei, China
| | - Jigang Hu
- Department of Thoracic Surgery, Affiliated Hospital of Hebei Engineering University, No. 81 Congtai Road, Congtai District, Handan, 056000, Hebei, China.
| |
Collapse
|
29
|
Xie Y, Xie J, Li L. The Role of Methylation in Ferroptosis. J Cardiovasc Transl Res 2024; 17:1219-1228. [PMID: 39075241 DOI: 10.1007/s12265-024-10539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/21/2024] [Indexed: 07/31/2024]
Abstract
Methylation modification is a crucial epigenetic alteration encompassing RNA methylation, DNA methylation, and histone methylation. Ferroptosis represents a newly discovered form of programmed cell death (PCD) in 2012, which is characterized by iron-dependent lipid peroxidation. The comprehensive investigation of ferroptosis is therefore imperative for a more profound comprehension of the pathological and pathophysiological mechanisms implicated in a wide array of diseases. Researches show that methylation modifications can exert either promotive or inhibitory effects on cell ferroptosis. Consequently, this review offers a comprehensive overview of the pivotal role played by methylation in ferroptosis, elucidating its associated factors and underlying mechanisms.
Collapse
Affiliation(s)
- Yushu Xie
- Class of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jie Xie
- Class of Excellent Doctor, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Li
- Department of Physiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
30
|
Ren J, Wang X, Sun Y, Yang L, Sun H, Sun Y, Kong L, Yan G, Han Y, Wang X. Integrated metabolomics and lipidomics investigation of the mechanism of Danggui Sini Decoction on improving lipid homeostasis in primary dysmenorrhea. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156034. [PMID: 39306882 DOI: 10.1016/j.phymed.2024.156034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/26/2024] [Accepted: 09/07/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Danggui Sini Decoction (DGSND) is a classic prescription for treating primary dysmenorrhea (PD), while, the ameliorating effects of DGSND on PD and its mechanisms are not yet fully understood. PURPOSE The present study is devoted to investigate the protective effect of DGSND against PD and the possible mechanism from the perspective of metabolomics as well as lipidomics. METHODS DGSND was characterized by UPLC-Q-TOF/MS. The PD rat model was induced by estradiol benzoate and oxytocin, and traditional pharmacology, including writhing times, latency time, biochemical index, organ index, and histopathology were performed to evaluated the efficacy of DGSND on PD. Urine metabolomics strategy combined with functional analysis was adopted to delineate the therapeutic effect of DGSND on PD rats and anchor the crucial pathway, and lipidomics analysis was further performed with the uterine tissue as the research object to elucidate the protective mechanism of DGSND from the perspective of lipid homeostasis. Finally, western blot analysis was used to validate the expression of key metabolic enzymes in lipid metabolism. RESULTS DGSND was effective in ameliorating writhing times, latency time, the value of prostaglandin F2α (PGF2α)/PGE2, uterus index, and morphological changes of PD rats. Metabolic signature of PD rats was primarily characterized by the disturbance of steroid hormone metabolism, amino acid metabolism, and lipid metabolism. Functional analysis revealed the urine biomarkers of PD were most related with lipid abnormality. Further lipidomics analysis indicated DGSND exerted anti-PD effects by remodeling lipid homeostasis, which might be due to the significant correlations between different kinds of lipids, especially the extremely high correlation of phosphatidylethanolamine, phosphatidylcholine, and fatty acids. Moreover, the key metabolic enzymes expression of CK, PLA2, LPCAT3, COX-2, and 5-LOX can be greatly downregulated by DGSND. CONCLUSION Our findings demonstrated a novel protective mechanism of DGSND against PD by regulating lipid homeostasis.
Collapse
Affiliation(s)
- Junling Ren
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, PR China
| | - Xia Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, PR China
| | - Yuran Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, PR China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, PR China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, PR China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, PR China
| | - Ling Kong
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, PR China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, PR China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, PR China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, PR China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, PR China.
| |
Collapse
|
31
|
Wang Z, Yan Q, Wang Z, Hu Z, Wang C, Zhang X, Gao X, Bai X, Chen X, Zhang L, Lv D, Liu H, Chen Y. Ferroptosis and its implications in bone-related diseases. PeerJ 2024; 12:e18626. [PMID: 39619200 PMCID: PMC11606331 DOI: 10.7717/peerj.18626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Ferroptosis, a recently recognized form of regulated cell death (RCD) characterized by iron-dependent lipid peroxide accumulation, has emerged as a noteworthy regulator in various bone-related diseases, including osteoporosis (OP), osteoarthritis (OA), and osteosarcoma (OS). OS primarily afflicts the elderly, rendering them susceptible to fractures due to increased bone fragility. OA represents the most prevalent arthritis in the world, often observed in the aging population. OS predominantly manifests during adolescence, exhibiting an aggressive nature and bearing a significantly unfavorable prognosis. In this review article, we present an overview of the characteristics and mechanism of ferroptosis and its involvement in bone-related diseases, with a particular focus on OP, OA, and OS. Furthermore, we summarize chemical compounds or biological factors that impact bone-related diseases by regulating ferroptosis. Through an in-depth exploration of ferroptosis based on current research findings, this review provides promising insights for potential therapeutic approaches to effectively manage and mitigate the impact of these bone-related pathological conditions.
Collapse
Affiliation(s)
- Zihao Wang
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Qiupeng Yan
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Teaching and Research Section of Introduction to Basic Medicine, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Zhen Wang
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Zunguo Hu
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
| | - Chenchen Wang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xue Zhang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xueshuai Gao
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xue Bai
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Xiaosu Chen
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| | - Lingyun Zhang
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
| | - Danyue Lv
- Shandong Second Medical University, Clinical Medicine, School of Clinical Medicine, Weifang, Shandong, China
| | - Huancai Liu
- Shandong Second Medical University, Department of Joint Surgery, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Weifang, Shandong, China
| | - Yanchun Chen
- Shandong Second Medical University, Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Weifang, Shandong, China
- Shandong Second Medical University, Department of Histology and Embryology, School of Basic Medical Sciences, Weifang, Shandong, China
| |
Collapse
|
32
|
Yan Y, Huang Z, Zhu Z, Wang Y, Cao X, Yang C, Jiang J, Xia S, Shen B. IMP2 drives chemoresistance by repressing cisplatin-induced apoptosis and ferroptosis via activation of IPO4 and SLC7A11 under hypoxia in bladder cancer. Cancer Cell Int 2024; 24:386. [PMID: 39578867 PMCID: PMC11583454 DOI: 10.1186/s12935-024-03570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Cisplatin resistance is the leading cause of mortality in muscle-invasive bladder cancer (MIBC) cases. Previous evidence suggests that abnormal epitranscriptome modifications are associated with reduced chemotherapy responses. However, the exact underlying mechanism remains largely unknown. METHODS Insulin-like growth factor-2 mRNA-binding protein 2 (IMP2) was identified by clustered regularly interspaced short palindromic repeats (CRISPR) data screening, single-cell RNA-sequencing and sample analysis. To evaluate the regulatory role of IMP2, functional studies were conducted both in vitro and in vivo. To elucidate the underlying mechanisms, various techniques including immunofluorescence, fluorescent in situ hybridization, RNA pull-down, coimmunoprecipitation, and RNA immunoprecipitation were used. RESULTS Our study revealed that IMP2 was overexpressed in chemoresistant MIBC and lung metastasis tissues. IMP2 inhibition markedly enhanced the sensitivity of BC cells to cisplatin both in vitro and in vivo. Mechanistically, IMP2 enhanced the mRNA stability of IPO4 and SLC7A11 in a m6A-dependent manner, augmenting the nuclear translocation of C/EBPδ to activate PRKDC-mediated DNA damage repair in response to cisplatin. Moreover, IMP2 upregulated SLC7A11 levels and suppressed cisplatin-induced ferroptosis. Combining ferroptosis and apoptosis inhibitors completely reversed cisplatin resistance caused by IMP2 overexpression. LINC00941, which was induced by HIF-1α-mediated transcriptional activation, specifically bound IMP2 and protects it from degradation. CONCLUSIONS This work demonstrated a novel mechanism involving the IMP2-IPO4/SLC7A11 pathway as a promising treatment target for cisplatin-resistant bladder cancer.
Collapse
Affiliation(s)
- Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China
| | - Zhengnan Huang
- Department of Urology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Zhen Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Yang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, 200080, PR China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China
| | - Junfeng Jiang
- Histology and Embryology Department, Naval Medical University, Shanghai, 200433, PR China.
- Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, 200433, PR China.
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
- Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, PR China.
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, PR China.
- Department of Urology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200080, PR China.
| |
Collapse
|
33
|
Liu Y, Zhang Z, Fang Y, Liu C, Zhang H. Ferroptosis in Osteoarthritis: Current Understanding. J Inflamm Res 2024; 17:8471-8486. [PMID: 39529997 PMCID: PMC11552513 DOI: 10.2147/jir.s493001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease in elderly people that is characterized by cartilage loss and abrasion, leading to joint pain and dysfunction. The aetiology of OA is complicated and includes abnormal mechanical stress, a mild inflammatory environment, chondrocyte senescence and apoptosis, and changes in chondrocyte metabolism. Ferroptosis is a regulated cell death modality characterized by the excessive accumulation of lipid peroxidation and mitochondrial dysfunction. The role of ferroptosis in OA pathogenesis has aroused researchers' attention in the past two years, and there is mounting evidence indicating that ferroptosis is destructive. However, the impact of ferroptosis on OA and how the regulators of ferroptosis affect OA development are unclear. Here, we reviewed the current understanding of ferroptosis in OA pathogenesis and summarized several drugs and compounds targeting ferroptosis in OA treatment. The accumulation of intracellular iron, the trigger of Fenton reaction, the excessive production of ROS, the peroxidation of PUFA-PLs, and mitochondrial and membrane damage are involved in chondrocyte ferroptosis. System Xc - and GPX4 are the most important regulators that control ferroptosis. Several compounds, such as DFO and Fer-1, have been proven effective in preventing ferroptosis and slowing OA progression on animal models. Collectively, targeting ferroptosis shows great potential in treating OA.
Collapse
Affiliation(s)
- Yikai Liu
- Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People’s Republic of China
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Zian Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Yuan Fang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Chang Liu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Haining Zhang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| |
Collapse
|
34
|
Zhang N, Wen K. The role of lncRNA binding to RNA‑binding proteins to regulate mRNA stability in cancer progression and drug resistance mechanisms (Review). Oncol Rep 2024; 52:142. [PMID: 39219266 PMCID: PMC11378159 DOI: 10.3892/or.2024.8801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is a disease that poses a serious threat to human health, the occurrence and development of which involves complex molecular mechanisms. Long non‑coding RNAs (lncRNAs) and RNA‑binding proteins (RBPs) are important regulatory molecules within cells, which have garnered extensive attention in cancer research in recent years. The binding of lncRNAs and RBPs plays a crucial role in the post‑transcriptional regulation of mRNA, affecting the synthesis of proteins related to cancer by regulating the stability of mRNA. This, in turn, regulates the malignant biological behaviors of tumor cells, such as proliferation and metastasis, and serves an important role in therapeutic resistance. The present study reviewed the role of lncRNA‑RBP interactions in the regulation of mRNA stability in various malignant tumors, with a focus on the molecular mechanisms underlying this regulatory interaction. The aim of the present review was to gain a deeper understanding of these molecular mechanisms to provide new strategies and insights for the precise treatment of cancer.
Collapse
Affiliation(s)
- Nianjie Zhang
- Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| | - Kunming Wen
- Department of Gastrointestinal Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, P.R. China
| |
Collapse
|
35
|
Chen Z, Li Q, Li Z, Hu G. Propofol attenuates prostate cancer progression by upregulating TRHDE-AS1 expression, and METTL14 could mediate its m6A modification. Clin Exp Pharmacol Physiol 2024; 51:e13924. [PMID: 39322401 DOI: 10.1111/1440-1681.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Propofol has become a microtubule-stabilizing drug for prostate cancer (PC) therapy, but propofol resistance impairs the therapeutic effect. This study aimed to explore the regulatory mechanism of propofol in the pathogenesis of PC through mechanisms involving N6-methyladenosine (m6A) modification. The changes in PC cell malignancy were evaluated by means of transwell, cell counting kit 8 (CCK-8), western blotting and tumour xenograft model assays. Long noncoding RNA TRHDE-AS1 and m6A methyltransferase METTL14 expression levels were determined via reverse transcription quantitative polymerase chain reaction (RT-qPCR). The m6A modification of TRHDE-AS1 which was mediated by METTL14 was confirmed by conducting methylated RNA immunoprecipitation (MeRIP) assay. We observed that propofol (200 μM) inhibited PC cell malignancy in vivo and in vitro, elucidating that it impaired cell proliferation, migration and tumour growth but induced apoptosis. TRHDE-AS1 expression was observed to be lower in PC cells and tissues, and propofol induced TRHDE-AS1 upregulation in PC cells. Propofol was capable of reversing the tumour-promoting effect of TRHDE-AS1 knockdown in PC cells. Additionally, METTL14 was upstream of TRHDE-AS1 to induce m6A modification of TRHDE-AS1 in PC cells. Collectively, our results show that propofol prevents PC progression by upregulating TRHDE-AS1 expression and METTL14 is involved in the m6A modification of TRHDE-AS1. These findings suggest that TRHDE-AS1 may be a potential therapeutic target for the improvement of propofol's therapeutic effect.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Anesthesiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Quanfu Li
- Department of Proctology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Zhong Li
- Department of Proctology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Guangjun Hu
- Department of Anesthesiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Cui Y, Pu M, Gong Y, Li R, Wang X, Ye J, Huang H, Liao D, Yang Y, Yin A, Li J, Deng Y, Tian Z, Pu R. METTL3-driven m6A modification of lncRNA FAM230B suppresses ferroptosis by modulating miR-27a-5p/BTF3 axis in gastric cancer. Biochim Biophys Acta Gen Subj 2024; 1868:130714. [PMID: 39278369 DOI: 10.1016/j.bbagen.2024.130714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Our previous research revealed the apoptosis-inhibiting effect of lncRNA FAM230B in gastric cancer (GC). While its role on ferroptosis of GC remain unexplored. In this study, the m6A level and RNA stability regulation of METTL3 on FAM230B was detected by m6A quantification, stability assays, MeRIP, and their interaction was confirmed by RIP, and RNA pull-down assays. The level of ferroptosis was detected by flow cytometry, MDA and GSH level assessments, and electron microscopy. Gene expression was detected by quantitative real-time PCR, western blot, and immunofluorescence. The miR-27a-5p and BTF3 interaction was predicted with TargetScan and confirmed by dual-luciferase assay. Here, elevated levels of METTL3 and FAM230B were observed in GC tissues and cell lines. METTL3 was confirmed to bind with FAM230B RNA. Furthermore, silencing METTL3 reduced FAM230B m6A levels and stability, leading to decreased FAM230B and increased miR-27a-5p expressions. FAM230B knockdown favored ferroptosis and increased BTF3 expression, while its overexpression mitigated erastin-induced ferroptosis in GC cells. Additionally, BTF3 overexpression was found to negate miR-27a-5p's ferroptosis-promoting effects in GC cells. Collectively, our study demonstrates that the m6A modification of FAM230B by METTL3 plays a crucial role in promoting GC progression by reducing ferroptosis, through the modulation of the miR-27a-5p/BTF3 axis.
Collapse
Affiliation(s)
- Yejia Cui
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Meicen Pu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Yanting Gong
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Runchao Li
- Department of Hand and Foot Surgery, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Xiaokang Wang
- Department of Thoracic Surgery, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Jinjun Ye
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Haohai Huang
- Department of Clinical Pharmacy, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Dan Liao
- Department of Gynaecology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Yufeng Yang
- Department of Pathology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Aiping Yin
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Jiale Li
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Yuling Deng
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Zhen Tian
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Rong Pu
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China.
| |
Collapse
|
37
|
Li Y, Liu J, Wu S, Xiao J, Zhang Z. Ferroptosis: opening up potential targets for gastric cancer treatment. Mol Cell Biochem 2024; 479:2863-2874. [PMID: 38082184 DOI: 10.1007/s11010-023-04886-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/24/2023] [Indexed: 10/15/2024]
Abstract
The fifth most frequent cancer in the world is gastric cancer. It ranks as the fourth most common reason for cancer-related deaths. Even though surgery is the only curative treatment for stomach cancer, adding adjuvant radiotherapy and chemotherapy is preferable than only surgery. The majority of patients, however, are discovered to be extremely tardy the first time and have a terrible prognosis. Therefore, it is necessary to create more viable therapy modalities. A growing number of studies in recent years have shown that ferroptosis and many cancer types are related. This gives our treatment a fresh viewpoint. We investigated the relationship between different signal pathways and non-coding RNA on ferroptosis in gastric cancer cells. Also discussed the targets cause ferroptosis resistance increased or reduced to the influence of the chemoresistance,proliferation and metastasis.
Collapse
Affiliation(s)
- Yuwei Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, China
| | - Jiangrong Liu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, China
| | - Shihua Wu
- Department of Pathology, The Second Affiliated Hospital, Shaoyang University, Shaoyang, 422000, Hunan, China
| | - Juan Xiao
- Department of Head and Neck Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhiwei Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute of Hengyang Medical College, University of South China, 28 Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
38
|
Zhang Q, Dong L, Gong S, Wang T. Unraveling the landscape of m6A RNA methylation in wound healing and scars. Cell Death Discov 2024; 10:458. [PMID: 39472463 PMCID: PMC11522467 DOI: 10.1038/s41420-024-02222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Wound healing is a complex process involving sequential stages of hemostasis, inflammation, proliferation, and remodeling. Multiple cell types and factors, including underlying conditions like diabetes and bacterial colonization, can influence healing outcomes and scar formation. N6-methyladenosine (m6A), a predominant RNA modification, plays crucial roles in gene expression regulation, impacting various biological processes and diseases. m6A regulates embryonic skin morphogenesis, wound repair, and pathophysiological processes like inflammation and angiogenesis. Recent studies have highlighted the role of m6A in wound healing, scar formation, and tissue remodeling. Additionally, m6A presents a unique expression pattern in pathological wounds and scars, potentially influencing wound healing and scar formation through modulating gene expression and cellular signaling, thereby serving as potential biomarkers or therapeutic targets. Targeting m6A modifications are potential strategies to enhance wound healing and reduce scar formation. This review aims to explore the roles and mechanisms of m6A RNA methylation in wound healing and scars, and discuss current challenges and perspectives. Continued research in this field will provide significant value for optimal wound repair and scar treatment.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liming Dong
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Gong
- Division of Endocrinology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, People's Republic of China.
| | - Ting Wang
- Department of Medical Ultrasound of Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
39
|
Wei L, Liu S, Xie Z, Tang G, Lei X, Yang X. The interaction between m6A modification and noncoding RNA in tumor microenvironment on cancer progression. Int Immunopharmacol 2024; 140:112824. [PMID: 39116490 DOI: 10.1016/j.intimp.2024.112824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Cancer development is thought to be closely related to aberrant epigenetic regulation, aberrant expression of specific non-coding RNAs (ncRNAs), and tumor microenvironment (TME). The m6A methylation is one of the most abundant RNA modifications found in eukaryotes, and it can determine the fate of RNA at the post-transcriptional level through a variety of mechanisms, which affects important biological processes in the organism. The m6A methylation modification is involved in RNA processing, regulation of RNA nuclear export or localisation, RNA degradation and RNA translation. This process affects the function of mRNAs and ncRNAs, thereby influencing the biological processes of cancer cells. TME accelerates and promotes cancer generation and progression during tumor development. The m6A methylation interacting with ncRNAs is closely linked to TME formation. Mutual regulation and interactions between m6A methylation and ncRNAs in TME create complex networks and mediate the progression of various cancers. In this review, we will focus on the interactions between m6A modifications and ncRNAs in TME, summarising the molecular mechanisms by which m6A interacts with ncRNAs to affect TME and their roles in the development of different cancers. This work will help to deepen our understanding of tumourigenesis and further explore new targets for cancer therapy.
Collapse
Affiliation(s)
- Liushan Wei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Shun Liu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Zhizhong Xie
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Guotao Tang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
40
|
Chen X, Dai L. WTAP Promotes the Excessive Proliferation of Airway Smooth Muscle Cells in Asthma by Enhancing AXIN1 Levels Through the Recognition of YTHDF2. Biochem Genet 2024:10.1007/s10528-024-10947-7. [PMID: 39453546 DOI: 10.1007/s10528-024-10947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Asthma is a common chronic respiratory disease in children, the incidence rate of which has increased in recent years. Wilms tumour 1-associated protein (WTAP) is an N6-methyladenosine (m6A) methyltransferase. The purpose of this study was to explore the specific mechanism of WTAP in asthma progression, and clarify the intricate interplay between m6A modifications, WTAP, AXIN1, and their collective impact on airway smooth muscle cells (ASMCs) proliferation in asthma. Platelet-derived growth factor-BB (PDGF-BB)-treated ASMCs were used to establish an asthma model in vitro. The cell phenotype was tested using CCK-8, transwell, and wound healing assays. The expression of the Wnt signalling pathway was detected by western blotting. In addition, the relationship between WTAP/YTDHF2 and AXIN1 was assessed by a double luciferase reporter assay. Actinomycin D treatment and RT‒qPCR assays were performed to determine the mRNA stability of AXIN1. We found that WTAP was significantly increased in PDGF-BB-treated ASMCs. Knockdown of WTAP inhibited the excessive cell viability and migration of ASMCs induced by PDGF-BB. Furthermore, WTAP knockdown increased AXIN1 levels and inhibited the Wnt signalling pathway. Furthermore, WTAP knockdown decreased the m6A levels and enhanced the mRNA stability of AXIN1. WTAP overexpression showed the opposite effect. In addition, YTHDF2 was demonstrated to be the reader that recognizes the WTAP-mediated m6A modification of AXIN1. YTHDF2 knockdown enhanced the mRNA stability of AXIN1 and reversed the effect of WTAP overexpression on PDGF-BB-treated ASMCs. WTAP knockdown inhibited the excessive cell viability and migration of ASMCs by enhancing the m6A levels of AXIN1, which was further recognized by YTHDF2. The upregulation of AXIN1 mediated by the WTAP/YTHDF2 axis further inhibited the Wnt signalling pathway. Our study provides a new method for the treatment of asthma. This work not only deepens our understanding of the molecular underpinnings of asthma but also identifies potential therapeutic targets for the development of novel treatments aimed at inhibiting ASMC proliferation and alleviating asthma symptoms.
Collapse
Affiliation(s)
- Xueli Chen
- Pediatric department, Maternal and Child Health of Hubei Province, NO.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China
| | - Li Dai
- Pediatric department, Maternal and Child Health of Hubei Province, NO.745 Wuluo Road, Hongshan District, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
41
|
Marquez VE. 3-Deazaneplanocin A (DZNep): A Drug That Deserves a Second Look. J Med Chem 2024; 67:17964-17979. [PMID: 39392180 DOI: 10.1021/acs.jmedchem.4c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The emerging data compiled during the past five years on 3-deazaneplanocin (DZNep) provide compelling evidence to reevaluate this drug as a better alternative over the specific catalytic inhibitors of histone methyl transferases (HTMs). The indirect mechanism of DZNep via inhibition of AdoHcy-ase, once considered a liability due to possible side effects, has now shown to be rather beneficial as additional pathways targeted by DZNep are important contributors to its superior anticancer properties. Furthermore, DZNep has demonstrated the ability to induce proteasomal degradation of its target and reduce toxicity in combination with well-established antitumor therapies in animal models. In addition, DZNep has shown important effects in suppressing fibrosis and inflammation in liver, kidney, peritoneum, and airways. Finally, inhibition of mRNA m6A methylation by DZNep suppresses the synthesis of the viral genome in SARS-Cov-2 infection and promises to have important therapeutic value when combined with its potent antiviral efficacy and anti-inflammatory effects.
Collapse
Affiliation(s)
- Victor E Marquez
- Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
42
|
Tao X, Kang N, Zheng Z, Zhu Z, Ma J, He W. The regulatory mechanisms of N6-methyladenosine modification in ferroptosis and its implications in disease pathogenesis. Life Sci 2024; 355:123011. [PMID: 39181316 DOI: 10.1016/j.lfs.2024.123011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
HEADING AIMS Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode. MATERIALS AND METHODS We conducted a literature search using the keywords "m6A and ferroptosis" across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles. KEY FINDINGS Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, "writers", "readers" and "erasers" that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers. SIGNIFICANCE N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.
Collapse
Affiliation(s)
- Xiao Tao
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ningning Kang
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230000, PR China
| | - Zongqin Zheng
- Department of Anesthesiology, The Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Ziyi Zhu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Junting Ma
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| | - Wei He
- Department of Immunology and Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, PR China.
| |
Collapse
|
43
|
Li C, Fan X, Wang X, Yao Y, Huang B, Chen L, Cao L, Peng T, Lin Y, Cai R. Development of a disulfidptosis-related prognostic model for endometrial cancer with potential therapeutic target. Discov Oncol 2024; 15:521. [PMID: 39365390 PMCID: PMC11452582 DOI: 10.1007/s12672-024-01384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Prognosis biomarkers for endometrial cancer (EC) are in need. Recent evidence demonstrated the critical role of disulfidptosis, a novel cell death modality, in cancer. However, limited studies have developed a disulfidptosis-related gene model for EC. Disulfidptosis prognosis score of EC (disulfidptosis-PSEC) were constructed using disulfidptosis-related differently expression genes with the RNA data of 544 EC patients from The Cancer Genome Atlas (TCGA) dataset. Model was evaluated using time-dependent receiver operating characteristic curve analysis for overall survival (OS) and disease-free survival (DFS), along with the hazard ratio (HR) between risk groups. Then, the cellular and molecular profile for different risk groups were performed, along with drug target inference. Disulfidptosis-PSEC demonstrated outstanding prognostic value for OS and DFS, with 5-year area under curve of 0.71 (95% CI, 0.58-0.75) and 0.69 (95% CI, 0.62-0.76), respectively. Low risk group demonstrated better survival with an HR of 0.38 (95% CI, 0.24-0.59) and 0.46 (95% CI, 0.32-0.66) for OS and DFS, respectively. The model was independent of TCGA subtype. Low risk group were featured with more immune cell infiltration and less gene mutation. Serval drug targets, and the therapeutic value of serotonin receptor among copy number (CN)-low subpopulation, were identified. Disulfidptosis-PSEC was a potential prognosis biomarker for EC with targetable biological process.
Collapse
Affiliation(s)
- Chunmei Li
- Department of Radiation Therapy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefei Fan
- School of Chemical and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xue Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulan Yao
- Department of Nursing, Shanghai Mental Health Center, Shanghai, China
| | - Bing Huang
- Department of Thoracic Surgery II, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Linlin Chen
- Department of Radiation Therapy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Cao
- Department of Radiation Therapy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Peng
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Lin
- Shanghai Key Laboratory of Proton-Therapy, Shanghai, China
| | - Rong Cai
- Department of Radiation Therapy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
44
|
Ouyang S, Zeng Z, He J, Luo L. Epigenetic regulation of targeted ferroptosis: A new strategy for drug development. J Pharm Anal 2024; 14:101012. [PMID: 39850234 PMCID: PMC11755343 DOI: 10.1016/j.jpha.2024.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 01/25/2025] Open
Abstract
Ferroptosis is a newly discovered form of cell death that is influenced by iron levels and is triggered by cellular metabolism and excessive lipid peroxidation. Epigenetic regulation plays a crucial role in the development and progression of diseases, making it essential to understand these mechanisms in order to identify potential targets for drug development and clinical treatment. The intersection of ferroptosis and epigenetics has opened up new avenues for research in drug development, offering innovative strategies for combating diseases. Recent studies have shown that epigenetic modifications can impact pathways related to ferroptosis, potentially leading to organ dysfunction. Despite the increasing focus on this relationship, the role of epigenetic regulation in drug development remains largely unexplored. This article explores current research on the interplay between epigenetic regulation and ferroptosis, delving into their regulatory mechanisms and discussing the effects of existing epigenetic modification regulators on diseases. Additionally, we highlight ongoing research on epigenetic factors involved in targeting ferroptosis in cancer, providing new insights for the development of cancer treatments.
Collapse
Affiliation(s)
- Shengli Ouyang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Zeyao Zeng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jieyi He
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| |
Collapse
|
45
|
Liu XQ, Shi MZ, Bai YT, Su XL, Liu YM, Wu JC, Chen LR. Hypoxia and ferroptosis. Cell Signal 2024; 122:111328. [PMID: 39094672 DOI: 10.1016/j.cellsig.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Ferroptosis is a novel, iron-dependent cell death characterized by the excessive accumulation of ferroptosis lipid peroxides ultimately leading to oxidative damage to the cell membrane. Iron, lipid, amino acid metabolism, and other signaling pathways all control ferroptosis. Numerous bodily tissues experience hypoxia under normal and pathological circumstances. Tissue cells can adjust to these changes by activating the hypoxia-inducible factor (HIF) signaling pathway and other mechanisms in response to the hypoxic environment. In recent years, there has been increasing evidence that hypoxia and ferroptosis are closely linked, and that hypoxia can regulate ferroptosis in specific cells and conditions through different pathways. In this paper, we review the possible positive and negative regulatory mechanisms of ferroptosis by hypoxia-inducible factors, as well as ferroptosis-associated ischemic diseases, with the intention of delivering novel therapeutic avenues for the defense and management of hypoxic illnesses linked to ferroptosis.
Collapse
Affiliation(s)
- Xiao-Qian Liu
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Meng-Zhen Shi
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yu-Ting Bai
- Qinghai Provincial People's Hospital, Xining 810001, PR China.
| | - Xiao-Ling Su
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Yan-Min Liu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Jin-Chun Wu
- Qinghai Provincial People's Hospital, Xining 810001, PR China
| | - Li-Rong Chen
- Qinghai University, Xining 810001, PR China; Qinghai Provincial People's Hospital, Xining 810001, PR China
| |
Collapse
|
46
|
Song Y, Gao H, Pan Y, Gu Y, Sun W, Wang Y, Liu J. ALKBH5 Regulates Osteogenic Differentiation via the lncRNA/mRNA Complex. J Dent Res 2024; 103:1119-1129. [PMID: 39311450 DOI: 10.1177/00220345241266775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Human adipose-derived stem cells (hASCs) are commonly used in bone tissue regeneration. The N6-methyladenosine (m6A) modification has emerged as a novel regulatory mechanism for gene expression, playing a critical role in osteogenic differentiation of stem cells. However, the precise role and mechanism of alkylation repair homolog 5 (ALKBH5) in hASC osteogenesis remain incompletely elucidated and warrant further investigation. Herein, we employed methylated RNA immunoprecipitation sequencing, RNA sequencing, and weighted gene coexpression network analysis to identify a key long noncoding RNA (lncRNA) in hASCs: lncRNA AK311120. Functional experiments demonstrated that lnc-AK311120 promoted the osteogenic differentiation of hASCs, while a mutation at the m6A central site A of lnc-AK311120 was found to decrease the level of m6A modification. The osteogenic effect of ALKBH5 was confirmed both in vitro and in vivo using a mandibular defect model in nude mice. Subsequent investigations revealed that knockdown of ALKBH5 resulted in a significant increase in the m6A modification level of lnc-AK311120, accompanied by a downregulation in the expression level of lnc-AK311120. Additional rescue experiments demonstrated that overexpression of lnc-AK311120 could restore the phenotype after ALKBH5 knockdown. We observed that AK311120 interacted with the RNA-binding proteins DExH-Box helicase 9 (DHX9) and YTH domain containing 2 (YTHDC2) to form a ternary complex, while mitogen-activated protein kinase kinase 7 (MAP2K7) served as the shared downstream target gene of DHX9 and YTHDC2. Knockdown of AK311120 led to a reduction in the binding affinity between DHX9/YTHDC2 and the target gene MAP2K7. Furthermore, ALKBH5 facilitated the translation of MAP2K7 and activated the downstream JNK signaling pathway through the AK311120-DHX9-YTHDC2 complex, without affecting its messenger RNA level. Collectively, we have investigated the regulatory effect and mechanism of ALKBH5-mediated demethylation of lncRNA in hASC osteogenesis for the first time, offering a promising approach for bone tissue engineering.
Collapse
Affiliation(s)
- Y Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Pan
- The First People's Hospital of Longquanyi District, West China Longquan Hospital Sichuan University, Chengdu, Sichuan, China
| | - Y Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
47
|
Zhao Y, Ding W, Cai Y, Li Q, Zhang W, Bai Y, Zhang Y, Xu Q, Feng Z. The m 6A eraser FTO suppresses ferroptosis via mediating ACSL4 in LPS-induced macrophage inflammation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167354. [PMID: 39004378 DOI: 10.1016/j.bbadis.2024.167354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Acute lung injury (ALI) is a serious disorder characterized by the release of pro-inflammatory cytokines and cascade activation of macrophages. Ferroptosis, a form of iron-dependent cell death triggered by intracellular phospholipid peroxidation, has been implicated as an internal mechanism underlying ALI. In this study, we investigated the effects of m6A demethylase fat mass and obesity-associated protein (FTO) on the inhibition of macrophage ferroptosis in ALI. Using a mouse model of lipopolysaccharide (LPS)-induced ALI, we observed the induction of ferroptosis and its co-localization with the macrophage marker F4/80, suggesting that ferroptosis might be induced in macrophages. Ferroptosis was promoted during LPS-induced inflammation in macrophages in vitro, and the inflammation was counteracted by the ferroptosis inhibitor ferrostatin-1 (fer-1). Given that FTO showed lower expression levels in the lung tissue of mice with ALI and inflammatory macrophages, we further dissected the regulatory capacity of FTO in ferroptosis. The results demonstrated that FTO alleviated macrophage inflammation by inhibiting ferroptosis. Mechanistically, FTO decreased the stability of ACSL4 mRNA via YTHDF1, subsequently inhibiting ferroptosis and inflammation by interrupting polyunsaturated fatty acid consumption. Moreover, FTO downregulated the synthesis and secretion of prostaglandin E2, thereby reducing ferroptosis and inflammation. In vivo, the FTO inhibitor FB23-2 aggravated lung injury, the inflammatory response, and ferroptosis in mice with ALI; however, fer-1 therapy mitigated these effects. Overall, our findings revealed that FTO may function as an inhibitor of the inflammatory response driven by ferroptosis, emphasizing its potential as a target for ALI treatment.
Collapse
Affiliation(s)
- Yiqing Zhao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Wenqian Ding
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yongjie Cai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qimeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenjie Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yujia Bai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yiwen Zhang
- Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Zhihui Feng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
48
|
Li D, Zhang Z, Wang L. Emerging role of tumor microenvironmental nutrients and metabolic molecules in ferroptosis: Mechanisms and clinical implications. Biomed Pharmacother 2024; 179:117406. [PMID: 39255738 DOI: 10.1016/j.biopha.2024.117406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/22/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
In recent years, ferroptosis has gradually attracted increasing attention because of its important role in tumors. Ferroptosis resistance is an important cause of tumor metastasis, recurrence and drug resistance. Exploring the initiating factors and specific mechanisms of ferroptosis has become a key strategy to block tumor progression and improve drug sensitivity. As the external space in direct contact with tumor cells, the tumor microenvironment has a great impact on the biological function of tumor cells. The relationships between abnormal environmental characteristics (hypoxia, lactic acid accumulation, etc.) in the microenvironment and ferroptosis of tumor cells has not been fully characterized. This review focuses on the characteristics of the tumor microenvironment and summarizes the mechanisms of ferroptosis under different environmental factors, aiming to provide new insights for subsequent targeted therapy. Moreover, considering the presence of anticancer drugs in the microenvironment, we further summarize the mechanisms of ferroptosis to provide new strategies for the sensitization of tumor cells to drugs.
Collapse
Affiliation(s)
- Dongyu Li
- Department of VIP In-Patient Ward, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Zhe Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Wang
- Department of Vascular and Thyroid Surgery, the First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
49
|
Saqirile, Deng Y, Li K, Yan W, Li K, Wang C. Gene Expression Regulation and the Signal Transduction of Programmed Cell Death. Curr Issues Mol Biol 2024; 46:10264-10298. [PMID: 39329964 DOI: 10.3390/cimb46090612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Cell death is of great significance in maintaining tissue homeostasis and bodily functions. With considerable research coming to the fore, it has been found that programmed cell death presents in multiple modalities in the body, which is not only limited to apoptosis, but also can be divided into autophagy, pyroptosis, ferroptosis, mitotic catastrophe, entosis, netosis, and other ways. Different forms of programmed cell death have disparate or analogous characteristics with each other, and their occurrence is accompanied by multiple signal transduction and the role of a myriad of regulatory factors. In recent years, scholars across the world have carried out considerable in-depth research on programmed cell death, and new forms of cell death are being discovered continually. Concomitantly, the mechanisms of intricate signaling pathways and regulators have been discovered. More critically, cancer cells tend to choose distinct ways to evade cell death, and different tumors adapt to different manners of death. Therefore, targeting the cell death network has been regarded as an effective tumor treatment strategy for a long time. The objective of our paper is to review the signaling pathways and gene regulation in several typical types of programmed cell death and their correlation with cancer.
Collapse
Affiliation(s)
- Saqirile
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Yuxin Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Wenxin Yan
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Ke Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
50
|
Ge Y, Cang H, Xiao J, Wu H, Wang B, Shao Q. LncRNA DNAH17-AS1 promotes gastric cancer proliferation and radioresistance by sponging miR-202-3p to upregulate ONECUT2. Discov Oncol 2024; 15:432. [PMID: 39261362 PMCID: PMC11391005 DOI: 10.1007/s12672-024-01297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are frequently dysregulated in malignancies and serve as significant regulators of tumorigenesis. The role of the lncRNA DNAH17-AS1 in gastric cancer (GC) remains incompletely understood. In this study, we explored the biological function and underlying mechanism of DNAH17-AS1 in GC. Differences in DNAH17-AS1 expression between GC and normal tissues were evaluated via The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and qRT-PCR validation. CCK-8, colony formation, animal, and flow cytometry assays were performed to detect the effects of DNAH17-AS1 on GC cell proliferation. Further biological experiments combined with bioinformatics analyses were performed to reveal the molecular mechanism involved. The results indicated that DNAH17-AS1 was strongly overexpressed in GC tissues and cells and that high expression of DNAH17-AS1 was correlated with lager tumour size, poor differentiation, and shorter survival. Silencing DNAH17-AS1 inhibited proliferation, induced G1 arrest and apoptosis in GC cells in vitro, and repressed tumorigenesis in vivo. Mechanistically, DNAH17-AS1 acted as a competitive endogenous RNA (ceRNA) for the tumour suppressor miR-202-3p and consequently prevented the degradation of ONECUT2. In addition, the DNAH17-AS1/miR-202-3p/ONECUT2 axis promoted the radioresistance of GC. In summary, DNAH17-AS1 plays crucial roles in GC progression and may be a novel promising target for therapy.
Collapse
Affiliation(s)
- Yugang Ge
- Department of General Surgery, Jiangyin Clinical College of Xuzhou Medical University, Wuxi, China
| | - Hui Cang
- Department of Gastroenterology, Jiangyin Clinical College of Xuzhou Medical University, Wuxi, China
| | - Jian Xiao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical University, Wuxi, China
| | - Biao Wang
- Department of Oncology, First People's Hospital of Yancheng, Fourth Affiliated Hospital of Nantong University, Yancheng, China
| | - Qing Shao
- Department of General Surgery, Jiangyin Clinical College of Xuzhou Medical University, Wuxi, China.
| |
Collapse
|