1
|
Wu J, Qian Y, Yang K, Zhang S, Zeng E, Luo D. Innate immune cells in vascular lesions: mechanism and significance of diversified immune regulation. Ann Med 2025; 57:2453826. [PMID: 39847394 PMCID: PMC11758805 DOI: 10.1080/07853890.2025.2453826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Angiogenesis is a complex physiological process. In recent years, the immune regulation of angiogenesis has received increasing attention, and innate immune cells, which are centred on macrophages, are thought to play important roles in vascular neogenesis and development. Various innate immune cells can act on the vasculature through a variety of mechanisms, with commonalities as well as differences and synergistic effects, which are crucial for the progression of vascular lesions. In recent years, monotherapy with antiangiogenic drugs has encountered therapeutic bottlenecks because of the short-term effect of 'vascular normalization'. The combination treatment of antiangiogenic therapy and immunotherapy breaks the traditional treatment pattern. While it has a remarkable curative effect and survival benefits, it also faces many challenges. This review focuses on innate immune cells and mainly introduces the regulatory mechanisms of monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs) and neutrophils in vascular lesions. The purpose of this paper was to elucidate the underlying mechanisms of angiogenesis and development and the current research status of innate immune cells in regulating vascular lesions in different states. This review provides a theoretical basis for addressing aberrant angiogenesis in disease processes or finding new antiangiogenic immune targets in inflammation and tumor.
Collapse
Affiliation(s)
- Jinjing Wu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yulu Qian
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kuang Yang
- Queen Mary University of London, Nanchang University, Nanchang, China
| | - Shuhua Zhang
- Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Jiangxi Cardiovascular Research Institute, Nanchang, Jiangxi, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Daya Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Chen X, Li M, Yang X, Cui J, Ge J, Liu Y, Ma M. Reliable and specific biosensing on single- and double-stranded aptamer functionalized remote dual-gate organic field-effect transistors: A comparison. Talanta 2025; 287:127634. [PMID: 39884123 DOI: 10.1016/j.talanta.2025.127634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Organic field-effect transistors (OFETs) integrated with commercial transistors are promising sensing platforms characterized by enhanced device uniformity, functional diversity, and electrical output stability. Aptamers with charged backbones and a high affinity for target molecules are anticipated to mitigate the limitations imposed by Debye screening in physiological environments with high ionic strength, thereby facilitating specific biological recognition in complex surroundings. This study presents two reliable OFET aptasensors for vascular endothelial growth factor (VEGF) and offers a systematic comparison of their performance. The poly[3-(3-carboxypropyl) thiophene-2,5-diyl] (PT-COOH) transducer films on remote dual gates were functionalized with VEGF aptamer (VEap), either alone or in conjunction with its complementary single-stranded DNA (PT-VEap vs. PT-VEap/CS). The single-stranded and double-stranded aptamer-based sensors exhibited opposite changes in threshold voltage in response to VEGF, and the contribution of CS pairing to signaling was evidenced by the lower detection limit of PT-VEap/CS sensors (0.1 ng/mL) compared to that of PT-VEap sensors (1 ng/mL). PT-VEap sensors demonstrated a faster response, while PT-VEap/CS sensors provided more stable and reliable signals. Both sensors maintained high sensitivity to VEGF across a broad pH range (5-9) and ionic strength (0.05-1.0 × PBS), with a slight advantage for PT-VEap in pH resistance and for PT-VEap/CS in salt resistance. The observed differences in sensing performance can be elucidated through the field effect and double electrical layer models. Additionally, the real-time responses and specific molecular recognition of VEGF were analyzed. This study quantifies the differences between single- and double-stranded aptamer-functionalized OFET biosensors, providing foundational data for the design of cost-effective and high-performance FET aptasensors applicable in various real-world scenarios.
Collapse
Affiliation(s)
- Xiaoyan Chen
- College of Science, Nanjing Forestry University, Nanjing, 210037, China; School of Environment, Nanjing University, Nanjing, 210093, China.
| | - Mingshuang Li
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Xinyu Yang
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiangdong Cui
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiacheng Ge
- College of Science, Nanjing Forestry University, Nanjing, 210037, China
| | - Ying Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Mengtao Ma
- College of Science, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Zhang L, Ni S, Zhang W, Shi J, Ding J, Xu X, Zhang S, Zhang Y, Jiang T. Transplantation of autologous endothelial progenitor cells promotes the repair of fusiform aneurysms. Microvasc Res 2025; 159:104794. [PMID: 39923840 DOI: 10.1016/j.mvr.2025.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/22/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Endothelial progenitor cells (EPCs), which are precursors for endothelial cells, possess the capability of repairing vascular damage and predicting the extent of early vascular injury. However, the role of EPCs in the repair of fusiform aneurysms is not clear. Here, we constructed a fusiform aneurysm model using pancreatic elastase digestion and validated the improvement effect of EPCs through histological staining and immunofluorescence. HE staining and elastic fiber staining showed destruction of the tunica adventitia in the fusiform aneurysm, marked dilatation of the arterial lumen, and thinning of the elastic lamina in the fusiform aneurysm. In the fusiform aneurysm group, the concentration of vascular endothelial growth factor (VEGF) was notably decreased compared to both the control and the saline group. The level of EPCs in the peripheral blood was decreased in the model group. Transplantation of EPCs into fusiform aneurysms promoted vascular repair, indicated by the decrease of myeloperoxidase (MPO), advanced oxidation protein products (AOPP), matrix metalloproteinase-9 (MMP-9), platelet factor 4 (PF4), and Fe2+. The level of VEGF was also elevated after EPCs transplantation. Finally, we noted a marked rise in lactate level in the peripheral blood of fusiform aneurysms. Lactate treatment led to an elevation of H3K18la levels in EPCs and inhibited cell proliferation. In conclusion, this study discovered that in mice with fusiform aneurysms, elevated lactate levels in the peripheral blood trigger histone lactylation, such impeding the proliferation of EPCs. Transplantation of EPCs into fusiform aneurysms facilitated aneurysm repair. These findings lay the groundwork for EPCs in the treatment of fusiform aneurysms.
Collapse
Affiliation(s)
- Lianfu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui, China; Department of Neurosurgery, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui, China; Anhui Public Health Clinical Center, Hefei, 230001, Anhui, China
| | - Shihui Ni
- Department of Neurosurgery, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning, China
| | - Weiwen Zhang
- Department of Neurosurgery, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui, China
| | - Jian Shi
- Department of Neurosurgery, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui, China
| | - Jun Ding
- Department of Neurosurgery, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui, China
| | - Xudong Xu
- Department of Neurosurgery, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui, China
| | - Shengbang Zhang
- Department of Neurosurgery, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui, China
| | - Yongming Zhang
- Department of Neurosurgery, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui, China.
| | - Tao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230001, Anhui, China; Anhui Public Health Clinical Center, Hefei, 230001, Anhui, China.
| |
Collapse
|
4
|
Liu Y, Zheng Y, Zhao X, Dong Z, Zhang M, Fang Y, Wang Y, Wang Z, Liu N, Yan P, Ma Y, Yang F, Zheng Y, Zhang W, Yang J, Sun M. Targeting JAML promotes normalization of tumour blood vessels to antagonize tumour progression via FAK/SRC and VEGF/VEGFR2 signalling pathways. Life Sci 2025; 368:123474. [PMID: 39983824 DOI: 10.1016/j.lfs.2025.123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND Angiogenesis is a crucial process in tumour growth and metastasis. Junctional adhesion molecule-like protein (JAML) plays an important role in cancer proliferation; however, its expression and role in tumour angiogenesis remains unexplored. METHODS We collected colorectal cancer from Jinan Central Hospital, using immunofluorescence staining to confirm the expression of JAML in vascular endothelial cells of cancer and adjacent tissue. Then we used the endothelial-specific knockout of JAML mice and human umbilical vein endothelial cells (HUVECs) to clarify the role of JAML in vivo and in vitro. RESULT Our findings indicated a significant upregulation of JAML in vascular endothelial cells of colorectal cancer tissues compared to adjacent tissues. Endothelial-specific knockout of JAML effectively inhibited tumour growth through normalization of tumour blood vessels in multiple mice tumour models. The deletion of JAML in endothelial cells facilitated tumour vascular normalization, which was evident from increased pericyte coverage, vessel perfusion and T lymphocytes infiltration, decreased hypoxia, vessel density and leakage in tumour tissues. Further analysis showed that the phosphorylation of FAK/SRC/AKT/ERK pathway and VEGFR2 were suppressed in JAMLendo-/- mice with tumour. CONCLUSION This study concluded that JAML is specifically highly expressed in the vascular endothelial cells of tumour, promoting tumour progression by angiogenesis through the activation of the FAK/SRC/ERK/AKT pathway and VEGF/VEGFR2 pathway. JAML might be a new target for antiangiogenesis and provide valuable insights into the development of novel therapeutic approaches for cancer patients.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China; Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Yawen Zheng
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Xinchao Zhao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China; Department of Clinical Medicine, Shandong First Medical University, Jinan 271016, Shandong, PR China
| | - Zhilin Dong
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China; Department of Clinical Medicine, Shandong First Medical University, Jinan 271016, Shandong, PR China
| | - Mingyan Zhang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Yuying Fang
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China; Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Yufeng Wang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China; Research Center of Translational Medicine, Laboratory Animal Center, Central hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Zewen Wang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China
| | - Ning Liu
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China
| | - Peng Yan
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China
| | - Yuan Ma
- Department of Pathology, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Fei Yang
- Department of Pathology, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Meili Sun
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, PR China; Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, PR China.
| |
Collapse
|
5
|
Gao S, Gao S, Wang Y, Xiang L, Peng H, Chen G, Xu J, Zhang Q, Zhu C, Zhou Y, Li N, Shen X. Inhibition of Vascular Endothelial Growth Factor Reduces Photoreceptor Death in Retinal Neovascular Disease via Neurotrophic Modulation in Müller Glia. Mol Neurobiol 2025; 62:6352-6368. [PMID: 39789237 DOI: 10.1007/s12035-025-04689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition. Results showed that vitreous levels of NGF, NT-3, NT-4, BDNF, GDNF and CNTF were significantly higher in eyes undergoing anti-VEGF therapy compared with PDR controls. Statistical correlation between vitreous VEGF and each trophic factor was found. Hypoxia significantly induced the expressions of these neurotrophic factors, whereas application of anti-VEGF agent in OIR model could further upregulate retinal NGF, NT-3, NT-4, together with downregulation of BDNF, GDNF, CNTF, especially in Müller glia. Inhibition of Müller cell-derived VEGF would result in similar neurotrophic changes under hypoxia. With changes of corresponding neurotrophic receptors in the cocultured photoreceptor cells, their synergic effect could protect hypoxic photoreceptor from apoptosis when VEGF inhibition was present. These findings demonstrated that regulation of Müller cell-derived neurotrophic factors might be one of the possible mechanisms by which anti-VEGF therapy produced neuroprotective effects on PDR. These results provided new evidence for the therapeutic strategy of PDR.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yanuo Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Lu Xiang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hanwei Peng
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Gong Chen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jianmin Xu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qiong Zhang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Caihong Zhu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yingming Zhou
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
6
|
Duzgun Z, Korkmaz FD, Akgün E. FDI-6 inhibits VEGF-B expression in metastatic breast cancer: a combined in vitro and in silico study. Mol Divers 2025; 29:1069-1078. [PMID: 38853176 PMCID: PMC11909019 DOI: 10.1007/s11030-024-10891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
Angiogenesis is the process by which new blood vessels are formed to meet the oxygen and nutrient needs of tissues. This process is vitally important in many physiological and pathological conditions such as tumor growth, metastasis, and chronic inflammation. Although the relationship of FDI-6 compound with FOXM1 protein is well known in the literature, its relationship with angiogenesis is not adequately elucidated. This study investigates the relationship of FDI-6 with angiogenesis and vascular endothelial growth factor B (VEGF-B) protein expression alterations. Furthermore, the study aims to elucidate the in silico interaction of FDI-6 with the VEGFR1 protein, a key player in initiating the angiogenic process, which is activated through its binding with VEGF-B. Our results demonstrate a significant effect of FDI-6 on cell viability. Specifically, we determined that the IC50 value of FDI-6 in HUVEC cells after 24 h of treatment is 24.2 μM, and in MDA-MB-231 cells after 24 h of application, it is 10.8 μM. These findings suggest that the cytotoxic effect of FDI-6 varies depending on the cell type. In wound healing experiments, FDI-6 significantly suppressed wound closure in MDA-MB-231 cells but did not show a similar effect in HUVEC cells. This finding suggests FDI-6 may have potential cell-type-specific effects. Molecular docking studies reveal that FDI-6 exhibits a stronger interaction with the VEGFR1 protein compared to its inhibitor, a novel interaction not previously reported in the literature. Molecular dynamic simulation results demonstrate a stable interaction between FDI-6 and VEGFR1. This interaction suggests that FDI-6 might modulate mechanisms associated with angiogenesis. Our Western blot analysis results show regulatory effects of FDI-6 on the expression of the VEGF-B protein. We encourage exploration of FDI-6 as a potential therapeutic agent in pathological processes related to angiogenesis. In conclusion, this study provides a detailed examination of the relationship between FDI-6 and both the molecular interactions and protein expressions of VEGF-B. Our findings support FDI-6 as a potential therapeutic agent in pathological processes associated with angiogenesis.
Collapse
Affiliation(s)
- Zekeriya Duzgun
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, Turkey.
| | | | - Egemen Akgün
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, Turkey
| |
Collapse
|
7
|
Erzurumlu Y, Catakli D. Cannabidiol Enhances the Anticancer Activity of Etoposide on Prostate Cancer Cells. Cannabis Cannabinoid Res 2025; 10:258-276. [PMID: 39161998 DOI: 10.1089/can.2023.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Introduction: Cannabis sativa extract has been used as an herbal medicine since ancient times. It is one of the most researched extracts, especially among supportive treatments against cancer. Prostate cancer is one of the most frequently diagnosed cancer types in men worldwide and an estimated 288,300 new cases were diagnosed in 2023. Today, many advanced therapeutic approaches are used for prostate cancer, such as immunotherapy and chemotherapy, but acquired drug resistance, long-term drug usage and differentiation of cancer cells mostly restricted the efficiency of therapies. Therefore, it is thought that the use of natural products to overcome these limitations and improve the effectiveness of existing therapies may offer promising approaches. The present study focused on the investigation of the possible enhancer role of cannabidiol (CBD), which is a potent ingredient compound of Cannabis, on the chemotherapeutic agent etoposide in prostate cancer cells. Methods: Herein, we tested the potentiator role of CBD on etoposide in prostate cancer cells by testing the cytotoxic effect, morphological alterations, apoptotic effects, autophagy, unfolded protein response (UPR) signaling, endoplasmic reticulum-associated degradation mechanism (ERAD), angiogenic and androgenic factors, and epithelial-mesenchymal transition (EMT). In addition, we examined the combined treatment of CBD and etoposide on colonial growth, migrative, invasive capability, 3D tumor formation, and cellular senescence. Results: Our findings demonstrated that cotreatment of etoposide with CBD importantly suppressed autophagic flux and induced ERAD and UPR signaling in LNCaP cells. Also, CBD strongly enhanced the etoposide-mediated suppression of androgenic signaling, angiogenic factor VEGF-A, protooncogene c-Myc, EMT, and also induced apoptosis through activation caspase-3 and PARP-1. Moreover, coadministration markedly decreased tumorigenic properties, such as proliferative capacity, colonial growth, migration, and 3D tumor formation and also induced senescence. Altogether, our data revealed that CBD has a potent enhancer effect on etoposide-associated anticancer activities. Conclusion: The present study suggests that the use of CBD as a supportive therapy in existing chemotherapeutic approaches may be a promising option, but this effectiveness needs to be investigated on a large scale.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
- Department of Drug Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Türkiye
| | - Deniz Catakli
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Türkiye
| |
Collapse
|
8
|
Guo B, Gu J, Zhuang T, Zhang J, Fan C, Li Y, Zhao M, Chen R, Wang R, Kong Y, Xu S, Gao W, Liang L, Yu H, Han T. MicroRNA-126: From biology to therapeutics. Biomed Pharmacother 2025; 185:117953. [PMID: 40036996 DOI: 10.1016/j.biopha.2025.117953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025] Open
Abstract
MicroRNA-126 (miR-126) has emerged as one of the most extensively studied microRNAs in the context of human diseases, particularly in vascular disorders and cancer. Its high degree of conservation across vertebrates underscores its evolutionary significance and essential functional roles. Extensive research has been devoted to elucidating the molecular mechanisms through which miR-126 modulates key physiological and pathological processes, including angiogenesis, immune response, inflammation, tumor growth, and metastasis. Furthermore, miR-126 plays a causal role in the pathogenesis of various diseases, serving as potential biomarkers for disease prediction, diagnosis, prognosis and drug response, as well as a promising therapeutic target. In this review, we synthesize findings from 283 articles, focusing on the roles of miR-126 in critical biological processes such as cell development, survival, cycle regulation, proliferation, migration, invasion, communication, and metabolism. Additionally, miR-126 represents a promising candidate for miRNA-based therapeutic strategies. A comprehensive understanding and evaluation of miR-126 are crucial for advancing its clinical applications and therapeutic potential.
Collapse
Affiliation(s)
- Bei Guo
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Gu
- Department of Otolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tongtian Zhuang
- Department of Dermatology, Air Force Hospital of Northern Theater Command, Shenyang, China
| | - Jingbin Zhang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunyang Fan
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yiyao Li
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Mengdi Zhao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ruoran Chen
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Rui Wang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuan Kong
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuang Xu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Wei Gao
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Linlang Liang
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Yu
- Department of Metabolism and Endocrinology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Tao Han
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Sadikan MZ, Lambuk L, Reshidan NH, Abdul Ghani NA, Ahmad AI, Ahmad Kamal MS, Lazaldin MAM, Ahmad Hairi H, Mohamud R, Abdul Nasir NA. Age-Related Macular Degeneration Pathophysiology and Therapeutic Potential of Tocotrienols: An Update. J Ocul Pharmacol Ther 2025; 41:150-161. [PMID: 39895321 DOI: 10.1089/jop.2024.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Age-related macular degeneration (AMD) poses a significant threat to visual health among the elderly, necessitating urgent preventive measures as the global population ages. Extensive research has implicated oxidative stress (OS)-induced retinal damage as a primary contributor to AMD pathogenesis, prompting investigations into potential therapeutic interventions. Among the various nutrients studied for their potential in AMD risk reduction, antioxidants have shown promise, with initial findings from the Age-Related Eye Disease Study suggesting a correlation between antioxidant supplementation and decreased AMD progression. This article explores the scientific foundation supporting the therapeutic efficacy of tocotrienol-rich fraction (TRF) as a viable candidate for slowing AMD progression, based on interventional studies. AMD is characterized by OS, inflammation, dysregulated lipid metabolism, and angiogenesis, all of which TRF purportedly addresses through its potent anti-inflammatory, lipid-lowering, antiangiogenic, and antioxidant properties. The review underscores TRF's promising attributes, aiming to deepen understanding of AMD pathogenesis and advocate for TRF-based pharmacological interventions to enhance therapeutic outcomes. Given the pressing need for effective AMD treatments, TRF represents a promising avenue for intervention, offering hope for improved vision outcomes and enhanced quality of life for individuals affected by this debilitating condition.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Faculty of Medicine, Department of Pharmacology, Manipal University College Malaysia (MUCM), Melaka, Malaysia
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nur Hidayah Reshidan
- Faculty of Applied Sciences, School of Biology, Universiti Teknologi MARA, Selangor, Malaysia
| | - Nurliyana Ain Abdul Ghani
- Faculty of Medicine, Department of Ophthalmology, Universiti Teknologi MARA Malaysia, Selangor, Malaysia
| | - Azral Ismawy Ahmad
- International Medical School, Management & Science University, Selangor, Malaysia
| | | | | | - Haryati Ahmad Hairi
- Faculty of Medicine, Department of Biochemistry, Manipal University College Malaysia (MUCM), Melaka, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Nurul Alimah Abdul Nasir
- Faculty of Medicine, Department of Medical Education, Universiti Teknologi MARA Malaysia, Selangor, Malaysia
- Faculty of Medicine, Centre for Neuroscience Research (NeuRon), Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
10
|
Guo X, Huang C, Zhang L, Hu G, Du Y, Chen X, Sun F, Li T, Cui Z, Li C, Guo Y, Yan W, Xia Y, Wang S, Liu H, Liu Z, Lin Z, Wang X, Wang Z, Zhang F, Tao L. Lymphatic Endothelial Branched-Chain Amino Acid Catabolic Defects Undermine Cardiac Lymphatic Integrity and Drive HFpEF. Circulation 2025. [PMID: 40166847 DOI: 10.1161/circulationaha.124.071741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) has become the most prevalent type of heart failure, but effective treatments are lacking. Cardiac lymphatics play a crucial role in maintaining heart health by draining fluids and immune cells. However, their involvement in HFpEF remains largely unexplored. METHODS We examined cardiac lymphatic alterations in mice with HFpEF with comorbid obesity and hypertension, and in heart tissues from patients with HFpEF. Using genetically engineered mouse models and various cellular and molecular techniques, we investigated the role of cardiac lymphatics in HFpEF and the underlying mechanisms. RESULTS In mice with HFpEF, cardiac lymphatics displayed substantial structural and functional anomalies, including decreased lymphatic endothelial cell (LEC) density, vessel fragmentation, reduced branch connections, and impaired capacity to drain fluids and immune cells. LEC numbers and marker expression levels were also decreased in heart tissues from patients with HFpEF. Stimulating lymphangiogenesis with an adeno-associated virus expressing an engineered variant of vascular endothelial growth factor C (VEGFCC156S) that selectively activates vascular endothelial growth factor receptor 3 (VEGFR3) in LECs restored cardiac lymphatic integrity and substantially alleviated HFpEF. Through discovery-driven approaches, defective branched-chain amino acid (BCAA) catabolism was identified as a predominant metabolic signature in HFpEF cardiac LECs. Overexpression of branched-chain ketoacid dehydrogenase kinase (encoded by the Bckdk gene), which inactivates branched-chain ketoacid dehydrogenase (the rate-limiting enzyme in BCAA catabolism), resulted in spontaneous lymphangiogenic defects in LECs. In mice, inducible Bckdk gene deletion in LECs to enhance their BCAA catabolism preserved cardiac lymphatic integrity and protected against HFpEF. BCAA catabolic defects caused ligand-independent phosphorylation of VEGFR3 in the cytoplasm by Src kinase, leading to lysosomal degradation of VEGFR3 instead of its trafficking to the cell membrane. Reduced VEGFR3 availability on the cell surface impeded downstream Akt (protein kinase B) activation, hindered glucose uptake and utilization, and inhibited lymphangiogenesis in LECs with BCAA catabolic defects. CONCLUSIONS Our study provides evidence that cardiac lymphatic disruption, driven by impaired BCAA catabolism in LECs, is a key factor contributing to HFpEF. These findings unravel the crucial role of BCAA catabolism in modulating lymphatic biology, and suggest that preserving cardiac lymphatic integrity may present a novel therapeutic strategy for HFpEF.
Collapse
Affiliation(s)
- Xiong Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Chong Huang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Ling Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Guangyu Hu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Yunhui Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China (Y.D.)
| | - Xiyao Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Fangfang Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Tongzheng Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Zhe Cui
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Yongzhen Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Shan Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Hui Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Zhiyuan Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Zhen Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Xinyi Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Zhengyang Wang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Fuyang Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (X.G., C.H., L.Z., G.H., X.C., F.S., T.L., Z.C., C.L., Y.G., W.Y., Y.X., S.W., H.L., Z. Liu, Z. Lin, X.W., Z.W., F.Z., L.T.)
| |
Collapse
|
11
|
Bei Y, Shen ZX, Lin HR, Wei TF, Wang YH, Su ZT, Dai YJ, Wang YH, Huang LL, Zhu T, Hu W, Ye J, Wu GX, Dai HB. Endothelial histone deacetylase 9 promotes diabetic retinopathy in mice by regulating endothelial-mesenchymal transition. Acta Pharmacol Sin 2025:10.1038/s41401-025-01523-9. [PMID: 40164754 DOI: 10.1038/s41401-025-01523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 02/23/2025] [Indexed: 04/02/2025]
Abstract
Diabetic retinopathy (DR) is a common and specific microvascular complication of diabetes and the leading cause of blindness in working-age adults. Endothelial-mesenchymal transition (EndoMT) underlies various chronic vascular diseases, while histone deacetylase 9 (HDAC9) is involved in the pathological process of cardiovascular diseases, cerebrovascular diseases, autoimmune diseases, and breast cancer. Recent evidence has shown that HDAC9 promotes EndoMT, thereby affecting the progression of atherosclerotic disease. In this study, we investigated the critical role of HDAC9 in DR and the underlying mechanism. DR model was established in mice by injecting streptozotocin (STZ, 50 mg/kg) for 5 consecutive days. Blood glucose was monitored regularly and DR experiments were performed 12 weeks after modeling. We showed that the expression levels of HDAC9 were significantly elevated in the vitreous fluid of diabetic patients and the retinal endothelial cells of DR model mice. Knockdown of endothelial HDAC9 reduced EndoMT and alleviated DR pathology in vivo, whereas overexpression of HDAC9 exacerbated EndoMT in DR model mice. To elucidate the downstream target genes of HDAC9 implicated in DR, we conducted integrated ChIP-seq and RNA-seq analysis of the retina in STZ-induced retinopathy and established that HDAC9 was involved in the transcriptional regulation of annexin A2 (ANXA2). We demonstrated that HDAC9 was bound to the promoter region of ANXA2, leading to the downregulation of ANXA2 expression in high glucose-treated human retinal microvascular endothelial cells and STZ-induced DR model mice. Overexpression of ANXA2 significantly reduced the EndoMT process in STZ-induced DR model mice. Collectively, our results demonstrate that HDAC9 promotes EndoMT by regulating ANXA2 transcription, thereby disrupting vascular homeostasis during DR. This study sheds light on the roles of HDAC9 and ANXA2 in DR pathology and provides a theoretical foundation for the potential therapeutic strategies to target DR.
Collapse
Affiliation(s)
- Yun Bei
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Department of Pharmacy, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, 313000, China
| | - Ze-Xu Shen
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hao-Ran Lin
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Tao-Feng Wei
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yi-Hao Wang
- The High School Affiliated of Renmin University of China, Beijing, 100080, China
| | - Zhi-Tao Su
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yun-Jian Dai
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yan-Hong Wang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ling-Ling Huang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Tao Zhu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Wei Hu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Gong-Xiong Wu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Department of Medicine, Laboratory for Translational Research, Harvard Medical School, Cambridge, MA, USA.
| | - Hai-Bin Dai
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
12
|
Yin Y, Guo W, Chen Q, Tang Z, Liu Z, Lin R, Pan T, Zhan J, Ren L. A Single H 2S-Releasing Nanozyme for Comprehensive Diabetic Wound Healing through Multistep Intervention. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18134-18149. [PMID: 40088144 DOI: 10.1021/acsami.5c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Diabetic wound healing presents a significant medical challenge and requires multistep interventions due to comprehensive wound environments, such as hyperglycemia, bacterial infection, and impaired angiogenesis. However, current multistep interventions are complicated and need on-demand sequential release and synergy of multicomponents. Herein, a H2S-releasing cascade nanozyme (FeS@Au), which is composed of ultrasmall gold nanocluster (AuNC) loaded on ferrous sulfide nanoparticle (FeSNP), is developed as a single component to regulate glucose level, eliminate infection, and promote angiogenesis, achieving multistep interventions for comprehensive diabetic wound treatment. The glucose oxidase-like activity of AuNC catalyzes glucose into gluconic acid and H2O2, which not only lowers the local glucose level but also decreases the local pH and increases H2O2 level to boost the peroxidase-like activity of FeSNP to generate abundant hydroxyl radical (reactive oxygen species, ROS), inducing ferroptosis-like death in drug-resistant bacteria. Additionally, FeSNP release H2S in the acidified environment to upregulate hypoxia-inducible factor-1 to enhance vascularization through upregulating the expression of vascular endothelial growth factor (VEGF) and other angiogenesis-related genes, reducing the damage to endothelial cells caused by excessive ROS produced by the nanozyme. In a full-thickness MRSA-infected diabetic rat model, FeS@Au significantly eliminates bacteria, enhances angiogenesis, promotes collagen deposition, and accelerates wound healing. This work presents a single nanozyme with H2S-release for multistep interventions, providing a versatile strategy for healing extensive tissue damage caused by diabetes.
Collapse
Affiliation(s)
- Ying Yin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Wentai Guo
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Qiangyu Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Zhimin Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Zheng Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Ruibin Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Ting Pan
- Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, 511443 Guangzhou, China
| | - Jiezhao Zhan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
13
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
14
|
Wang ZY, Yang FY, Cai SW, Tian W, Xie RR, Sun R, Zhu XR. Plasma metabolomic profiling of diabetic macular edema. Sci Rep 2025; 15:10012. [PMID: 40122941 PMCID: PMC11930953 DOI: 10.1038/s41598-025-94759-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Diabetic macular edema (DME), a sight-threatening retinopathy, is a leading cause of vision loss in persons with diabetes mellitus. Despite strict control of systemic risk factors, a fraction of patients with diabetes developed DME, suggesting the existence of other potential pathogenic factors underlying DME. This study aimed to investigate the plasma metabotype of patients with DME and to identify novel metabolite markers for DME. Biomarkers identified from this study will provide scientific insight and new strategies for the early diagnosis and intervention of DME. To match clinical parameters between case and control subjects, patients with DME (DME, n = 30) or those with diabetes but without DME (Control, n = 30) were assigned to the present case-control study. Distinct metabolite profiles of serum were examined using liquid chromatography-mass spectrometry (LC-MS). A total of 190 distinct metabolites between DME and Control groups were identified (VIP > 1, Fold Change > 1.5 or < 0.667, and P < 0.05). The distinct metabolites between DME and Control groups were enriched in 4 KEGG pathways, namely, Glutamate Metabolism, Carnitine Synthesis, Oxidation of Branched Chain Fatty Acids, and Phytanic Acid Peroxisomal Oxidation. Finally, 4 metabolites were selected as candidate biomarkers for DME, namely, 5-Phospho-beta-D-ribosylamine, Succinic acid, Ascorbyl glucoside, and Glutathione disulfide. The area under the curve for these biomarkers were 0.693, 0.772, 0.762, and 0.771, respectively. This study suggested that impairment in the metabolism and 4 potential metabolites were identified as metabolic dysregulation associated with DME, which might provide insights into potential new pathogenic pathways for DME. 5-Phospho-beta-D-ribosylamine was first identified as a novel metabolite marker, with no previous reports linking it to diabetes or DME. This discovery may offer valuable insights into potential new pathogenic pathways associated with DME.
Collapse
Affiliation(s)
- Zi-Yang Wang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Fang-Yuan Yang
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Diabetes Institute, Beijing, 100730, China
| | - Si-Wei Cai
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei Tian
- Outpatient Department, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Rong-Rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Beijing Diabetes Institute, Beijing, 100730, China
| | - Ran Sun
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiao-Rong Zhu
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
- Beijing Diabetes Institute, Beijing, 100730, China.
| |
Collapse
|
15
|
Zhang X, Wang B, Qi X, Qian Z, Gao X, Cheng Y, Wang X. A Glutathione-Responsive System with Prodrug and Sensitization Strategies for Targeted Therapy of Glioma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501620. [PMID: 40119786 DOI: 10.1002/smll.202501620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/08/2025] [Indexed: 03/24/2025]
Abstract
Glioblastoma represents a highly aggressive form of malignant tumor within the central nervous system. Although chemotherapy remains the primary therapeutic strategy, its efficacy is often limited. To overcome the limitations associated with chemotherapeutic agents, such as high toxicity and non-specific adverse effects, a novel nanoparticle system comprising cRGD-modified and glutathione (GSH)-responsive polymers, and PEG-ss-Dox and apatinib (AP) (PDOX-AP/cRGD-NPs) is developed. PDOX-AP/cRGD-NPs show effective penetration of the blood-brain barrier (BBB), facilitate targeted delivery to brain tumors, and exhibit controlled drug release. PDOX-AP/cRGD-NPs show more effect in reducing the viability of GL-261, U87-MG, and LN-229 cells, inhibiting clonogenicity, and suppressing anti-apoptotic protein expression than PDOX/cRGD-NPs or AP/cRGD-NPs. Additionally, PDOX-AP/cRGD-NPs substantially increase drug uptake, BBB penetration, apoptosis rates, and the proportion of cells in the G2 phase. In vivo experiments further reveal that cRGD-directed nanoparticles exhibit superior accumulation in glioma regions compared to their non-cRGD-modified counterparts. In the interim, PDOX-AP/cRGD-NPs demonstrate significant efficacy in suppressing both ectopic and orthotopic growth of GL-261 gliomas, as well as orthotopic LN-229 gliomas, thereby markedly extending the median survival duration. This study introduces a promising targeted co-delivery system for combination chemotherapy.
Collapse
Affiliation(s)
- Xifeng Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, Chengdu, 610041, P. R. China
| | - Xin Qi
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| | - Xiang Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, P. R. China
| |
Collapse
|
16
|
Ballato M, Germanà E, Ricciardi G, Giordano WG, Tralongo P, Buccarelli M, Castellani G, Ricci-Vitiani L, D’Alessandris QG, Giuffrè G, Pizzimenti C, Fiorentino V, Zuccalà V, Ieni A, Caffo M, Fadda G, Martini M. Understanding Neovascularization in Glioblastoma: Insights from the Current Literature. Int J Mol Sci 2025; 26:2763. [PMID: 40141406 PMCID: PMC11943220 DOI: 10.3390/ijms26062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastomas (GBMs), among the most aggressive and resilient brain tumors, characteristically exhibit high angiogenic potential, leading to the formation of a dense yet aberrant vasculature, both morphologically and functionally. With these premises, numerous expectations were initially placed on anti-angiogenic therapies, soon dashed by their limited efficacy in concretely improving patient outcomes. Neovascularization in GBM soon emerged as a complex, dynamic, and heterogeneous process, hard to manage with the classical standard of care. Growing evidence has revealed the existence of numerous non-canonical strategies of angiogenesis, variously exploited by GBM to meet its ever-increasing metabolic demand and differently involved in tumor progression, recurrence, and escape from treatments. In this review, we provide an accurate description of each neovascularization mode encountered in GBM tumors to date, highlighting the molecular players and signaling cascades primarily involved. We also detail the key architectural and functional aspects characteristic of the GBM vascular compartment because of an intricate crosstalk between the different angiogenic networks. Additionally, we explore the repertoire of emerging therapies against GBM that are currently under study, concluding with a question: faced with such a challenging scenario, could combined therapies, tailored to the patient's genetic signatures, represent an effective game changer?
Collapse
Affiliation(s)
- Mariagiovanna Ballato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Emanuela Germanà
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Gabriele Ricciardi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
- Istituto Clinico Polispecialistico C.O.T. Cure Ortopediche Traumatologiche s.pa., 98124 Messina, Italy
| | - Walter Giuseppe Giordano
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Pietro Tralongo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; (M.B.); (E.G.); (G.R.); (W.G.G.); (P.T.)
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Giorgia Castellani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.B.); (G.C.); (L.R.-V.)
| | | | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | | | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Valeria Zuccalà
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maria Caffo
- Biomedical and Dental Sciences and Morphofunctional Imaging, Unit of Neurosurgery, University of Messina, 98122 Messina, Italy;
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (G.G.); (V.F.); (V.Z.); (A.I.); (G.F.)
| |
Collapse
|
17
|
Kim J, Moon SY, Kang HG, Kim HJ, Choi JS, Lee SHS, Park K, Won SY. Therapeutic potential of AAV2-shmTOR gene therapy in reducing retinal inflammation and preserving endothelial Integrity in age-related macular degeneration. Sci Rep 2025; 15:9517. [PMID: 40108376 PMCID: PMC11923296 DOI: 10.1038/s41598-025-93993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
Age-related macular degeneration (AMD) is a prevalent retinal disorder that leads to central vision loss, mainly due to chronic inflammation. Tumor necrosis factor-alpha (TNF-α) is a critical mediator of inflammatory responses within the retinal environment. This study has investigated TNF-α's influence on inflammatory cytokine production and endothelial barrier integrity in human microglial (HMC3) and endothelial (HUVEC) cells. We found that TNF-α significantly elevated the expression and secretion of interleukin-6 (IL-6) and interleukin-1β (IL-1β) in HMC3 cells and disrupted endothelial tight junctions in HUVECs, as evidenced by weakened ZO-1 staining and compromised barrier function. To mitigate these effects and further investigate the in vitro mechanism of actions in CRG-01's in vivo therapeutic efficacy of anti-inflammation, we employed AAV2-shmTOR, CRG-01, as the candidate for therapeutic vector targeting the mammalian target of the rapamycin (mTOR) pathway. TNF-α-induced IL-6, IL-1β, and NF-κB signaling in HMC3 cells were significantly reduced by AAV2-shmTOR treatment, which may present a promising avenue for the fight against AMD. It also effectively preserved endothelial tight junction integrity in TNF-α-treated HUVECs, providing reassurance about its effectiveness. Furthermore, the supernatant medium collected from AAV2-shmTOR-treated HMC3 cells decreased oxidative stress, protein oxidation, and cytotoxicity in ARPE retinal pigment epithelial cells. These results strongly suggested that CRG-01, the candidate therapeutic vector of AAV2-shmTOR, may have a therapeutic potential to treat AMD-related retinal inflammation.
Collapse
Grants
- HN22C0245 This research was supported by the Korea Drug Development Fund, funded by the Ministry of Science and ICT, the Ministry of Trade, Industry, and Energy, and the Ministry of Health and Welfare (HN22C0245, Republic of Korea).
- HN22C0245 This research was supported by the Korea Drug Development Fund, funded by the Ministry of Science and ICT, the Ministry of Trade, Industry, and Energy, and the Ministry of Health and Welfare (HN22C0245, Republic of Korea).
- HN22C0245 This research was supported by the Korea Drug Development Fund, funded by the Ministry of Science and ICT, the Ministry of Trade, Industry, and Energy, and the Ministry of Health and Welfare (HN22C0245, Republic of Korea).
- HN22C0245 This research was supported by the Korea Drug Development Fund, funded by the Ministry of Science and ICT, the Ministry of Trade, Industry, and Energy, and the Ministry of Health and Welfare (HN22C0245, Republic of Korea).
- HN22C0245 This research was supported by the Korea Drug Development Fund, funded by the Ministry of Science and ICT, the Ministry of Trade, Industry, and Energy, and the Ministry of Health and Welfare (HN22C0245, Republic of Korea).
- HN22C0245 This research was supported by the Korea Drug Development Fund, funded by the Ministry of Science and ICT, the Ministry of Trade, Industry, and Energy, and the Ministry of Health and Welfare (HN22C0245, Republic of Korea).
- HN22C0245 This research was supported by the Korea Drug Development Fund, funded by the Ministry of Science and ICT, the Ministry of Trade, Industry, and Energy, and the Ministry of Health and Welfare (HN22C0245, Republic of Korea).
- HN22C0245 This research was supported by the Korea Drug Development Fund, funded by the Ministry of Science and ICT, the Ministry of Trade, Industry, and Energy, and the Ministry of Health and Welfare (HN22C0245, Republic of Korea).
Collapse
Affiliation(s)
- Jin Kim
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Seo Yun Moon
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Ho Geun Kang
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Hee Jong Kim
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Jun Sub Choi
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Steven Hyun Seung Lee
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea
| | - Keerang Park
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea.
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea.
| | - So-Yoon Won
- Institute of New Drug Development Research, CdmoGen Co., Ltd, Seoul, 05855, Republic of Korea.
- CdmoGen Co., Ltd, Cheongju, 28577, Republic of Korea.
| |
Collapse
|
18
|
Wan X, Wang D. Curcumin: Epigenetic Modulation and Tumor Immunity in Antitumor Therapy. PLANTA MEDICA 2025. [PMID: 39689889 DOI: 10.1055/a-2499-1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Curcumin (turmeric) is the main ingredient of the Chinese herbal turmeric rhizome, used to treat tumors, diabetes, inflammation, neurodegenerative diseases, cardiovascular diseases, metabolic syndrome, and liver diseases. The antitumor effects of curcumin have received even more attention. One of the main mechanisms of the antitumor effects includes inhibition of tumor invasion and migration, induction of tumor cell apoptosis, and inhibition of various cell signaling pathways. It has been found that the antitumor biological activity of curcumin in the body is associated with epigenetic mechanisms. That also implies that curcumin may act as a potential epigenetic modulator to influence the development of tumor diseases. The immune system plays an essential role in the development of tumorigenesis. Tumor immunotherapy is currently one of the most promising research directions in the field of tumor therapy. Curcumin has been found to have significant regulatory effects on tumor immunity and is expected to be a novel adjuvant for tumor immunity. This paper summarizes the antitumor effects of curcumin from four aspects: molecular and epigenetic mechanisms of curcumin against a tumor, mechanisms of curcumin modulation of tumor immunotherapy, reversal of chemotherapy resistance, and a novel drug delivery system of curcumin, which provide new directions for the development of new antitumor drugs.
Collapse
Affiliation(s)
- Xin Wan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dong Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
19
|
Lu T, Liu A, Li C, Li Y, Yang B, Liu Q, Jiang H. Brown adipose tissue transplantation ameliorates hindlimb ischemic damage in diabetic mice. Sci Rep 2025; 15:8820. [PMID: 40087510 PMCID: PMC11909270 DOI: 10.1038/s41598-025-93261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/05/2025] [Indexed: 03/17/2025] Open
Abstract
Peripheral arterial disease (PAD) is a common complication associated with diabetes, which can lead to foot ischemia. The condition is often accompanied by infection and necrosis, ultimately leading to diabetic foot ulcers and the risk of amputation. Brown adipose tissue (BAT) and its secreted cytokines play an essential role in the regulation of glucose homeostasis, the modulation of inflammatory responses, and vascular endothelial cell proliferation. The transplantation of BAT into ischemic regions may offer therapeutic benefits in alleviating the symptoms associated with PAD. A diabetic mouse model was established via intraperitoneal administration of streptozocin. Subsequently, a diabetic lower limb ulcer model was constructed by transection of the femoral artery and ligation of the femoral vein. BAT harvested from the subscapular region of the mouse was employed as an adipose graft. The research utilized Laser Doppler monitoring, Western blot analysis, hematoxylin-eosin (HE) staining, immunofluorescence staining, and enzyme-linked immunosorbent assay (ELISA) to evaluate blood flow recovery in ischemic regions, histopathological changes, angiogenesis and tissue remodeling, inflammatory responses, and M1/M2 macrophage polarization. BAT transplantation significantly enhanced blood flow recovery in ischemic regions of diabetic lower limb ulcer mice while concurrently reducing necrotic tissue. Pathological analyses demonstrate that BAT transplantation mitigates ischemic tissue damage, stimulates angiogenesis, and supports tissue remodeling. Furthermore, the Western blotting, immunofluorescence, and ELISA results revealed that BAT transplantation significantly reduces inflammatory levels in ischemic tissues, increases the expression of angiogenic factors, and promotes the polarization of macrophages from the M1 to the M2 phenotype. The research has demonstrated that BAT transplantation can mitigate ischemic injury in diabetic lower limb ulcer mice, attenuate inflammatory responses, and facilitate the restoration of blood flow. These effects may be linked to alterations in macrophage polarization.
Collapse
Affiliation(s)
- Ting Lu
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Amin Liu
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Chunchun Li
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Yi Li
- Center for Basic and Translational Research, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Bin Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, PR China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311402, Zhejiang, PR China.
| | - Hua Jiang
- Department of Otolaryngology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China.
| |
Collapse
|
20
|
Cili W, Qi Z, Zhong Q, Li Y, Huang X, Yang R, Tang S, Li Q, Yang L, Ning Y, Xie Y, Feng Y, Duan J. Proline betaine facilitates angiogenesis in bronchopulmonary dysplasia. Toxicol Appl Pharmacol 2025; 498:117301. [PMID: 40089188 DOI: 10.1016/j.taap.2025.117301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is prevalent and severe diseases in preterm infants, characterized by abnormal lung development. This study aims to investigate the therapeutic potential of proline betaine, a natural alkaloid recognized for its vasculo-protective and anti-inflammatory properties, in BPD model. METHODS Network pharmacology was utilized to predict the targets of proline betaine and BPD-related genes (BPD-RGs). In vitro, HUVECs were treated with proline betaine to evaluate its effects on proliferation and angiogenesis. In vivo, a hyperoxia-induced BPD rat model (85 % oxygen, first day to 14th day) was used to evaluate the effects of proline betaine on pulmonary injury, angiogenesis and fibrosis. RESULTS We identified a total of 100 proline-betaine targets and 825 BPD-RGs, with 20 shared targets between them. These shared targets modulated inflammation, immune response, hypoxia, and vascular homeostasis, especially the vascular phenotype. In vitro, proline betaine significantly enhanced the activity, number of tubes, and capillary length of HUVECs. The pro-angiogenic effect of proline betaine on HUVECs was dose-dependent. The hyperoxia-induced BPD rat model corroborated these findings. In vivo, proline betaine increased the radial alveolar count and reduced the mean linear intercept and collagen content in the lung. Mechanistically, proline betaine upregulated VEGF and VEGFR2 expression as well as MEK/ERK pathway activity. Notably, blocking the VEGFR2 and MEK/ERK pathways made proline betaine less effective as a medicine. CONCLUSION Proline betaine enhances angiogenesis and mitigates pulmonary injury through the MEK/ERK pathway. These findings suggest that proline betaine could serve as a novel therapeutic strategy for managing BPD in neonates.
Collapse
Affiliation(s)
- Wangdui Cili
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Zhiye Qi
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Qinghua Zhong
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Yin Li
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Xia Huang
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Ruoting Yang
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Si Tang
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Qingyuan Li
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Li Yang
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Yue Ning
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Yunbo Xie
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Yanli Feng
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China
| | - Jiang Duan
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province 650032, China.
| |
Collapse
|
21
|
Gong J, Li H, Cui X, Yan Y, Yu Q, Ding Q, Shi Y, Wang P. Tianlong Kechuanling decoction attenuates pulmonary hypertension by inhibiting endothelial-to-mesenchymal transition. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119395. [PMID: 39909115 DOI: 10.1016/j.jep.2025.119395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary hypertension (PH) is a serious and progressive disease, posing a significant challenge to patient survival and quality of life. However, current treatments have limited effectiveness. Tianlong Kechuanling (TL) is a traditional Chinese medicine (TCM) compound formulation commonly used in clinical practice for the treatment of pulmonary heart disease, but its underlying mechanism is unknown. AIM OF THE STUDY This study aimed to validate the mitigating effect of TL on PH and to further investigate its mechanism. MATERIALS AND METHODS A rat model of PH was induced by SU5416 combined with hypoxia (SuHx). The effects of TL on PH were evaluated through right ventricular systolic pressure (RVSP), Right ventricular hypertrophy index (RVHI) and histopathological analysis. The serum levels of HIF-1α, VEGFA in rats were detected by ELISA; VEGFR2, Vimentin and CD31 were detected by immunohistochemistry to explore the mechanism of action of TL. Human pulmonary artery endothelial cells (HPAECs) were induced by hypoxia, and the effects of TL were confirmed by RT-PCR and Western Blotting. Liquid chromatography-mass spectrometry (LC-MS) analysis was used to identify the chemical composition of TL. RESULTS TL ameliorated PH through modulation of the HIF-1α/VEGFA pathway and endothelial-to-mesenchymal transition (End-MT). The study also identified the key chemical components responsible for these effects. CONCLUSIONS The study demonstrates that TL can improve PH by inhibiting End-MT, supporting the further development of TL as an effective therapeutic option for PH.
Collapse
Affiliation(s)
- Jing Gong
- Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| | - Huihua Li
- Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| | - Xiaoqing Cui
- Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| | - Yuling Yan
- Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| | - Qinghe Yu
- Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China
| | - Qi Ding
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, Guangdong Province, China.
| | - Yuanyuan Shi
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen, 518118, Guangdong Province, China.
| | - Peng Wang
- Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong Province, China.
| |
Collapse
|
22
|
Yang S, Zhang X, Li X, Li H. Crip2 affects vascular development by fine-tuning endothelial cell aggregation and proliferation. Cell Mol Life Sci 2025; 82:110. [PMID: 40074973 PMCID: PMC11904032 DOI: 10.1007/s00018-025-05624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Endothelial cell adhesion and migration are crucial to various biological processes, including vascular development. The identification of factors that modulate vascular development through these cell functions has emerged as a prominent focus in cardiovascular research. Crip2 is known to play a crucial role in cardiac development, yet its involvement in vascular development and the underlying mechanism remains elusive. In this study, we revealed that Crip2 is expressed predominantly in the vascular system, particularly in the posterior cardinal vein and caudal vein plexus intersegmental vein. Upon Crip2 loss, the posterior cardinal vein plexus and caudal vein plexus are hypoplastic, and endothelial cells exhibit aberrant aggregation. In human umbilical vein endothelial cells (HUVECs), CRIP2 interacts with the cytoskeleton proteins KRT8 and VIM. The absence of CRIP2 negatively regulates their expression, thereby fine-tuning cytoskeleton formation, resulting in a hyperadhesive phenotype. Moreover, CRIP2 deficiency perturbs the VEGFA/CDC42 signaling pathway, which in turn diminishes the migrating capacity of HUVECs. Furthermore, the loss of CRIP2 impairs cell proliferation by affecting its interaction with SRF through PDE10A/cAMP and PDGF/JAK/STAT/SRF signaling. Collectively, our findings delineate a crucial role for CRIP2 in controlling the migration, adhesion and proliferation of endothelial cells, thereby contributing to vascular development in zebrafish. These insights may provide a deeper understanding of the etiology of cardiovascular disorders.
Collapse
Affiliation(s)
- Shuaiqi Yang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiangmin Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xianpeng Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hongyan Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Ocean University of China, Room 301, Darwin Building, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
23
|
Brash JT, Diez-Pinel G, Rinaldi L, Castellan RFP, Fantin A, Ruhrberg C. Endothelial transcriptomic, epigenomic and proteomic data challenge the proposed role for TSAd in vascular permeability. Angiogenesis 2025; 28:21. [PMID: 40080216 PMCID: PMC11906500 DOI: 10.1007/s10456-025-09971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/23/2025] [Indexed: 03/15/2025]
Abstract
The vascular endothelial growth factor VEGF drives excessive vascular permeability to cause tissue-damaging oedema in neovascular and inflammatory diseases across multiple organs. Several molecular pathways have been implicated in VEGF-induced hyperpermeability, including binding of the VEGF-activated tyrosine kinase receptor VEGFR2 by the T-cell specific adaptor (TSAd) to recruit a SRC family kinase to induce junction opening between vascular endothelial cells (ECs). Inconsistent with a universal role for TSAd in permeability signalling, immunostaining approaches previously reported TSAd only in dermal and kidney vasculature. To address this discrepancy, we have mined publicly available omics data for expression of TSAd and other permeability-relevant signal transducers in multiple organs affected by VEGF-induced vascular permeability. Unexpectedly, TSAd transcripts were largely absent from EC single cell RNAseq data, whereas transcripts for other permeability-relevant signal transducers were detected readily. TSAd transcripts were also lacking from half of the EC bulk RNAseq datasets examined, and in the remaining datasets appeared at low levels concordant with models of leaky transcription. Epigenomic EC data located the TSAd promoter to closed chromatin in ECs, and mass spectrometry-derived EC proteomes typically lacked TSAd. By suggesting that TSAd is not actively expressed in ECs, our findings imply that TSAd is likely not critical for linking VEGFR2 to downstream signal transducers for EC junction opening.
Collapse
Affiliation(s)
- James T Brash
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Guillermo Diez-Pinel
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Luca Rinaldi
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy
| | - Raphael F P Castellan
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Alessandro Fantin
- Department of Biosciences, University of Milan, Via G. Celoria 26, 20133, Milan, Italy.
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| |
Collapse
|
24
|
Lin YY, Warren E, Macklin BL, Ramirez L, Gerecht S. Endothelial-pericyte interactions regulate angiogenesis via VEGFR2 signaling during retinal development and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.08.642174. [PMID: 40161680 PMCID: PMC11952325 DOI: 10.1101/2025.03.08.642174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pericytes stabilize the microvasculature by enhancing endothelial barrier integrity, resulting in functional networks. During retinal development, pericyte recruitment is crucial for stabilizing nascent angiogenic vasculature. However, in adulthood, disrupted endothelial-pericyte interactions lead to vascular dropout and pathological angiogenesis in ocular microvascular diseases, and strategies to stabilize the retinal vasculature are lacking. We demonstrate that direct endothelial-pericyte contact downregulates pVEGFR2 in endothelial cells, which enhances pericyte migration and promotes endothelial cell barrier function. Intravitreal injection of a VEGFR2 inhibitor in mouse models of the developing retina and oxygen-induced retinopathy increased pericyte recruitment and aided vascular stability. The VEGFR2 inhibitor further rescued ischemic retinopathy by enhancing vascularization and tissue growth while reducing vascular permeability. Our findings offer a druggable target to support the growth of functional and mature microvasculature in ocular microvascular diseases and tissue regeneration overall.
Collapse
|
25
|
Ratajczak MZ, Thetchinamoorthy K, Wierzbicka D, Konopko A, Ratajczak J, Kucia M. Extracellular microvesicles/exosomes-magic bullets in horizontal transfer between cells of mitochondria and molecules regulating mitochondria activity. Stem Cells 2025; 43:sxae086. [PMID: 39949038 DOI: 10.1093/stmcls/sxae086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/11/2024] [Indexed: 03/15/2025]
Abstract
Extracellular microvesicles (ExMVs) were one of the first communication platforms between cells that emerged early in evolution. Evidence indicates that all types of cells secrete these small circular structures surrounded by a lipid membrane that plays an important role in cellular physiology and some pathological processes. ExMVs interact with target cells and may stimulate them by ligands expressed on their surface and/or transfer to the target cells their cargo comprising various RNA species, proteins, bioactive lipids, and signaling nucleotides. These small vesicles can also hijack some organelles from the cells and, in particular, transfer mitochondria, which are currently the focus of scientific interest for their potential application in clinical settings. Different mechanisms exist for transferring mitochondria between cells, including their encapsulation in ExMVs or their uptake in a "naked" form. It has also been demonstrated that mitochondria transfer may involve direct cell-cell connections by signaling nanotubules. In addition, evidence accumulated that ExMVs could be enriched for regulatory molecules, including some miRNA species and proteins that regulate the function of mitochondria in the target cells. Recently, a new beneficial effect of mitochondrial transfer has been reported based on inducing the mitophagy process, removing damaged mitochondria in the recipient cells to improve their energetic state. Based on this novel role of ExMVs in powering the energetic state of target cells, we present a current point of view on this topic and review some selected most recent discoveries and recently published most relevant papers.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Kannathasan Thetchinamoorthy
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Diana Wierzbicka
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Adrian Konopko
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| | - Janina Ratajczak
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
| | - Magdalena Kucia
- Stem Cell Institute at Brown Cancer Center, University of Louisville, Louisville, KY 40202, United States
- Department of Regenerative Medicine, Center for Preclinical Research and Technology, Medical University of Warsaw, Warsaw 02-097, Poland
| |
Collapse
|
26
|
Dai J, Hu Y, Liu W, Liu H, Wang S, Xia F, Lou X. Cell-Sensing Analogue Nanopore for Rapid Detection of Protein-Related Targets. Angew Chem Int Ed Engl 2025; 64:e202421721. [PMID: 39592429 DOI: 10.1002/anie.202421721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Nanopores offer significant advantages in biosensing. Conventional nanopore sensors require probe modification within the pore, and there are two major obstacles: inhomogeneity of probe modification within the pore, and distortion of the detection signal due to the uncontrollable dynamics of the target within the pore. Here, we constructed a cell-sensing analogue nanopore (CeSa-nanopore), by coating the outer surface of the nanopore with cell membrane. The inhomogeneity of probe modification and the uncontrollable kinetics of target-probe binding were also addressed. Specific cells are selected to prepare CeSa-nanopore, for example, cells with high expression of angiotensin-converting enzyme 2 (ACE2) are used to achieve the detection of SARS-CoV-2. When SARS-CoV-2 binds to CeSa-nanopore the surface potential changes, causing a change in the ionic current, thus enabling its detection with a detection rate of 100 %. In addition, the detection of different proteins, such as follicle-stimulating hormone (FSH), can be achieved by changing the cell membrane coating. The identification of cancer cells in ascites can also be achieved by utilizing homologous targeting between cancer cells. Importantly, the use of CeSa-nanopores for the detection of these targets eliminates the need for pre-processing and significantly reduces detection time.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuxin Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Weiyong Liu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
27
|
Aksan B, Mauceri D. Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure. J Biomed Sci 2025; 32:33. [PMID: 40050849 PMCID: PMC11884128 DOI: 10.1186/s12929-025-01128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025] Open
Abstract
Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Institute of Anatomy and Cell Biology, Dept. Molecular and Cellular Neuroscience, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
28
|
Patel S, Yang E, Milne TJ, Hussaini H, Cooper PR, Friedlander LT. Angiogenic effects of Type 2 diabetes on the dental pulp. Int Endod J 2025; 58:434-448. [PMID: 39652136 DOI: 10.1111/iej.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/17/2024] [Accepted: 11/24/2024] [Indexed: 01/03/2025]
Abstract
AIM To investigate the influence of type 2 diabetes (T2D) and hyperglycaemia on blood vessels and angiogenic markers in the dental pulp. METHODOLOGY Extracted non-carious permanent molar teeth were collected from patients with well-controlled T2D (n = 10) and non-T2D (controls) (n = 10). The pulp was examined qualitatively using haematoxylin and eosin and Van Gieson stains. Immunohistochemistry (IHC) identified the primary receptor for VEGF, VEGFR2, and the endothelial cell marker CD34. Primary human dental pulp cell (hDPC) lines (n = 3) were established from tissue explants and cells were grown in media containing 5.5 mM D-glucose (control), 12.5 mM (prediabetes) and 25 mM (T2D) D-glucose under normoxic conditions for 24, 48 and 72 h. Assays for metabolic activity (PrestoBlue) and cell viability (Crystal Violet staining) assessed the hDPC response to hyperglycaemia. The expression of angiogenic genes VEGFA, KDR, FLT-1, ANGPT1, ANGPT2, TIE1 and TEK were analysed using quantitative real-time polymerase chain reaction. ELISAs were used to quantify the level of expressed protein for VEGFA, ANG1, ANG2, TIE1, and TIE2 in the media. Data analyses were performed using GraphPad Prism and anova tests at p < .05. RESULTS Blood vessels in T2D samples had thicker walls and stained strongly for elastin and collagen compared with non-T2D samples. VEGFR2 protein was not seen in any T2D samples but consistently detected in healthy specimens. Culturing healthy cells in high glucose (25 mM) significantly reduced cell viability at 24 h compared to the control (p = .005) and 12.5 mM glucose (p = .001) but the metabolic activity was not greatly affected by glucose and time. VEGFA mRNA and VEGFA protein expression were detected in the hDPCs in the presence of hyperglycaemia over time; however, the primary receptor, VEGFR2/KDR, was not detected. Genes for the ANG1 and ANG2 and their receptors were expressed at all glucose concentrations but hyperglycaemia upregulated ANG2 mRNA. Proteins for all growth factors were detected in the media however proteins for TIE1 and TIE2 receptors were not. CONCLUSION T2D and hyperglycaemia may impair the angiogenic response in the pulp similar to other body site. The scarcity of VEGFR2 and increased expression of ANG2 in response to hyperglycaemia suggests that VEGF and ANG-Tie1/Tie2 signalling may be compromised.
Collapse
Affiliation(s)
- S Patel
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - E Yang
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - T J Milne
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - H Hussaini
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - P R Cooper
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - L T Friedlander
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Guha Ray P, Rajasekaran R, Pratihar B, De S, Dhara S, Fussenegger M. Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412257. [PMID: 39792704 PMCID: PMC11884547 DOI: 10.1002/advs.202412257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA). The VOLT platform consists of a 3D-printed borophene-PCL honeycomb-shaped matrix decorated with borophene-PCL nanofibers by electrospinning. The honeycomb structure provides mechanical stability, while the nanofibers facilitate the adhesion, migration, and proliferation of the engineered cells. The cells incorporate a DC-powered reactive oxygen species (ROS)-sensing gene circuit wired to an engineered synthetic promoter that triggers secretion of VEGFA to promote vascularization in the adjacent extracellular matrix. Cells engineered with this gene circuit and enclosed in the VOLT matrix, termed the VOLTVEGFA system, can be simply triggered using off-the-shelf AA batteries, utilizing the established ability of a brief DC bias to generate non-cytotoxic levels of ROS. For proof-of-concept, a subcutaneous wound-healing model in rats is chosen. Electrostimulation of a VOLTVEGFA implant (5 V, 20 s per day) induced secretion of VEGFA, and significantly accelerated neovascularization and granulation tissue formation, resulting in faster wound closure compared with non-stimulated controls. Complete re-epithelialization and dermal regeneration are observed within 15 days of application.
Collapse
Affiliation(s)
- Preetam Guha Ray
- ETH ZurichDepartment of Biosystems Science and EngineeringKlingelbergstrasse 48BaselCH‐4056Switzerland
- Biomaterials and Tissue Engineering LaboratorySchool of Medical Science and Technology (SMST)Indian Institute of Technology KharagpurKharagpur721302India
| | - Ragavi Rajasekaran
- Biomaterials and Tissue Engineering LaboratorySchool of Medical Science and Technology (SMST)Indian Institute of Technology KharagpurKharagpur721302India
| | - Bitan Pratihar
- Department of Chemical EngineeringIndian Institute of Technology KharagpurKharagpur721302India
| | - Sirshendu De
- Department of Chemical EngineeringIndian Institute of Technology KharagpurKharagpur721302India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering LaboratorySchool of Medical Science and Technology (SMST)Indian Institute of Technology KharagpurKharagpur721302India
| | - Martin Fussenegger
- ETH ZurichDepartment of Biosystems Science and EngineeringKlingelbergstrasse 48BaselCH‐4056Switzerland
- Faculty of ScienceUniversity of BaselKlingelbergstrasse 48BaselCH‐4056Switzerland
| |
Collapse
|
30
|
Yang H, Wang W, Xiao J, Yang R, Feng L, Xu H, Xu L, Xing Y. ROS-responsive injectable hydrogels loaded with exosomes carrying miR-4500 reverse liver fibrosis. Biomaterials 2025; 314:122887. [PMID: 39405826 DOI: 10.1016/j.biomaterials.2024.122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 11/10/2024]
Abstract
The reversal of liver fibrosis requires effective strategies to reduce oxidative stress and inhibition of hepatic stellate cell (HSC) activation. MiR-4500 regulates pathological angiogenesis and collagen mRNA stability, with the potential to inhibit fibrosis. Herein, we explored the inhibition of HSC activation in vitro by exosomes (Exos) carrying miR-4500 and encapsulated ExosmiR-4500 in an intelligent injectable hydrogel with biological activity and reactive oxygen species (ROS) responsiveness for application in oxidative stress environments. Briefly, reversible boronic ester bonds were integrated into gelatin-based hydrogels through dynamic crosslinking of quaternized chitosan (QCS) and 4-carboxyphenylboronic acid (CPBA)-modified gelatin. The QCS-CPBA-Gelatin (QCG) hydrogel scavenged excess ROS from the local microenvironment and released ExosmiR-4500 through the dissociation of boronic ester bonds, providing a favorable microenvironment and in situ sustained-release drug delivery system for ExosmiR-4500. The results showed that QCG@ExosmiR-4500 hydrogel has biocompatibility, biodegradability, and slow-release ability, which could effectively clear ROS and inhibit HSC activation and pathological angiogenesis in vitro and in vivo. Furthermore, transcriptome analysis suggests that the pharmacological mechanism of the QCG@ExosmiR-4500 hydrogel is mainly related to anti-oxidation, anti-angiogenesis, anti-fibrosis processes, and signaling pathways. Thus, our study demonstrates that an intelligently responsive ExosmiR-4500 delivery system based on injectable hydrogels is a promising strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Huili Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Wanshun Wang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Jiacong Xiao
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China; Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, 510405, PR China
| | - Rong Yang
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Lian Feng
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Hongling Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Liubin Xu
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China
| | - Yufeng Xing
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, PR China.
| |
Collapse
|
31
|
Mei J, Yang K, Zhang X, Luo Z, Tian M, Fan H, Chu J, Zhang Y, Ding J, Xu J, Cai Y, Yin Y. Intratumoral Collagen Deposition Supports Angiogenesis Suggesting Anti-angiogenic Therapy in Armored and Cold Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409147. [PMID: 39823457 PMCID: PMC11904994 DOI: 10.1002/advs.202409147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/05/2025] [Indexed: 01/19/2025]
Abstract
A previous study classifies solid tumors based on collagen deposition and immune infiltration abundance, identifying a refractory subtype termed armored & cold tumors, characterized by elevated collagen deposition and diminished immune infiltration. Beyond its impact on immune infiltration, collagen deposition also influences tumor angiogenesis. This study systematically analyzes the association between immuno-collagenic subtypes and angiogenesis across diverse cancer types. As a result, armored & cold tumors exhibit the highest angiogenic activity in lung adenocarcinoma (LUAD). Single-cell and spatial transcriptomics reveal close interactions and spatial co-localization of fibroblasts and endothelial cells. In vitro experiments demonstrate that collagen stimulates tumor cells to express vascular endothelial growth factor A (VEGFA) and directly enhances vessel formation and endothelial cell proliferation through sex determining region Y box 18 (SOX18) upregulation. Collagen inhibition via multiple approaches effectively suppresses tumor angiogenesis in vivo. In addition, armored & cold tumors display superior responsiveness to anti-angiogenic therapy in advanced LUAD cohorts. Post-immunotherapy resistance, the transformation into armored & cold tumors emerges as a potential biomarker for selecting anti-angiogenic therapy. In summary, collagen deposition is shown to drive angiogenesis across various cancers, providing a novel and actionable framework to refine therapeutic strategies combining chemotherapy with anti-angiogenic treatments.
Collapse
Affiliation(s)
- Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Xinkang Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, 200040, P. R. China
| | - Min Tian
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Hanfang Fan
- Departments of Oncology, Wuxi People's Hospital, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Jiahui Chu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- The First Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Yan Zhang
- Departments of Gynecology, The Women's Hospital Affiliated to Jiangnan University, Wuxi, 214023, China
| | - Junli Ding
- Departments of Oncology, Wuxi People's Hospital, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Junying Xu
- Departments of Oncology, Wuxi People's Hospital, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, 214023, P. R. China
| | - Yun Cai
- Central Laboratory, Changzhou Jintan First People's Hospital, The Affiliated Jintan Hospital of Jiangsu University, Changzhou, Jiangsu, 213200, P. R. China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
32
|
Chen P, Li K, Chen J, Hei H, Geng J, Huang N, Lei M, Jia H, Ren J, Jin C. Enhanced effect of radiofrequency ablation on HCC by siRNA-PD-L1-endostatin Co-expression plasmid delivered. Transl Oncol 2025; 53:102319. [PMID: 39938403 PMCID: PMC11869540 DOI: 10.1016/j.tranon.2025.102319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/07/2025] [Accepted: 02/02/2025] [Indexed: 02/14/2025] Open
Abstract
Hepatocellular carcinoma (HCC) poses a significant clinical challenge due to high mortality and limited treatment options. Radiofrequency ablation (RFA) is commonly used but can be limited by tumor recurrence. This study explores the potential of combining RFA with an attenuated Salmonella strain carrying siRNA-PD-L1 and endostatin to enhance HCC treatment. In this study, an H22 subcutaneous tumor mouse model was used, with animals divided into five groups for treatment with a blank control, a blank Salmonella plasmid, RFA alone, siRNA-PD-L1-endostatin, or a combination of RFA and siRNA-PD-L1-endostatin. The combination therapy significantly reduced tumor growth, angiogenesis, and PD-L1/VEGF expression in tumor tissues post-RFA. Additionally, it induced tumor cell apoptosis, inhibited proliferation and migration, and increased the infiltration of T lymphocytes, granzyme B+T cells, and CD86+macrophages within tumors. There was also a notable rise in T and NK cell populations in the spleen. In conclusion, combining RFA with siRNA-PD-L1-endostatin delivered by attenuated Salmonella synergistically enhances anti-tumor effects, boosts the anti-tumor immune response, and improves RFA efficacy for HCC.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China; Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kun Li
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jinwei Chen
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - He Hei
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China
| | - Jiaxin Geng
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Nannan Huang
- Department of Orthopedics, Zhengyang county traditional Chinese medicine hospital, Zhumadian, Henan, PR China
| | - Mengyu Lei
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Huijie Jia
- Xinxiang Engineering Technology Research Center of immune checkpoint drug for Liver-Intestinal Tumors, Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jianzhuang Ren
- Department of Interventional Radiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chenwang Jin
- Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China; Shaanxi Engineering Research Center of Computational Imaging and Medical Intelligence, 277 West Yanta Road, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
33
|
Wu T, Song H, Wang R, Wang W, Xing J. A hyaluronic acid nanogels based exosome production factory for tumor photothermal therapy and angiogenesis inhibition. Int J Biol Macromol 2025; 293:139363. [PMID: 39743113 DOI: 10.1016/j.ijbiomac.2024.139363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Exosomes as a unique drug delivery system provide a new choice for tumor therapy. However, the in vitro functionalization of exosomes and the process of circulating drug delivery can easily cause exosome degradation and drug loss, thus reducing the efficiency of drug delivery. In this work, based on the endocyto-fusion-exocytosis pathway of exosome formation, a multifunctional hyaluronic acid nanogel loaded with the antiangiogenic drug vatalanib and the near-infrared photothermal agent indocyanine green (ICG) was designed. Lysosome escape and photothermal therapy were combined to promote exosome production. Hyaluronic acid nanogels were endocytosed by tumor cells with CD44 mediation, forming intracellular vesicle-coated nanogels, which were subsequently degraded by hyaluronidase with high expression in tumor cells. Anti-angiogenic signals in intracellular vesicles were then delivered to vascular endothelial cells by exosomes through membrane fusion and exocytosis, which inhibited tumor angiogenesis to prevent tumor proliferation and metastasis. Cell experiments and tumor models demonstrate that our therapeutic strategy can achieve effective tumor inhibition.
Collapse
Affiliation(s)
- Tong Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Huijuan Song
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300350, PR China.
| | - Rijie Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300350, PR China.
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
34
|
Nakanishi K, Takamura Y, Nakano Y, Inatani M, Oki M. The HAT Inhibitor ISOX-DUAL Diminishes Ischemic Areas in a Mouse Model of Oxygen-Induced Retinopathy. Genes Cells 2025; 30:e13196. [PMID: 39916601 PMCID: PMC11803434 DOI: 10.1111/gtc.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
Retinal ischemic disease results in significant visual impairment due to the development of fragile and disorganized, pathologically running blood vessels in the eye. Currently, the mainstay treatment for this disease is the intravitreal administration of anti-VEGF drugs targeting vascular endothelial growth factor (VEGF), which induces angiogenesis. However, current anti-VEGF drugs do not diminish the ischemic areas that lead to angiogenesis, making fundamental treatment challenging. Since retinopathy is an acquired disease caused by hypoxic stimulation from ischemia, we paid particular attention to histone acetylases. We conducted a drug screening experiment using a mouse model of oxygen-induced retinopathy (OIR), which replicates retinal ischemic disease, through the intraperitoneal administration of 17 distinct inhibitors targeting histone acetyltransferases (HAT). The results indicated that, among the 17 inhibitors, only ISOX-DUAL decreased neovascularization and ischemic regions. Furthermore, microarray analysis was conducted on the drug-treated samples to refine genes altered by the administration of ISOX-DUAL. There were 21 genes associated with angiogenesis, including Angpt2, Hmox1, Edn1, and Serpine1, exhibited upregulation in OIR mice and downregulation following treatment with ISOX-DUAL. Furthermore, STRING analysis confirmed that the aforementioned four genes are downstream factors of hypoxia-inducible factors and are assumed to be important factors in retinal ischemic diseases.
Collapse
Affiliation(s)
- Kengo Nakanishi
- Department of Industrial Creation Engineering, Graduate School of EngineeringUniversity of FukuiFukuiJapan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Yusei Nakano
- Department of Industrial Creation Engineering, Graduate School of EngineeringUniversity of FukuiFukuiJapan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of EngineeringUniversity of FukuiFukuiJapan
- Life Science Innovation CenterUniversity of FukuiFukuiJapan
| |
Collapse
|
35
|
Kanipe C, Putz EJ, Palmer MV. Differential expression of vascular endothelial growth factor A (VEGFA) and M1 macrophage marker nitric oxide synthase 2 (NOS2) in lymph node granulomas of BCG-vaccinated and non-vaccinated cattle infected with Mycobacterium bovis. Tuberculosis (Edinb) 2025; 151:102609. [PMID: 39862443 DOI: 10.1016/j.tube.2025.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/13/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Bovine tuberculosis is mainly caused by Mycobacterium bovis. Bacillus Calmette-Guérin (BCG) is an attenuated strain of M. bovis which provides variable disease protection. Lesions have been characterized in infected cattle, but little comparison has been done with lesions which form in BCG-vaccinates. Here, in situ hybridization examined differences in expression of M. bovis RNA, inducible nitric oxide synthase 2, and vascular endothelial growth factor A in relation to vaccination status and granuloma grade, using two different groups of cattle. Data found no differences between vaccination groups or granuloma grade in average copies of M. bovis mRNA per μm2 of total granuloma area or per μm2 of necrotic areas. Within a vaccination group high-grade granulomas had more NOS2 per cell, per μm2 and a higher percentage of cells expressing NOS2 than low-grade granulomas. Non-vaccinates had a higher percentage of cells producing NOS2 than vaccinates. Differences in NOS2 expression varied by group. Vaccination status and granuloma grade did not affect the average copies of VEGFA per cell or the percent of cells expressing RNA, however VEGFA copies per μm2 varied between groups. These findings suggest NOS2 and VEGFA are likely not mechanisms of BCG vaccination protection but may impact disease severity.
Collapse
Affiliation(s)
- C Kanipe
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA; Immunobiology Program, Iowa State University, Ames, IA, 50010, USA.
| | - E J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| | - M V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, USA
| |
Collapse
|
36
|
Lim S, Clarke NH, Maloney SL, Sener UT, Caron SJ, Kizilbash SH, Campian JL, Neth BJ, Carabenciov ID, Uhm J, Ruff MW. Bevacizumab exerts dose-dependent risk for intracranial hemorrhage in patients with malignant gliomas. J Neurooncol 2025; 172:273-280. [PMID: 39747716 DOI: 10.1007/s11060-024-04916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Bevacizumab, an anti-VEGF monoclonal antibody, has become a mainstay therapeutic in the management of malignant glioma. It is unknown if the risk of intracranial hemorrhage (ICH), a major complication associated with bevacizumab use, is dose-dependent. METHODS This was a single institution retrospective analysis of patients treated with bevacizumab for the management of gliomas between 2009 and 2022. Incidence rates of ICH between patients receiving low-dose (< 5 mg/kg/week) and conventional-dose (5 mg/kg/week) bevacizumab regimens were compared via competing risk analysis over time. We evaluated post-progression survival (PPS) as a secondary outcome using multivariate Cox regression. RESULTS One hundred and seventy-three patients were identified (low-dose group, n = 51, conventional-dose group, n = 122) for inclusion in our analysis. Cumulative incidence rates of all cases of ICH and clinically symptomatic cases of ICH were higher in the conventional-dose (17.2% for all cases, 13.7% for symptomatic) relative to the low-dose group (3.9% for all cases, 2.0% for symptomatic); p-value 0.0296 for all cases, p-value 0.0274 for symptomatic cases. On multivariate Fine-Gray regression, conventional-dose bevacizumab therapy remained significantly associated with increased risk for symptomatic ICH (SHR 8.0560; p-value 0.0442). No difference in PPS was observed between the low-dose versus conventional-dose groups. CONCLUSIONS Conventional-dose bevacizumab therapy (5 mg/kg/week) is associated with increased incidence of ICH in patients with malignant glioma compared to lower dose bevacizumab (< 5 mg/kg/week) in this single center retrospective cohort. No difference in PPS was observed between the low-dose versus conventional-dose groups.
Collapse
Affiliation(s)
- Sanghee Lim
- Division of Neuro-Oncology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nathan H Clarke
- Division of Neuro-Oncology, Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Sara L Maloney
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Ugur T Sener
- Division of Neuro-Oncology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Samantha J Caron
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sani H Kizilbash
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jian L Campian
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Bryan J Neth
- Division of Neuro-Oncology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Ivan D Carabenciov
- Division of Neuro-Oncology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Joon Uhm
- Division of Neuro-Oncology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Michael W Ruff
- Division of Neuro-Oncology, Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
37
|
Chen L, Hao Y, Zhai T, Yang F, Chen S, Lin X, Li J. Single-cell Analysis Highlights Anti-apoptotic Subpopulation Promoting Malignant Progression and Predicting Prognosis in Bladder Cancer. Cancer Inform 2025; 24:11769351251323569. [PMID: 40018511 PMCID: PMC11866393 DOI: 10.1177/11769351251323569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Backgrounds Bladder cancer (BLCA) has a high degree of intratumor heterogeneity, which significantly affects patient prognosis. We performed single-cell analysis of BLCA tumors and organoids to elucidate the underlying mechanisms. Methods Single-cell RNA sequencing (scRNA-seq) data of BLCA samples were analyzed using Seurat, harmony, and infercnv for quality control, batch correction, and identification of malignant epithelial cells. Gene set enrichment analysis (GSEA), cell trajectory analysis, cell cycle analysis, and single-cell regulatory network inference and clustering (SCENIC) analysis explored the functional heterogeneity between malignant epithelial cell subpopulations. Cellchat was used to infer intercellular communication patterns. Co-expression analysis identified co-expression modules of the anti-apoptotic subpopulation. A prognostic model was constructed using hub genes and Cox regression, and nomogram analysis was performed. The tumor immune dysfunction and exclusion (TIDE) algorithm was applied to predict immunotherapy response. Results Organoids recapitulated the cellular and mutational landscape of the parent tumor. BLCA progression was characterized by mesenchymal features, epithelial-mesenchymal transition (EMT), immune microenvironment remodeling, and metabolic reprograming. An anti-apoptotic tumor subpopulation was identified, characterized by aberrant gene expression, transcriptional instability, and a high mutational burden. Key regulators of this subpopulation included CEBPB, EGR1, ELF3, and EZH2. This subpopulation interacted with immune and stromal cells through signaling pathways such as FGF, CXCL, and VEGF to promote tumor progression. Myofibroblast cancer-associated fibroblasts (mCAFs) and inflammatory cancer-associated fibroblasts (iCAFs) differentially contributed to metastasis. Protein-protein interaction (PPI) network analysis identified functional modules related to apoptosis, proliferation, and metabolism in the anti-apoptotic subpopulation. A 5-gene risk model was developed to predict patient prognosis, which was significantly associated with immune checkpoint gene expression, suggesting potential implications for immunotherapy. Conclusions We identified a distinct anti-apoptotic tumor subpopulation as a key driver of tumor progression with prognostic significance, laying the foundation for the development of new therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Linhuan Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Tianzhang Zhai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Fan Yang
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
38
|
Smolarz B, Łukasiewicz H, Samulak D, Piekarska E, Kołaciński R, Romanowicz H. Lung Cancer-Epidemiology, Pathogenesis, Treatment and Molecular Aspect (Review of Literature). Int J Mol Sci 2025; 26:2049. [PMID: 40076671 PMCID: PMC11900952 DOI: 10.3390/ijms26052049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Lung cancer is one of the most common malignant cancers in most countries and is the leading cause of death among cancer diseases worldwide. Despite constant progress in diagnosis and therapy, survival rates of patients diagnosed with lung cancer remain unsatisfactory. Numerous epidemiological and experimental studies conducted as early as the 1970s confirm that the most important risk factor for the development of lung cancer is long-term smoking, which remains valid to this day. In the paper, the authors present the latest data on the epidemiology, pathogenesis, treatment and molecular aspects of this cancer. In the last decade, many molecular alterations that are effective in the development of lung cancer have been discovered. In adenocarcinoma, tyrosine kinase inhibitors were developed for EGFR mutations and ALK and ROS1 translocations and were approved for use in the treatment of advanced stage adenocarcinomas. In the case of squamous cell carcinoma, the evaluation of these mutations is not yet being used in clinical practice. In addition, there are ongoing studies concerning many potential therapeutic molecular targets, such as ROS, MET, FGFR, DDR-2 and RET. Constant progress in diagnostic and therapeutic methods gives rise to hopes for an improved prognosis in patients with lung cancer.
Collapse
Affiliation(s)
- Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Honorata Łukasiewicz
- Faculty of Medicine and Health Sciences, Department of Nursing, The President Stanisław Wojciechowski Calisia University, 62-800 Kalisz, Poland;
| | - Dariusz Samulak
- Department of Obstetrics and Gynecology and Gynecological Oncology, Regional Hospital in Kalisz, 62-800 Kalisz, Poland;
- Department of Obstetrics, The President Stanisław Wojciechowski Calisia University, 62-800 Kalisz, Poland
| | - Ewa Piekarska
- Regional Hospital in Kalisz, 62-800 Kalisz, Poland; (E.P.); (R.K.)
| | | | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| |
Collapse
|
39
|
Zhang S, Guo J, He Y, Su Z, Feng Y, Zhang L, Jun Z, Weng X, Yuan Y. Roles of lncRNA in the crosstalk between osteogenesis and angiogenesis in the bone microenvironment. J Zhejiang Univ Sci B 2025; 26:107-123. [PMID: 40015932 PMCID: PMC11867785 DOI: 10.1631/jzus.b2300607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/16/2024] [Indexed: 03/01/2025]
Abstract
Bone is a highly calcified and vascularized tissue. The vascular system plays a vital role in supporting bone growth and repair, such as the provision of nutrients, growth factors, and metabolic waste transfer. Moreover, the additional functions of the bone vasculature, such as the secretion of various factors and the regulation of bone-related signaling pathways, are essential for maintaining bone health. In the bone microenvironment, bone tissue cells play a critical role in regulating angiogenesis, including osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoclasts. Osteogenesis and bone angiogenesis are closely linked. The decrease in osteogenesis and bone angiogenesis caused by aging leads to osteoporosis. Long noncoding RNAs (lncRNAs) are involved in various physiological processes, including osteogenesis and angiogenesis. Recent studies have shown that lncRNAs could mediate the crosstalk between angiogenesis and osteogenesis. However, the mechanism by which lncRNAs regulate angiogenesis‒osteogenesis crosstalk remains unclear. In this review, we describe in detail the ways in which lncRNAs regulate the crosstalk between osteogenesis and angiogenesis to promote bone health, aiming to provide new directions for the study of the mechanism by which lncRNAs regulate bone metabolism.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Jianmin Guo
- School of Life Sciences, South University of Science and Technology, Shenzhen 518055, China
| | - Yuting He
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Zhi'ang Su
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Yao Feng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China
| | - Lan Zhang
- College of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Zou Jun
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China. ,
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China.
| |
Collapse
|
40
|
Heiden R, Hannig L, Bernhard JS, Vallon M, Schlecht A, Hofmann N, Ergün S, Hoschek F, Wagner M, Neueder A, Förster CY, Braunger BM. Tissue origin of endothelial cells determines immune system modulation and regulation of HIF-1α-, TGF-β-, and VEGF signaling. iScience 2025; 28:111740. [PMID: 39925414 PMCID: PMC11804623 DOI: 10.1016/j.isci.2024.111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Tight junctions of vascular endothelial cells in the central nervous system form the blood-brain and inner blood-retinal barriers, the integrity of which are further influenced by neighboring cells such as pericytes, astrocytes/Müller glial processes, and immune cells. In addition, the retina is shielded from the fenestrated endothelium of the choriocapillaris by the epithelial barrier of the retinal pigment epithelium. Dysfunction of the blood retinal barriers and/or proliferation of retinal and choroidal endothelial cells are caused by late stages of diabetic retinopathy (DR) and neovascular age-related macular degeneration (nAMD), the main causes of blindness in western countries. To elucidate endothelial-derived pathomechanisms in DR and nAMD, we established immortalized mouse cell lines of retinal and choroidal endothelial cells and immortalized brain endothelial cells as CNS-derived controls. We then used immunofluorescence staining, state-of-the-art long-range RNA sequencing and monolayer permeability assays to compare the functional state of these cells depending on their tissue origin. We furthermore demonstrate that activation of the wingless-type MMTV integration site (Wnt)/β-catenin signaling pathway restored blood brain/retinal barrier properties in brain and retinal endothelial cells, but unexpectedly increased permeability of choroidal endothelial cells. Transcriptome profiling showed that depending on the tissue origin of endothelial cells, regulation of the immune system was altered and pathways such as hypoxia-inducible factor (HIF)-1/2α, transforming growth factor (TGF)-β, and vascular endothelial growth factor (VEGF) were differentially regulated, strongly indicating their contribution in the molecular pathogenesis of DR and nAMD. These findings significantly increase the understanding of the vascular biology of endothelial cells, highlighting the fact that depending on their tissue origin, their contribution to vascular pathologies varies.
Collapse
Affiliation(s)
- Robin Heiden
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Hannig
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jakob S. Bernhard
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Mario Vallon
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Anja Schlecht
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nico Hofmann
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Franziska Hoschek
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| | - Maximilian Wagner
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| | - Andreas Neueder
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
41
|
Platania CBM, Lazzara F, Mitton K, Haque N, Dailey W, Conti F, Giuffrida E, Drago F, Hermenean A, Balta C, Herman H, Ciceu A, Trotta MC, D'Amico M, Nicosia G, Rossi S, Bucolo C. Blockade of P2X7 receptors preserves blood retinal barrier integrity by modulating the plasmalemma vesicle-associated protein: Implications for diabetic retinopathy. Br J Pharmacol 2025. [PMID: 39978783 DOI: 10.1111/bph.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND AND PURPOSE Plasmalemma vesicle-associated protein (PLVAP) regulates transcytosis in vascular endothelial cells. PLVAP expression is increased in pathological conditions, such as diabetic retinopathy. P2X7 receptor antagonists have been shown to preserve blood-retinal barrier (BRB) integrity. Here, we have tested the hypothesis that PLVAP expression is tightly linked to P2X7 receptor activity, leading to breakdown of the BRB in an in vitro model of diabetic retinopathy. EXPERIMENTAL APPROACH We integrated network approaches with an in vitro model of diabetic retinopathy using primary human retinal microvascular endothelial cells (HRMECs). Cells were treated with a P2X7 receptor antagonist, JNJ47965567, and expression of several genes predicted to belong to the P2X7 receptor signalling network were assessed. Levels and localisation of PLVAP, VE-cadherin and zonula occludens-1 (ZO-1) in HRMECs were evaluated. In vivo, the effects of JNJ47965567 on PLVAP expression in the retinas of diabetic mice were assessed. KEY RESULTS High levels of glucose increased PLVAP expression in HRMECs, which was blocked by JNJ47965567. Furthermore, JNJ47965567 preserved VE-cadherin and ZO-1. In the choroidal vasculature of diabetic mice, PLVAP immunostaining was increased, compared to levels in non-diabetic mice. This increase was significantly attenuated by treatment with JNJ47965567 CONCLUSIONS AND IMPLICATIONS: This study showed that P2X7 receptor signalling is an important component of a complex gene regulatory network, including PLVAP, mediating the pathophysiology of diabetic retinopathy. The P2X7 receptor antagonist JNJ47965567 showed a good pharmacodynamic profile, suggesting that this approach could be of value in the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Chiara Bianca Maria Platania
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Francesca Lazzara
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Kenneth Mitton
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Naomi Haque
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Wendelin Dailey
- Eye Research Institute, Oakland University, Rochester, Michigan, USA
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Erika Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| | - Anca Hermenean
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cornel Balta
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Hildegard Herman
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Alina Ciceu
- "Aurel Ardelean" Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Maria Consiglia Trotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, Division of Pharmacology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Nicosia
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Śniadach J, Kicman A, Michalska-Falkowska A, Jończyk K, Waszkiewicz N. Changes in Concentration of Selected Biomarkers of Exposure in Users of Classic Cigarettes, E-Cigarettes, and Heated Tobacco Products-A Narrative Review. Int J Mol Sci 2025; 26:1796. [PMID: 40076424 PMCID: PMC11898610 DOI: 10.3390/ijms26051796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Currently, the number of e-cigarette and heated tobacco product (HTP) users are steadily increasing, while the number of classic cigarette users are decreasing. The effects of smoking classic cigarettes on human health have been thoroughly described in the literature, but the negative health effects of e-cigarettes and HTPs on the human body are not clearly defined. Among users of different forms of tobacco, those at a particularly high risk of developing particular disease entities should be identified, allowing for the faster implementation of potential treatments, including psychotherapeutic ones. Biomarkers are used for this purpose. This paper summarizes the potential of these compounds from the different exposure groups of classic cigarettes, e-cigarettes, and HTPs, and presents changes in their concentrations in the body fluids of different tobacco users. This review discusses the impact of tobacco use in relation to levels of the following biomarkers: TNF-α, IL-1β, IL-6, IL-8, IL-17, IFN-γ, IL-10, IL-4, Il-13, TGF-β, VEGF EGF, HGF, BDNF, MMP-9, CRP, microplastics, and selected parameters of oxidative stress. This review also includes suggested forms of treatment, including Tobacco Product Use Reduction Programs, to minimize the potential negative effects of the above-mentioned products.
Collapse
Affiliation(s)
- Justyna Śniadach
- Department of Psychiatry, The Faculty of Medicine, Medical University of Bialystok, 15-272 Bialystok, Poland;
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, The Faculty of Pharmacy, Medical University of Bialystok, 15-267 Bialystok, Poland;
| | | | - Kamila Jończyk
- Department of Psychiatry, The Faculty of Medicine, Medical University of Bialystok, 15-272 Bialystok, Poland;
| | - Napoleon Waszkiewicz
- Department of Psychiatry, The Faculty of Medicine, Medical University of Bialystok, 15-272 Bialystok, Poland;
| |
Collapse
|
43
|
Zhao P, Li Y, Guo B, Liu Z, Zhang X, Liu M, Ma X. Hydrogen-Releasing Micromaterial Dressings: Promoting Wound Healing by Modulating Extracellular Matrix Accumulation Through Wnt/β-Catenin and TGF-β/Smad Pathways. Pharmaceutics 2025; 17:279. [PMID: 40142944 PMCID: PMC11944919 DOI: 10.3390/pharmaceutics17030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Wound healing is a complex and intricate biological process that involves multiple systems within the body and initiates a series of highly coordinated responses to repair damage and restore integrity and functionality. We previously identified that breathing hydrogen can significantly inhibit early inflammation, activate autologous stem cells, and promote the accumulation of extracellular matrix (ECM). However, the broader functions and downstream targets of hydrogen-induced ECM accumulation and tissue remodeling are unknown in the wound-healing process. Methods: Consequently, this thesis developed a hydrogen sustained-release dressing based on a micro storage material and reveals the mechanism of hydrogen in treating wound healing. Upon encapsulating the hydrogen storage materials, magnesium (Mg), and ammonia borane (AB), we found that SiO2@Mg exhibits superior sustained-release performance, while SiO2@AB demonstrates a higher hydrogen storage capacity. We used a C57/BL6 mouse full-thickness skin defect wound model to analyze and compare different hydrogen dressings. Results: It was identified that hydrogen dressings can significantly improve the healing rate of wounds by promoting epithelialization, angiogenesis, and collagen accumulation in wound tissue, and that the effect of slow-release dressings is better than of non-slow-release dressings. We also found that hydrogen dressing can promote transcriptome-level expression related to cell proliferation and differentiation and ECM accumulation, mainly through the Wnt1/β-catenin pathway and TGF-β1/Smad2 pathway. Conclusions: Overall, these results provide a novel insight into the field of hydrogen treatment and wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuemei Ma
- College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China; (P.Z.); (Y.L.); (B.G.); (Z.L.); (X.Z.); (M.L.)
| |
Collapse
|
44
|
Zhao J, Li X, Liang C, Yan Y. Can Exercise-Mediated Adipose Browning Provide an Alternative Explanation for the Obesity Paradox? Int J Mol Sci 2025; 26:1790. [PMID: 40076419 PMCID: PMC11898606 DOI: 10.3390/ijms26051790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Overweight patients with cardiovascular disease (CVD) tend to survive longer than normal-weight patients, a phenomenon known as the "obesity paradox". The phenotypic characteristics of adipose distribution in these patients (who survive longer) often reveal a larger proportion of subcutaneous white adipose tissue (scWAT), suggesting that the presence of scWAT is negatively associated with all-cause mortality and that scWAT appears to provide protective benefits in patients facing unhealthy states. Exercise-mediated browning is a crucial aspect of the benign remodeling process of adipose tissue (AT). Reduced accumulation, reduced inflammation, and associated adipokine secretion are directly related to the reduction in CVD mortality. This paper summarized the pathogenetic factors associated with AT accumulation in patients with CVD and analyzed the possible role and pathway of exercise-mediated adipose browning in reducing the risk of CVD and CVD-related mortality. It is suggested that exercise-mediated browning may provide a new perspective on the "obesity paradox"; that is, overweight CVD patients who have more scWAT may gain greater cardiovascular health benefits through exercise.
Collapse
Affiliation(s)
- Jiani Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
| | - Chunyu Liang
- School of Physical Education, Guangxi University (GXU), Nanning 530004, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing 100084, China; (J.Z.); (X.L.)
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University (BSU), Beijing 100084, China
- Exercise and Physical Fitness, Beijing Sport University (BSU), Beijing 100084, China
| |
Collapse
|
45
|
Fang Y, Gonzales-Nieves S, Cifarelli V, Imoukhuede PI. Sex Differences in VEGF and PDGF Ligand and Receptor Protein Expression during Adipose Tissue Expansion and Regression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638177. [PMID: 40027606 PMCID: PMC11870404 DOI: 10.1101/2025.02.14.638177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Inadequate angiogenesis in obesogenic adipose tissue (AT) has been implicated in disrupted adipogenesis and metabolic disorders. Yet, key cellular and molecular regulators of AT angiogenesis remain largely unidentified. This study sought to identify the dysregulated elements within the Vascular Endothelial Growth Factor (VEGF) and Platelet-Derived Growth Factor (PDGF) systems during obesity progression. We employ a mouse model, comprising both male and female mice, to investigate the changes in the VEGF/PDGF concentration and their receptor distribution in AT during short- and long-term weight gain and weight loss. Our results reveal pronounced sex-specific differences in obesity progression, with male and female mice exhibiting distinct angiogenic ligand and receptor profiles under identical dietary interventions. This data also lays the groundwork for developing computational models of VEGF/PDGF signaling networks in AT, allowing for the simulation of complex biological interactions and the prediction of therapeutic outcomes.
Collapse
|
46
|
Colasanti JJ, Lin JB, Terao R, Lee TJ, Santeford A, Apte RS. MicroRNA-34a suppresses KLF2 to promote pathological angiogenesis through the CXCR4/CXCL12 pathway in age-related macular degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637499. [PMID: 39990324 PMCID: PMC11844524 DOI: 10.1101/2025.02.12.637499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Age-related macular degeneration (AMD), characterized by pathologic choroidal neovascularization (CNV), is a leading cause of vision loss in the elderly. Vascular endothelial growth factor A (VEGFa) antagonists can prevent acute vision loss, but high treatment burden and loss of efficacy with chronic therapy highlight the need to explore alternative mechanisms. Recently, microRNA-34a (miR-34a) has emerged as a key regulator in aging and age-related diseases, but its role in neovascular AMD is unclear. In an injury-induced murine CNV model, we discovered miR-34a promoted pathological angiogenesis, without altering expression of Vegfa or its receptor Kdr, the canonical regulators of CNV. Mechanistically, miR-34a directly targets and inhibits the transcription factor KLF2 thereby upregulating the pro-angiogenic factors CXCR4 and CXCL12. Finally, we show miR-34a exacerbates CNV in aged mice and is expressed in CNV lesions excised from wet AMD patients. These findings establish a causal link between the age-related miR-34a and neovascularization in AMD. Teaser Identification of a molecular mechanism involved in the pathogenesis of a prevalent and debilitating age-related ocular disease.
Collapse
|
47
|
Song H, Li Q, Gui X, Fang Z, Zhou W, Wang M, Jiang Y, Geng A, Shen X, Liu Y, Zhang H, Nie Z, Zhang L, Zhu H, Zhang F, Li X, Luo F, Zhang H, Shen W, Sun X. Endothelial protein C receptor promotes retinal neovascularization through heme catabolism. Nat Commun 2025; 16:1603. [PMID: 39948347 PMCID: PMC11825934 DOI: 10.1038/s41467-025-56810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Pathological retinal neovascularization (RNV) is one of the leading causes of blindness worldwide; however, its underlying mechanism remains unclear. Here, we found that the expression of endothelial protein C receptor (Epcr) was increased during RNV, and its ligand was elevated in the serum or vitreous body of patients with proliferative diabetic retinopathy. Deleting endothelial Epcr or using an EPCR-neutralizing antibody ameliorated pathological retinal angiogenesis. EPCR promoted endothelial heme catabolism and carbon monoxide release through heme oxygenase 1 (HO-1). Inhibition of heme catabolism by deleting endothelial Ho-1 or using an HO-1 inhibitor suppressed pathological angiogenesis in retinopathy. Conversely, supplementation with carbon monoxide rescued the angiogenic defects after endothelial Epcr or Ho-1 deletion. Our results identified EPCR-dependent endothelial heme catabolism as an important contributor to pathological angiogenesis, which may serve as a potential target for treating vasoproliferative retinopathy.
Collapse
Affiliation(s)
- Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China.
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Gui
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
- Department of Ophthalmology, Yuanwang Hospital, Wuxi, China
| | - Ziyu Fang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Wen Zhou
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Mengzhu Wang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Yuxin Jiang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China
| | - Ajun Geng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou, China
- New Cornerstone Science Laboratory, State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxuan Liu
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Zheng Nie
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Lin Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Huimin Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Fanyan Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, China.
| | - Hongjian Zhang
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China.
- Shidong Hospital Affiliated to University of Shanghai for Science and Technology, 999 Shiguang Road, Shanghai, China.
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai, China.
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Ophthalmic Diseases, Shanghai, China.
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, China.
| |
Collapse
|
48
|
Wu S, Hu Y, Sui B. Promotion Mechanisms of Stromal Cell-Mediated Lung Cancer Development Within Tumor Microenvironment. Cancer Manag Res 2025; 17:249-266. [PMID: 39957904 PMCID: PMC11829646 DOI: 10.2147/cmar.s505549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/19/2025] [Indexed: 02/18/2025] Open
Abstract
Lung cancer, with its high incidence and mortality rates, has garnered significant attention in the medical community. The tumor microenvironment (TME), composed of tumor cells, stromal cells, extracellular matrix, surrounding blood vessels, and other signaling molecules, plays a pivotal role in the development of lung cancer. Stromal cells within the TME hold potential as therapeutic targets for lung cancer treatment. However, the precise and comprehensive mechanisms by which stromal cells contribute to lung cancer progression have not been fully elucidated. This review aims to explore the mechanisms through which stromal cells in the tumor microenvironment promote lung cancer development, with a particular focus on how immune cells, tumor-associated fibroblasts, and endothelial cells contribute to immune suppression, inflammation, and angiogenesis. The goal is to provide new insights and potential strategies for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Siyu Wu
- Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yumeng Hu
- Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Bowen Sui
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
49
|
van der Mescht MA, Steel HC, Anderson R, Rossouw TM. Vascular endothelial growth factor A: friend or foe in the pathogenesis of HIV and SARS-CoV-2 infections? Front Cell Infect Microbiol 2025; 14:1458195. [PMID: 40008234 PMCID: PMC11850333 DOI: 10.3389/fcimb.2024.1458195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/28/2024] [Indexed: 02/27/2025] Open
Abstract
This review article discusses the role of vascular endothelial growth factor A (VEGF-A) in the pathogenesis of SARS-CoV-2 and HIV infection, both conditions being renowned for their impact on the vascular endothelium. The processes involved in vascular homeostasis and angiogenesis are reviewed briefly before exploring the interplay between hypoxia, VEGF-A, neuropilin-1 (NRP-1), and inflammatory pathways. We then focus on SARS-CoV-2 infection and show how the binding of the viral pathogen to the angiotensin-converting enzyme 2 receptor, as well as to NRP-1, leads to elevated levels of VEGF-A and consequences such as coagulation, vascular dysfunction, and inflammation. HIV infection augments angiogenesis via several mechanisms, most prominently, by the trans-activator of transcription (tat) protein mimicking VEGF-A by binding to its receptor, VEGFR-2, as well as upregulation of NRP-1, which enhances the interaction between VEGF-A and VEGFR-2. We propose that the elevated levels of VEGF-A observed during HIV/SARS-CoV-2 co-infection originate predominantly from activated immune cells due to the upregulation of HIF-1α by damaged endothelial cells. In this context, a few clinical trials have described a diminished requirement for oxygen therapy during anti-VEGF treatment of SARS-CoV-2 infection. The currently available anti-VEGF therapy strategies target the binding of VEGF-A to both VEGFR-1 and VEGFR-2. The blocking of both receptors could, however, lead to a negative outcome, inhibiting not only pathological, but also physiological angiogenesis. Based on the examination of published studies, this review suggests that treatment targeting selective inhibition of VEGFR-1 may be beneficial in the context of SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of
Pretoria, Pretoria, South Africa
| |
Collapse
|
50
|
Choi DK. Epigenetic regulation of angiogenesis and its therapeutics. Genomics Inform 2025; 23:4. [PMID: 39934895 DOI: 10.1186/s44342-025-00038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is essential for normal development, wound healing, and tissue repair. However, dysregulated angiogenesis is implicated in various pathological conditions, including cancer, diabetic retinopathy, and atherosclerosis. Epigenetic modifications, including DNA methylation, histone modification, and noncoding RNAs (e.g., miRNAs), play a crucial role in regulating angiogenic gene expression without altering the underlying DNA sequence. These modifications tightly regulate the balance between pro-angiogenic and anti-angiogenic factors, thereby influencing endothelial cell proliferation, migration, and tube formation. In recent years, epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., azacitidine, decitabine), histone deacetylase inhibitors (e.g., vorinostat, romidepsin), and BET inhibitors (e.g., JQ1), have emerged as promising therapeutic strategies for targeting abnormal angiogenesis. These agents modulate gene expression patterns, reactivating silenced tumor suppressor genes while downregulating pro-angiogenic signaling pathways. Additionally, miRNA modulators, such as MRG-110 and MRG-201, provide precise regulation of angiogenesis-related pathways, demonstrating significant therapeutic potential in preclinical models. This review underscores the intricate interplay between epigenetic regulation and angiogenesis, highlighting key mechanisms and therapeutic applications. Advancing our understanding of these processes will enable the development of more effective and targeted epigenetic therapies for angiogenesis-related diseases, paving the way for innovative clinical interventions.
Collapse
Affiliation(s)
- Dong Kyu Choi
- BK21 FOUR KNU Creative BioResearch Group, School of Life Science and Biotechnology, Kyungpook National University, Daegu, Korea.
| |
Collapse
|