1
|
Paccez JD, Foret CLM, de Vasconcellos JF, Donaldson L, Zerbini LF. DCUN1D1 and neddylation: Potential targets for cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167308. [PMID: 38885797 DOI: 10.1016/j.bbadis.2024.167308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Cancer affects millions of people and understanding the molecular mechanisms related to disease development and progression is essential to manage the disease. Post-translational modification (PTM) processes such as ubiquitination and neddylation have a significant role in cancer development and progression by regulating protein stability, function, and interaction with other biomolecules. Both ubiquitination and neddylation are analogous processes that involves a series of enzymatic steps leading to the covalent attachment of ubiquitin or NEDD8 to target proteins. Neddylation modifies the CRL family of E3 ligase and regulates target proteins' function and stability. The DCUN1D1 protein is a regulator of protein neddylation and ubiquitination and acts promoting the neddylation of the cullin family components of E3-CRL complexes and is known to be upregulated in several types of cancers. In this review we compare the PTM ubiquitination and neddylation. Our discussion is focused on the neddylation process and the role of DCUN1D1 protein in cancer development. Furthermore, we provide describe DCUN1D1 protein and discuss its role in pathogenesis and signalling pathway in six different types of cancer. Additionally, we explore both the neddylation and DCUN1D1 pathways as potential druggable targets for therapeutic interventions. We focus our analysis on the development of compounds that target specifically neddylation or DCUN1D1. Finally, we provide a critical analysis about the challenges and perspectives in the field of DCUN1D1 and neddylation in cancer research. KEY POINTS: Neddylation is a post-translational modification that regulates target proteins' function and stability. One regulator of the neddylation process is a protein named DCUN1D1 and it is known to have its expression deregulated in several types of cancers. Here, we provide a detailed description of DCUN1D1 structure and its consequence for the development of cancer. We discuss both the neddylation and DCUN1D1 pathways as potential druggable targets for therapeutic interventions and provide a critical analysis about the challenges and perspectives in the field of DCUN1D1 and neddylation in cancer research.
Collapse
Affiliation(s)
- Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa.
| | - Chiara L M Foret
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | | | - Lara Donaldson
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa.
| |
Collapse
|
2
|
Pfisterer M, Robert R, Saul VV, Pritz A, Seibert M, Feederle R, Schmitz ML. The Aurora B-controlled PP1/RepoMan complex determines the spatial and temporal distribution of mitotic H2B S6 phosphorylation. Open Biol 2024; 14:230460. [PMID: 38806145 PMCID: PMC11293436 DOI: 10.1098/rsob.230460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 05/30/2024] Open
Abstract
The precise spatial and temporal control of histone phosphorylations is important for the ordered progression through the different phases of mitosis. The phosphorylation of H2B at S6 (H2B S6ph), which is crucial for chromosome segregation, reaches its maximum level during metaphase and is limited to the inner centromere. We discovered that the temporal and spatial regulation of this modification, as well as its intensity, are governed by the scaffold protein RepoMan and its associated catalytically active phosphatases, PP1α and PP1γ. Phosphatase activity is inhibited at the area of maximal H2B S6 phosphorylation at the inner centromere by site-specific Aurora B-mediated inactivation of the PP1/RepoMan complex. The motor protein Mklp2 contributes to the relocalization of Aurora B from chromatin to the mitotic spindle during anaphase, thus alleviating Aurora B-dependent repression of the PP1/RepoMan complex and enabling dephosphorylation of H2B S6. Accordingly, dysregulation of Mklp2 levels, as commonly observed in tumour cells, leads to the lack of H2B S6 dephosphorylation during early anaphase, which might contribute to chromosomal instability.
Collapse
Affiliation(s)
| | - Roman Robert
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Vera V. Saul
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Amelie Pritz
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Markus Seibert
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - M. Lienhard Schmitz
- Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
3
|
P T B, Sahu I. Decoding the ubiquitin landscape by cutting-edge ubiquitinomic approaches. Biochem Soc Trans 2024; 52:627-637. [PMID: 38572966 DOI: 10.1042/bst20230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Functional consequences of protein ubiquitination have gone far beyond the degradation regulation as was initially imagined during its discovery 40 years back. The state-of-the-art has revealed the plethora of signaling pathways that are largely regulated by ubiquitination process in eukaryotes. To no surprise, ubiquitination is often dysregulated in many human diseases, including cancer, neurodegeneration and infection. Hence it has become a major focus with high-gain research value for many investigators to unravel new proteoforms, that are the targets of this ubiquitination modification. Despite many biochemical or proteomic approaches available for ubiquitination detection, mass-spectrometry stood out to be the most efficient and transformative technology to read this complex modification script. Here in this review, we have discussed how different ubiquitin codes can be decoded qualitatively and quantitatively following various sequential proteomic approaches to date reported and indicated the current limitations with scope for improvements.
Collapse
Affiliation(s)
- Brindhavanam P T
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| | - Indrajit Sahu
- Division of Medical Research, SRM-Medical College Hospital and Research Centre, Faculty of Medical and Health Sciences, SRMIST, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
4
|
Wang X, Xu X, Wang Z. The Post-Translational Role of UFMylation in Physiology and Disease. Cells 2023; 12:2543. [PMID: 37947621 PMCID: PMC10648299 DOI: 10.3390/cells12212543] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. Although a limited number of substrates have been identified so far, UFM1 modification (UFMylation) has been demonstrated to play a vital role in a variety of cellular activities, including mammalian development, ribosome biogenesis, the DNA damage response, endoplasmic reticulum stress responses, immune responses, and tumorigenesis. In this review, we summarize what is known about the UFM1 enzymatic cascade and its biological functions, and discuss its recently identified substrates. We also explore the pathological role of UFMylation in human disease and the corresponding potential therapeutic targets and strategies.
Collapse
Affiliation(s)
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| | - Zhifeng Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China;
| |
Collapse
|
5
|
Qiu X, Wang J, Zhang N, Du T, Chen L, Xi H. Estradiol cypionate inhibits proliferation and promotes apoptosis of gastric cancer by regulating AKT ubiquitination. Biomed Pharmacother 2023; 165:115073. [PMID: 37392652 DOI: 10.1016/j.biopha.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Gastric cancer is a common gastrointestinal malignancy worldwide, with a high mortality rate and poor prognosis. Multidrug resistance remains a major obstacle to successful treatment for patients. Hence, it is of great significance to develop novel therapies to potentiate the anti-tumor effect. In this study, we have investigated the effect of estradiol cypionate (ECP) on gastric cancer in vitro and vivo. Our data show that ECP inhibited the proliferation, promoted apoptosis, and caused G1/S phase arrest of gastric cancer cells. The mechanism by which ECP promoted apoptosis of gastric cancer cells was related to the downregulation of AKT protein expression caused by the increased ubiquitination modification levels of AKT, which finally inhibited the over-activation of the PI3K-AKT-mTOR signaling pathway. In vivo tumorigenesis experiments showed that ECP significantly inhibited the growth of gastric cancer cells, showing promise for clinical application. The above findings indicate that ECP inhibited the growth of gastric cancer and induced apoptosis through the PI3K /Akt/mTOR pathway. In summary, the efficacy showed in our data suggests that ECP is a promising anti-tumor compound for gastric cancer.
Collapse
Affiliation(s)
- Xiaochen Qiu
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing, China
| | - Juan Wang
- Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, Jiangsu, 215123, China
| | - Nan Zhang
- Medical School of Chinese PLA, Beijing, China; Department of Gastrointestinal Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongi Uni-versuty, Shanghai 200434, China
| | - Tongde Du
- Suzhou Institute of Systems Medicine, No. 100 Chongwen Road, Suzhou City, Suzhou 215000, China.
| | - Lin Chen
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing, China.
| | - Hongqing Xi
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China; Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
6
|
Cheng F, Yuan L, Wu Z, Li X, Xia W, Huang Z, Li Z, Mao S, Shen W. Ubiquitin-Like Protein FAT10 Promote Colorectal Cancer Progression by Affecting the Ubiquitination of Capn4. Dig Dis Sci 2023:10.1007/s10620-023-07995-1. [PMID: 37310562 DOI: 10.1007/s10620-023-07995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/21/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Emerging evidence showed that FAT10 is a vital regulator of tumor occurrence and development. The molecular mechanisms underlying the specific role of FAT10 in colorectal cancer (CRC) are not yet known. AIMS To investigate whether FAT10 participates in the proliferation, invasion and metastasis of CRC. METHODS This study investigated the function and clinical significance of FAT10 protein expression in CRC. Furthermore, over-expression and knockdown experiments of FAT10 were developed to explore their effects on CRC cell migration and proliferation. Moreover, a molecular mechanism of FAT10 regulate calpain small subunit 1(Capn4) was explored. RESULTS In this research, the FAT10 expression level was elevated in CRC tissues compared to corresponding normal tissues. In addition, the elevated FAT10 expression level is significantly linked to advanced clinical stage and poor CRC prognosis. Furthermore, a very high expression of FAT10 was observed in CRC cells, and FAT10 overexpression significantly enhanced the in vivo proliferation, invasion, and metastasis of the cells, whereas knockdown of FAT10 inhibited all these cellular factors in both in vivo and in vitro environments. Moreover, the outcomes of this study suggested that FAT10 enhances colorectal cancer progression through enhancement of Capn4 expression, leading to the progression of various human tumors, as reported by previous research. The mechanism via which FAT10 promotes CRC cells proliferation, invasion, and metastasis involves modification of the ubiquitination and degradation processes of Capn4. CONCLUSION FAT10 is a vital regulator of the tumorigenesis and advancement of CRC, thus serving as a promising pharmaceutical target for treating CRC patients.
Collapse
Affiliation(s)
- Fei Cheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Lebin Yuan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhao Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiaodong Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Weiyang Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zeyu Huang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhigang Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Shengping Mao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Wei Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, China.
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
7
|
Paccosi E, Balzerano A, Proietti-De-Santis L. Interfering with the Ubiquitin-Mediated Regulation of Akt as a Strategy for Cancer Treatment. Int J Mol Sci 2023; 24:ijms24032809. [PMID: 36769122 PMCID: PMC9917864 DOI: 10.3390/ijms24032809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The serine/threonine kinase Akt modulates the functions of numerous substrates, many of them being involved in cell proliferation and growth, metabolism, angiogenesis, resistance to hypoxia and migration. Akt is frequently deregulated in many types of human cancers, its overexpression or abnormal activation being associated with the increased proliferation and survival of cancer cells. A promising avenue for turning off the functionality of Akt is to either interfere with the K63-linked ubiquitination that is necessary for Akt membrane recruitment and activation or increase the K48-linked polyubiquitination that aims to target Akt to the proteasome for its degradation. Recent evidence indicates that targeting the ubiquitin proteasome system is effective for certain cancer treatments. In this review, the functions and roles of Akt in human cancer will be discussed, with a main focus on molecules and compounds that target various elements of the ubiquitination processes that regulate the activation and inactivation of Akt. Moreover, their possible and attractive implications for cancer therapy will be discussed.
Collapse
|
8
|
Chen C, Li X, Zhou T, Su Y, Yu B, Jin J, Xie J, Shen Y, Wan R, Hong K. Ubiquitin like protein FAT10 repressed cardiac fibrosis after myocardial ischemic via mediating degradation of Smad3 dependent on FAT10-proteasome system. Int J Biol Sci 2023; 19:881-896. [PMID: 36778114 PMCID: PMC9910007 DOI: 10.7150/ijbs.77677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/14/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiac fibrosis after myocardial ischemic (MI) injury is a key factor in heart function deterioration. We recently showed that ubiquitin-like protein human HLA-F adjacent transcript (FAT10) plays a novel role in ischemic cardiovascular diseases, but its function in cardiac fibrosis remains unknown. The present study aims to detail the pathophysiological function of FAT10 in MI injury-induced cardiac fibrosis and its underlying mechanism. In vivo, a systemic FAT10 deficiency mouse (Fat10 -/-) model was established which exhibited excessive cardiac fibrosis and deleterious cardiac function after MI when compared to wild-type mice. Cardiac fibrotic-related proteins (α-SMA, collagen I and collagen III) content were increased in MI-Fat10 -/- mice. Similarly, cardiac FAT10 restoration in Fat10-/- mice suppressed fibrosis and improved cardiac function. In vitro, FAT10 overexpression exert a protective effect against the transforming growth β1 (TGF-β1)-induced proliferation, migration and differentiation in cardiac fibroblast (CFs), primary CFs from Fat10-/- mice and human induced pluripotent stem cell-derived CFs (hiPSC-CFs). Furthermore, immunoprecipitation-mass spectrometry (IP-MS) data demonstrated that FAT10 might mediate Smad3, a critical factor in cardiac fibrosis. Combined with rescue assays both in vivo and vitro, the protective effects of FAT10 against cardiac fibrosis was detected to be dependent on Smad3. In depth, Smad3 as a FAT10 specific substrate, FAT10 specifically bind to the K378 site of Smad3 directly via its C-terminal glycine residues and mediated the degradation of Smad3 through the FAT10-proteasome system instead of ubiquitin. In conclusion, we here show that FAT10 is a novel regulator against cardiac fibrosis after MI by mediating Smad3 degradation through FAT10-mediated proteasome system. Our study confirms the cardioprotective role of FAT10 in the heart, and providing a new prospective insight into the regulation of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Chen Chen
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006 China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006 China
| | - Xiaoqing Li
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006 China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006 China
| | - Tao Zhou
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006 China
| | - Yuhao Su
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006 China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006 China
| | - Bodong Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi, 330006 China
| | - Jiejing Jin
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006 China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006 China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006 China.,Department of Genetic Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006 China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006 China
| | - Kui Hong
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006 China.,Jiangxi Key Laboratory of Molecular Medicine, Nanchang of Jiangxi, 330006 China.,Department of Genetic Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang of Jiangxi, 330006 China
| |
Collapse
|
9
|
Vidal S, Bouzaher YH, El Motiam A, Seoane R, Rivas C. Overview of the regulation of the class IA PI3K/AKT pathway by SUMO. Semin Cell Dev Biol 2022; 132:51-61. [PMID: 34753687 DOI: 10.1016/j.semcdb.2021.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is a major regulator of metabolism, migration, survival, proliferation, and antiviral immunity. Both an overactivation and an inhibition of the PI3K/AKT pathway are related to different pathologies. Activation of this signaling pathway is tightly controlled through a multistep process and its deregulation can be associated with aberrant post-translational modifications including SUMOylation. Here, we review the complex modulation of the PI3K/AKT pathway by SUMOylation and we discuss its putative incvolvement in human disease.
Collapse
Affiliation(s)
- Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain; Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
10
|
Ilic D, Magnussen HM, Tirard M. Stress - Regulation of SUMO conjugation and of other Ubiquitin-Like Modifiers. Semin Cell Dev Biol 2022; 132:38-50. [PMID: 34996712 DOI: 10.1016/j.semcdb.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Stress is unavoidable and essential to cellular and organismal evolution and failure to adapt or restore homeostasis can lead to severe diseases or even death. At the cellular level, stress drives a plethora of molecular changes, of which variations in the profile of protein post-translational modifications plays a key role in mediating the adaptative response of the genome and proteome to stress. In this context, post-translational modification of proteins by ubiquitin-like modifiers, (Ubl), notably SUMO, is an essential stress response mechanism. In this review, aiming to draw universal concepts of the Ubls stress response, we will decipher how stress alters the expression level, activity, specificity and/or localization of the proteins involved in the conjugation pathways of the various type-I Ubls, and how this result in the modification of particular Ubl targets that will translate an adaptive physiological stress response and allow cells to restore homeostasis.
Collapse
Affiliation(s)
- Dragana Ilic
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, D-79108 Freiburg; Faculty of Biology, University of Freiburg, D-79104 Freiburg; Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen
| | - Helge M Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, Sir James Black Center, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, D-37075 Göttingen.
| |
Collapse
|
11
|
Qin W, Steinek C, Kolobynina K, Forné I, Imhof A, Cardoso M, Leonhardt H. Probing protein ubiquitination in live cells. Nucleic Acids Res 2022; 50:e125. [PMID: 36189882 PMCID: PMC9757074 DOI: 10.1093/nar/gkac805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
The reversible attachment of ubiquitin governs the interaction, activity and degradation of proteins whereby the type and target of this conjugation determine the biological response. The investigation of this complex and multi-faceted protein ubiquitination mostly relies on painstaking biochemical analyses. Here, we employ recombinant binding domains to probe the ubiquitination of proteins in living cells. We immobilize GFP-fused proteins of interest at a distinct cellular structure and detect their ubiquitination state with red fluorescent ubiquitin binders. With this ubiquitin fluorescent three-hybrid (ubiF3H) assay we identified HP1β as a novel ubiquitination target of UHRF1. The use of linkage specific ubiquitin binding domains enabled the discrimination of K48 and K63 linked protein ubiquitination. To enhance signal-to-noise ratio, we implemented fluorescence complementation (ubiF3Hc) with split YFP. Using in addition a cell cycle marker we could show that HP1β is mostly ubiquitinated by UHRF1 during S phase and deubiquitinated by the protease USP7. With this complementation assay we could also directly detect the ubiquitination of the tumor suppressor p53 and monitor its inhibition by the anti-cancer drug Nutlin-3. Altogether, we demonstrate the utility of the ubiF3H assay to probe the ubiquitination of specific proteins and to screen for ligases, proteases and small molecules controlling this posttranslational modification.
Collapse
Affiliation(s)
- Weihua Qin
- Correspondence may also be addressed to Weihua Qin. Tel: +49 89 2180 71132; Fax: +49 89 2180 74236;
| | - Clemens Steinek
- Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Ksenia Kolobynina
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Ignasi Forné
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
| | - Heinrich Leonhardt
- To whom correspondence should be addressed. Tel: +49 89 2180 74232; Fax: +49 89 2180 74236;
| |
Collapse
|
12
|
Yuan L, Gao F, Lv Z, Nayak D, Nayak A, Santos Bury PD, Cano KE, Jia L, Oleinik N, Atilgan FC, Ogretmen B, Williams KM, Davies C, El Oualid F, Wasmuth EV, Olsen SK. Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6. Nat Commun 2022; 13:4880. [PMID: 35986001 PMCID: PMC9391358 DOI: 10.1038/s41467-022-32613-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
The E1 enzyme Uba6 initiates signal transduction by activating ubiquitin and the ubiquitin-like protein FAT10 in a two-step process involving sequential catalysis of adenylation and thioester bond formation. To gain mechanistic insights into these processes, we determined the crystal structure of a human Uba6/ubiquitin complex. Two distinct architectures of the complex are observed: one in which Uba6 adopts an open conformation with the active site configured for catalysis of adenylation, and a second drastically different closed conformation in which the adenylation active site is disassembled and reconfigured for catalysis of thioester bond formation. Surprisingly, an inositol hexakisphosphate (InsP6) molecule binds to a previously unidentified allosteric site on Uba6. Our structural, biochemical, and biophysical data indicate that InsP6 allosterically inhibits Uba6 activity by altering interconversion of the open and closed conformations of Uba6 while also enhancing its stability. In addition to revealing the molecular mechanisms of catalysis by Uba6 and allosteric regulation of its activities, our structures provide a framework for developing Uba6-specific inhibitors and raise the possibility of allosteric regulation of other E1s by naturally occurring cellular metabolites.
Collapse
Affiliation(s)
- Lingmin Yuan
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Fei Gao
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Research & Development, Beijing IPE Center for Clinical Laboratory CO, Beijing, 100176, China
| | - Zongyang Lv
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Digant Nayak
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anindita Nayak
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Priscila Dos Santos Bury
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Kristin E Cano
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lijia Jia
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Natalia Oleinik
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Firdevs Cansu Atilgan
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Katelyn M Williams
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Christopher Davies
- Department of Biochemistry & Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Farid El Oualid
- UbiQ Bio B.V., Science Park 408, 1098 XH, Amsterdam, The Netherlands
| | - Elizabeth V Wasmuth
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shaun K Olsen
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
13
|
Snider DL, Park M, Murphy KA, Beachboard DC, Horner SM. Signaling from the RNA sensor RIG-I is regulated by ufmylation. Proc Natl Acad Sci U S A 2022; 119:e2119531119. [PMID: 35394863 PMCID: PMC9169834 DOI: 10.1073/pnas.2119531119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/28/2022] [Indexed: 01/23/2023] Open
Abstract
The RNA-binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFNs). This signal transduction occurs at endoplasmic reticulum (ER)–mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, as one of the proteins recruited to membranes at ER–mitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We found that following RNA virus infection, UFL1 is recruited to the membrane-targeting protein 14–3-3ε and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, we found that 14–3-3ε has an increase in UFM1 conjugation following RIG-I activation. Additionally, loss of cellular ufmylation prevents the interaction of 14–3-3ε with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus the downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a posttranslational control for IFN induction.
Collapse
Affiliation(s)
- Daltry L. Snider
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Moonhee Park
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Kristen A. Murphy
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Dia C. Beachboard
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Stacy M. Horner
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710
- Department of Medicine, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
14
|
Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. mSphere 2021; 6:e0036621. [PMID: 34468164 PMCID: PMC8550152 DOI: 10.1128/msphere.00366-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Trypanosoma cruzi is the etiological agent for Chagas disease, a neglected parasitic disease in Latin America. Gene transcription control governs the eukaryotic cell replication but is absent in trypanosomatids; thus, it must be replaced by posttranscriptional regulatory events. We investigated the entrance into the T. cruzi replicative cycle using ribosome profiling and proteomics on G1/S epimastigote cultures synchronized with hydroxyurea. We identified 1,784 translationally regulated genes (change > 2, false-discovery rate [FDR] < 0.05) and 653 differentially expressed proteins (change > 1.5, FDR < 0.05), respectively. A major translational remodeling accompanied by an extensive proteome change is found, while the transcriptome remains largely unperturbed at the replicative entrance of the cell cycle. The differentially expressed genes comprise specific cell cycle processes, confirming previous findings while revealing candidate cell cycle regulators that undergo previously unnoticed translational regulation. Clusters of genes showing a coordinated regulation at translation and protein abundance share related biological functions such as cytoskeleton organization and mitochondrial metabolism; thus, they may represent posttranscriptional regulons. The translatome and proteome of the coregulated clusters change in both coupled and uncoupled directions, suggesting that complex cross talk between the two processes is required to achieve adequate protein levels of different regulons. This is the first simultaneous assessment of the transcriptome, translatome, and proteome of trypanosomatids, which represent a paradigm for the absence of transcriptional control. The findings suggest that gene expression chronology along the T. cruzi cell cycle is controlled mainly by translatome and proteome changes coordinated using different mechanisms for specific gene groups. IMPORTANCE Trypanosoma cruzi is an ancient eukaryotic unicellular parasite causing Chagas disease, a potentially life-threatening illness that affects 6 to 7 million people, mostly in Latin America. The antiparasitic treatments for the disease have incomplete efficacy and adverse reactions; thus, improved drugs are needed. We study the mechanisms governing the replication of the parasite, aiming to find differences with the human host, valuable for the development of parasite-specific antiproliferative drugs. Transcriptional regulation is essential for replication in most eukaryotes, but in trypanosomatids, it must be replaced by subsequent gene regulation steps since they lack transcription initiation control. We identified the genome-wide remodeling of mRNA translation and protein abundance during the entrance to the replicative phase of the cell cycle. We found that translation is strongly regulated, causing variation in protein levels of specific cell cycle processes, representing the first simultaneous study of the translatome and proteome in trypanosomatids.
Collapse
|
15
|
Lu Y, Ji R, Ye Y, Hua X, Fan J, Xu Y, Shi J, Li YM. Efficient semi-synthesis of ubiquitin-fold modifier 1 (UFM1) derivatives. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Lei H, Wang J, Hu J, Zhu Q, Wu Y. Deubiquitinases in hematological malignancies. Biomark Res 2021; 9:66. [PMID: 34454635 PMCID: PMC8401176 DOI: 10.1186/s40364-021-00320-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Deubiquitinases (DUBs) are enzymes that control the stability, interactions or localization of most cellular proteins by removing their ubiquitin modification. In recent years, some DUBs, such as USP7, USP9X and USP10, have been identified as promising therapeutic targets in hematological malignancies. Importantly, some potent inhibitors targeting the oncogenic DUBs have been developed, showing promising inhibitory efficacy in preclinical models, and some have even undergone clinical trials. Different DUBs perform distinct function in diverse hematological malignancies, such as oncogenic, tumor suppressor or context-dependent effects. Therefore, exploring the biological roles of DUBs and their downstream effectors will provide new insights and therapeutic targets for the occurrence and development of hematological malignancies. We summarize the DUBs involved in different categories of hematological malignancies including leukemia, multiple myeloma and lymphoma. We also present the recent development of DUB inhibitors and their applications in hematological malignancies. Together, we demonstrate DUBs as potential therapeutic drug targets in hematological malignancies.
Collapse
Affiliation(s)
- Hu Lei
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jiaqi Wang
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiacheng Hu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Zhu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yingli Wu
- Department of Pathophysiology, International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
17
|
Yu B, Lin Q, Huang C, Zhang B, Wang Y, Jiang Q, Zhang C, Yi J. SUMO proteases SENP3 and SENP5 spatiotemporally regulate the kinase activity of Aurora A. J Cell Sci 2021; 134:jcs249771. [PMID: 34313310 DOI: 10.1242/jcs.249771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/24/2021] [Indexed: 01/14/2023] Open
Abstract
Precise chromosome segregation is mediated by a well-assembled mitotic spindle, which requires balance of the kinase activity of Aurora A (AurA, also known as AURKA). However, how this kinase activity is regulated remains largely unclear. Here, using in vivo and in vitro assays, we report that conjugation of SUMO2 with AurA at K258 in early mitosis promotes the kinase activity of AurA and facilitates the binding with its activator Bora. Knockdown of the SUMO proteases SENP3 and SENP5 disrupts the deSUMOylation of AurA, leading to increased kinase activity and abnormalities in spindle assembly and chromosome segregation, which could be rescued by suppressing the kinase activity of AurA. Collectively, these results demonstrate that SENP3 and SENP5 deSUMOylate AurA to render spatiotemporal control on its kinase activity in mitosis. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bin Yu
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiaoyu Lin
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chao Huang
- Medical School, Kunming University of Science and Technology, Kunming 650091, China
| | - Boyan Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Wang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qing Jiang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
18
|
Lee K, Gusella GL, He JC. Epithelial proliferation and cell cycle dysregulation in kidney injury and disease. Kidney Int 2021; 100:67-78. [PMID: 33831367 PMCID: PMC8855879 DOI: 10.1016/j.kint.2021.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023]
Abstract
Various cellular insults and injury to renal epithelial cells stimulate repair mechanisms to adapt and restore the organ homeostasis. Renal tubular epithelial cells are endowed with regenerative capacity, which allows for a restoration of nephron function after acute kidney injury. However, recent evidence indicates that the repair is often incomplete, leading to maladaptive responses that promote the progression to chronic kidney disease. The dysregulated cell cycle and proliferation is also a key feature of renal tubular epithelial cells in polycystic kidney disease and HIV-associated nephropathy. Therefore, in this review, we provide an overview of cell cycle regulation and the consequences of dysregulated cell proliferation in acute kidney injury, polycystic kidney disease, and HIV-associated nephropathy. An increased understanding of these processes may help define better targets for kidney repair and combat chronic kidney disease progression.
Collapse
Affiliation(s)
- Kyung Lee
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - G Luca Gusella
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John Cijiang He
- Department of Medicine, Nephrology Division, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J. Peters Veterans Affairs Medical Center, Bronx, New York, USA.
| |
Collapse
|
19
|
Witting KF, Mulder MP. Highly Specialized Ubiquitin-Like Modifications: Shedding Light into the UFM1 Enigma. Biomolecules 2021; 11:biom11020255. [PMID: 33578803 PMCID: PMC7916544 DOI: 10.3390/biom11020255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022] Open
Abstract
Post-translational modification with Ubiquitin-like proteins represents a complex signaling language regulating virtually every cellular process. Among these post-translational modifiers is Ubiquitin-fold modifier (UFM1), which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Originally identified to be involved embryonic development, its biological function remains enigmatic. Recent research reveals that UFM1 regulates a variety of cellular events ranging from DNA repair to autophagy and ER stress response implicating its involvement in a variety of diseases. Given the contribution of UFM1 to numerous pathologies, the enzymes of the UFM1 cascade represent attractive targets for pharmacological inhibition. Here we discuss the current understanding of this cryptic post-translational modification especially its contribution to disease as well as expand on the unmet needs of developing chemical and biochemical tools to dissect its role.
Collapse
|
20
|
Abstract
Post-translational modifications of cellular substrates with ubiquitin and ubiquitin-like proteins (UBLs), including ubiquitin, SUMOs, and neural precursor cell-expressed developmentally downregulated protein 8, play a central role in regulating many aspects of cell biology. The UBL conjugation cascade is initiated by a family of ATP-dependent enzymes termed E1 activating enzymes and executed by the downstream E2-conjugating enzymes and E3 ligases. Despite their druggability and their key position at the apex of the cascade, pharmacologic modulation of E1s with potent and selective drugs has remained elusive until 2009. Among the eight E1 enzymes identified so far, those initiating ubiquitylation (UBA1), SUMOylation (SAE), and neddylation (NAE) are the most characterized and are implicated in various aspects of cancer biology. To date, over 40 inhibitors have been reported to target UBA1, SAE, and NAE, including the NAE inhibitor pevonedistat, evaluated in more than 30 clinical trials. In this Review, we discuss E1 enzymes, the rationale for their therapeutic targeting in cancer, and their different inhibitors, with emphasis on the pharmacologic properties of adenosine sulfamates and their unique mechanism of action, termed substrate-assisted inhibition. Moreover, we highlight other less-characterized E1s-UBA6, UBA7, UBA4, UBA5, and autophagy-related protein 7-and the opportunities for targeting these enzymes in cancer. SIGNIFICANCE STATEMENT: The clinical successes of proteasome inhibitors in cancer therapy and the emerging resistance to these agents have prompted the exploration of other signaling nodes in the ubiquitin-proteasome system including E1 enzymes. Therefore, it is crucial to understand the biology of different E1 enzymes, their roles in cancer, and how to translate this knowledge into novel therapeutic strategies with potential implications in cancer treatment.
Collapse
Affiliation(s)
- Samir H Barghout
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada (S.H.B., A.D.S.); Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada (S.H.B., A.D.S.); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt (S.H.B.)
| |
Collapse
|
21
|
Mallela A, Nariya MK, Deeds EJ. Crosstalk and ultrasensitivity in protein degradation pathways. PLoS Comput Biol 2020; 16:e1008492. [PMID: 33370258 PMCID: PMC7793289 DOI: 10.1371/journal.pcbi.1008492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/08/2021] [Accepted: 11/05/2020] [Indexed: 12/05/2022] Open
Abstract
Protein turnover is vital to cellular homeostasis. Many proteins are degraded efficiently only after they have been post-translationally “tagged” with a polyubiquitin chain. Ubiquitylation is a form of Post-Translational Modification (PTM): addition of a ubiquitin to the chain is catalyzed by E3 ligases, and removal of ubiquitin is catalyzed by a De-UBiquitylating enzyme (DUB). Nearly four decades ago, Goldbeter and Koshland discovered that reversible PTM cycles function like on-off switches when the substrates are at saturating concentrations. Although this finding has had profound implications for the understanding of switch-like behavior in biochemical networks, the general behavior of PTM cycles subject to synthesis and degradation has not been studied. Using a mathematical modeling approach, we found that simply introducing protein turnover to a standard modification cycle has profound effects, including significantly reducing the switch-like nature of the response. Our findings suggest that many classic results on PTM cycles may not hold in vivo where protein turnover is ubiquitous. We also found that proteins sharing an E3 ligase can have closely related changes in their expression levels. These results imply that it may be difficult to interpret experimental results obtained from either overexpressing or knocking down protein levels, since changes in protein expression can be coupled via E3 ligase crosstalk. Understanding crosstalk and competition for E3 ligases will be key in ultimately developing a global picture of protein homeostasis. Previous work has shown that substrates of Post-Translational Modification (PTM) cycles can have coupled responses if those substrates share enzymes. This implies that modifications leading to substrate degradation (e.g. ubiquitylation by an E3 ligase) could introduce coupling in concentrations of substrates sharing a ligase. Using mathematical models, we found adding protein turnover to a PTM cycle diminishes both sensitivity and ultrasensitivity, particularly in models admitting long ubiquitin chains. We also found that proteins sharing an E3 ligase can indeed have coupled changes in both expression and sensitivity to signals. These results imply that accounting for crosstalk in protein degradation networks is crucial for the interpretation of results from a wide variety of common experimental perturbations to living systems.
Collapse
Affiliation(s)
- Abhishek Mallela
- Department of Mathematics, University of California Davis, Davis, California, United States of America
| | - Maulik K. Nariya
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eric J. Deeds
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States of America
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Wan R, Yuan P, Guo L, Shao J, Liu X, Lai W, Kong Q, Chen L, Ge J, Xu Z, Xie J, Shen Y, Hu J, Zhou Q, Yu J, Jiang Z, Jiang X, Hong K. Ubiquitin-like protein FAT10 suppresses SIRT1-mediated autophagy to protect against ischemic myocardial injury. J Mol Cell Cardiol 2020; 153:1-13. [PMID: 33307094 DOI: 10.1016/j.yjmcc.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Autophagy plays a deleterious role in ischemic myocardial injury. The deacetylase SIRT1 is a well-established regulator of autophagy that can be modified by the ubiquitin-like protein SUMO1. Our previous work demonstrated that another ubiquitin-like protein, FAT10, exerts cardioprotective effects against myocardial ischemia by stabilizing the caveolin-3 protein; however, the effects of FAT10 on autophagy through SIRT1 are unclear. Here, we constructed a Fat10-knockout rat model to evaluate the role of FAT10 in autophagy. In vivo and in vitro assays confirmed that FAT10 suppressed autophagy to protect the heart from ischemic myocardial injury. Mechanistically, FAT10 was mainly involved in the regulation of the autophagosome formation process. FAT10 affected autophagy through modulating SIRT1 degradation, which resulted in reduced SIRT1 nuclear translocation and inhibited SIRT1 activity via its C-terminal glycine residues. Notably, FAT10 competed with SUMO1 at the K734 modification site of SIRT1, which further reduced LC3 deacetylation and suppressed autophagy. Our findings suggest that FAT10 inhibits autophagy by antagonizing SIRT1 SUMOylation to protect the heart from ischemic myocardial injury. This is a novel mechanism through which FAT10 regulates autophagy as a cardiac protector.
Collapse
Affiliation(s)
- Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Ping Yuan
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Linjuan Guo
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianghua Shao
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University Nanchang of Jiangxi, 330006, China
| | - Xiao Liu
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Lai
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiling Kong
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Leifeng Chen
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University Nanchang of Jiangxi, 330006, China
| | - Jin Ge
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhenyan Xu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Genetics Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Genetics Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianping Hu
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qiongqiong Zhou
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianhua Yu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhenhong Jiang
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xinghua Jiang
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Kui Hong
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
23
|
Franks JL, Martinez-Chacin RC, Wang X, Tiedemann RL, Bonacci T, Choudhury R, Bolhuis DL, Enrico TP, Mouery RD, Damrauer JS, Yan F, Harrison JS, Major MB, Hoadley KA, Suzuki A, Rothbart SB, Brown NG, Emanuele MJ. In silico APC/C substrate discovery reveals cell cycle-dependent degradation of UHRF1 and other chromatin regulators. PLoS Biol 2020; 18:e3000975. [PMID: 33306668 PMCID: PMC7758050 DOI: 10.1371/journal.pbio.3000975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/23/2020] [Accepted: 11/05/2020] [Indexed: 01/07/2023] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.
Collapse
Affiliation(s)
- Jennifer L Franks
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Raquel C Martinez-Chacin
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xianxi Wang
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rochelle L Tiedemann
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Rajarshi Choudhury
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Derek L Bolhuis
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Taylor P Enrico
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ryan D Mouery
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey S Damrauer
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Joseph S Harrison
- Department of Chemistry, University of the Pacific, Stockton, California, United States of America
| | - M Ben Major
- Department of Cell Biology and Physiology, Department of Otolaryngology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, Michigan, United States of America
| | - Nicholas G Brown
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael J Emanuele
- Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
24
|
Aichem A, Groettrup M. The ubiquitin-like modifier FAT10 - much more than a proteasome-targeting signal. J Cell Sci 2020; 133:133/14/jcs246041. [PMID: 32719056 DOI: 10.1242/jcs.246041] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10) also called ubiquitin D (UBD) is a member of the ubiquitin-like modifier (ULM) family. The FAT10 gene is localized in the MHC class I locus and FAT10 protein expression is mainly restricted to cells and organs of the immune system. In all other cell types and tissues, FAT10 expression is highly inducible by the pro-inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor (TNF). Besides ubiquitin, FAT10 is the only ULM which directly targets its substrates for degradation by the 26S proteasome. This poses the question as to why two ULMs sharing the proteasome-targeting function have evolved and how they differ from each other. This Review summarizes the current knowledge of the special structure of FAT10 and highlights its differences from ubiquitin. We discuss how these differences might result in differential outcomes concerning proteasomal degradation mechanisms and non-covalent target interactions. Moreover, recent insights about the structural and functional impact of FAT10 interacting with specific non-covalent interaction partners are reviewed.
Collapse
Affiliation(s)
- Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland .,Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
25
|
Regulation of Interferon Induction by the Ubiquitin-Like Modifier FAT10. Biomolecules 2020; 10:biom10060951. [PMID: 32586037 PMCID: PMC7356809 DOI: 10.3390/biom10060951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 12/28/2022] Open
Abstract
The revelation that the human major histocompatibility complex (MHC) class I locus encodes a ubiquitin-like protein designated HLA-F adjacent transcript 10 (FAT10) or ubiquitin D (UBD) has attracted increasing attention to the function of this protein. Interestingly, the pro-inflammatory cytokines interferon (IFN)-γ and tumor necrosis factor (TNF) α synergize to strongly induce FAT10 expression, thereby suggesting a role of FAT10 in the immune response. Recent reports that FAT10 downregulates type I interferon production while it upregulates IFN-γ pose mechanistic questions on how FAT10 differentially regulates interferon induction. Several covalent and non-covalent binding partners of FAT10 involved in signal transduction pathways leading to IFN synthesis have been identified. After introducing FAT10, we review here recent insights into how FAT10 affects proteins in the interferon pathways, like the virus-responsive pattern recognition receptor RIG-I, the ubiquitin ligase ZNF598, and the deubiquitylating enzyme OTUB1. Moreover, we outline the consequences of FAT10 deficiency on interferon synthesis and viral expansion in mice and human cells. We discuss the need for covalent isopeptide linkage of FAT10 to the involved target proteins and the concomitant targeting for proteasomal degradation. After years of investigating the elusive biological functions of this fascinating ubiquitin-like modifier, we review the emerging evidence for a novel role of FAT10 in interferon regulation.
Collapse
|
26
|
Yi X, Deng X, Zhao Y, Deng B, Deng J, Fan H, Du Y, Hao L. Ubiquitin-like protein FAT10 promotes osteosarcoma growth by modifying the ubiquitination and degradation of YAP1. Exp Cell Res 2019; 387:111804. [PMID: 31877302 DOI: 10.1016/j.yexcr.2019.111804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 02/02/2023]
Abstract
Osteosarcoma is a common malignancy of the bone tissue. The rapid growth exhibited by this cancer is a primary challenge in its treatment. In many types of cancers, FAT10, a ubiquitin-like protein, is involved in several biological activities, especially cell proliferation. Herein, we demonstrate that FAT10 plays a vital role in tumorigenesis and is overexpressed in tumor tissues compared to its expression in adjacent normal tissues. Functional assays revealed that knockdown of FAT10 expression significantly repressed the proliferation of osteosarcoma in vitro and in vivo. Furthermore, our results indicate that FAT10 exhibits oncogenic functions by regulating the level of YAP1, a key protein of the Hippo/YAP signaling pathway, and a significant positive correlation exists between the levels of FAT10 and YAP1. Further analysis showed that FAT10-induced growth of osteosarcoma cells is dependent on YAP1. Mechanistically, FAT10 stabilizes YAP1 expression by regulating its ubiquitination and degradation. Taken together, our results link the two drivers of cell growth in osteosarcoma and reveal a novel pathway for FAT10 regulation. We provide new evidence for the biological and clinical significance of FAT10 as a potential biomarker for osteosarcoma.
Collapse
Affiliation(s)
- Xuan Yi
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xueqiang Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanzhi Zhao
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Binbin Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huimin Fan
- Department of Ophthalmology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunyan Du
- Department of Medical, Jiangxi Provincial People's Hospital, Nanchang, China; Department of Otorhinolaryngology, Jiangxi Provincial People's Hospital, Nanchang, China.
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
27
|
Reznik N, Kozer N, Eisenberg-Lerner A, Barr H, Merbl Y, London N. Phenotypic Screen Identifies JAK2 as a Major Regulator of FAT10 Expression. ACS Chem Biol 2019; 14:2538-2545. [PMID: 31794190 DOI: 10.1021/acschembio.9b00667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
FAT10 is a ubiquitin-like protein suggested to target proteins for proteasomal degradation. It is highly upregulated upon pro-inflammatory cytokines, namely, TNFα, IFNγ, and IL6, and was found to be highly expressed in various epithelial cancers. Evidence suggests that FAT10 is involved in cancer development and may have a pro-tumorigenic role. However, its biological role is still unclear, as well as its biochemical and cellular regulation. To identify pathways underlying FAT10 expression in the context of pro-inflammatory stimulation, which characterizes the cancerous environment, we implemented a phenotypic transcriptional reporter screen with a library of annotated compounds. We identified AZ960, a potent JAK2 inhibitor, which significantly downregulates FAT10 under pro-inflammatory cytokines induction, in an NFκB-independent manner. We validated JAK2 as a major regulator of FAT10 expression via knockdown, and we suggest that the transcriptional effects are mediated through pSTAT1/3/5. Overall, we have elucidated a pathway regulating FAT10 transcription and discovered a tool compound to chemically downregulate FAT10 expression, and to further study its biology.
Collapse
Affiliation(s)
- Nava Reznik
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Noga Kozer
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | | | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yifat Merbl
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nir London
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
28
|
Gerakis Y, Quintero M, Li H, Hetz C. The UFMylation System in Proteostasis and Beyond. Trends Cell Biol 2019; 29:974-986. [PMID: 31703843 PMCID: PMC6917045 DOI: 10.1016/j.tcb.2019.09.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022]
Abstract
Post-translational modifications are at the apex of cellular communication and eventually regulate every aspect of life. The identification of new post-translational modifiers is opening alternative avenues in understanding fundamental cell biology processes and may ultimately provide novel therapeutic opportunities. The ubiquitin-fold modifier 1 (UFM1) is a post-translational modifier discovered a decade ago but its biological significance has remained mostly unknown. The field has recently witnessed an explosion of research uncovering the implications of the pathway to cellular homeostasis in living organisms. We overview recent advances in the function and regulation of the UFM1 pathway, and its implications for cell physiology and disease.
Collapse
Affiliation(s)
- Yannis Gerakis
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP (Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias) Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Michaela Quintero
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP (Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias) Center for Geroscience (GERO), Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA; Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
29
|
Yu L, Li G, Deng J, Jiang X, Xue J, Zhu Y, Huang W, Tang B, Duan R. The UFM1 cascade times mitosis entry associated with microcephaly. FASEB J 2019; 34:1319-1330. [PMID: 31914610 DOI: 10.1096/fj.201901751r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 02/02/2023]
Abstract
Posttranslational modifications enhance the functional diversity of the proteome by modifying the substrates. The UFM1 cascade is a novel ubiquitin-like modification system. The mutations in UFM1, its E1 (UBA5) and E2 (UFC1), have been identified in patients with microcephaly. However, its pathological mechanisms remain unclear. Herein, we observed the disruption of the UFM1 cascade in Drosophila neuroblasts (NBs) decreased the number of NBs, leading to a smaller brain size. The lack of ufmylation in NBs resulted in an increased mitotic index and an extended G2/M phase, indicating a defect in mitotic progression. In addition, live imaging of the embryos revealed an impaired E3 ligase (Ufl1) function resulted in premature entry into mitosis and failed cellularization. Even worse, the embryonic lethality occurred as early as within the first few mitotic cycles following the depletion of Ufm1. Knockdown of ufmylation in the fixed embryos exhibited severe phenotypes, including detached centrosomes, defective microtubules, and DNA bridge. Furthermore, we observed that the UFM1 cascade could alter the level of phosphorylation on tyrosine-15 of CDK1 (pY15-CDK1), which is a negative regulator of the G2 to M transition. These findings yield unambiguous evidence suggesting that the UFM1 cascade is a microcephaly-causing factor that regulates the progression of the cell cycle at mitosis phase entry.
Collapse
Affiliation(s)
- Li Yu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Guangxu Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jing Deng
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Xuan Jiang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jin Xue
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Yingbao Zhu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Beisha Tang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ranhui Duan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
| |
Collapse
|
30
|
Fang Z, Pan Z. Essential Role of Ubiquitin-Fold Modifier 1 Conjugation in DNA Damage Response. DNA Cell Biol 2019; 38:1030-1039. [PMID: 31368785 DOI: 10.1089/dna.2019.4861] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Both endogenous and exogenous factors can cause DNA damage that compromises genomic integrity and cell viability. A proper DNA damage response (DDR) plays a role in maintaining genome stability and preventing tumorigenesis. DNA double-strand breaks (DSBs) are the most toxic DNA lesion, whose response is dominated by the ataxia-telangiectasia mutated (ATM) protein kinase. After being activated by the sensor Mre11-Rad50-Nbs1 (MRN) complex or acetyltransferase Tip60, ATM rapidly phosphorylates downstream targets to launch DDR signaling when DNA is damaged. However, the exact mechanism of DDR is complex and ambiguous. Ufmylation, one type of ubiquitin-like modification, proceeds mainly through a three-step enzymatic reaction to help ubiquitin-fold modifier 1 (Ufm1), attach to substrates with ubiquitin-like modifier-activating enzyme 5 (Uba5), Ufm1-conjugating enzyme 1 (Ufc1) and Ufm1-specific ligase 1 (Ufl1). Although ubiquitination is essential to the DSBs response, the potential function of ufmylation in DDR is largely unknown. Herein, we review the relationship between ufmylation and DDR to elucidate the function and mechanism of ufmylation in DDR, which would reveal the pathogenesis of some diseases and provide new guidance to create a therapeutic method.
Collapse
Affiliation(s)
- Zhi Fang
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zezheng Pan
- Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Bai L, Dong J, Liu Z, Rao Y, Feng P, Lan K. Viperin catalyzes methionine oxidation to promote protein expression and function of helicases. SCIENCE ADVANCES 2019; 5:eaax1031. [PMID: 31489375 PMCID: PMC6713503 DOI: 10.1126/sciadv.aax1031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/25/2019] [Indexed: 05/29/2023]
Abstract
Helicases play pivotal roles in fundamental biological processes, and posttranslational modifications regulate the localization, function, and stability of helicases. Here, we report that methionine oxidation of representative helicases, including DNA and RNA helicases of viral (ORF44 of KSHV) and cellular (MCM7 and RIG-I) origin, promotes their expression and functions. Cellular viperin, a major antiviral interferon-stimulated gene whose functions beyond host defense remain largely unknown, catalyzes the methionine oxidation of these helicases. Moreover, biochemical studies entailing loss-of-function mutations of helicases and a pharmacological inhibitor interfering with lipid metabolism and, hence, decreasing viperin activity indicate that methionine oxidation potently increases the stability and enzyme activity of these helicases that are critical for DNA replication and immune activation. Our work uncovers a pivotal role of viperin in catalyzing the methionine oxidation of helicases that are implicated in diverse fundamental biological processes.
Collapse
Affiliation(s)
- Lei Bai
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, P.R. China
| | - Jiazhen Dong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, P.R. China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Youliang Rao
- Section of Infection and Immunity, Herman Ostrow School of Dentistry and Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry and Norris Comprehensive Cancer Center, University of Southern California, 925 W 34th Street, Los Angeles, CA 90089, USA
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Medical Research Institute, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
32
|
Wang F, Zhao B. UBA6 and Its Bispecific Pathways for Ubiquitin and FAT10. Int J Mol Sci 2019; 20:ijms20092250. [PMID: 31067743 PMCID: PMC6539292 DOI: 10.3390/ijms20092250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
Questions have been raised since the discovery of UBA6 and its significant coexistence with UBE1 in the ubiquitin–proteasome system (UPS). The facts that UBA6 has the dedicated E2 enzyme USE1 and the E1–E2 cascade can activate and transfer both ubiquitin and ubiquitin-like protein FAT10 have attracted a great deal of attention to the regulational mechanisms of the UBA6–USE1 cascade and to how FAT10 and ubiquitin differentiate with each other. This review recapitulates the latest advances in UBA6 and its bispecific UBA6–USE1 pathways for both ubiquitin and FAT10. The intricate networks of UBA6 and its interplays with ubiquitin and FAT10 are briefly reviewed, as are their individual and collective functions in diverse physiological conditions.
Collapse
Affiliation(s)
- Fengting Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
33
|
Post-Translational Modifications of the Mini-Chromosome Maintenance Proteins in DNA Replication. Genes (Basel) 2019; 10:genes10050331. [PMID: 31052337 PMCID: PMC6563057 DOI: 10.3390/genes10050331] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/15/2022] Open
Abstract
The eukaryotic mini-chromosome maintenance (MCM) complex, composed of MCM proteins 2-7, is the core component of the replisome that acts as the DNA replicative helicase to unwind duplex DNA and initiate DNA replication. MCM10 tightly binds the cell division control protein 45 homolog (CDC45)/MCM2-7/ DNA replication complex Go-Ichi-Ni-San (GINS) (CMG) complex that stimulates CMG helicase activity. The MCM8-MCM9 complex may have a non-essential role in activating the pre-replicative complex in the gap 1 (G1) phase by recruiting cell division cycle 6 (CDC6) to the origin recognition complex (ORC). Each MCM subunit has a distinct function achieved by differential post-translational modifications (PTMs) in both DNA replication process and response to replication stress. Such PTMs include phosphorylation, ubiquitination, small ubiquitin-like modifier (SUMO)ylation, O-N-acetyl-D-glucosamine (GlcNAc)ylation, and acetylation. These PTMs have an important role in controlling replication progress and genome stability. Because MCM proteins are associated with various human diseases, they are regarded as potential targets for therapeutic development. In this review, we summarize the different PTMs of the MCM proteins, their involvement in DNA replication and disease development, and the potential therapeutic implications.
Collapse
|
34
|
Mah MM, Basler M, Groettrup M. The ubiquitin-like modifier FAT10 is required for normal IFN-γ production by activated CD8+ T cells. Mol Immunol 2019; 108:111-120. [DOI: 10.1016/j.molimm.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
|
35
|
Zhang CY, Sun J, Wang X, Wang CF, Zeng XD. Clinicopathological significance of human leukocyte antigen F-associated transcript 10 expression in colorectal cancer. World J Gastrointest Oncol 2019; 11:9-16. [PMID: 30984346 PMCID: PMC6451929 DOI: 10.4251/wjgo.v11.i1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract. The worldwide mortality rate of CRC is about one half of its morbidity. Ubiquitin is a key regulatory factor in the cell cycle and widely exists in eukaryotes. Human leukocyte antigen F-associated transcript 10 (FAT10), known as diubiquitin, is an 18 kDa protein with 29% and 36% homology with the N and C termini of ubiquitin. The function of FAT10 has not been fully elucidated, and some studies have shown that it plays an important role in various cell processes.
AIM To examine FAT10 expression and to analyze the relationship between FAT10 expression and the clinicopathological parameters of CRC.
METHODS FAT10 expression in 61 cases of CRC and para-cancer colorectal tissues was measured by immunohistochemistry and Western blotting. The relationship between FAT10 expression and clinicopathological parameters of CRC was statistically analyzed.
RESULTS Immunohistochemical analysis showed that the positive rate of FAT10 expression in CRC (63.93%) was significantly higher than that in tumor-adjacent tissues (9.84%, P < 0.05) and normal colorectal mucosal tissue (1.64%, P < 0.05). Western blotting also indicated that FAT10 expression was significantly higher in CRC than in tumor-adjacent tissue (P < 0.05). FAT10 expression was closely associated with clinical stage and lymphatic spread of CRC. FAT10 expression also positively correlated with p53 expression.
CONCLUSION FAT10 expression is highly upregulated in CRC. FAT10 expression is closely associated with clinical stage and lymphatic spread of CRC.
Collapse
Affiliation(s)
- Chun-Yang Zhang
- Department of Emergency Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Jie Sun
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Xing Wang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Cui-Fang Wang
- Department of Pathology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| | - Xian-Dong Zeng
- Department of Surgical Oncology, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110024, Liaoning Province, China
| |
Collapse
|
36
|
Yan J, Lei J, Chen L, Deng H, Dong D, Jin T, Liu X, Yuan R, Qiu Y, Ge J, Peng X, Shao J. Human Leukocyte Antigen F Locus Adjacent Transcript 10 Overexpression Disturbs WISP1 Protein and mRNA Expression to Promote Hepatocellular Carcinoma Progression. Hepatology 2018; 68:2268-2284. [PMID: 29790184 DOI: 10.1002/hep.30105] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/12/2018] [Indexed: 12/19/2022]
Abstract
Recently, studies on transcriptome-proteome relationships have revealed mRNA/protein expression discordance for certain genes and speculated that protein posttranslational modification (PTM) may be involved. However, there is currently no evidence to support this hypothesis. Wnt-induced secreted protein-1 (WISP1) is the downstream target gene of β-catenin and plays an important role in tumorigenesis and progression, but the expression and role of WISP1 in different tumor types are controversial. Here, we first confirmed that WISP1 protein expression was significantly down-regulated in hepatocellular carcinoma (HCC) tissue and could be an independent predictor of poor prognosis for patients with HCC. In vivo and in vitro evidence was provided that WISP1 can suppress HCC cell proliferation. Further studies have found that low WISP1 protein expression was related to expression of human leukocyte antigen F locus adjacent transcript 10 (FAT10), a specific ubiquitin-like protein with both degradation and stabilization functions, which plays an important role in PTM. FAT10 overexpression facilitated WISP1 degradation by FAT10ylation to decrease WISP1 protein expression, thus promoting HCC proliferation. Interestingly, we found and demonstrated that FAT10 overexpression could result in WISP1 protein/mRNA expression discordance, with protein expression decreasing while mRNA expression increased. The underlying mechanism is that FAT10 exerts substrate stabilization and degradation functions simultaneously, while FAT10 overexpression promotes WISP1 mRNA expression by stabilizing β-catenin and directly degrades WISP1 protein. Conclusion: Our study demonstrated that overexpression of FAT10 results in expression discordance between WISP1 protein and mRNA, thereby promoting HCC progression by down-regulating WISP1 protein expression.
Collapse
Affiliation(s)
- Jinlong Yan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jun Lei
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Huan Deng
- Department of Pathology, Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dingxiang Dong
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Tao Jin
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China
| | - Xiuxia Liu
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Rongfa Yuan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Yumin Qiu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jin Ge
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Xiaogang Peng
- Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| | - Jianghua Shao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Province Engineering Research Center of Hepatobiliary Disease, Nanchang, China.,Jiangxi Province Key Laboratory of Molecular Medicine, Nanchang, China
| |
Collapse
|
37
|
Bakos G, Yu L, Gak IA, Roumeliotis TI, Liakopoulos D, Choudhary JS, Mansfeld J. An E2-ubiquitin thioester-driven approach to identify substrates modified with ubiquitin and ubiquitin-like molecules. Nat Commun 2018; 9:4776. [PMID: 30429481 PMCID: PMC6235928 DOI: 10.1038/s41467-018-07251-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Covalent modifications of proteins with ubiquitin and ubiquitin-like molecules are instrumental to many biological processes. However, identifying the E3 ligase responsible for these modifications remains a major bottleneck in ubiquitin research. Here, we present an E2-thioester-driven identification (E2~dID) method for the targeted identification of substrates of specific E2 and E3 enzyme pairs. E2~dID exploits the central position of E2-conjugating enzymes in the ubiquitination cascade and provides in vitro generated biotinylated E2~ubiquitin thioester conjugates as the sole source for ubiquitination in extracts. This enables purification and mass spectrometry-based identification of modified proteins under stringent conditions independently of the biological source of the extract. We demonstrate the sensitivity and specificity of E2-dID by identifying and validating substrates of APC/C in human cells. Finally, we perform E2~dID with SUMO in S. cerevisiae, showing that this approach can be easily adapted to other ubiquitin-like modifiers and experimental models.
Collapse
Affiliation(s)
- Gábor Bakos
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - Lu Yu
- Functional Proteomics Group, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Igor A Gak
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | | | - Dimitris Liakopoulos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, 34293, Montpellier Cedex 05, France
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
38
|
Witting KF, van der Heden van Noort GJ, Kofoed C, Talavera Ormeño C, el Atmioui D, Mulder MPC, Ovaa H. Generation of the UFM1 Toolkit for Profiling UFM1-Specific Proteases and Ligases. Angew Chem Int Ed Engl 2018; 57:14164-14168. [PMID: 30188611 PMCID: PMC6220884 DOI: 10.1002/anie.201809232] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a reversible post-translational modifier that is covalently attached to target proteins through an enzymatic cascade and removed by designated proteases. Abnormalities in this process, referred to as Ufmylation, have been associated with a variety of human diseases. Given this, the UFM1-specific enzymes represent potential therapeutic targets; however, understanding of their biological function has been hampered by the lack of chemical tools for activity profiling. To address this unmet need, a diversifiable platform for UFM1 activity-based probes (ABPs) utilizing a native chemical ligation (NCL) strategy was developed, enabling the generation of a variety of tools to profile both UFM1 conjugating and deconjugating enzymes. The use of the probes is demonstrated in vitro and in vivo for monitoring UFM1 enzyme reactivity, opening new research avenues.
Collapse
Affiliation(s)
- Katharina F. Witting
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Gerbrand J. van der Heden van Noort
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Christian Kofoed
- Department of ChemistryCenter for Evolutionary Chemical BiologyUniversity of CopenhagenUniversitetsparken 52100CopenhagenDenmark
| | - Cami Talavera Ormeño
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Dris el Atmioui
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Monique P. C. Mulder
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| |
Collapse
|
39
|
Witting KF, van der Heden van Noort GJ, Kofoed C, Talavera Ormeño C, el Atmioui D, Mulder MPC, Ovaa H. Generation of the UFM1 Toolkit for Profiling UFM1-Specific Proteases and Ligases. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katharina F. Witting
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Gerbrand J. van der Heden van Noort
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Christian Kofoed
- Department of Chemistry; Center for Evolutionary Chemical Biology; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | - Cami Talavera Ormeño
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Dris el Atmioui
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Monique P. C. Mulder
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| |
Collapse
|
40
|
Lin JX, Xie XS, Weng XF, Zheng CH, Xie JW, Wang JB, Lu J, Chen QY, Cao LL, Lin M, Tu RH, Li P, Huang CM. Low expression of CDK5RAP3 and DDRGK1 indicates a poor prognosis in patients with gastric cancer. World J Gastroenterol 2018; 24:3898-3907. [PMID: 30228783 PMCID: PMC6141336 DOI: 10.3748/wjg.v24.i34.3898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of different levels of expression of CDK5RAP3 and DDRGK1 on long-term survival of patients undergoing radical gastrectomy. METHODS The expression of CDK5RAP3 and DDRGK1 was detected by immunohistochemistry in 135 patients who received standard gastrectomy were enrolled in the study. Western Blot was used to detect the expression of CDK5RAP3 and DDRGK1 in gastric cancer and its adjacent tissues and cell lines. The correlations between the expression of CDK5RAP3 and DDRGK1 and clinicopathological factors were analyzed, and the value of each parameter to the prognosis of the patients was compared. Receiver operating characteristic analysis was used to compare the accuracy of the prediction of clinical outcome by the parameters. RESULTS CDK5RAP3 and DDRGK1 expression was down-regulated in the gastric cancer compared to its respective adjacent non-tumor tissues. The expression of CDK5RAP3 was closely related to the age of the patients (P = 0.035) and the T stage of the tumor (P = 0.017). The expression of DDRGK1 was correlated with the sex of the patients (P = 0.080), the degree of tumor differentiation (P = 0.036), the histological type (P = 0.036) and the N stage of the tumor (P = 0.014). Low expression CDK5RAP3 or DDRGK1 is a poor prognostic factor for gastric cancer patients. Prognostic analysis showed that the co-expression of CDK5RAP3 and DDRGK1 was an independent prognostic factor correlating with the overall survival of gastric cancer patients. Combined expression analysis of CDK5RAP3 and DDRGK1 may provide a more accurate prognostic value for overall survival. CONCLUSION The co-expression of CDK5RAP3 and DDRGK1 is an independent prognostic factor for gastric cancer, which can provide a more accurate model for the long-term prognosis.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Xin-Sheng Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Xiong-Feng Weng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian Province, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, Fujian Province, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou 350108, Fujian Province, China
| |
Collapse
|
41
|
Aichem A, Anders S, Catone N, Rößler P, Stotz S, Berg A, Schwab R, Scheuermann S, Bialas J, Schütz-Stoffregen MC, Schmidtke G, Peter C, Groettrup M, Wiesner S. The structure of the ubiquitin-like modifier FAT10 reveals an alternative targeting mechanism for proteasomal degradation. Nat Commun 2018; 9:3321. [PMID: 30127417 PMCID: PMC6102260 DOI: 10.1038/s41467-018-05776-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023] Open
Abstract
FAT10 is a ubiquitin-like modifier that directly targets proteins for proteasomal degradation. Here, we report the high-resolution structures of the two individual ubiquitin-like domains (UBD) of FAT10 that are joined by a flexible linker. While the UBDs of FAT10 show the typical ubiquitin-fold, their surfaces are entirely different from each other and from ubiquitin explaining their unique binding specificities. Deletion of the linker abrogates FAT10-conjugation while its mutation blocks auto-FAT10ylation of the FAT10-conjugating enzyme USE1 but not bulk conjugate formation. FAT10- but not ubiquitin-mediated degradation is independent of the segregase VCP/p97 in the presence but not the absence of FAT10’s unstructured N-terminal heptapeptide. Stabilization of the FAT10 UBDs strongly decelerates degradation suggesting that the intrinsic instability of FAT10 together with its disordered N-terminus enables the rapid, joint degradation of FAT10 and its substrates without the need for FAT10 de-conjugation and partial substrate unfolding. The ubiquitin-like modifier FAT10 is composed of two ubiquitin-like domains (UBDs). Here the authors present the FAT10 UBD structures and show that the unstructured FAT10 N-terminal heptapeptide together with the poor stability of FAT10 facilitate the rapid proteasomal targeting of FAT10 along with its substrates.
Collapse
Affiliation(s)
- Annette Aichem
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Samira Anders
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Philip Rößler
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Sophie Stotz
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany
| | - Andrej Berg
- Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, D-78457, Germany
| | - Ricarda Schwab
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Sophia Scheuermann
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Johanna Bialas
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Mira C Schütz-Stoffregen
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany.,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany
| | - Gunter Schmidtke
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany.,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland
| | - Christine Peter
- Computational and Theoretical Chemistry, Department of Chemistry, University of Konstanz, Konstanz, D-78457, Germany
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, D-78457, Germany. .,Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, CH-8280, Switzerland.
| | - Silke Wiesner
- Max Planck Institute for Developmental Biology, Tübingen, D-72076, Germany. .,Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, D-93040, Germany.
| |
Collapse
|
42
|
DiSUMO-LIKE Interacts with RNA-Binding Proteins and Affects Cell-Cycle Progression during Maize Embryogenesis. Curr Biol 2018; 28:1548-1560.e5. [DOI: 10.1016/j.cub.2018.03.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/01/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
|
43
|
Zuo C, Sheng X, Ma M, Xia M, Ouyang L. ISG15 in the tumorigenesis and treatment of cancer: An emerging role in malignancies of the digestive system. Oncotarget 2018; 7:74393-74409. [PMID: 27626310 PMCID: PMC5342061 DOI: 10.18632/oncotarget.11911] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
The interferon-stimulated gene 15 ubiquitin-like modifier (ISG15) encodes an IFN-inducible, ubiquitin-like protein. The ISG15 protein forms conjugates with numerous cellular proteins that are involved in a multitude of cellular functions, including interferon-induced immune responses and the regulation of cellular protein turnover. The expression of ISG15 and ISG15-mediated conjugation has been implicated in a wide range of human tumors and cancer cell lines, but the roles of ISG15 in tumorigenesis and responses to anticancer treatments remain largely unknown. In this review, we discuss the findings of recent studies with regard to the role of ISG15 pathways in cancers of the digestive system.
Collapse
Affiliation(s)
- Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Graduate School, University of South China, Hengyang, Hunan, China
| | - Xinyi Sheng
- Graduate School, University of South China, Hengyang, Hunan, China
| | - Min Ma
- Department of Gastroduodenal and Pancreatic Surgery, Translation Medicine Research Center of Liver Cancer, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Man Xia
- Laboratory of Digestive Oncology, Hunan Province Cancer Institute, Changsha, Hunan, China
| | - Linda Ouyang
- Laboratory of Digestive Oncology, Hunan Province Cancer Institute, Changsha, Hunan, China
| |
Collapse
|
44
|
Abstract
People of recent African ancestry develop kidney disease at much higher rates than most other groups. Two specific coding variants in the Apolipoprotein-L1 gene APOL1 termed G1 and G2 are the causal drivers of much of this difference in risk, following a recessive pattern of inheritance. However, most individuals with a high-risk APOL1 genotype do not develop overt kidney disease, prompting interest in identifying those factors that interact with APOL1 We performed an admixture mapping study to identify genetic modifiers of APOL1-associated kidney disease. Individuals with two APOL1 risk alleles and focal segmental glomerulosclerosis (FSGS) have significantly increased African ancestry at the UBD (also known as FAT10) locus. UBD is a ubiquitin-like protein modifier that targets proteins for proteasomal degradation. African ancestry at the UBD locus correlates with lower levels of UBD expression. In cell-based experiments, the disease-associated APOL1 alleles (known as G1 and G2) lead to increased abundance of UBD mRNA but to decreased levels of UBD protein. UBD gene expression inversely correlates with G1 and G2 APOL1-mediated cell toxicity, as well as with levels of G1 and G2 APOL1 protein in cells. These studies support a model whereby inflammatory stimuli up-regulate both UBD and APOL1, which interact in a functionally important manner. UBD appears to mitigate APOL1-mediated toxicity by targeting it for destruction. Thus, genetically encoded differences in UBD and UBD expression appear to modify the APOL1-associated kidney phenotype.
Collapse
|
45
|
Schregle R, Mah MM, Mueller S, Aichem A, Basler M, Groettrup M. The expression profile of the ubiquitin-like modifier FAT10 in immune cells suggests cell type-specific functions. Immunogenetics 2018; 70:429-438. [DOI: 10.1007/s00251-018-1055-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/13/2018] [Indexed: 10/17/2022]
|
46
|
Zhao C, Yao X, Chen X, Wu W, Xi F, Yang G, Yu T. Knockdown of ubiquitin D inhibits adipogenesis during the differentiation of porcine intramuscular and subcutaneous preadipocytes. Cell Prolif 2017; 51:e12401. [PMID: 29171111 DOI: 10.1111/cpr.12401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Intramuscular fat (IMF) has a significant influence on porcine meat quality. Ubiquitin D (UBD) is involved in the management of diverse intracellular processes. However, its physiological functions in adipose cell differentiation and proliferation are still poorly defined. MATERIALS AND METHODS Intramuscular and subcutaneous preadipocytes were isolated from the longissimus dorsi and neck subcutaneous deposits of Chinese native Guanzhong Black piglets (3-5 days old), respectively. Lentivirus with short hairpin RNA (shRNA) for UBD was applied to knockdown UBD expression. We used real-time PCR and Western blot analysis to detect gene expression. Lipid droplets were dyed with Oil Red O, and cell proliferation was assessed using flow cytometry, 5-ethynyl-2'-deoxyuridine incorporation and cell counting assays. RESULTS Lipogenesis through the Akt/mTOR pathway was inhibited when preadipocytes were transfected with UBD shRNA. The expression of adipogenic genes and the number of lipid droplets were obviously diminished. Moreover, repression of UBD attenuated cell proliferation. UBD downregulation resulted in cell cycle arrest because of a decreased proportion of S-phase cells, and the expression of positive cell proliferation markers was significantly decreased. CONCLUSION These observations illustrated that knockdown of UBD partially suppressed porcine intramuscular and subcutaneous preadipocyte adipogenesis through the Akt/mTOR signalling and inhibited cell proliferation, suggesting the essential role of UBD in the differentiation of preadipocytes.
Collapse
Affiliation(s)
- Chen Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Xiangping Yao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Xiaochang Chen
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Wenjing Wu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Fengxue Xi
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| | - Taiyong Yu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, 712100, China
| |
Collapse
|
47
|
Park JE, Yi H, Kim Y, Chang H, Kim VN. Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle. Mol Cell 2017; 62:462-471. [PMID: 27153541 DOI: 10.1016/j.molcel.2016.04.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/07/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Poly(A) tails are critical for mRNA stability and translation. However, recent studies have challenged this view, showing that poly(A) tail length and translation efficiency are decoupled in non-embryonic cells. Using TAIL-seq and ribosome profiling, we investigate poly(A) tail dynamics and translational control in the somatic cell cycle. We find dramatic changes in poly(A) tail lengths of cell-cycle regulatory genes like CDK1, TOP2A, and FBXO5, explaining their translational repression in M phase. We also find that poly(A) tail length is coupled to translation when the poly(A) tail is <20 nucleotides. However, as most genes have >20 nucleotide poly(A) tails, their translation is regulated mainly via poly(A) tail length-independent mechanisms during the cell cycle. Specifically, we find that terminal oligopyrimidine (TOP) tract-containing transcripts escape global translational suppression in M phase and are actively translated. Our quantitative and comprehensive data provide a revised view of translational control in the somatic cell cycle.
Collapse
Affiliation(s)
- Jong-Eun Park
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyerim Yi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoosik Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
48
|
Kim SJ, Hyeong Lee T, Hee Nam S, Kim JH, Oh S, Sook Cho Y, Sup Lee M, Choi S, Lee PCW. Association of Uba6-Specific-E2 (USE1) With Lung Tumorigenesis. J Natl Cancer Inst 2017; 109:1-11. [PMID: 28376205 DOI: 10.1093/jnci/djw224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022] Open
Abstract
Background The UBA6-specific E2 conjugating enzyme 1 (USE1) ubiquitin enzyme cascade is a poorly characterized arm of the ubiquitin-proteasome system. We investigated whether the UBA6-USE1 enzyme cascade plays a role in lung cancer tumorigenesis. Methods USE1 expression was assessed in tumor-normal paired samples from 106 lung cancer patients by immunoblot. USE1 was stably overexpressed and knocked down in lung cancer cell lines to evaluate cell proliferation, colony formation, and invasion. Xenograft models were used to determine the effects of USE1 on tumor growth (n = 7). Proteomics analysis was used to identify proteins interacting with USE1. The USE1 gene was sequenced in lung cancer patients, and missense mutations of USE1 were generated to evaluate its function. All statistical tests were two-sided. Results USE1 proteins were frequently overexpressed in lung cancer patients (92.5%) Stable overexpression of USE1 increased cell proliferation ( P = .002), migration ( P < .001), and invasion ( P < .001), whereas knockdown of USE1 reduced cell proliferation ( P < .001), migration ( P = .003), and invasion in lung cancer cells and xenograft models ( P < .001). USE1 was found to have a conserved D-box domain, and the level of the protein was regulated by the anaphase-promoting complex. Several missense mutations in USE1 identified in patients prolong the stability of the protein. Conclusions USE1 proteins are frequently overexpressed in lung cancer, and missense mutations in USE1 prolong the half-life of the protein, promoting tumor formation. Our findings reveal novel roles for USE1 in lung cancer and the possible use of USE1 as a novel biomarker and therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Seong-Jin Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, Korea
| | - Tae Hyeong Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, Korea
| | - Sang Hee Nam
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, Korea
| | - Ji-Hong Kim
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, Korea
| | - Sangho Oh
- Korean BioInformation Center (KOBIC), Daejeon, Korea
| | - Yeon Sook Cho
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, Korea
| | - Myeong Sup Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, Korea
| | - Sehoon Choi
- Department of Thoracic and Cardiovascular Surgery, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, Korea
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, Korea
| |
Collapse
|
49
|
Wang Z, Zhu WG, Xu X. Ubiquitin-like modifications in the DNA damage response. Mutat Res 2017; 803-805:56-75. [PMID: 28734548 DOI: 10.1016/j.mrfmmm.2017.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Genomic DNA is damaged at an extremely high frequency by both endogenous and environmental factors. An improper response to DNA damage can lead to genome instability, accelerate the aging process and ultimately cause various human diseases, including cancers and neurodegenerative disorders. The mechanisms that underlie the cellular DNA damage response (DDR) are complex and are regulated at many levels, including at the level of post-translational modification (PTM). Since the discovery of ubiquitin in 1975 and ubiquitylation as a form of PTM in the early 1980s, a number of ubiquitin-like modifiers (UBLs) have been identified, including small ubiquitin-like modifiers (SUMOs), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), interferon-stimulated gene 15 (ISG15), human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), ubiquitin-fold modifier 1 (UFRM1), URM1 ubiquitin-related modifier-1 (URM1), autophagy-related protein 12 (ATG12), autophagy-related protein 8 (ATG8), fan ubiquitin-like protein 1 (FUB1) and histone mono-ubiquitylation 1 (HUB1). All of these modifiers have known roles in the cellular response to various forms of stress, and delineating their underlying molecular mechanisms and functions is fundamental in enhancing our understanding of human disease and longevity. To date, however, the molecular mechanisms and functions of these UBLs in the DDR remain largely unknown. This review summarizes the current status of PTMs by UBLs in the DDR and their implication in cancer diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Zhifeng Wang
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China; Beijing Key Laboratory of DNA Damage Response, Capital Normal University College of Life Sciences, Beijing 100048, China.
| |
Collapse
|
50
|
Post-Translational Modification Profiling-Functional Proteomics for the Analysis of Immune Regulation. Methods Mol Biol 2017; 1647:139-152. [PMID: 28809000 DOI: 10.1007/978-1-4939-7201-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Posttranslational modifications (PTMs) of proteins are an integral part of major cellular regulatory mechanisms dictating protein function, localization, and stability. The capacity to screen PTMs using protein microarrays has advanced our ability to identify their targets and regulatory role. This chapter discusses a unique procedure that combines functional extract-based activity assay with large-scale screening utilities of protein microarrays. This "PTM-profiling" system offers advantages in quantitatively identifying modifications in an unbiased manner in the context of specific cellular conditions. While the possibilities of studying PTMs in different settings are enormous, the immune system presents an attractive model for studying the effects of perturbations in PTMs, and specifically the ubiquitin system, as these were already implicated in both immune function and dysfunction. This chapter discusses the significance of PTM profiling in addressing basic questions in immunology. We describe detailed protocols for the preparation of functional cell extracts from immune cell cultures, following differentiation or induced signals, and screening PTMs on protein arrays, as well as basic guidelines for data analysis and interpretation.
Collapse
|