1
|
Spinello Z, Besharat ZM, Mainiero F, Rughetti A, Masuelli L, Ferretti E, Catanzaro G. MiR-326: Role and significance in brain cancers. Noncoding RNA Res 2025; 12:56-64. [PMID: 40115178 PMCID: PMC11925037 DOI: 10.1016/j.ncrna.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that act as critical regulators of gene expression by repressing mRNA translation. The role of miRNAs in cell physiology spans from cell cycle control to cell proliferation and differentiation, both during development and in adult tissues. Accordingly, dysregulated expression of miRNAs has been reported in several diseases, including cancer, where miRNAs can act as oncogenes or oncosuppressors. Of note, miRNA signatures are also under investigation for classification, diagnosis, and prognosis of cancer patients. Brain tumours are primarily associated with poor prognosis and high mortality, highlighting an urgent need for novel diagnostic, prognostic, and therapeutic tools. Among miRNAs investigated in brain tumours, miR-326 has been shown to act as a tumour suppressor in adult and paediatric brain cancers. In this review, we describe the role of miR-326 in malignant as well as benign cancers originating from brain tissue. In addition, since miR-326 expression can be regulated by other non-coding RNA species, adding a further layer of regulation in the cancer-promoting axis, we discuss this miRNA's role in targeted therapy for brain cancers.
Collapse
Affiliation(s)
- Zaira Spinello
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Fabrizio Mainiero
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Giuseppina Catanzaro
- Department of Life Science, Health, and Health Professions, Link Campus University, 00165, Rome, Italy
| |
Collapse
|
2
|
Liu YJ, Miao HB, Lin S, Chen Z. Exosomes derived let-7f-5p is a potential biomarker of SLE with anti-inflammatory function. Noncoding RNA Res 2025; 12:116-131. [PMID: 40144341 PMCID: PMC11938083 DOI: 10.1016/j.ncrna.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/28/2025] Open
Abstract
This study found that in patients with SLE (n = 5), lethal (let)-7f-5p expression was significantly downregulated in peripheral blood mononuclear cells. Further, high-throughput RNA sequencing was used to mine the differential transcriptome expression in renal tissue exosomes of systemic lupus erythematosus (SLE)-prone mice, and bioinformatics was utilized to analyze non-coding RNAs and coding RNAs in exosomes for their possible roles in SLE. In renal tissues of MRL/lpr SLE-prone mice with exosomes and Pristane-induced SLE mice, we also demonstrated aberrant expression levels of microRNA (miRNA) let-7f-5p. Meanwhile, in the macrophage inflammation model, the expression levels of let-7f-5p were downregulated, that of guanylate binding protein (Gbp2 and Gbp7) were upregulated, and the inflammatory state of macrophages was alleviated following transfection with the let-7f-5p mimic. Co-culturing mesenchymal stem cells with a macrophage model of inflammation resulted in increased let-7f-5p expression and downregulated inflammatory factors, Gbp2 and Gbp7 expression in macrophages. Dual luciferase reporter gene assays confirmed that let-7f-5p directly binds to the 3' UTR of Gbp7 to regulate its expression. Let-7f-5p regulation of the Gbp family is involved in SLE pathogenesis and is a biomarker associated with the inflammatory response with potential clinical applications.
Collapse
Affiliation(s)
- Yi-jing Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hai-bing Miao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Zhen Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Cho M, Park B, Han K. Predicting distant metastatic sites of cancer using perturbed correlations of miRNAs with competing endogenous RNAs. Comput Biol Chem 2025; 115:108353. [PMID: 39827643 DOI: 10.1016/j.compbiolchem.2025.108353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Cancer metastasis is the dissemination of tumor cells from the primary tumor site to other parts of the body via the lymph system or bloodstream. Metastasis is the leading cause of cancer associated death. Despite the significant advances in cancer research and treatment over the past decades, metastasis is not fully understood and difficult to predict in advance. In particular, distant metastasis is more difficult to predict than lymph node metastasis, which is the spread of cancer cells to nearby lymph nodes. Distant metastatic sites is even more difficult to predict than the occurrence of distant metastasis because the problem of predicting distant metastatic sites is a multi-class and multi-label classification problem; there are more than two classes for distant metastatic sites (bone, liver, lung, and other organs), and a single sample can have multiple labels for multiple metastatic sites. This paper presents a new method for predicting distant metastatic sites based on correlation changes of miRNAs with competing endogenous RNAs (ceRNAs) in individual cancer patients. Testing the method on independent datasets of several cancer types demonstrated a high prediction performance. In comparison of our method with other state of the art methods, our method showed a much better and more stable performance than the others. Our method can be used as useful aids in determining treatment options by predicting if and where metastasis will occur in cancer patients at early stages.
Collapse
Affiliation(s)
- Myeonghoon Cho
- Department of Computer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| | - Byungkyu Park
- Research and Development Center, Hancom Carelink Incorporated, 49 Daewangpangyo-ro 644beon-gil, Bundang-gu, Seongnam, 13493, Gyeonggi-do, Republic of Korea.
| | - Kyungsook Han
- Department of Computer Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
4
|
Lu J, Zhou X, Zhu H, Zou M, Liu L, Li X, Gu M. POGZ targeted by LINC01355/miR-27b-3p retards thyroid cancer progression via interplaying with MAD2L2. 3 Biotech 2025; 15:79. [PMID: 40071126 PMCID: PMC11890915 DOI: 10.1007/s13205-025-04231-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
Despite the high morbidity of thyroid cancer (THCA), the underlying molecular pathology remains elusive. That autism-associated protein POGZ has recently been involved in tumorigenesis intrigues us exploring its relevant molecular regulatory network in THCA. Clinical characteristics and intermolecular relationships were dissected by bioinformatics. Interaction between POGZ and MAD2L2 was examined by Co-IP assay. Targeting relationships between miR-27b-3p and POGZ/LINC01355 was verified by sequence prediction and dual-luciferase reporter detection. Cellular effects of genes were assessed by CCK-8 assay, clone formation assay, and Transwell assay, and further confirmed by a tumor-bearing nude mice model. Our results demonstrated a decrease in POGZ expression in THCA tissues and cell lines, and an interaction between POGZ and MAD2L2 protein. POGZ inhibited both the proliferation and motility of THCA cells, with these effects being reversed upon MAD2L2 silencing. LINC01355 exhibited low expression level and a positive correlation with POGZ in THCA. Both miR-27b-3p and LINC01355 were identified as regulators of POGZ through targeting. Elevated miR-27b-3p suppressed POGZ expression. LINC01355 promoted POGZ and counteracted the inhibitory effects of miR-27b-3p. Furthermore, miR-27b-3p increased the proliferation and motility of THCA cells, an effect that was blocked by LINC01355. At the animal level, POGZ, LINC01355, and MAD2L2 all attenuated tumor growth in THCA. Collectively, POGZ restrains THCA growth by interacting with MAD2L2 protein, and POGZ modulation involves a complex interplay orchestrated by LINC01355-targeted miR-27b-3p. By reporting the first POGZ-focused ceRNA network involving noncoding RNA in THCA, our study paves the way for exploring POGZ-related pathways and developing new therapeutic strategies in cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04231-7.
Collapse
Affiliation(s)
- Jiancan Lu
- Postgraduate Training Base at Shanghai Gongli Hospital, Ningxia Medical University, Shanghai, 200135 China
| | - Xinglu Zhou
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| | - Hongling Zhu
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| | - Mei Zou
- PharmaLegacy Laboratories, Shanghai, 201201 China
| | - Lianyong Liu
- Department of Endocrinology and Metabolism, Punan Hospital, Pudong New District, Shanghai, 200125 China
| | - Xiangqi Li
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| | - Mingjun Gu
- Department of Endocrinology and Metabolism, Gongli Hospital of Shanghai Pudong New Area, 219 Miao Pu Road, Shanghai, 200135 China
| |
Collapse
|
5
|
Shen YZ, Yang GP, Ma QM, Wang YS, Wang X. Regulation of lncRNA-ENST on Myc-mediated mitochondrial apoptosis in mesenchymal stem cells: In vitro evidence implicated for acute lung injury therapeutic potential. World J Stem Cells 2025; 17:100079. [DOI: 10.4252/wjsc.v17.i3.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/04/2024] [Accepted: 02/05/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a fatal and heterogeneous disease. While bone marrow mesenchymal stem cells (BMSCs) have shown promise in ALI repair, their efficacy is compromised by a high apoptotic percentage. Preliminary findings have indicated that long noncoding RNA (lncRNA)-ENST expression is markedly downregulated in MSCs under ischemic and hypoxic conditions, establishing a rationale for in vitro exploration.
AIM To elucidate the role of lncRNA-ENST00000517482 (lncRNA-ENST) in modulating MSC apoptosis.
METHODS Founded on ALI in BEAS-2B cells with lipopolysaccharide, this study employed a transwell co-culture system to study BMSC tropism. BMSCs were genetically modified to overexpress or knockdown lncRNA-ENST. After analyzing the effects on autophagy, apoptosis and cell viability, the lncRNA-ENST/miR-539/c-MYC interaction was confirmed by dual-luciferase assays.
RESULTS These findings have revealed a strong correlation between lncRNA-ENST levels and the apoptotic and autophagic status of BMSCs. On the one hand, the over-expression of lncRNA-ENST, as determined by Cell Counting Kit-8 assays, increased the expression of autophagy markers LC3B, ATG7, and ATG5. On the other hand, it reduced apoptosis and boosted BMSC viability. In co-cultures with BEAS-2B cells, lncRNA-ENST overexpression also improved cell vitality. Additionally, by downregulating miR-539 and upregulating c-MYC, lncRNA-ENST was found to influence mitochondrial membrane potential, enhance BMSC autophagy, mitigate apoptosis and lower the secretion of pro-inflammatory cytokines interleukin-6 and interleukin-1β. Collectively, within the in vitro framework, these results have highlighted the therapeutic potential of BMSCs in ALI and the pivotal regulatory role of lncRNA-ENST in miR-539 and apoptosis in lipopolysaccharide-stimulated BEAS-2B cells.
CONCLUSION Our in vitro results show that enhanced lncRNA ENST expression can promote BMSC proliferation and viability by modulating the miR-539/c-MYC axis, reduce apoptosis and induce autophagy, which has suggested its therapeutic potential in the treatment of ALI.
Collapse
Affiliation(s)
- Ye-Zhou Shen
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Guang-Ping Yang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Qi-Min Ma
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Yu-Song Wang
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Xin Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
6
|
Kazemi M, Sanati M, Shekari Khaniani M, Ghafouri-Fard S. A review on the lncRNA-miRNA-mRNA regulatory networks involved in inflammatory processes in Alzheimer's disease. Brain Res 2025; 1856:149595. [PMID: 40132722 DOI: 10.1016/j.brainres.2025.149595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/21/2025] [Indexed: 03/27/2025]
Abstract
Alzheimer's disease is a progressive neurodegenerative condition that is the most frequent reason for dementia. Due to the increasing trend of aging in societies, it will place a large social and financial burden on society. Although beta amyloid plaques and the formation of neurofibrillary tangles are mentioned as the main events in this disorder, the exact molecular pathology and inflammatory regulatory networks involved in neuroinflammatory events, as a fundamental pathogenic mechanism remain unknown. Understanding these molecular network pathways in addition to helping to understand the pathogenesis of Alzheimer's disease, can also help in the early diagnosis as well as the control of inflammatory processes that are involved in its progression. So, in this study, we intend to have an overview on the regulatory lncRNAs of Alzheimer's disease and their related miRNA and mRNAs, as well as the relationship of these regulatory pathways with inflammatory processes, so that we can provide a perspective for future studies in the field of diagnosis and possibly treatment of this disorder.
Collapse
Affiliation(s)
- Masoumeh Kazemi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahla Sanati
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Chen L, Xu L, Zhang Y, Xia H. Dioscin alleviates the dysfunction of fibroblast-like synoviocytes by circ_0008267/miR-942-5p/FKBP5 axis during rheumatoid arthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03872-y. [PMID: 40116870 DOI: 10.1007/s00210-025-03872-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/31/2025] [Indexed: 03/23/2025]
Abstract
Dioscin is a natural, bioactive steroid saponin that has the antiarthritic activity. Circular RNAs (circRNAs) are stable noncoding RNAs involving in the pathogenesis of rheumatoid arthritis (RA). Here, this study aimed to probe the role and mechanism of dioscin and circ_0008267 in RA progression. Cell proliferation, apoptosis, invasive, and migratory abilities, as well as inflammatory response were evaluated by CCK-8 assay, EdU assay, flow cytometery, transwell assay, wound healing assay, and ELISA analysis, respectively. Levels of genes and protein were tested by qRT-PCR and western blotting. The interaction between miR-942-5p and circ_0008267 or FK506-binding protein 5 (FKBP5) was confirmed using dual-luciferase reporter and RNA pull-down assays. Dioscin treatment was demonstrated to suppress RA-FLS proliferation, invasion, migration, and inflammatory response, but induced cell apoptosis. Circ_0008267 is a stable circRNA, and was increased in RA samples. Moreover, its expression was reduced by dioscin in RA-FLS, overexpression of circ_0008267 reversed the effects of dioscin on RA-FLS. Mechanistically, circ_0008267 acted as a sponge for miR-942-5p, which targeted FKBP5. Dioscin reduced FKBP5 expression, but elevated miR-942-5p level in RA-FLS. MiR-942-5p inhibition or FKBP5 upregulation abolished the inhibitory effects of dioscin on RA-FLS dysfunction. Moreover, circ_0008267 deficiency impaired RA-FLS proliferation, invasion, migration, and inflammation through regulating FKBP5. Dioscin suppressed the proliferation, invasion, migration, and inflammatory response in RA-FLS via circ_0008267/miR-942-5p/FKBP5 axis, providing new insights for RA prevention.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Rheumatology, General Hospital of Central Theater Command, No. 627 Wuyi Road, Wuchang District, Wuhan, 430070, Hubei, China.
| | - Li Xu
- Department of Cardiovascular Medicine, Guiqian International General Hospital, Guiyang City, 550024, Guizhou Province, China
| | - Yujing Zhang
- Department of Rheumatology, General Hospital of Central Theater Command, No. 627 Wuyi Road, Wuchang District, Wuhan, 430070, Hubei, China
| | - Hao Xia
- Medical College of Wuhan University of Science and Technology, Wuhan, 430070, Hubei, China
| |
Collapse
|
8
|
Gu X, Li T, Yin X, Zhai P, Jiang D, Sun D, Yan H, Wang B. Exosomes Derived from Metformin-Pretreated BMSCs Accelerate Diabetic Wound Repair by Promoting Angiogenesis Via the LINC-PINT/miR-139-3p/FOXC2 Axis. Stem Cell Rev Rep 2025:10.1007/s12015-025-10860-5. [PMID: 40111729 DOI: 10.1007/s12015-025-10860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Chronic trauma is a prevalent and significant complication of diabetes. Mesenchymal stem cell(MSC)-derived exosomes (Exos) have been reported to accelerate the healing of chronic diabetic wounds. MSCs pretreated with chemical or biological factors were reported to enhance the biological activity of MSC-derived exosomes. Hence, this study investigated the role of exosomes derived from bone marrow mesenchymal stem cells (BMSCs) pretreated with metformin (MET) on diabetic wound healing. The results showed that MET-Exos promoted endothelial cell migration, tube formation, and angiogenesis, leading to accelerated wound healing in diabetic mice. Mechanistically, MET-Exos upregulated LINC-PINT, which, through competitive binding to miR-139-3p, activated FOXC2, a key regulator of angiogenesis. These data reveal that MET-Exos might promote revascularization and wound healing through the LINC-PINT/miR-139-3p/FOXC2 axis, showing its potential as a therapeutic modality for diabetic wounds.
Collapse
Affiliation(s)
- Xiaobao Gu
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Teng Li
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangyang Yin
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengbo Zhai
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Deyu Jiang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ding Sun
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongxu Yan
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Wang
- Department of Vascular Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
9
|
Wang Z, Su X, Zhan Z, Wang H, Zhou S, Mao J, Xu H, Duan S. miR-660: A novel regulator in human cancer pathogenesis and therapeutic implications. Gene 2025; 953:149434. [PMID: 40120868 DOI: 10.1016/j.gene.2025.149434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression. Among these, miR-660, located on chromosome Xp11.23, is increasingly studied for its role in cancer due to its abnormal expression in various biological contexts. It is regulated by 8 competing endogenous RNAs (ceRNAs), which adds complexity to its function. miR- 660 targets 19 genes involved in 6 pathways such as PI3K/AKT/mTOR, STAT3, Wnt/β-catenin, p53, NF‑κB, and RAS, influencing cell cycle, proliferation, apoptosis, and invasion/migration. It also plays a role in resistance to chemotherapies like cisplatin, gemcitabine, and sorafenib in lung adenocarcinoma (LUAD), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC), thus highlighting its clinical importance. Additionally, leveraging liposomes as nanocarriers presents a promising avenue for enhancing cancer drug delivery. Our comprehensive study not only elucidates the aberrant expression patterns, biological functions, and regulatory networks of miR-660 and its ceRNAs but also delves into the intricate signaling pathways implicated. We envisage that our findings will furnish a robust framework and serve as a seminal reference for future investigations of miR-660, fostering advancements in cancer research and potentially catalyzing breakthroughs in cancer diagnosis and treatment paradigms.
Collapse
Affiliation(s)
- Zehua Wang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhiqing Zhan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hangxuan Wang
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shuhan Zhou
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Jiasheng Mao
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Hening Xu
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Saadh MJ, Hamid JA, Malathi H, Kazmi SW, Omar TM, Sharma A, Kumar MR, Aggarwal T, Sead FF. SNHG family lncRNAs: Key players in the breast cancer progression and immune cell's modulation. Exp Cell Res 2025; 447:114531. [PMID: 40118265 DOI: 10.1016/j.yexcr.2025.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Breast cancer, a highly prevalent form of cancer worldwide, has observed a steady increase in its prevalence over the past few decades. This rise can be attributed to the complex nature of the disease, characterized by its heterogeneity, ability to metastasize, and resistance to various treatment. In the field of cancer research, long non-coding RNAs (lncRNAs) are of special interest, which play an important role in the development and progression of various tumors, including breast cancer. LncRNAs affect the tumor microenvironment by attracting diverse immunosuppressive factors and controlling the differentiation of immune cells, often referred to as myeloid and lymphoid cells, which contributes to immune escape of tumor cells. Among the lncRNA families, the small nucleolar RNA host gene (SNHG) family has been found to be dysregulated in breast cancer. These SNHGs have been implicated in crucial cellular processes such as cell proliferation, invasion, migration, resistance to therapies, apoptosis, as well as immune cell regulation and differentiation. Consequently, they have great potential as diagnostic and prognostic biomarkers as well as potential therapeutic targets for breast cancer. In this comprehensive review, we aim to summarize the recent advances in the study of SNHGs in breast cancer pathogenesis and their role in regulating the activity of immune cells in the tumor microenvironment through affecting SNHGs/miRNA/mRNA pathways, with the aim of providing new insights into the treatment of breast cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Nineveh, Iraq
| | - Ashish Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Tushar Aggarwal
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Fadhil Feez Sead
- Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
11
|
Qi D, Wu C, Hao Z, Zhang Z, Liu L. Prediction of lncRNA-miRNA interaction based on sequence and structural information of potential binding site. Int J Biol Macromol 2025; 307:142255. [PMID: 40107526 DOI: 10.1016/j.ijbiomac.2025.142255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/26/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) act as molecular sponges for microRNAs (miRNAs) and indirectly regulate gene expression. Currently, sequence-based prediction methods for lncRNA-miRNA interactions primarily rely on extracting features from full-length sequences, which suffers from the disadvantage of information redundancy. RESULTS In this study, we proposed a machine learning method called BSILMI, which predicts lncRNA-miRNA interactions based on sequence and structural information of potential binding site. BSILMI employs XGBoost and focuses on information from potential binding sites between lncRNAs and miRNAs, including the binding free energy, binding site scores, and unpaired probability of RNA folding. BSILMI outperformed LncMirNet, which is a state-of-the-art method. Additionally, we presented a new framework for negative sampling, in which potential interaction pairs are eliminated through sequence similarity alignment. This improves the reliability of the negative sample set. Finally, the key factors influencing the predictions were analyzed using SHAP feature importance analysis. CONCLUSIONS Our results demonstrated that binding site information plays a crucial role in predicting lncRNA and miRNA interactions. This provides new insights into the research of RNA interactions.
Collapse
Affiliation(s)
- Danyang Qi
- School of Physical Science and Technology, Key Laboratory of Magnetism and Magnetic Materials for Higher Education in Inner Mongolia Autonomous Region, Baotou Teachers' College, Baotou, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Chengyan Wu
- School of Physical Science and Technology, Key Laboratory of Magnetism and Magnetic Materials for Higher Education in Inner Mongolia Autonomous Region, Baotou Teachers' College, Baotou, China.
| | - Zhihong Hao
- School of Physical Science and Technology, Key Laboratory of Magnetism and Magnetic Materials for Higher Education in Inner Mongolia Autonomous Region, Baotou Teachers' College, Baotou, China
| | - Zheng Zhang
- Computer Science and Information Systems, Murray State University, Murray, USA
| | - Li Liu
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| |
Collapse
|
12
|
Chen S, Li Z, Hu M, Yu Y, Liu B, Saiyin W, Li J. Triptolide Treatment for Oral Squamous Cell Carcinoma by Regulating the LncRNA-MSTRG.24214.1/MiRNA-939-5p/LCN2 Axis. J Oral Pathol Med 2025. [PMID: 40097309 DOI: 10.1111/jop.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 03/19/2025]
Abstract
BACKGROUND Although triptolide has demonstrated efficacy in treating oral squamous cell carcinoma (OSCC), its precise molecular mechanism remains unclear. This study investigated the mechanism underlying triptolide's action in lncRNA-mediated competing endogenous RNA (ceRNA) regulation. METHODS The impact of triptolide on OSCC in vivo was validated using a xenograft tumor model. Whole-transcriptome sequencing and bioinformatics analysis were conducted to construct the lncRNA-miRNA-mRNA regulatory network. Relative gene and protein expression levels were confirmed using qRT-PCR and Western blot. Dual-luciferase assays were performed to assess target interactions, while cell proliferation was measured using CCK8 assays, and cell migration and invasion were evaluated via wound healing and transwell assays. RESULTS Triptolide markedly reduced proliferation, migration, and invasion in Cal27 and Tca8113 cells. After 22 days of triptolide treatment, the tumor volume of mice gradually shrank. This led to significant upregulation of cleaved Caspase-3 and Bax, alongside downregulation of Bcl-2. Transcriptome sequencing and bioinformatics analysis identified 266 differentially expressed mRNAs, 528 lncRNAs, and 85 miRNAs. Enhanced expression of lncRNA MSTRG.24214.1 and mRNA LCN2, along with reduced expression of miR-939-5p, was observed in the triptolide group. CONCLUSIONS The lncRNA-miRNA-mRNA ceRNA network associated with triptolide's impact on OSCC was successfully established. Triptolide suppressed OSCC development and progression both in vitro and in vivo, potentially through modulation of the MSTRG.24214.1-miR-939-5p-LCN2 axis. These findings offer a solid foundation for future personalized triptolide-based therapeutic approaches.
Collapse
Affiliation(s)
- Siyan Chen
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhengmiao Li
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Menglin Hu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Yu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Liu
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wuliji Saiyin
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral Implant Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jichen Li
- The First Affiliated Hospital of Harbin Medical University, School of Stomatology, Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Lan M, Qin S, Wei J, Wu L, Lu Z, Huang W. The SLC26A4-AS1/NTRK2 axis in breast cancer: insights into the ceRNA network and implications for prognosis and immune microenvironment. Discov Oncol 2025; 16:329. [PMID: 40090984 PMCID: PMC11911282 DOI: 10.1007/s12672-025-02080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Breast cancer is a leading malignancy in women, with mortality disparities between developed and underdeveloped regions. Accumulating evidence suggests that the competitive endogenous RNA (ceRNA) regulatory networks play paramount roles in various human cancers. However, the complexity and behavior characteristics of the ceRNA network in breast cancer progression have not been fully elucidated. The expression profiles of three RNAs (long non-coding RNAs [lncRNAs], microRNAs [miRNAs], and mRNAs) were extracted from breast cancer and adjacent samples were sourced from the TCGA database. The SLC26A4-AS1- hsa-miR-19a-3p-NTRK2 ceRNA network related to the prognosis of breast cancer was obtained by performing bioinformatics analysis. Importantly, we identified the SLC26A4-AS1/NTRK2 axis within the ceRNA network through correlation analysis and found it to be a potential prognostic model in clinical outcomes based on Cox regression analysis. Moreover, methylation analysis suggests that the aberrant downregulation of the SLC26A4-AS1/NTRK2 axis might be attributed to hypermethylation at specific sites. Immune infiltration analysis indicates that the SLC26A4-AS1/NTRK2 axis may have implications for the alteration of the tumor immune microenvironment and the emergence and progression of immune evasion in breast cancer. Finally, we validated the expression of SLC26A4-AS1-hsa-miR-19a-3p-NTRK2 in breast cancer cell lines. In summary, the present study posits that the SLC26A4-AS1/NTRK2 axis, based on the ceRNA network, could be a novel and significant prognostic factor associated with breast cancer diagnosis and outcomes.
Collapse
Affiliation(s)
- Mengqiu Lan
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Shuang Qin
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Jingjing Wei
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Lihong Wu
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Zhenni Lu
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Wenjie Huang
- Department of Reproductive Medicine, Guangzhou Women and Children'S Medical Center Liuzhou Hospital, Liuzhou, 545616, Guangxi, China.
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001, Guangxi, China.
| |
Collapse
|
14
|
Muge Q, Qing Y, Bao W, Bao X, Gaowa A, Chen L. LncRNA CCAT1 decreases the sensitivity to doxorubicin in lung cancer cells by regulating miR-181a/CPEB2 axis. Med Oncol 2025; 42:109. [PMID: 40089944 DOI: 10.1007/s12032-025-02668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Recently, long non-coding RNAs have gained an increasing amount of attention in treating lung cancer. However, a full understanding of how CCAT1 lncRNA works against proliferation is not yet available. Therefore, we assess the impact of CCAT1 on the lung cancer cell proliferation, apoptosis, and doxorubicin (DOX) sensitivity, and the involvement of miR-181a/CPEB2 pathway. For this purpose, lung cancer A549 cells were exposed to siRNA against CCAT1 and DOX and cell viability were measured by MTT assay. ELISA was used to evaluate cell apoptosis. The protein and mRNA expression levels of apoptotic markers, miR-181a and CPEB2 were measured by western blot and qRT-PCR. Knock-downing CCAT1 inhibited the cell viability of A549 cells. In addition, si-CCAT1 treatment increased apoptosis in both cell lines via modulating the anti- and pro-apoptotic markers. Si-CCAT1 increased the levels miR-181a and decreased CPEB2 in A549 cells. In conclusion, our study has provided strong evidence that lncRNA CCAT1 decreased the sensitivity to doxorubicin in lung cancer cells by regulating the miR-181a/CPEB2 axis.
Collapse
Affiliation(s)
- Qi Muge
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Yu Qing
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Wenshan Bao
- The Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, Inner Mongolia, China
| | - Xiangrong Bao
- Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Arong Gaowa
- Inner Mongolia University for Nationalities, Tongliao, 028000, China
| | - Lanying Chen
- National Engineering Research Center of Traditional Chinese Medicine Solid Preparation Manufacturing Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
15
|
Shi H, Zhao XH, Peng Q, Zhou XL, Liu SS, Sun CC, Cao QY, Zhu SP, Sun SY. Green tea polyphenols alleviate di (2-ethylhexyl) phthalate-induced testicular injury in mice via lncRNA-miRNA-mRNA axis†. Biol Reprod 2025; 112:485-500. [PMID: 39658192 DOI: 10.1093/biolre/ioae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer known for its toxic effects on the male reproductive system. Green tea polyphenols (GTPs), recognized for their antioxidant and anti-inflammatory properties, have demonstrated protective effects on various organs, but the mechanisms by which GTPs mitigate DEHP-induced testicular damage remain unclear. Healthy male C57BL/6J mice were divided into five groups: control, DEHP, DEHP + GTP treatment, GTP, and oil groups. Testicular histopathological changes were assessed using hematoxylin-eosin (H&E), periodic acid-Schiff (PAS), and Masson staining. Ultrastructural alterations were examined through transmission electron microscopy. High-throughput sequencing was performed to analyze the expression of mRNA, miRNA, and lncRNA and construct an lncRNA-miRNA-mRNA regulatory network for identifying key regulatory axes. Mice in the DEHP group exhibited significant testicular damage, including reduced sperm count, mitochondrial deformation, and endoplasmic reticulum dilation. GTP treatment notably improved testicular structural integrity, restored sperm count, and alleviated mitochondrial and endoplasmic reticulum damage. Additionally, DEHP significantly increased activated CD8+ T cells, which were reduced with GTP treatment. High-throughput sequencing revealed that GTP treatment exerted protective effects through the regulation of six key lncRNA-miRNA-mRNA axes. GTPs significantly protect against DEHP-induced testicular damage, and the lncRNA-miRNA-mRNA regulatory axes play a potential role in this process.
Collapse
Affiliation(s)
- Heng Shi
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
- Department of Gastroenterology, The Central Hospital of Shaoyang, No. 360, Baoqing Middle Road, Hongqi Street, Daxiang District, Shaoyang 42200, China
| | - Xin-Hai Zhao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
| | - Qin Peng
- Department of Gastroenterology, The Central Hospital of Shaoyang, No. 360, Baoqing Middle Road, Hongqi Street, Daxiang District, Shaoyang 42200, China
| | - Xian-Ling Zhou
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
| | - Si-Si Liu
- Department of Pathology, The Central Hospital of Shaoyang, No. 360, Baoqing Middle Road, Hongqi Street, Daxiang District, Shaoyang 42200, China
| | - Chuan-Chuan Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
| | - Qiu-Yu Cao
- Department of Gynecologic, Jiangmen Hospital Affiliated to Jinan University, No. 30, Huayuan East Road, Jiangmen 529000, China
| | - Shi-Ping Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
| | - Sheng-Yun Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, No. 613 West Huangpu Ave, Guangzhou 510630, China
| |
Collapse
|
16
|
Ragusa R, Bufano P, Tognetti A, Laurino M, Caselli C. Recent Evidences of Epigenetic Alterations in Chronic Obstructive Pulmonary Disease (COPD): A Systematic Review. Int J Mol Sci 2025; 26:2571. [PMID: 40141213 PMCID: PMC11942187 DOI: 10.3390/ijms26062571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a heterogeneous inflammatory condition characterized by progressive airflow limitation, which may be caused by genetic and environmental factors. Furthermore, epigenetic mechanisms could provide valuable insights into the complex interactions between environment and genes and subsequent development of the disease. The aim of this study is to provide a systematic review of the latest knowledge on epigenetic modifications that characterize COPD, summarizing epigenetic factors that could serve as potential novel biomarkers and therapeutic targets for the treatment of COPD patients. We queried the PubMed and Scopus electronic databases with specific keywords, in May 2024, according to the PRISMA guidelines, and articles were included if they met all the inclusion criteria and survived a quality assessment. We identified 5414 publications in our systematic search. Among them, only 51 articles met the criteria of COPD-associated epigenetic modifications in human patients compared to the control group. Eight studies described DNA methylation, one study histone modifications, and forty-two studies non-coding RNAs. Apoptosis and inflammatory pathways have been found to be the main mechanisms regulated by epigenetic elements in COPD patients. In addition, non-coding RNAs may be useful as biomarkers or therapeutic targets of pulmonary disease. Future studies will be needed to confirm the role of epigenetic elements associated with COPD.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (P.B.); (M.L.)
| | - Pasquale Bufano
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (P.B.); (M.L.)
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56124 Pisa, Italy
| | | | - Marco Laurino
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (P.B.); (M.L.)
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy; (P.B.); (M.L.)
- Fondazione Toscana Gabriele Monasterio, 56124 Pisa, Italy
| |
Collapse
|
17
|
Du Y, Zhu S, Liu X, Sun Y, Cui T, Liu J, Zhang W, Shao S. LncRNA HOTAIR regulates the expression of MRP1 gene through the mir-6807-5p/Egr1 axis to affect the multidrug resistance of lung cancer cells. Gene 2025; 940:149216. [PMID: 39756551 DOI: 10.1016/j.gene.2025.149216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Multi-drug resistance-associated protein 1 (MRP1) plays critical roles in the multi-drug resistance (MDR) of cancer cells, LncRNA HOTAIR is closely related to MDR in lung cancer, however, the effects of HOTAIR on MRP1 expression and MDR in lung cancer cells (A549/DDP) remain unknown. In this study, the effects of HOTAIR on MRP1 gene expression and MDR in A549/DDP cells were monitored. LncRNA HOTAIR was upregulated in A549/DDP cells, and overexpression of HOTAIR promoted MRP1 expression and MDR development. The opposite trend was observed when HOTAIR was silenced in A549/DDP cells. To uncover the role of LncRNA HOTAIR in the MDR of human lung cancer, the effects of Egr1 on MRP1 gene expression and MDR in A549/DDP cells were monitored. The results showed that Egr1 could bind to the MRP1 promoter at site -53/-42 bp and regulate MRP1 expression. Egr1 knock-down reduced MRP1 expression, while Egr1 overexpression increased it. Further, the results demonstrated that LncRNA HOTAIR mediated the effects of Egr1 on MRP1 and MDR via sponging of miR-6807-3p. Moreover, miR-6807-3p exerts its function by targeting the Egr1 3'UTR. In conclusion, the results revealed the novel HOTAIR/miR-6807-3p/Egr1 axis in the regulation of MRP1 expression and MDR in lung cancer cells.
Collapse
Affiliation(s)
- Yang Du
- Department of Life Science and Agroforestry, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China
| | - Shaowei Zhu
- Department of Life Science and Agroforestry, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China
| | - Xianglu Liu
- Department of Life Science and Agroforestry, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China
| | - Yingning Sun
- Department of Life Science and Agroforestry, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China; Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China
| | - Tingting Cui
- Department of Life Science and Agroforestry, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China; Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China
| | - Jiupeng Liu
- Department of Life Science and Agroforestry, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China
| | - Weiwei Zhang
- Department of Life Science and Agroforestry, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China; Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China.
| | - Shuli Shao
- Department of Life Science and Agroforestry, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China; Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar University, 42 Wenhua Street, Qiqihar 161006, Heilongjiang Province, China.
| |
Collapse
|
18
|
Fan B, Zhang R, Kang Y, Mao X, Shi X, Guo J, Wang Z. Analysis of circRNA expression profile of Litopenaeus vannamei under pH and alkalinity interactive stress and verification of novel_circ_021024 and novel_circ_004981 regulating stress compounds metabolism. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101469. [PMID: 40080954 DOI: 10.1016/j.cbd.2025.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
The global issue of salinization has made the use of saline-alkaline water in aquaculture increasingly vital. CircRNAs are a new type of endogenous non-coding RNA. Under high saline-alkaline stress, how circRNAs regulate the stress response of Litopenaeus vannamei, especially the mechanism of its immune and metabolic functions, is still unclear. This study aimed to analyze the expression profile of circRNAs and explore their response mechanisms in L. vannamei under the combined influence of high alkalinity and high pH. The results indicated that 127, 157, and 146 differentially expressed circRNAs (DECs) and 1401, 1547, and 1540 differentially expressed mRNAs (DEGs) were identified in the high-pH, alkalinity, and interaction groups, respectively. KEGG enrichment analysis revealed that DECs were mainly enriched in pathways such as sulfur metabolism, glycerophospholipids, and oxidative phosphorylation. The activities of antioxidant-related enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GSH - PX), increased, while the activities of energy - metabolism-related enzymes, like hexokinase (HK) and pyruvate kinase (PK), decreased. By combining weighted gene-related network analysis (WGCNA) with circRNA - mRNA data, it was found that the expression levels of essential genes related to metabolisms, such as novel_circ_007011, novel_circ_004981, and novel_circ_021024, declined. Gene-silencing experiments demonstrated that novel_circ_004981 and novel_circ_021024 could regulate the expression of glutathione peroxidase (GPx) and carbonic anhydrase - 3 (cah - 3) and further regulate the metabolic pathway and antioxidant system of L. vannamei. This study provides theoretical support for further understanding the stress-response mechanisms of circRNAs in L. vannamei under high-pH and alkalinity stress and offers a scientific basis for the development of saline-alkali aquaculture.
Collapse
Affiliation(s)
- Baoyi Fan
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Ruiqi Zhang
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China.
| | - Yujun Kang
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Xue Mao
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Xiang Shi
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Jintao Guo
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| | - Ziguo Wang
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmeng village, Anning District, Lanzhou 730070, Gansu Province, China
| |
Collapse
|
19
|
Saadh MJ, Ahmed HH, Kareem RA, Bishoyi AK, Roopashree R, Shit D, Arya R, Joshi KK, Sameer HN, Yaseen A, Athab ZH, Adil M. The hidden messengers: Tumor microenvironment-derived exosomal ceRNAs in gastric cancer progression. Pathol Res Pract 2025; 269:155905. [PMID: 40073646 DOI: 10.1016/j.prp.2025.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
The tumor microenvironment (TME) plays a crucial role in the development and progression of gastric cancer (GC). The TME comprises a network of cancer cells, immune cells, fibroblasts, endothelial cells, and extracellular matrix components, which provide a supportive niche for cancer cells. This study investigates the role of TME-derived exosomal competitive endogenous RNAs (ceRNAs), particularly long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as major regulating agents in GC development. Exosomal ceRNAs control gene expression across several TME components, amplifying cancer hallmarks like cell proliferation, invasion, metastases, and chemoresistance. They promote dynamic interplay between cancer cells and adjacent stromal cells, enabling tumor development through immune suppression, angiogenesis, and epithelial-mesenchymal transition (EMT). Exosomal ceRNAs can modify the TME, creating a pro-tumorigenic milieu and preparing cancer cells to avoid immunological responses, defy death, and adapt to therapeutic pressures. This review highlights the understudied interactions between the TME and exosomal ceRNAs in gastric cancer and emphasizes their potential utility as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Ashok Kumar Bishoyi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab 140401, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab 140307, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand 248002, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
20
|
Xiao Q, Yang S, Yang Y, Ni H, Li Z, Wang C, Liu W, Han Y, Li Y, Zhang Y. LncRNA A2ml2 inhibits fatty liver hemorrhage syndrome progression and function as ceRNA to target LPL by sponging miR-143-5p. Poult Sci 2025; 104:105003. [PMID: 40073631 PMCID: PMC11950757 DOI: 10.1016/j.psj.2025.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025] Open
Abstract
Fatty liver hemorrhage syndrome (FLHS) is the most common metabolic diseases in laying hens during the late-laying period, and it causes a significant economic burden on the poultry industry. The competing endogenous RNA plays crucial roles in the occurrence and development of fatty liver. Based on the previously constructed lncRNA-miRNA-mRNA networks, we selected the axis of ENSGALT00000079786-LPL-miR-143-5p for further study to elucidate its mechanistic role in development of fatty liver. In this study, we identified a novel highly conserved lncRNA (ENSGALT00000079786) in poultry, which we designated as lncRNA A2ml2 based on its chromosomal location. Fluorescent in situ hybridization (FISH) revealed that lncRNA A2ml2 was localized in both the nucleus and cytoplasm. Dual-luciferase reporter assay validated the targeted relationship between lncRNA A2ml2, miR-143-5p, and the LPL gene. To further analyze the lncRNA A2ml2 and miR-143-5p function, lncRNA A2ml2 overexpression vector was successfully constructed and transfected into Leghorn male hepatocellular (LMH) cells, which could remarkably inhibit cellular lipid deposition was detected by oil red staining (P < 0.01), the opposite occurred for miR-143-5p (P < 0.01). qPCR demonstrated an inverse correlation between miR-143-5p expression and lncRNA A2ml2 expression, and confirmed that miR-143-5p directly target lncRNA A2ml2. Similarly, we found an inverse correlation between expression of LPL and the expression of miR-143-5p. To further investigate the interactions among these three factors and their effects on cellular lipid metabolism, we assessed the expression levels of LPL by co-transfecting lncRNA A2ml2 with miR-143-5p mimic and miR-143-5p mimic binding site mutants. Co-transfection experiments showed that miR-143-5p diminished the promoting effect of lncRNA A2ml2 on LPL. Meanwhile, miR-143-5p has the capacity to mitigate the suppressive impact of lncRNA A2ml2 overexpression on lipid accumulation in LMH cells. The results revealed that lncRNA A2ml2 attenuated hepatic lipid accumulation through negatively regulating miR-143-5p and enhancing LPL expression in LMH cells. Our findings offer novel insights into ceRNA-mediated in FLHS and identify a novel lncRNA as a potential molecular biomarker.
Collapse
Affiliation(s)
- Qingxing Xiao
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Sibao Yang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, No.126 Xiantai street of Changchun city, Jilin, 130031, China
| | - Yuwei Yang
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Hongyu Ni
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Zongdi Li
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Chengwen Wang
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Wuyang Liu
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yuxin Han
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yonghong Zhang
- College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
21
|
Arabfard M, Parvin S, Ghanei M. Identification and characterization of lncRNA-miRNA-mRNA tripartite network of sulfur mustard exposed patients. Int Immunopharmacol 2025; 149:114204. [PMID: 39919453 DOI: 10.1016/j.intimp.2025.114204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/09/2025]
Abstract
BACKGROUND Alkylating cellular DNA, sulfur mustard (SM) is a chemical warfare agent that causes severe damage to the skin, eyes, and respiratory tract. Exposure can result in painful burns, chronic lung disease, immune system suppression, and an increased chance of developing cancer. The symptoms of itching, redness, and blistering are frequently followed by long-term genetic and psychological damage. By exploring the interaction between microRNA (miRNA), mRNA, and long non-coding RNA (lncRNA) in these patients, it is possible to identify gene expression patterns that could reduce cancer risk or improve treatment outcomes. METHODS The purpose of this study is to examine transcriptome data from PBMC samples obtained from sulfur mustard exposed patients (Mild, Moderate, Severe) and healthy Control, separated into six groups (SC, SMo, SMi, MoMi, MoC, and MiC). miRNA, lncRNA, and mRNA interactions were explored using miRNA, lncRNA, and mRNA tools and databases, such as miRTarBase, miRDB, miRNET, miRcode, and DIANA. A tripartite mRNA-miRNA-lncRNA network was modeled with the aid of Cytoscape software, and functional analyses were performed to gain an understanding of molecular pathways using GO and KEGG functional analyses. RESULTS By extracting miRNAs shared between lncRNAs and mRNAs, six groups were identified and Cytoscape software was used to visualize the lncRNA-miRNA-mRNA network. Betweenness, closeness, and degree filters identified key genes, with INO80D and lncRNAs MINCR, LINC00662, NEAT1, and DHRS4-AS1, along with miRNAs hsa-miR-1-3p, hsa-miR-124-3p, and hsa-let-7b-5p as the main players in all groups. CONCLUSION The interaction between key genes involved in chemical injuries and their association with genes implicated in lung cancer is highlighted in this study. By targeting these genes and their proteins, we can improve treatment strategies for sulfur mustard exposed patients and potentially reduce lung cancer risk.
Collapse
Affiliation(s)
- Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Li B, Li H, Cheng X, Fang Y, Liu Z, Zhao P, Jin L. Long non-coding RNA LINC01232 promotes malignancy of prostate cancer through regulation of miR-181a-5p/IRS2 pathway: Ki-67 protein molecular structure and function. Int J Biol Macromol 2025; 306:141817. [PMID: 40057086 DOI: 10.1016/j.ijbiomac.2025.141817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
The expression level of long non-coding RNA (lncRNA), which functions in a manner similar to that of microrNA, has been confirmed to be closely associated with the regulatory network of multiple cancers. The primary focus of this particular research endeavor was to elucidate the mechanism of action of LINC01232 within the context of prostate cancer, specifically examining how it influences the proliferation of prostate cancer cells by interacting with the miR-181a-5p/IRS2 pathway. Additionally, the study aimed to delve deeper into the role of the Ki-67 protein within this intricate process. To assess the expression and localization of the Ki-67 protein in prostate cancer cells, researchers employed a combination of immunofluorescence and immunohistochemistry techniques. The expression level of Ki-67 protein decreased significantly after down-regulation of LINC01232, indicating that the cell proliferation activity was inhibited. Immunofluorescence and immunohistochemical experiments further confirmed that the expression of Ki-67 protein in prostate cancer cells was positively correlated with the expression of LINC01232.
Collapse
Affiliation(s)
- Baisen Li
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China
| | - Huiying Li
- Outpatient Department of West China Hospital, Sichuan University, China
| | - Xiangming Cheng
- Department of Urology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Yudong Fang
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital. No. 230 Baoding Road, Hongkou District, Shanghai 200082, China
| | - Zhe Liu
- Department of Vascular Diseases, Shanghai TCM-Integrated Hospital. No. 230 Baoding Road, Hongkou District, Shanghai 200082, China.
| | - Pei Zhao
- Department of Intensive Care Unit, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China. 55# Renmin South Road, Wuhou District, Chengdu 610041, Sichuan, China.
| | - Li Jin
- School of Pharmacy, Faculty of Medicine & Laboratory of Drug Discovery from Natural Resources and Industrialization, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
23
|
Tang H, Lin Y, Hu J. Long Non-Coding RNA Osr2 Promotes Fusarium solani Keratitis Inflammation via the miR-30a-3p/ Xcr1 Axis. Invest Ophthalmol Vis Sci 2025; 66:27. [PMID: 40067293 PMCID: PMC11918059 DOI: 10.1167/iovs.66.3.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Purpose Fungal keratitis (FK) is a challenging and sight-threatening corneal disease caused by fungal infections. Although long noncoding RNAs (lncRNAs) have been explored in various infectious diseases, their specific roles in FK remain largely unexplored. Methods A mouse model of FK was created by infecting corneal stromal cells with Fusarium solani. High-throughput lncRNA expression profiling was conducted on FK-affected corneal tissues to identify differentially expressed lncRNAs. Reverse transcription quantitative PCR (RT-qPCR) was used to validate the results. A competing endogenous RNA (ceRNA) network was constructed. Additionally, a specific antisense oligonucleotide (ASO) targeting lncRNA ENSMUST00000226838/Osr2 (Osr2) was developed for therapeutic evaluation. Inflammatory markers IL-1β, IL-6, and TNF-α were measured, and corneal inflammation was assessed through histological analysis and slit-lamp examination. Fluorescent in situ hybridization (FISH) was used to confirm Osr2 localization, whereas a dual-luciferase reporter assay verified interactions between Osr2 and miR-30a-3p. Results We identified 1143 differentially expressed lncRNAs in FK, with 701 upregulated and 442 downregulated. The ceRNA network analysis indicated that lncRNA Osr2 regulates Xcr1 expression through miR-30a-3p. Treatment with ASO-Osr2 significantly reduced corneal inflammation, and FISH confirmed lncRNA Osr2 distribution in both the nucleus and cytoplasm. Dual-luciferase assays demonstrated the interaction between Osr2 and miR-30a-3p, highlighting their potential roles in the progression of FK. Conclusions This study outlined the lncRNA expression profile in FK and established a ceRNA regulatory network, identifying lncRNA Osr2 as a crucial modulator of FK pathogenesis through its interaction with miR-30a-3p. These findings highlighted lncRNA Osr2 as a promising therapeutic target for the treatment of FK.
Collapse
MESH Headings
- Animals
- Fusarium/physiology
- RNA, Long Noncoding/genetics
- Mice
- Eye Infections, Fungal/microbiology
- Eye Infections, Fungal/genetics
- Eye Infections, Fungal/metabolism
- MicroRNAs/genetics
- Disease Models, Animal
- Keratitis/microbiology
- Keratitis/genetics
- Keratitis/metabolism
- Fusariosis/microbiology
- Fusariosis/genetics
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- In Situ Hybridization, Fluorescence
- Gene Expression Regulation
- Mice, Inbred C57BL
- Mice, Inbred BALB C
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Hanfeng Tang
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Yi Lin
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| | - Jianzhang Hu
- Department of Ophthalmology, Fujian Medical University Union Hospital, Fu Zhou, China
| |
Collapse
|
24
|
Yu Z, Zhang Y, Wang G, Song S, Su H, Wu Y, Zhang Y, Liu P, Liu X. The mechanism of all-trans retinoic acid-induced cleft palate may be related to the novel ENSMUST00000159153-miR-137-5p-Wnt7a and ENSMUST000000236086-miR-34b-3p-EphA10/TRPM2 ceRNA crosstalk. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104623. [PMID: 39710122 DOI: 10.1016/j.etap.2024.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Cleft palate is the most prevalent congenital condition. Cleft palate is brought on by an exogenous chemical called all-trans retinoic acid (atRA). In order to indirectly control gene expression, long chain non-coding RNAs (lncRNAs) act as competitive endogenous RNA (ceRNA) sponges. Its exact mode of action in cleft palate has not yet been determined. The purpose of this study was to determine whether lncRNAs and miRNAs regulated palatal fusion genes during the formation of cleft palate and to offer a possible course for cleft palate target gene therapy. In this work, we created a cleft palate model using atRA, conducted RNA sequencing (RNA-seq) to identify the genes that differed between the atRA-treated group and the control group, and built the lncRNA-miRNA-mRNA ceRNA network based on the projected ceRNA. The results were confirmed using a quantitative real-time polymerase chain reaction (qRT-PCR). ENSMUST00000159153-miR-137-5p-Wnt7a and ENSMUST000000236086-miR-34b-3p-EphA10/TRPM2 may be the main causes of atRA-induced cleft palate, according to the results.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Yaxin Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Guoxu Wang
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Shuaixing Song
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Hexin Su
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Pengfei Liu
- The Sixth People's Hospital of Luoyang, Luoyang 471023, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
25
|
Zhou J, Yang M, Zhao W, Zhang H, Cao L, Li Q, Wang G. Lnc-PHF3-3 aggravates the chemoresistance of osteosarcoma cells to doxorubicin via the miR-142-3p/HMGB1 axis. Transl Oncol 2025; 53:102328. [PMID: 39970626 PMCID: PMC11880707 DOI: 10.1016/j.tranon.2025.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Chemoresistance poses a significant challenge in the treatment of osteosarcoma (OS). Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of cancer biology. Despite accumulating evidence linking dysregulation of lncRNAs to chemoresistance, the specific regulatory functions and complexities involved in lncRNA-mediated modulation of doxorubicin-based chemotherapy in OS remain understudied. METHODS We examined expression levels of lncRNA Lnc-PHF3-3 and miR-142-3p in OS tissues and cell lines by lncRNA microarray profiling and qRT-PCR. Gain-of-function and loss-of-function assays were performed to examine the effect of lncRNA Lnc-PHF3-3 and miR-142-3p on chemoresistance of OS cells. Using fluorescence reporter and western blot assays, we also explored the possible mechanisms of Lnc-PHF3-3 in OS cells. RESULTS This study aimed to investigate key lncRNAs associated with chemoresistance in OS and identify potential therapeutic targets for patients with chemoresistant OS. To identify chemoresistance-related lncRNAs, microarray analysis was conducted using drug-resistant/drug-sensitive OS cell lines and chemoresistant/chemosensitive OS tissues. Among the identified candidates, a novel lncRNA called Lnc-PHF3-3 was found to be upregulated in doxorubicin-resistant OS cell lines and chemoresistant OS patients. Functional characterization revealed that Lnc-PHF3-3 promoted doxorubicin resistance both in vitro and in vivo. Further investigation revealed that Lnc-PHF3-3 acted as a sponge for microRNA miR-142-3p, and overexpression of miR-142-3p resulted in reduced chemoresistance. Additionally, the high mobility group box 1 (HMGB1) gene was identified as a direct and functional target of miR-142-3p. CONCLUSIONS We conclude that Lnc-PHF3-3 contributes to doxorubicin resistance in OS by sequestering miR-142-3p and subsequently enhancing HMGB1 expression.
Collapse
Affiliation(s)
- Jingyi Zhou
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengkai Yang
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Weisong Zhao
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - He Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Henan 450052, China
| | - Lingling Cao
- Department of Rehabilitation, Shanghai Fifth Rehabilitation Hospital, Shanghai, China.
| | - Qi Li
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Gangyang Wang
- Department of Orthopedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
26
|
Li J, Fan L, Wei J, Huang W. Elucidating the pathophysiology of polycystic ovary syndrome: Construction and analysis of a ceRNA network in cumulus cells. Reprod Biol 2025; 25:100916. [PMID: 39566253 DOI: 10.1016/j.repbio.2024.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 06/16/2024] [Indexed: 11/22/2024]
Abstract
Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder with elusive molecular mechanisms. This study explores the competitive endogenous RNA (ceRNA) regulatory network in the cumulus cells of PCOS patients. ceRNAs are transcripts like mRNAs, miRNAs, and lncRNAs that competitively bind shared miRNAs, regulating gene expression post-transcriptionally. We analyzed mRNA, microRNA (miRNA), and long non-coding RNA (lncRNA) from two cohorts: 12 PCOS patients and 11 healthy controls (dataset GSE10946), and 5 PCOS patients and 5 healthy controls (dataset GSE72274). These microarray datasets, obtained from the Gene Expression Omnibus (GEO), helped us identify differentially expressed mRNAs, miRNAs, and lncRNAs. Our analysis revealed a significant ceRNA network, which may play a crucial role in the pathophysiology of PCOS. In this network, 5 lncRNAs, 3 miRNAs, and 36 mRNAs were identified as differentially expressed. These elements form a complex regulatory schema influencing key cellular processes related to the disease, such as cell cycle regulation and response to estrogen. The HOXA11-AS-hsa-miR-454-3p-CCND2 network emerged as a potentially valuable biomarker for PCOS diagnosis, supported by Receiver Operating Characteristic (ROC) curve analysis indicating strong predictive power. Our findings suggest that the ceRNA interactions in PCOS cumulus cells provide a deeper understanding of the disease's molecular basis and offer new avenues for therapeutic intervention. This in silico study lays the groundwork for further experimental validation of these ceRNA networks as targets for PCOS treatment.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Reproductive Medicine, Guangzhou Women and Children's Medical center Liuzhou Hospital, Liuzhou, Guangxi 545616, China; Department of Reproductive Medicine, Liuzhou maternity and Child Healthcare Hospital, Liuzhou, Guangxi 545001, China; Guangxi Clinical Research Center for Obstetrics and Gynecology, China; Liuzhou Key Laboratory of Gynecologic Tumor, China
| | - Li Fan
- Department of Reproductive Medicine, Guangzhou Women and Children's Medical center Liuzhou Hospital, Liuzhou, Guangxi 545616, China; Department of Reproductive Medicine, Liuzhou maternity and Child Healthcare Hospital, Liuzhou, Guangxi 545001, China; Guangxi Clinical Research Center for Obstetrics and Gynecology, China; Liuzhou Key Laboratory of Gynecologic Tumor, China
| | - Jiajia Wei
- Department of Reproductive Medicine, Guangzhou Women and Children's Medical center Liuzhou Hospital, Liuzhou, Guangxi 545616, China; Department of Reproductive Medicine, Liuzhou maternity and Child Healthcare Hospital, Liuzhou, Guangxi 545001, China; Guangxi Clinical Research Center for Obstetrics and Gynecology, China; Liuzhou Key Laboratory of Gynecologic Tumor, China
| | - Wenjie Huang
- Department of Reproductive Medicine, Guangzhou Women and Children's Medical center Liuzhou Hospital, Liuzhou, Guangxi 545616, China; Department of Reproductive Medicine, Liuzhou maternity and Child Healthcare Hospital, Liuzhou, Guangxi 545001, China; Guangxi Clinical Research Center for Obstetrics and Gynecology, China; Liuzhou Key Laboratory of Gynecologic Tumor, China.
| |
Collapse
|
27
|
Fanis P, Morrou M, Tomazou M, Alghol HAM, Spyrou GM, Neocleous V, Phylactou LA. Identification of puberty related miRNAs in the hypothalamus of female mice. Mol Cell Endocrinol 2025; 598:112468. [PMID: 39842623 DOI: 10.1016/j.mce.2025.112468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND AIMS Puberty is a crucial developmental stage marked by the transition from childhood to adulthood, organized by complex hormonal signaling within the neuroendocrine system. The hypothalamus, a central region in this system, regulates pubertal functions through the hypothalamic-pituitary-gonadal (HPG) axis. Gonadotropin-releasing hormone (GnRH) neurons, essential in puberty control, release GnRH in a pulsatile manner, initiating the production of sex hormones. Major influence in pubertal timing has been attributed to genetic predisposition, environmental factors, and nutritional status. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as key regulators in various cellular processes by either repressing genes or activating them by inhibiting their repressors. The present study aims to investigate the involvement of miRNAs in the control of puberty. METHODS Small RNA sequencing was used to identify and compare the total population of miRNAs in the hypothalamus of female mice before, during and after puberty. Bioinformatic analysis was applied to analyse the expression profile of miRNAs with altered levels followed by pathway enrichment analysis. RESULTS Expression levels of several miRNAs were found up- or down-regulated from pre-pubertal to pubertal stage. Furthermore, monitoring the levels of these miRNAs at the post-pubertal stage revealed four expression patterns, in which pathway analysis displayed the associations of these miRNAs with developmental processes, cell cycle regulation, metabolic biosynthesis and epigenetic regulation. CONCLUSION The findings of the present study improve our understanding of the molecular pathways underlying puberty and stress the significance of miRNAs in fine-tuning gene expression within the hypothalamus during this critical developmental stage.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Morrou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Hend Abdulgadr M Alghol
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
28
|
El-Ashmawy NE, Khedr EG, Darwish RT, Ibrahim AO. Competing endogenous RNAs network and therapeutic implications: New horizons in disease research. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195073. [PMID: 39631541 DOI: 10.1016/j.bbagrm.2024.195073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Different diseases may arise from the dysregulation of non-coding RNAs (ncRNAs), which regulation is necessary for maintaining cellular homeostasis. ncRNAs are regulated by transcriptional, post-transcriptional, translational and post-translational processes. Post-transcriptional regulation of gene expression is carried out by microRNAs (miRNAs), a class of small ncRNA molecules, which can identify their target sites by a brief nucleotide sequence, known as the miRNA response element (MRE), present on the miRNA seed sequence and the target transcript. This binding between miRNAs and targets can regulate the gene expression through inhibition of translation or degradation of target messenger RNA (mRNA). The transcripts that share MREs can be involved in competition for the central miRNA pool, which could have an indirect impact on each other's regulation. This competition network is called competing endogenous RNAs network (ceRNET). Many ncRNAs, including circular RNA, pseudogene, and long non-coding RNA, as well as mRNA, a coding RNA transcript, make up ceRNET. These components play a crucial role in post-transcriptional regulation and are involved in the diagnosis and treatment of many pathological disorders. The mechanism of ceRNET and its essential components, as well as their therapeutic implications in different diseases such as cancer, diabetes mellitus, neurological, cardiovascular, hepatic and respiratory disorders were covered in this review.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Cairo 11837, Egypt
| | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Renad T Darwish
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt.
| |
Collapse
|
29
|
Vinasco-Sandoval T, Moratille S, Crechet F, Mesloub Y, Montanari J, Auvré F, Deleuze JF, Foray N, Fortunel NO, Martin MT. Long Noncoding VIM-AS1: Biomarker of Breast Fibrosis Susceptibility After Radiation Therapy and Promoter of Transforming Growth Factor Beta1-Driven Fibrosis. Int J Radiat Oncol Biol Phys 2025; 121:783-797. [PMID: 39436333 DOI: 10.1016/j.ijrobp.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024]
Abstract
PURPOSE Fibrosis is a common late complication of radiation therapy. Molecular dysregulations leading to fibrosis have been characterized for the coding part of the genome, notably those involving the TGFB1 gene network. However, because a large part of the human genome encodes RNA transcripts that are not translated into proteins, exploring the involvement of the noncoding part of the genome in fibrosis susceptibility and development was the aim of this work. METHODS AND MATERIALS Breast cancer patients having or not having developed severe breast fibrosis after radiation therapy were retrospectively selected from the COPERNIC collection. Exome sequencing and RNA-seq transcriptomic profiling were performed on 19 primary dermal fibroblast strains isolated from the patients' nonirradiated skin. Functional experiments were based on fibrogenic induction by transforming growth factor-Beta1 (TGFB1) and gene knockdown in healthy donor fibroblasts. RESULTS Coding and noncoding transcriptomes discriminated fibrosis from nonfibrosis conditions, and a signature of breast fibrosis susceptibility comprising 15 long noncoding RNAs (lncRNAs) was identified. A hazard ratio validation showed that the lncRNA vimentin antisense long noncoding RNA 1 (VIM-AS1) was the best biomarker associated with fibrosis risk. This lncRNA has not been previously associated with any fibrotic disorder, but we found it upregulated in data sets from cardiac fibrosis and scleroderma, suggesting a general role in tissue fibrosis. Functional experiments demonstrated a profibrotic action of VIM-AS1 because its knockdown reduced myofibroblast activation, collagen matrix production, and dermal organoid contraction. RNA-seq data analysis after VIM-AS1 silencing also pointed out the regulation of replication, cell cycle, and DNA repair. Mechanistically, because VIM-AS1 was found coregulated with the vimentin gene, these data support a profibrotic function of the TGFB1/VIM-AS1/vimentin axis, targeting the dynamics of fibroblast-myofibroblast transition. CONCLUSIONS Noncoding RNA analysis can provide specific biomarkers relevant to the prediction of normal tissue responses after radiation therapy, which opens perspectives of next-generation approaches for treatment, in the frame of the recent developments of RNA-based technologies.
Collapse
Affiliation(s)
- Tatiana Vinasco-Sandoval
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Sandra Moratille
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Françoise Crechet
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Yasmina Mesloub
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Juliette Montanari
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Frederic Auvré
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France
| | - Jean-François Deleuze
- CEA, Institut de Biologie François Jacob (IBFJ), Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Nicolas Foray
- INSERM, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, Lyon, France
| | - Nicolas O Fortunel
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France.
| | - Michele T Martin
- CEA, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse (LGRK), Evry, France; Université Paris-Saclay, France; CEA, Institut de Biologie François Jacob (IBFJ), Département de Radiobiologie Cellulaire et Moléculaire (DRCM), Fontenay-aux-Roses, France.
| |
Collapse
|
30
|
Han B, Zhou L, Shi Y, Zhao F, Ji J, Zhang K, Yin S, Ning X. LncRNA432-miR-21-y-DAPK2 ceRNA crosstalk regulates antibacterial response in hypoxia stress through mediating mitochondrial apoptosis in teleost fish. Int J Biol Macromol 2025; 295:139694. [PMID: 39798738 DOI: 10.1016/j.ijbiomac.2025.139694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
As cold-blooded vertebrates, fish are sensitive to environmental changes. The outcome of pathogen infections in fish therefore is highly shaped by hypoxia. The epigenetic regulation of competitive endogenous RNA (ceRNA) bridging non-coding RNAs and mRNAs represents a promising mechanism modulating antibacterial response plus environmental stress. Here, we for the first time systematically analyzed the ceRNA crosstalk in fish response to the combined stimulation of hypoxia and bacterial infection (HB) dual-stimulation. We found that mitochondrial apoptosis initiated by loss of mitochondrial membrane potential was the main causative for liver damage induced by HB challenge in fish. Accordingly, through whole transcriptome analysis, an apoptosis-associated ceRNA network was constructed, based on which a key crosstalk consisting of lnc432, miR-21-y and DAPK2 was identified. Mechanistically, DAPK2 acted as a positive regulator, knockdown of which significantly increased the bacterial burden during hypoxia by promoting mitochondrial apoptosis. MiR-21-y inhibited DAPK2 expression at both mRNA and protein levels by interacting with its 3'UTR, thereby enhancing DAPK2-mediated apoptosis determinations, and exacerbating bacterial infection during hypoxia. Lnc432 knockdown significantly increased miR-21-y and decreased DAPK2, and substantially promoted the expression of genes associated with mitochondrial apoptosis and enhanced the bacterial load during hypoxia stress. Finally, we revealed that lnc432 sponged miR-21-y to alleviate its suppression on DAPK2 in the ceRNA regulatory way. Our findings reveal that lnc432-miR-21-y-DAPK2 ceRNA crosstalk occurs in fish response to bacterial infection during hypoxic stress through mediating mitochondrial apoptosis. This study provides novel insights into the mechanism underlying the interactions among pathogens, hosts and environmental factors.
Collapse
Affiliation(s)
- Bing Han
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Linxin Zhou
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yaxuan Shi
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Feng Zhao
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Jie Ji
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Kai Zhang
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| | - Xianhui Ning
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China.
| |
Collapse
|
31
|
Zhu M, Lu X, Wang D, Ma J, Wang Y, Wang R, Wang H, Cheng W, Zhu Y. A narrative review of epigenetic marker in H3K27ac and its emerging potential as a therapeutic target in cancer. Epigenomics 2025; 17:263-279. [PMID: 39981972 PMCID: PMC11853624 DOI: 10.1080/17501911.2025.2460900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Histone acetylation, particularly H3 K27 acetylation (H3K27ac), is a critical post-translational modification that regulates chromatin structure and gene expression, which plays a significant role in various cancers, including breast, colon, lung, hepatocellular, and prostate cancer. However, the mechanisms of H3K27ac in tumorigenesis are not yet comprehensive, especially its epigenetic mechanisms. This review endeavors to discuss findings on the involvement of H3K27ac in carcinogenesis within the past 5 years through a literature search using academic databases such as Web of Science. Firstly, we provide an overview of the diverse landscape of histone modifications, emphasizing the distinctive characteristics and critical significance of H3K27ac. Secondly, we summarize and compare advanced high-throughput sequencing technologies that have been utilized in the construction of the H3K27ac epigenetic map. Thirdly, we elucidate the role of H3K27ac in mediating gene transcription. Fourthly, we venture into the potential molecular mechanism of H3K27ac in cancer development. Finally, we engage in discussing future therapeutic approaches in oncology, with a spotlight on strategies that harness the potential of H3K27 modifications. In conclusion, this review comprehensively summarizes the characteristics of H3K27ac and underscores its pivotal role in cancer, providing valuable insights into its potential as a therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Danhong Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Jinhu Ma
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Rui Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Hongye Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Wenhui Cheng
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Chen H, Wang X, Liu S, Tang Z, Xie F, Yin J, Sun P, Wang H. Circular RNA in Pancreatic Cancer: Biogenesis, Mechanism, Function and Clinical Application. Int J Med Sci 2025; 22:1612-1629. [PMID: 40093798 PMCID: PMC11905278 DOI: 10.7150/ijms.107773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Circular RNAs (circRNAs) are a class of novel RNA molecules featured by single-strand covalently closed circular structure, which not only are extensively found in eukaryotes and are highly conserved, but also conduct paramount roles in the occurrence and progression of pancreatic cancer (PC) through diverse mechanisms. As recent studies have demonstrated, circRNAs typically exhibit tissue-specific and cell specific expression patterns, with strong potential as biomarkers for disease diagnosis and prognosis. On the basis of their localization and specific interactions with DNA, RNA, and proteins, circRNAs are considered to possess specific biological functions by acting as microRNA (miRNA) sponges, RNA binding protein (RBP) sponges, transcriptional regulators, molecular scaffolds and translation templates. On that account, further addressing the technical difficulties in the detection and research of circRNAs and filling gaps in their biological knowledge will definitely push ahead this comparatively young research field and bring circRNAs to the forefront of clinical practice. Thus, this review systematically summarizes the biogenesis, function, molecular mechanisms, biomarkers and therapeutic targets of circRNAs in PC.
Collapse
Affiliation(s)
- Hang Chen
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Shan Liu
- Department of Anesthesiology, Chongqing Seventh People's Hospital, Chongqing University of Technology, Chongqing, 400054, China
| | - Ziwei Tang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
- Chongqing Medical University, Chongqing, 400016, China
| | - Fuming Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Jingyang Yin
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Pijiang Sun
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| |
Collapse
|
33
|
Shi L, Li B, Tan J, Zhu L, Zhang S, Zhang Y, Xiang M, Li J, Chen Y, Han X, Xie J, Tang Y, Rosie Xing H, Li J, Wang J. Exosomal lncRNA Mir100hg from lung cancer stem cells activates H3K14 lactylation to enhance metastatic activity in non-stem lung cancer cells. J Nanobiotechnology 2025; 23:156. [PMID: 40022086 PMCID: PMC11869636 DOI: 10.1186/s12951-025-03198-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/02/2025] [Indexed: 03/03/2025] Open
Abstract
The mean survival of metastatic lung adenocarcinoma is less than 1 year, highlighting the urgent need to understand the mechanisms underlying its high mortality rate. The role of Extracellular vesicles (EVs) in facilitating the interactions between cancer cells and the metastatic microenvironment has garnered increasing attention. Previous studies on the role of EVs in metastasis have been primarily focused on cancer cell-derived EVs in modulating the functions of stromal cells. However, whether cancer stem cells (CSCs) can alter the metastatic properties of non-CSC cells, and whether EV crosstalk can mediate such interaction, have not been demonstrated prior to this report. In the present study, we integrated multi-omics sequencing and public database analysis with experimental validation to demonstrate, for the first time, the exosomal Mir100hg, derived from CSCs, could enhance the metastatic potential of non-CSCs both in vitro and in vivo. Mechanistically, HNRNPF and HNRNPA2B1 directly binds to Mir100hg, facilitating its trafficking via exosomes to non-CSCs. In non-CSCs, Mir100hg upregulates ALDOA expression, subsequently leading to elevated lactate production. Consequently, the increased lactate levels enhance H3K14 lactylation by 2.5-fold and promote the transcription of 169 metastasis-related genes. This cascade of events ultimately results in enhanced ALDOA-driven glycolysis and histone lactylation-mediated metastatic potential of non-CSC lung cancer cells. We have delineated a complex regulatory network utilized by CSCs to transfer their high metastatic activity to non-CSCs through exosomal Mir100hg, providing new mechanistic insights into the communication between these two heterogeneous tumor cell populations. These mechanistic insights provide novel therapeutic targets for metastatic lung cancer, including HNRNPF/HNRNPA2B1-mediated Mir100hg trafficking and the histone lactylation pathway, advancing our understanding of CSC-mediated metastasis while suggesting promising strategies for clinical intervention.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350000, Fujian Province, China
| | - Bowen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jiyu Tan
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Women and Children'S Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Sicheng Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yuhan Zhang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Meng Xiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Jie Li
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Xue Han
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Xie
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - Yao Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
| | - H Rosie Xing
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering and Precision Medicine, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Women and Children'S Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Jianyu Wang
- Molecular Biology Laboratory of Respiratory Disease, Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
34
|
Wu L, Wang J, Shen S, Yang Z, Hu X. Transcriptomic analysis of two Chinese wheat landraces with contrasting Fusarium head blight resistance reveals miRNA-mediated defense mechanisms. FRONTIERS IN PLANT SCIENCE 2025; 16:1537605. [PMID: 40093609 PMCID: PMC11906714 DOI: 10.3389/fpls.2025.1537605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025]
Abstract
Introduction Fusarium head blight (FHB), caused primarily by Fusarium graminearum (Fg), poses a significant threat to wheat production. It is necessary to deeply understand the molecular mechanisms underlying FHB resistance in wheat breeding. Methods In this study, the transcriptomic responses of two Chinese wheat landraces-Wuyangmai (WY, resistant) and Chinese Spring (CS, susceptible)-to F. graminearum infection were examined using RNA sequencing (RNA-seq). Differential expression of mRNAs, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) was analyzed at 3 and 5 days post-Fg inoculation (dpi). Results The results showed that WY exhibited a targeted miRNA response, primarily modulating defense-related pathways such as glutathione metabolism and phenylpropanoid biosynthesis, which are crucial for oxidative stress regulation and pathogen defense response. In contrast, CS displayed a broader transcriptional response, largely linked to general metabolic processes rather than immune activation. Notably, the up-regulation of genes involved in oxidative stress and immune defense in WY confirmed its enhanced resistance to FHB. The integrated analysis of miRNA-mRNA interactions highlighted miRNAs as central regulators of defense mechanisms in WY, particularly at later stages of infection. These miRNAs targeted genes involved in immune responses, while lncRNAs and circRNAs played a more limited role in the regulation of defense responses. The GO and KEGG pathway enrichment analyses further revealed that WY enriched for plant-pathogen interaction and secondary metabolite biosynthesis pathways, which are crucial for pathogen resistance. In contrast, CS prioritized metabolic homeostasis, suggesting a less effective defense strategy. Discussion Overall, this study underscores the critical role of miRNA-mediated regulation in FHB resistance in WY. These insights into miRNA-mediated regulatory mechanisms provide a molecular basis for breeding FHB-resistant wheat varieties and highlight miRNA-mRNA interactions as promising targets for enhancing disease resilience.
Collapse
Affiliation(s)
- Lijuan Wu
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Junqiang Wang
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Shian Shen
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Zaijun Yang
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Xinkun Hu
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
35
|
Bu T, Yang J, Zhou J, Liu Y, Qiao K, Wang Y, Zhang J, Zhao E, Owura BK, Qiu X, Qiao Z, Yang Y. LncRNA of peripheral blood mononuclear cells: HYMAI acts as a potential diagnostic and therapeutic biomarker for female major depressive disorder. Front Psychiatry 2025; 16:1241089. [PMID: 40084057 PMCID: PMC11903756 DOI: 10.3389/fpsyt.2025.1241089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/21/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction As a common and complex mental disorder, major depressive disorder (MDD) has brought a huge burden and challenges globally. Although the incidence of female MDD is twice that of male MDD, there are still no accurate diagnostic and treatment criteria for female MDD. The potential of long non-coding RNAs (lncRNAs) as efficient and accurate diagnostic and therapeutic biomarkers provides more possibilities for early and accurate diagnosis of MDD. Methods First, the differential expression profile of lncRNAs in peripheral blood mononuclear cells (PBMCs) between MDD patients and healthy controls was established based on high-throughput sequencing analysis. Then, the potential biomarker was screened out by quantifying differentially expressed lncRNAs based on quantitative real-time PCR. To further investigate the function of biomarkers in the pathogenesis of MDD, bioinformatics analysis on downstream target genes was carried out. Results The expression profile screened out 300 differentially expressed lncRNAs. HYMAI was proved to be the potential diagnostic biomarker. Its expression levels were significantly higher in MDD patients than in healthy controls with high potential diagnostic value. Based on bioinformatics analysis, a HYMAI-miRNA-mRNA network and a protein-protein interaction network were established, which also showed that HYMAI is closely related to MDD. Discussion Our findings showed that the dysregulated expression of lncRNA HYMAI may be the pathophysiological basis of women suffering from MDD. Here, insight into the molecular mechanism of women's susceptibility to MDD is shown. Meanwhile, a new perspective for future female MDD prevention, diagnosis and treatment, evaluation, detection, and intervention is provided.
Collapse
Affiliation(s)
- Tianyi Bu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Jiarun Yang
- Department of Psychology, School of Education of Heilongjiang University, Harbin, China
| | - Jiawei Zhou
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Yeran Liu
- School of Humanities, Harbin Medical University, Harbin, China
| | - Kexin Qiao
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Yan Wang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Jili Zhang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Erying Zhao
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Boakye Kwame Owura
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Xiaohui Qiu
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Zhengxue Qiao
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| | - Yanjie Yang
- Psychology and Health Management Center, Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Li Z, Chen Y, Zhao Y, Li Q. The Methylation and Expression of LINC00511, an Important Angiogenesis-Related lncRNA in Stomach Adenocarcinoma. Int J Mol Sci 2025; 26:2132. [PMID: 40076759 PMCID: PMC11900454 DOI: 10.3390/ijms26052132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Stomach adenocarcinoma (STAD) has high incidence and mortality rates. Long non-coding RNAs (lncRNAs) and angiogenesis are closely related to the pathogenesis and metastasis of STAD. Recently, emerging evidence demonstrated that DNA methylation plays crucial roles in the development of STAD. This study explored the relationship between DNA methylation and the abnormal expression of angiogenesis-related lncRNAs (ARlncRNAs) in stomach adenocarcinoma, aiming to identify prognostic biomarkers. Moreover, a Cox analysis and Lasso regression were used to establish an ARlncRNA feature set related to angiogenesis. The prognostic model was evaluated by using a Kaplan-Meier (KM) analysis, ROC curves, and nomograms. Based on the identified 18 key ARlncRNAs, a prognostic predictive model was constructed. In addition, a specific ARlncRNA with abnormal methylation in the model, LINC00511, showed significant differences in expression and methylation across different subgroups. The methylation and expression of LINC00511 were analyzed by a correlation and co-expression analysis. The correlation analysis indicated that promoter methylation may improve LINC00511 expression. Further analysis found 355 mRNAs co-expressed with LINC00511 which may interact with 6 miRNAs to regulate target gene expression. The abnormal methylation of LINC00511 could significantly contribute to the progression of stomach adenocarcinoma.
Collapse
Affiliation(s)
- Zhiying Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.L.)
| | - Yingli Chen
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.L.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Yuanyuan Zhao
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.L.)
| | - Qianzhong Li
- Laboratory of Theoretical Biophysics, School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China; (Z.L.)
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
37
|
Li Q, Liu L, Liu Y, Zheng T, Chen N, Du P, Ye H. Exploration of key genes associated with oxidative stress in polycystic ovary syndrome and experimental validation. Front Med (Lausanne) 2025; 12:1493771. [PMID: 40083347 PMCID: PMC11904916 DOI: 10.3389/fmed.2025.1493771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/12/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction The current study demonstrated that oxidative stress (OS) is closely related to the pathogenesis of polycystic ovary syndrome (PCOS). However, there are numerous factors that lead to OS, therefore, identifying the key genes associated with PCOS that contribute to OS is crucial for elucidating the pathogenesis of PCOS and selecting appropriate treatment strategies. Methods Four datasets (GSE95728, GSE106724, GSE138572, and GSE145296) were downloaded from the gene expression omnibus (GEO) database. GSE95728 and GSE106724 were combined to identify differentially expressed genes (DEGs) in PCOS. weighted gene correlation network analysis (WGCNA) was used to screen key module genes associated with PCOS. Differentially expressed OS related genes (DE-OSRGs) associated with PCOS were obtained by overlapping DEGs, key module genes, and OSRGs. Subsequently, the optimal machine model was obtained to identify key genes by comparing the performance of the random forest model (RF), support vector machine model (SVM), and generalized linear model (GLM). The molecular networks were constructed to reveal the non-coding regulatory mechanisms of key genes based on GSE138572 and GSE145296. The Drug-Gene Interaction Database (DGIdb) was used to predict the potential therapeutic agents of key genes for PCOS. Finally, the expression of key OSRGs was validated by RT-PCR. Results In this study, 8 DE-OSRGs were identified. Based on the residuals and root mean square error of the three models, the best performance of RF was derived and 7 key genes (TNFSF10, CBL, IFNG, CP, CASP8, APOA1, and DDIT3) were identified. The GSEA enrichment analysis revealed that TNFSF10, CP, DDIT3, and INFG are all enriched in the NOD-like receptor signaling pathway and natural killer cell-mediated cytotoxicity pathways. The molecular regulatory network uncovered that both TNFSF10 and CBL are regulated by non-coding RNAs. Additionally, 70 potential therapeutic drugs for PCOS were predicted, with ibuprofen associated with DDIT3 and IFNG. RT-qPCR validation confirmed the expression trends of key genes IFNG, DDIT3, and APOA1 were consistent with the dataset, and the observed differences were statistically significant (P < 0.05). Conclusion The identification of seven key genes and molecular regulatory networks through bioinformatics analysis is of great significance for exploring the pathogenesis and therapeutic strategies of PCOS.
Collapse
Affiliation(s)
- Qinhua Li
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Obstetrics and Gynecology, Yichang Central People’s Hospital, Yichang, China
- Institute of Obstetrics and Gynecology, China Three Gorges University, Yichang, China
| | - Lei Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Yuhan Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- China Three Gorges University, Yichang, China
- Central Laboratory, The First College of Clinical Medical Science, China Three Gorges University and Yichang Central People’s Hospital, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Tingting Zheng
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Obstetrics and Gynecology, Yichang Central People’s Hospital, Yichang, China
- Institute of Obstetrics and Gynecology, China Three Gorges University, Yichang, China
| | - Ningjing Chen
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Obstetrics and Gynecology, Yichang Central People’s Hospital, Yichang, China
- Institute of Obstetrics and Gynecology, China Three Gorges University, Yichang, China
| | - Peiyao Du
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Obstetrics and Gynecology, Yichang Central People’s Hospital, Yichang, China
- Institute of Obstetrics and Gynecology, China Three Gorges University, Yichang, China
| | - Hong Ye
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Department of Obstetrics and Gynecology, Yichang Central People’s Hospital, Yichang, China
- Institute of Obstetrics and Gynecology, China Three Gorges University, Yichang, China
| |
Collapse
|
38
|
Liu Y, Zhang Y, Chen C, Roy B, Li Q, Zhang W, Zhang X, Pu J, Li Y, Liu Y, Liao H, Wang J, Zhou R, Zhuo H, Li Y. lncRNA HIF1A-AS2 acts as an oncogene to regulate malignant phenotypes in cervical cancer. Front Oncol 2025; 15:1530677. [PMID: 40098697 PMCID: PMC11912943 DOI: 10.3389/fonc.2025.1530677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Background Long noncoding RNAs (lncRNAs) HIF1A-AS2 is upregulated in multiple human cancers and are associated with various aspects of tumor progression. However, the molecular mechanisms of HIF1A-AS2 in cervical cancer (CC) remain largely unknown. In this study, we aim to investigate the expression pattern and signaling pathways of HIF1A-AS2 in CC. Methods The study included a group of 20 CC patients, from whom tumor tissue specimens were collected. Additionally, three distinct CC cell lines (HeLa, SiHa, CaSki) were utilized. Quantitative real-time PCR (qRT-PCR) was used to assess the transcript levels of HIF1A-AS2 in these samples. Functional studies were performed by CCK-8, Transwell and Apoptosis assays. Databases including JASPAR, miRDB and Targetscan were used for the transcription factor or target miRNA prediction, subsequent dual luciferase activity assay, chromatin immunoprecipitation (ChIP) and Ago2 immunoprecipitation (RIP) were also adopted for validation. Results The study demonstrated that HIF1A-AS2 expression was elevated in clinical cervical cancer specimens and cultured cell lines in comparison to normal controls. Knockdown of HIF1A-AS2 notably inhibited the proliferation and invasion of cervical cancer cells, while inducing apoptosis. In contrast, HIF1A-AS2 overexpression promoted cellular proliferation and invasion and suppressed apoptosis. It was also identified that c-Jun functions as a transcription factor, activating HIF1A-AS2 expression. Additionally, HIF1A-AS2 was found to serve as a molecular sponge for miR-34b-5p, negatively regulating its expression. Furthermore, HIF1A-AS2 controlled the expression of radixin (RDX) by sponging the miR-34b-5p pathway. Conclusion Our findings indicate that c-Jun-activated HIF1A-AS2 acts as an oncogenic factor in CC by sponging miR-34b-5p to target radixin. These findings suggest that HIF1A-AS2 might be a viable and promising therapeutic target for cervical cancer treatment.
Collapse
Affiliation(s)
- Yang Liu
- Department of Clinical Laboratory, Panyu Hexian Memorial Hospital of Guangzhou, Guangzhou, Guangdong, China
- Department of Clinical Laboratory, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Yunyan Zhang
- Department of Pediatric Dentistry, Affiliated Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Cha Chen
- Department of Clinical Laboratory, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bhaskar Roy
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Qiantang District, Hangzhou, Zhejiang, China
| | - Qun Li
- Department of Clinical Laboratory, Guangzhou Liwan District People's Hospital, Guangzhou, Guangdong, China
| | - Wei Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- Department of Clinical Laboratory, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jieying Pu
- Department of Clinical Laboratory, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuguang Li
- Department of Clinical Laboratory, Panyu Hexian Memorial Hospital of Guangzhou, Guangzhou, Guangdong, China
| | - Yanli Liu
- Department of Clinical Laboratory, Panyu Hexian Memorial Hospital of Guangzhou, Guangzhou, Guangdong, China
| | - Huanlan Liao
- Department of Clinical Laboratory, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingjing Wang
- Department of Clinical Laboratory, Panyu Hexian Memorial Hospital of Guangzhou, Guangzhou, Guangdong, China
| | - Rui Zhou
- Department of Clinical Laboratory, Panyu Hexian Memorial Hospital of Guangzhou, Guangzhou, Guangdong, China
| | - Huiyan Zhuo
- Department of Clinical Laboratory, Panyu Hexian Memorial Hospital of Guangzhou, Guangzhou, Guangdong, China
| | - Youqiang Li
- Department of Clinical Laboratory, Panyu Hexian Memorial Hospital of Guangzhou, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Bai J, Yang G, Yu Q, Chi Q, Zeng X, Qi W. SATB1 in cancer progression and metastasis: mechanisms and therapeutic potential. Front Oncol 2025; 15:1535929. [PMID: 40071088 PMCID: PMC11893431 DOI: 10.3389/fonc.2025.1535929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a major global health challenge, with prostate cancer, lung cancer, colorectal cancer, and breast cancer accounting for nearly half of all diagnoses. Despite advancements in cancer treatment, metastasis to distant organs continues to be the leading cause of cancer-related mortality. The progression of cancer involves the alteration of numerous genes, with dynamic changes in chromatin organization and histone modifications playing a critical role in regulating cancer-associated genes. Special AT-rich sequence-binding protein 1 (SATB1), a critical chromatin organizer, plays a pivotal role in cancer progression by regulating gene expression, chromatin remodeling, and cell signaling pathways. SATB1 binds to AT-rich DNA sequences, acting as a scaffold for chromatin-modifying enzymes and transcription factors, thus coordinating the regulation of extensive gene networks. Its overexpression has been implicated in a wide range of cancers and is associated with poor prognosis, aggressive tumor phenotypes, and enhanced epithelial-mesenchymal transition (EMT). Moreover, SATB1's activity is modulated by microRNAs (miRNAs) and post-translational modifications, further contributing to its complex regulatory functions. Given its crucial involvement in cancer progression and metastasis, SATB1 has emerged as a promising target for novel therapeutic strategies. This review delves into the molecular mechanisms of SATB1 in cancer and explores potential therapeutic approaches for targeting this key regulator in cancer treatment.
Collapse
Affiliation(s)
- Jinping Bai
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Gege Yang
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Qi Yu
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Qianya Chi
- Department of Bioscience, Changchun Normal University, Changchun, China
| | - Xianlu Zeng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, China
| | - Wenjing Qi
- Department of Bioscience, Changchun Normal University, Changchun, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, China
| |
Collapse
|
40
|
Chen J, Liu M, Zhong Y. circGDSL-induced OPR3 expression regulates jasmonate signaling and copper tolerance in rice (Oryza sativa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109697. [PMID: 40024147 DOI: 10.1016/j.plaphy.2025.109697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
This study investigates the regulatory function of circular RNA (circRNA) as a competing endogenous RNA (ceRNA) in rice (Oryza sativa L.) under toxic levels of copper (Cu) stress. Physiological parameters and differences in Cu accumulation were analyzed through a hydroponic experiment. RNA sequencing (RNA-seq) identified 1051 circRNAs, of which 26 were differentially expressed (FDR <0.05, |log2FC| > 1) under Cu stress. A Cu-responsive ceRNA network mediated by circRNAs was constructed, comprising 16 circRNAs, 34 miRNAs, and 126 mRNAs. Topological analysis identified the circGDSL/miR1850.1/OPR3 triplet as a key regulatory hub, which was experimentally validated by RT-qPCR. Overexpression of circGDSL conferred significant resistance to Cu stress, characterized by enhanced antioxidant enzyme activity, reduced reactive oxygen species (ROS) levels, and alleviated Cu-induced growth suppression. Functional studies indicated that circGDSL upregulates the expression of the key jasmonic acid (JA) synthesis gene OPR3 by sponging miR1850.1, thereby activating the JA signaling pathway. The increased endogenous JA concentration represses the expression of genes (IRT1, Nramp5, and HMA2) that promote Cu uptake and translocation, resulting in decreased Cu concentration in rice. Conversely, overexpression of miR1850.1 reduces endogenous JA concentration and increases sensitivity to Cu, a phenotype that can be rescued by exogenous methyl jasmonate (MeJA). In conclusion, we identified a Cu-responsive circRNA in rice and confirmed its role in activating JA synthesis pathway as miRNA sponge, thereby enhancing rice tolerance to Cu stress.
Collapse
Affiliation(s)
- Jiajia Chen
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215011, China.
| | - Mengwei Liu
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215011, China
| | - Yuqing Zhong
- Environmental Monitoring Station of Suzhou City, Suzhou, 215013, China
| |
Collapse
|
41
|
Feng K, Li J, Li J, Li Z, Li Y. Prognostic implications of ERLncRNAs in ccRCC: a novel risk score model and its association with tumor mutation burden and immune microenvironment. Discov Oncol 2025; 16:225. [PMID: 39985635 PMCID: PMC11846825 DOI: 10.1007/s12672-025-01870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/03/2025] [Indexed: 02/24/2025] Open
Abstract
INTRODUCTION/BACKGROUND The specific role of efferocytosis-related long noncoding RNAs (ERLncRNAs) in Clear Cell Renal Cell Carcinoma (ccRCC) has not been thoroughly examined. This study aims to identify and validate a signature of ERLncRNAs for prognostic prediction and characterization of the immune landscape in individuals with ccRCC. MATERIALS AND METHODS Analysis of ccRCC samples was conducted by utilizing clinical and RNA sequencing information obtained from The Cancer Genome Atlas (TCGA). Pearson correlation analysis was utilized to identify lncRNAs associated with efferocytosis, which was then used to create a new prognostic model through univariate Cox regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression, and stepwise multivariate Cox analysis. In order to investigate the biological significance, we performed a functional enrichment analysis to assess how well the model predicts outcomes. Differences in the immune landscape were observed through a comparison of immune cell infiltration, tumor mutational burden (TMB), and tumor microenvironment (TME) characteristics. Following this, drug sensitivity analysis was conducted. RESULTS This led to the identification of a unique signature consisting of seven ERLncRNAs (LINC01615, RUNX3-AS1, FOXD2-AS1, AC002070.1, LINC02747, LINC00944, and AC092296.1). Model performance was measured by Kaplan-Meier curves and receiver operating characteristic (ROC) curves. The nomogram and C-index provided additional validation of the strong correlation between the risk signature and clinical decision-making. CONCLUSION On the whole, our innovative signature exhibits potential for prognostic prediction and assessment of immunotherapeutic response in patients with ccRCC.
Collapse
Affiliation(s)
- Kunlun Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250013, Shandong, China
| | - Jingxiang Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jianye Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhichao Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Yahui Li
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
42
|
Jiang Y, Tian Y, Han J, Wang X, Zhang R, Xu X, Ma X, Zhang W, Man C. CircITSN2-miR-17-5p/20a-5p/20b-5p- PD-L1 regulatory network is a potential molecular mechanism of PD-L1 gene involving in immune response to IBDV. Avian Pathol 2025:1-29. [PMID: 39980444 DOI: 10.1080/03079457.2025.2470754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
AbstractImmunosuppression induced by infectious bursal disease virus (IBDV) and its subsequent secondary infections remain the serious problems that urgently need to be addressed in poultry industry. Even more troubling, the molecular mechanism of IBDV-induced immunosuppression is not fully understood. In this study, expression characteristics of immune checkpoint programmed cell death-ligand 1 (PD-L1) gene were explored in chicken immune response induced by IBDV attenuated vaccine, and the competing endogenous RNA (ceRNA) regulatory mechanism of PD-L1 gene in vivo was identified by quantitative real-time PCR (qRT-PCR). The results showed that PD-L1 gene expressions were closely related to the immune response to IBDV, and played important regulatory roles in the immune-related tissues at different stages of the immune response. Significant game relationships in expression levels between miR-17 family members (miR-17-5p, miR-20a-5p, and miR-20b-5p), circITSN2, and PD-L1 gene were identified in vivo, so the circITSN2-miR-17-5p/20a-5p/20b-5p-PD-L1 network was a potential molecular regulatory mechanism of PD-L1 in the immune response to IBDV vaccine, and heart (5 dpi), proventriculus (5 dpi), and lung (21 dpi) were the key tissues. This study can provide valuable references for further studying the molecular mechanisms of immunosuppression induced by IBDV.
Collapse
Affiliation(s)
- Yi Jiang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Yufei Tian
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Jianwei Han
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Xiangnan Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Rui Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Xinxin Xu
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Xiaoli Ma
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Wei Zhang
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| | - Chaolai Man
- College of Life Science and Technology, Harbin Normal University, Harbin 150001, P. R. China
| |
Collapse
|
43
|
Ding JM, Zhong HM, Huang K, Zeng W, Chen L. Apoptosis and long non-coding RNAs: Focus on their roles in ischemic stroke. Brain Res 2025; 1849:149346. [PMID: 39581527 DOI: 10.1016/j.brainres.2024.149346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/04/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Ischemic stroke (IS) is a severe and sudden cerebrovascular event, associated with notably high rates of mortality and morbidity. The process of apoptosis, a genetically orchestrated form of programmed cell death, is divided into two pathways: intrinsic and extrinsic. The intricate involvement of long non-coding RNA (lncRNA) in the pathobiology of IS, particularly in modulating neuronal apoptosis, is a burgeoning area of research. This review synthesizes the current understanding of the regulatory mechanisms of lncRNA on neuronal apoptosis in the context of ischemic stroke. Specifically, we highlight the roles of lncRNA such as ANRIL, C2dat1/2, H19, TUG1, MEG3, SNHG, and GAS5, which have been implicated in the facilitation of neuronal apoptosis. Conversely, the lncRNA N1LR has been shown to exert an inhibitory effect on this process. The role of MALAT1 in neuronal apoptosis remains a subject of ongoing debate, as its function oscillates between pro-apoptotic and anti-apoptotic roles, thus highlighting the need for further elucidation.
Collapse
Affiliation(s)
- Jia Min Ding
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Hui Min Zhong
- The First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Kuan Huang
- Anesthesia Surgical Center The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wen Zeng
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Chen
- Anesthesia Surgical Center The First Affiliated Hospital of Gannan Medical University, Ganzhou, China; Anesthesia Key Laboratory of Gannan Medical University, Ganzhou, China; Prevention and Treatment of Cardiovascular and Cerebrovascular Disease, Ministry of Education, Gannan Medical University, Ganzhou 34100, China.
| |
Collapse
|
44
|
Jiang B, Li Y, Shi J, Chalasa DD, Zhang L, Wu S, Xu T. Identification and Network Construction of mRNAs, miRNAs, lncRNAs, and circRNAs in Sweetpotato ( Ipomoea batatas L.) Adventitious Roots Under Salt Stress via Whole-Transcriptome RNA Sequencing. Int J Mol Sci 2025; 26:1660. [PMID: 40004124 PMCID: PMC11854956 DOI: 10.3390/ijms26041660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Sweetpotato is the seventh largest crop worldwide, and soil salinization is a major environmental stress limiting its yield. Recent studies have shown that noncoding RNAs (ncRNAs) play important regulatory roles in plant responses to abiotic stress. However, ncRNAs in sweetpotato remain largely unexplored. This study analyzed the characteristics of salt-responsive ncRNAs in sweetpotato adventitious roots under salt stress via whole-transcriptome RNA sequencing. The results revealed that 3175 messenger RNAs (mRNAs), 458 microRNAs (miRNAs), 544 long-chain ncRNAs (lncRNAs), and 23 circular RNAs (circRNAs) were differentially expressed. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that most differentially expressed mRNAs (DEmRNAs) and miRNAs (DEmiRNAs) were enriched primarily in phenylpropanoid biosynthesis, starch and sucrose metabolism, the Mitogen-Activated Protein Kinase (MAPK) signaling pathway, plant hormone signal transduction, the mRNA surveillance pathway, and ATP-binding cassette (ABC) transporters. Gene Ontology (GO) enrichment analysis revealed that the majority of DEmRNAs, their target DEmiRNAs, and differentially expressed lncRNAs (DElncRNAs) were associated with the cell wall, oxidation-reduction, the plasma membrane, protein phosphorylation, metabolic processes, transcription factor activity, and the regulation of transcription. Additionally, based on the competitive endogenous RNA (ceRNA) hypothesis, we predicted interactions among different RNAs and constructed a salt-responsive ceRNA network comprising 22 DEmiRNAs, 42 DEmRNAs, 27 DElncRNAs, and 10 differentially expressed circRNAs (DEcircRNAs). Some miRNAs, such as miR408, miR169, miR160, miR5139, miR5368, and miR6179, were central to the network, suggesting their crucial roles in the sweetpotato salt response. Our findings provide a foundation for further research into the potential functions of ncRNAs and offer new targets for salt stress resistance improvement through the manipulation of ncRNAs.
Collapse
Affiliation(s)
| | | | | | | | | | - Shaoyuan Wu
- Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Tao Xu
- Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
45
|
Mei B, Zeng Z, Xia Q, Liu M, Lei L. HNF1A-AS1 promotes oral squamous cell carcinoma progression via regulating miR-138/CDK6 pathway. Odontology 2025:10.1007/s10266-025-01057-w. [PMID: 39953309 DOI: 10.1007/s10266-025-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025]
Abstract
The action and the latent mechanism of HNF1A-AS1 in oral squamous cell carcinoma (OSCC) development were probed. Levels of HNF1A-AS1, microRNA-138 (miR-138) and Cyclin-dependent kinase 6 (CDK6) were examined. In vitro assays were conducted using SCC-4 and SCC15 cells derived from a human SCC of the tongue of a 55-year-old male. In vivo assay was performed by establishing OSCC mouse models. An elevated HNF1A-AS1 was detected in OSCC, and down-expressed HNF1A-AS1 inhibited migration and invasion, and promoted apoptosis in OSCC cells in vitro. HNF1A-AS1 targeted miR-138 to positively regulate the expression of CDK6, a target of miR-138. Knockdown of miR-138 attenuated the action of HNF1A-AS1 silencing on OSCC cell malignant phenotypes. Besides that, overexpression of CDK6 weakened miR-138-mediated anti-cancer functions. Moreover, HNF1A-AS1 knockdown restrained OSCC growth in nude mice. HNF1A-AS1 promoted OSCC tumorigenesis via miR-138/CDK6 pathway, indicating the potential molecular contribution of HNF1A-AS1 on OSCC pathogenesis.
Collapse
Affiliation(s)
- Bingxin Mei
- Department of Stomatology, The First Affiliated Hospital Of Gannan Medical University, No.128, Jinling Road, Ganzhou, 341000, Jiangxi, China
| | - Zhimei Zeng
- Department of Stomatology, The First Affiliated Hospital Of Gannan Medical University, No.128, Jinling Road, Ganzhou, 341000, Jiangxi, China
| | - Qinmin Xia
- Department of Stomatology, The First Affiliated Hospital Of Gannan Medical University, No.128, Jinling Road, Ganzhou, 341000, Jiangxi, China
| | - Ming Liu
- Department of Stomatology, The First Affiliated Hospital Of Gannan Medical University, No.128, Jinling Road, Ganzhou, 341000, Jiangxi, China
| | - Li Lei
- Department of Stomatology, The First Affiliated Hospital Of Gannan Medical University, No.128, Jinling Road, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
46
|
Jiao J, Ma Z, Li N, Duan F, Cai X, Zuo Y, Li J, Meng Q, Qiao J. Listeria monocytogenes Modulates Macrophage Inflammatory Responses to Facilitate Its Intracellular Survival by Manipulating Macrophage-Derived Exosomal ncRNAs. Microorganisms 2025; 13:410. [PMID: 40005775 PMCID: PMC11858176 DOI: 10.3390/microorganisms13020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Exosomes are nanoscale vesicles secreted by cells that play vital regulatory roles in intercellular communication and immune responses. Listeria monocytogenes (L. Monocytogenes, LM) is a notable Gram-positive intracellular parasitic bacterium that infects humans and diverse animal species. However, the specific biological function of exosomes secreted by macrophages during L. Monocytogenes infection (hereafter EXO-LM) remains elusive. Here, we discovered that EXO-LM stimulated the secretion of inflammation-associated cytokines by macrophages, facilitating the intracellular survival of L. monocytogenes within macrophages. Transcriptomic analysis shows that EXO-LM significantly upregulates immune recognition and inflammation-related signaling pathways in macrophages. Furthermore, a ceRNA regulatory network comprising exosomal ncRNAs and macrophage RNAs was constructed through EXO-LM transcriptome sequencing. Utilizing bioinformatics and dual-luciferase reporter assays, we identified two potential binding sites between lncRNA Rpl13a-213 and miR-132-3p. Cell transfection experiments demonstrated that Rpl13a-213 overexpression augmented pro-inflammatory cytokine expression in macrophages, in contrast to the suppression by miR-132-3p overexpression. The decrease in Rpl13a-213 upon EXO-LM stimulation enhances miR-132-3p expression, dampening the inflammatory response in macrophages and aiding L. monocytogenes intracellular survival. This study unveils the immunomodulatory function of exosomal ncRNAs originating from macrophages, which provides fresh perspectives into the mechanisms underlying macrophage inflammatory response regulation by L. monocytogenes-infected cell-derived exosomes.
Collapse
Affiliation(s)
- Jian Jiao
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.J.); (Z.M.); (N.L.)
| | - Zhongmei Ma
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.J.); (Z.M.); (N.L.)
| | - Nengxiu Li
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.J.); (Z.M.); (N.L.)
| | - Fushuang Duan
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.J.); (Z.M.); (N.L.)
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Yufei Zuo
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.J.); (Z.M.); (N.L.)
| | - Jie Li
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.J.); (Z.M.); (N.L.)
| | - Qingling Meng
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.J.); (Z.M.); (N.L.)
| | - Jun Qiao
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.J.); (Z.M.); (N.L.)
| |
Collapse
|
47
|
Wang Z, Yang C, Dong B, Chen A, Song Q, Bai H, Jiang Y, Chang G, Chen G. Whole Transcriptome Sequencing Reveals miRNAs and ceRNA Networks in Duck Abdominal Fat Deposition. Animals (Basel) 2025; 15:506. [PMID: 40002988 PMCID: PMC11852153 DOI: 10.3390/ani15040506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Excessive deposition of abdominal fat will cause a waste of resources. In order to explore the key miRNAs and circRNA/lncRNA-miRNA-mRNA ceRNA regulatory network involved in regulating abdominal fat deposition, hematoxylin and eosin (H&E) staining was performed on abdominal fat tissues of ducks in the high abdominal fat rate group (HF) and low abdominal fat rate group (LF) at 21 and 42 days of age, and whole transcriptome sequencing was performed on abdominal tissues of ducks in the HF and LF groups at 42 days of age. The results showed that the number of adipocytes in ducks in the HF group was significantly higher than that in the LF group at 21 days of age (p < 0.001), while the number of adipocytes in ducks in the HF group at 42 days of age was significantly lower than that in the LF group (p < 0.001). In addition, transcriptome sequencing screened out a total of 14 differentially expressed miRNAs (10 miRNAs were significantly up-regulated, and 4 miRNAs were significantly down-regulated). By predicting the target genes of these differentially expressed miRNAs, a total of 305 target genes were obtained. Further analysis of miRNA target genes using GO and KEGG functional enrichment analyses revealed that these target genes were significantly enriched in the GnRH signaling pathway, the PPAR signaling pathway, insulin resistance, the mTOR signaling pathway, the AMPK signaling pathway, the FoxO signaling pathway, and other pathways related to adipose development. In addition, miRNA-205-x, miRNA-6529-x, miRNA-194-x, miRNA-215-x, miRNA-3074-x, miRNA-2954-x, novel-m0133-3p, and novel-m0156-5p were found to be important candidate miRNAs for abdominal fat deposition in ducks. These miRNAs were related to the expression of FOXO3, LIFR, Pdk4, PPARA, FBN1, MYH10, Cd44, PRELP, Esrrg, AKT3, and STC2. Based on these eight candidate miRNAs, a ceRNA regulatory network of circRNA/lncRNA-miRNA-mRNA regulating abdominal fat deposition was successfully constructed. The results of this study will provide a useful reference for accelerating the understanding of the molecular mechanism of duck abdominal fat deposition.
Collapse
|
48
|
Márton É, Varga A, Domoszlai D, Buglyó G, Balázs A, Penyige A, Balogh I, Nagy B, Szilágyi M. Non-Coding RNAs in Cancer: Structure, Function, and Clinical Application. Cancers (Basel) 2025; 17:579. [PMID: 40002172 PMCID: PMC11853212 DOI: 10.3390/cancers17040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
We are on the brink of a paradigm shift in both theoretical and clinical oncology. Genomic and transcriptomic profiling, alongside personalized approaches that account for individual patient variability, are increasingly shaping discourse. Discussions on the future of personalized cancer medicine are mainly dominated by the potential of non-coding RNAs (ncRNAs), which play a prominent role in cancer progression and metastasis formation by regulating the expression of oncogenic or tumor suppressor proteins at transcriptional and post-transcriptional levels; furthermore, their cell-free counterparts might be involved in intercellular communication. Non-coding RNAs are considered to be promising biomarker candidates for early diagnosis of cancer as well as potential therapeutic agents. This review aims to provide clarity amidst the vast body of literature by focusing on diverse species of ncRNAs, exploring the structure, origin, function, and potential clinical applications of miRNAs, siRNAs, lncRNAs, circRNAs, snRNAs, snoRNAs, eRNAs, paRNAs, YRNAs, vtRNAs, and piRNAs. We discuss molecular methods used for their detection or functional studies both in vitro and in vivo. We also address the challenges that must be overcome to enter a new era of cancer diagnosis and therapy that will reshape the future of oncology.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Dóra Domoszlai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Anita Balázs
- Department of Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary;
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| |
Collapse
|
49
|
Yu X, Xu H, Xing Y, Sun D, Li D, Shi J, Sui G, Li G. Identifying Essential Hub Genes and circRNA-Regulated ceRNA Networks in Hepatocellular Carcinoma. Int J Mol Sci 2025; 26:1408. [PMID: 40003874 PMCID: PMC11855757 DOI: 10.3390/ijms26041408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Competitive endogenous RNAs (ceRNAs) absorb microRNAs and subsequently promote corresponding mRNA and long noncoding RNA (lncRNA) expression, which may alter cancer cell malignancy. Thus, dissecting ceRNA networks may reveal novel targets in cancer therapies. In this study, we analyzed differentially expressed genes (DEGs) of mRNAs and lncRNAs, and differentially expressed microRNAs (DE-miRNAs) and circular RNAs (DE-circRNAs) extracted from high-throughput sequencing datasets of hepatocellular carcinoma patients. Based on these data, we identified 26 gene modules using weighted gene co-expression network analysis (WGCNA), of which 5 were associated with tumor differentiation. In these modules, 269 genes were identified by GO and KEGG enrichment and patient's survival correlation analyses. Next, 40 DE-miRNAs, each of which potentially bound a pair of DE-circRNA and hub gene, were discovered. Together with 201 circRNAs and 24 hub genes potentially bound by these miRNAs, 1151 ceRNA networks were constructed. Among them, 75 ceRNA networks consisting of 24 circRNAs, 28 miRNAs and 17 hub genes showed a positive circRNA-hub gene correlation. For validation, we carried out experiments for 4 randomly selected circRNAs regulating 19 potential ceRNA networks and verified 5 of them. This study represents a powerful strategy to identify essential gene networks and provides insights into designing effective therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoqian Yu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Hao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Yutao Xing
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Dehui Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Jinming Shi
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
| | - Guangyue Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (X.Y.); (H.X.); (Y.X.); (D.S.); (D.L.); (J.S.)
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310030, China
| |
Collapse
|
50
|
Liu Y, Shen S, Wang X, Chen H, Ren W, Wei H, Li K, Li L. GATA3-Driven ceRNA Network in Lung Adenocarcinoma Bone Metastasis Progression and Therapeutic Implications. Cancers (Basel) 2025; 17:559. [PMID: 39941924 PMCID: PMC11816722 DOI: 10.3390/cancers17030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Bone metastasis is a common and severe complication of lung adenocarcinoma (LUAD), impacting prognosis and treatment outcomes. Understanding the molecular mechanisms behind LUAD bone metastasis (LUADBM) is essential for developing new therapeutic strategies. The interactions between long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in the competing endogenous RNA (ceRNA) network are crucial in cancer progression and metastasis, but the regulatory mechanisms in LUADBM remain unclear. Methods: Microarray analysis was performed on clinical samples, followed by weighted gene co-expression network analysis (WGCNA) and construction of a ceRNA network. Molecular mechanisms were validated using colony formation assays, transwell migration assays, wound healing assays to assess cell migration, and osteoclastogenesis assays to evaluate osteoclast differentiation. Potential therapeutic drugs and their binding affinities were predicted using the CMap database and Kdeep. The interaction between the small-molecule drug and its target protein was confirmed by surface plasmon resonance (SPR) and drug affinity responsive target stability (DARTS) assays. Mechanistic insights and therapeutic efficacy were further validated using patient-derived organoid (PDO) cultures, drug sensitivity assays, and in vivo drug treatments. Results: Our results identified the XLOC_006941/hsa-miR-543/NPRL3 axis as a key regulatory pathway in LUADBM. We also demonstrated that GATA3-driven Th2 cell infiltration creates an immunosuppressive microenvironment that promotes metastasis. Additionally, we confirmed that the inhibitor E7449 effectively targets NPRL3, and its combination with the IL4R-blocking antibody dupilumab resulted in improved therapeutic outcomes in LUADBM. Conclusions: These findings offer new insights into the molecular mechanisms of LUADBM and highlight potential therapeutic targets, including the XLOC_006941/miR-543/NPRL3 axis and GATA3-driven Th2 cell infiltration. The dual-target therapy combining E7449 with dupilumab shows promise for improving patient outcomes in LUADBM, warranting further clinical evaluation.
Collapse
Affiliation(s)
- Yun Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Shihui Shen
- Joint Center for Translational Medicine, Shanghai Fifth People’s Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai 200240, China
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xudong Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Shanghai 200003, China
- Department of Orthopedics, 905th Hospital of PLA Navy, Shanghai 200030, China
| | - Hansen Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Wenjie Ren
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai 200241, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Shanghai 200003, China
- Department of Orthopedics, 905th Hospital of PLA Navy, Shanghai 200030, China
| | - Kun Li
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Lei Li
- Joint Center for Translational Medicine, Shanghai Fifth People’s Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai 200240, China
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|