1
|
Lam CD, Park S. Nanomechanical characterization of soft nanomaterial using atomic force microscopy. Mater Today Bio 2025; 31:101506. [PMID: 40018054 PMCID: PMC11867545 DOI: 10.1016/j.mtbio.2025.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Atomic force microscopy (AFM) is a promising method for generating high-spatial-resolution images, providing insightful perspectives on the nanomechanical attributes of soft matter, including cells, bacteria, viruses, proteins, and nanoparticles. AFM is widely used in biological and pharmaceutical sciences because it can scrutinize mechanical properties under physiological conditions. We comprehensively reviewed experimental techniques and fundamental mathematical models to investigate the mechanical properties, including elastic moduli and binding forces, of soft materials. To determine these mechanical properties, two-dimensional arrays of force-distance (f-d) curves are obtained through AFM indentation experiments using the force volume technique. For elasticity determination, models are divided into approach f-d curve-based models, represented by the Hertz model, and retract f-d curve-based models, exemplified by the Johnson-Kendall-Roberts and Derjaguin-Müller-Toporov models. Especially, the Chen, Tu, and Cappella models, developed from the Hertz model, are used for thin samples on hard substrates. Additionally, the establishment of physical or chemical bonds during indentation experiments, observable in retract f-d curves, is crucial for the adhesive properties of samples and binding affinity between antibodies (receptors) and antigens (ligands). Chemical force microscopy, single-molecule force spectroscopy, and single-cell force spectroscopy are primary AFM methods that provide a comprehensive view of such properties through retract curve analysis. Furthermore, this paper, structured into key thematic sections, also reviews the exemplary application of AFM across multiple scientific disciplines. Notably, cancer cells are softer than healthy cells, although more sophisticated investigations are required for prognostic applications. AFM also investigates how bacteria adapt to antibiotics, addressing antimicrobial resistance, and reveals that stiffer virus capsids indicate reduced infectivity, aiding in the development of new strategies to combat viral infections. Moreover, AFM paves the way for innovative therapeutic approaches in designing effective drug delivery systems by providing insights into the physical properties of soft nanoparticles and the binding affinity of target moieties. Our review provides researchers with representative studies applying AFM to a wide range of cross-disciplinary research.
Collapse
Affiliation(s)
- Chi-Dat Lam
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Soyeun Park
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| |
Collapse
|
2
|
Ragazzini G, Mescola A, Tassinari R, Gallerani A, Zannini C, Di Rosa D, Cavallini C, Marcuzzi M, Taglioli V, Bighi B, Ettari R, Zappavigna V, Ventura C, Alessandrini A, Corsi L. A Benzodiazepine-Derived Molecule That Interferes with the Bio-Mechanical Properties of Glioblastoma-Astrocytoma Cells Altering Their Proliferation and Migration. Int J Mol Sci 2025; 26:2767. [PMID: 40141408 PMCID: PMC11943291 DOI: 10.3390/ijms26062767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma multiforme (grade IV glioma) is characterized by a high invasive potential, making surgical intervention extremely challenging and patient survival very limited. Current pharmacological approaches show, at best, slight improvements in the therapy against this type of tumor. Microtubules are often the target of antitumoral drugs, and specific drugs affecting their dynamics by acting on microtubule-associated proteins (MAPs) without producing their depolymerization could affect both glioma cell migration/invasion and cell proliferation. Here, we analyzed on a cellular model of glioblastoma multiforme, the effect of a molecule (1-(4-amino-3,5-dimethylphenyl)-3,5-dihydro-7,8-ethylenedioxy-4h2,3-benzodiazepin-4-one, hereafter named 1g) which was shown to act as a cytostatic drug in other cell types by affecting microtubule dynamics. We found that the molecule acts also as a migration suppressor by inducing a loss of cell polarity. We characterized the mechanics of U87MG cell aggregates exposed to 1g by different biophysical techniques. We considered both 3D aggregates and 2D cell cultures, testing substrates of different stiffness. We established that this molecule produces a decrease of cell spheroid contractility and it impairs 3D cell invasion. At the same time, in the case of isolated cells, 1g selectively produces an almost instantaneous loss of cell polarity blocking migration and it also produces a disorganization of the mitotic spindle when cells reach mitosis, leading to frequent mitotic slippage events followed by cell death. We can state that the studied molecule produces similar effects to other molecules that are known to affect the dynamics of microtubules, but probably indirectly via microtubule-associated proteins (MAPs) and following different biochemical pathways. Consistently, we report evidence that, regarding its effect on cell morphology, this molecule shows a specificity for some cell types such as glioma cells. Interestingly, being a molecule derived from a benzodiazepine, the 1g chemical structure could allow this molecule to easily cross the blood-brain barrier. Thanks to its chemical/physical properties, the studied molecule could be a promising new drug for the specific treatment of GBM.
Collapse
Affiliation(s)
- Gregorio Ragazzini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy; (G.R.); (A.G.); (B.B.)
- Eldor Lab, Via di Corticella 183, 40128 Bologna, Italy; (R.T.); (C.Z.); (C.C.); (V.T.); (C.V.)
| | - Andrea Mescola
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy;
| | - Riccardo Tassinari
- Eldor Lab, Via di Corticella 183, 40128 Bologna, Italy; (R.T.); (C.Z.); (C.C.); (V.T.); (C.V.)
| | - Alessia Gallerani
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy; (G.R.); (A.G.); (B.B.)
| | - Chiara Zannini
- Eldor Lab, Via di Corticella 183, 40128 Bologna, Italy; (R.T.); (C.Z.); (C.C.); (V.T.); (C.V.)
| | - Domenico Di Rosa
- Lab of Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, SaIA, University of Salerno, 84081 Baronissi, Italy;
| | - Claudia Cavallini
- Eldor Lab, Via di Corticella 183, 40128 Bologna, Italy; (R.T.); (C.Z.); (C.C.); (V.T.); (C.V.)
| | - Martina Marcuzzi
- Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio, 49, 40126 Bologna, Italy;
| | - Valentina Taglioli
- Eldor Lab, Via di Corticella 183, 40128 Bologna, Italy; (R.T.); (C.Z.); (C.C.); (V.T.); (C.V.)
| | - Beatrice Bighi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy; (G.R.); (A.G.); (B.B.)
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy;
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy;
| | - Carlo Ventura
- Eldor Lab, Via di Corticella 183, 40128 Bologna, Italy; (R.T.); (C.Z.); (C.C.); (V.T.); (C.V.)
- Department of Medical and Surgical Sciences, University of Bologna, Via Irnerio, 49, 40126 Bologna, Italy;
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Eldor Lab, Via di Corticella 183, 40128 Bologna, Italy
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy; (G.R.); (A.G.); (B.B.)
- CNR-Nanoscience Institute-S3, Via Campi 213/A, 41125 Modena, Italy;
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Eldor Lab, Via di Corticella 183, 40128 Bologna, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy;
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems, Eldor Lab, Via di Corticella 183, 40128 Bologna, Italy
| |
Collapse
|
3
|
Isert L, Passi M, Freystetter B, Grab M, Roidl A, Müller C, Mehta A, Sundararaghavan HG, Zahler S, Merkel OM. Cellular EMT-status governs contact guidance in an electrospun TACS-mimicking in vitro model. Mater Today Bio 2025; 30:101401. [PMID: 39759848 PMCID: PMC11699613 DOI: 10.1016/j.mtbio.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
In this study, an advanced nanofiber breast cancer in vitro model was developed and systematically characterized including physico-chemical, cell-biological and biophysical parameters. Using electrospinning, the architecture of tumor-associated collagen signatures (TACS5 and TACS6) was mimicked. By employing a rotating cylinder or static plate collector set-up, aligned fibers (TACS5-like structures) and randomly orientated fibers (TACS6-like structures) fibers were produced, respectively. The biocompatibility of these fibers was enhanced by collagen coating, ensuring minimal toxicity and improved cell attachment. Various breast cancer cell lines (MCF7, HCC1954, MDA-MB-468, and MDA-MB-231) were cultured on these fibers to assess epithelial-to-mesenchymal transition (EMT) markers, cellular morphology, and migration. Aligned fibers (TACS5) significantly influenced EMT-related changes, promoting cellular alignment, spindle-shaped morphology and a highly migratory phenotype in mesenchymal and hybrid EMT cells (MDA-MB-468, MDA-MB-231). Conversely, epithelial cells (MCF7, HCC1954) showed limited response, but - under growth factor treatment - started to infiltrate the fibrous scaffold and underwent EMT-like changes, particularly on TACS5-mimicks, emphasizing the interplay of topographical cues and EMT induction. The biophysical analysis revealed a clear correlation between cellular EMT status and cell mechanics, with increased EMT correlating to decreased total cellular stiffness. Cancer cell mechanics, however, were found to be dynamic during biochemical and topographical EMT-induction, exceeding initial stiffness by up to 2-fold. These findings highlight the potential of TACS5-like nanofiber scaffolds in modeling the tumor microenvironment and studying cancer cell behavior and mechanics.
Collapse
Affiliation(s)
- Lorenz Isert
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich, Germany
| | - Mehak Passi
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benedikt Freystetter
- Department of Cardiac Surgery, Ludwig Maximilians University München, Munich, Germany
| | - Maximilian Grab
- Department of Cardiac Surgery, Ludwig Maximilians University München, Munich, Germany
| | - Andreas Roidl
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christoph Müller
- Center of Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Aditi Mehta
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich, Germany
| | | | - Stefan Zahler
- Pharmaceutical Biology, Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Olivia M. Merkel
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University München, Munich, Germany
| |
Collapse
|
4
|
Stoop J, Yokoyama Y, Adachi T. Timing of resting zone parathyroid hormone-related protein expression affects maintenance of the growth plate during secondary ossification: a computational study. Biomech Model Mechanobiol 2025; 24:125-137. [PMID: 39549120 PMCID: PMC11846766 DOI: 10.1007/s10237-024-01899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/17/2024] [Indexed: 11/18/2024]
Abstract
Secondary ossification and maintenance of the growth plate are crucial aspects of long bone formation. Parathyroid hormone-related protein (PTHrP) has been implicated as a key factor in maintaining the growth plate, and studies suggest that PTHrP expression in the resting zone is closely related with formation of the secondary ossification center (SOC). However, details of the relationship between resting zone PTHrP expression and preservation of the growth plate remain unclear. In this study, we aim to investigate the role of resting zone PTHrP expression on maintenance of the growth plate using a computational method. We extend an existing continuum-based particle model of tissue morphogenesis to include PTHrP and Indian hedgehog (Ihh) signaling, allowing the model to capture biochemical and mechanical regulation of individual cell activities. Our model indicates that the timing of resting zone PTHrP expression-specifically the rate of increase in production at the onset of SOC formation-is potentially a crucial mechanism for maintenance of the growth plate.
Collapse
Affiliation(s)
- Jorik Stoop
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Yuka Yokoyama
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Cheung BCH, Chen X, Davis HJ, Nordmann CS, Toth J, Hodgson L, Segall JE, Shenoy VB, Wu M. Identification of CD44 as a key engager to hyaluronic acid-rich extracellular matrices for cell traction force generation and tumor invasion in 3D. Matrix Biol 2025; 135:1-11. [PMID: 39528207 PMCID: PMC11729355 DOI: 10.1016/j.matbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Mechanical properties of the extracellular matrix (ECM) critically regulate a number of important cell functions including growth, differentiation and migration. Type I collagen and glycosaminoglycans (GAGs) are two primary components of ECMs that contribute to mammalian tissue mechanics, with the collagen fiber network sustaining tension, and GAGs withstanding compression. The architecture and stiffness of the collagen network are known to be important for cell-ECM mechanical interactions via cell surface adhesion receptor integrin. In contrast, studies of GAGs in modulating cell-ECM interactions are limited. Here, we present experimental studies on the roles of hyaluronic acid (HA) in single tumor cell traction force generation using a recently developed 3D cell traction force microscopy method. Our work reveals that CD44, a cell surface receptor to HA, is engaged in cell traction force generation in conjunction with β1-integrin. We find that HA significantly modifies the architecture and mechanics of the collagen fiber network, decreasing tumor cells' propensity to remodel the collagen network, attenuating traction force generation, transmission distance, and tumor invasion. Our findings point to a novel role for CD44 in traction force generation, which can be a potential therapeutic target for diseases involving HA rich ECMs such as breast cancer and glioblastoma.
Collapse
Affiliation(s)
- Brian C H Cheung
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Xingyu Chen
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Hannah J Davis
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biological Sciences, Cornell University, Ithaca, NY, USA
| | - Cassidy S Nordmann
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joshua Toth
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey E Segall
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vivek B Shenoy
- Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Peng H, Chao Z, Wang Z, Hao X, Xi Z, Ma S, Guo X, Zhang J, Zhou Q, Qu G, Gao Y, Luo J, Wang Z, Wang J, Li L. Biomechanics in the tumor microenvironment: from biological functions to potential clinical applications. Exp Hematol Oncol 2025; 14:4. [PMID: 39799341 PMCID: PMC11724500 DOI: 10.1186/s40164-024-00591-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
Immune checkpoint therapies have spearheaded drug innovation over the last decade, propelling cancer treatments toward a new era of precision therapies. Nonetheless, the challenges of low response rates and prevalent drug resistance underscore the imperative for a deeper understanding of the tumor microenvironment (TME) and the pursuit of novel targets. Recent findings have revealed the profound impacts of biomechanical forces within the tumor microenvironment on immune surveillance and tumor progression in both murine models and clinical settings. Furthermore, the pharmacological or genetic manipulation of mechanical checkpoints, such as PIEZO1, DDR1, YAP/TAZ, and TRPV4, has shown remarkable potential in immune activation and eradication of tumors. In this review, we delved into the underlying biomechanical mechanisms and the resulting intricate biological meaning in the TME, focusing mainly on the extracellular matrix, the stiffness of cancer cells, and immune synapses. We also summarized the methodologies employed for biomechanical research and the potential clinical translation derived from current evidence. This comprehensive review of biomechanics will enhance the understanding of the functional role of biomechanical forces and provide basic knowledge for the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Hao Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zefeng Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaodong Hao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Zirui Xi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Xiangdong Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Qiang Zhou
- Department of Urology, Qinghai University Affiliated Hospital, Qinghai University Medical College, Xining, 810001, Qinghai, China
| | - Guanyu Qu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Yuan Gao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
- The Second Clinical School, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China
| | - Jing Luo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
- Taikang Tongji (Wuhan) Hospital, 420060, Wuhan, China.
| | - Jing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
| | - Le Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
| |
Collapse
|
7
|
Lan H, Tan XHM, Le MTT, Chien HY, Zheng R, Rowat AC, Teitell MA, Chiou PY. Optomagnetic Micromirror Arrays for Mapping Large Area Stiffness Distributions of Biomimetic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406389. [PMID: 39614709 PMCID: PMC11710979 DOI: 10.1002/smll.202406389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/17/2024] [Indexed: 12/01/2024]
Abstract
A new device termed "Optomagnetic Micromirror Arrays" (OMA) is demonstrated capable of mapping the stiffness distribution of biomimetic materials across a 5.1 mm × 7.2 mm field of view with cellular resolution. The OMA device comprises an array of 50 000 magnetic micromirrors with optical grating structures embedded beneath an elastic PDMS film, with biomimetic materials affixed on top. Illumination of a broadband white light beam onto these micromirrors results in the reflection of microscale rainbow light rays on each micromirror. When a magnetic field is applied, it causes each micromirror to tilt differently depending on the local stiffness of the biomimetic materials. Through imaging these micromirrors with low N.A. optics, a specific narrow band of reflection light rays from each micromirror is captured. Changing a micromirror's tilt angle also alters the color spectrum it reflects back to the imaging system and the color of the micromirror image it represents. As a result, OMA can infer the local stiffness of the biomimetic materials through the color change detected on each micromirror. OMA offers the potential for high-throughput stiffness mapping at the tissue-level while maintaining spatial resolution at the cellular level.
Collapse
Affiliation(s)
- Hsin Lan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xing Haw Marvin Tan
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Republic of Singapore
| | - Minh-Tam Tran Le
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hao-Yu Chien
- Department of Electrical and Computer Enigeering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ruoda Zheng
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael A Teitell
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
8
|
Varshavskaya KB, Barykin EP, Timoshenko RV, Kolmogorov VS, Erofeev AS, Gorelkin PV, Mitkevich VA, Makarov AA. Post-translational modifications of beta-amyloid modulate its effect on cell mechanical properties and influence cytoskeletal signaling cascades. Front Mol Neurosci 2024; 17:1501874. [PMID: 39610710 PMCID: PMC11602469 DOI: 10.3389/fnmol.2024.1501874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Post-translational modifications of beta-amyloid (Aβ) play an important role in the pathogenesis of Alzheimer's disease (AD). Aβ modifications such as Ser8 phosphorylation (pS8-Aβ42) and Asp7 isomerization (iso-Aβ42) can significantly alter the properties of Aβ and have been detected in vivo. One of the reasons for the different pathogenicity of Aβ isoforms may be the activation of different signaling cascades leading to changes in the mechanical properties of cells. In this paper, we used correlative scanning ion-conductance microscopy (SICM) and Pt-nanoelectrodes to compare the effects of Aβ isoforms on the Young's modulus of SH-SY5Y cells and the level of ROS. It was found that unmodified Aβ42 resulted in the largest increase in cell Young's modulus of all isoforms after 4 h of incubation, while pS8-Aβ42 induced the greatest increase in stiffness and ROS levels after 24 h of incubation. Analysis of signaling proteins involved in the regulation of the actin cytoskeleton showed that Aβ42, pS8-Aβ42 and iso-Aβ42 have different effects on cofilin, GSK3β, LIMK, ERK and p38. This indicates that post-translational modifications of Aβ modulate its effect on neuronal cells through the activation of various signaling cascades, which affects the mechanical properties of cells.
Collapse
Affiliation(s)
| | | | - Roman V. Timoshenko
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Vasilii S. Kolmogorov
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
| | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, Moscow, Russia
| | | | | |
Collapse
|
9
|
Vessella T, Rozen EJ, Shohet J, Wen Q, Zhou HS. Investigation of Cell Mechanics and Migration on DDR2-Expressing Neuroblastoma Cell Line. Life (Basel) 2024; 14:1260. [PMID: 39459560 PMCID: PMC11509142 DOI: 10.3390/life14101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Neuroblastoma is a devastating disease accounting for ~15% of all childhood cancer deaths. Collagen content and fiber association within the tumor stroma influence tumor progression and metastasis. High expression levels of collagen receptor kinase, Discoidin domain receptor II (DDR2), are associated with the poor survival of neuroblastoma patients. Additionally, cancer cells generate and sustain mechanical forces within their environment as a part of their normal physiology. Despite this, evidence regarding whether collagen-activated DDR2 signaling dysregulates these migration forces is still elusive. To address these questions, a novel shRNA DDR2 knockdown neuroblastoma cell line (SH-SY5Y) was engineered to evaluate the consequence of DDR2 on cellular mechanics. Atomic force microscopy (AFM) and traction force microscopy (TFM) were utilized to unveil the biophysical altercations. DDR2 downregulation was found to significantly reduce proliferation, cell stiffness, and cellular elongation. Additionally, DDR2-downregulated cells had decreased traction forces when plated on collagen-coated elastic substrates. Together, these results highlight the important role that DDR2 has in reducing migration mechanics in neuroblastoma and suggest DDR2 may be a promising novel target for future therapies.
Collapse
Affiliation(s)
- Theadora Vessella
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA;
| | - Esteban J. Rozen
- Crnic Institute Bolder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| | - Jason Shohet
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA
| | - Hong Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA;
| |
Collapse
|
10
|
Montes AR, Barroso A, Wang W, O'Connell GD, Tepole AB, Mofrad MRK. Integrin mechanosensing relies on a pivot-clip mechanism to reinforce cell adhesion. Biophys J 2024; 123:2443-2454. [PMID: 38872310 PMCID: PMC11630637 DOI: 10.1016/j.bpj.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/01/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024] Open
Abstract
Cells intricately sense mechanical forces from their surroundings, driving biophysical and biochemical activities. This mechanosensing phenomenon occurs at the cell-matrix interface, where mechanical forces resulting from cellular motion, such as migration or matrix stretching, are exchanged through surface receptors, primarily integrins, and their corresponding matrix ligands. A pivotal player in this interaction is the α5β1 integrin and fibronectin (FN) bond, known for its role in establishing cell adhesion sites for migration. However, upregulation of the α5β1-FN bond is associated with uncontrolled cell metastasis. This bond operates through catch bond dynamics, wherein the bond lifetime paradoxically increases with greater force. The mechanism sustaining the characteristic catch bond dynamics of α5β1-FN remains unclear. Leveraging molecular dynamics simulations, our approach unveils a pivot-clip mechanism. Two key binding sites on FN, namely the synergy site and the RGD (Arg-Gly-Asp) motif, act as active points for structural changes in α5β1 integrin. Conformational adaptations at these sites are induced by a series of hydrogen bond formations and breaks at the synergy site. We disrupt these adaptations through a double mutation on FN, known to reduce cell adhesion. A whole-cell finite-element model is employed to elucidate how the synergy site may promote dynamic α5β1-FN binding, resisting cell contraction. In summary, our study integrates molecular- and cellular-level modeling to propose that FN's synergy site reinforces cell adhesion through enhanced binding dynamics and a mechanosensitive pivot-clip mechanism. This work sheds light on the interplay between mechanical forces and cell-matrix interactions, contributing to our understanding of cellular behaviors in physiological and pathological contexts.
Collapse
Affiliation(s)
- Andre R Montes
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Anahi Barroso
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Wei Wang
- Berkeley City College, Berkeley, California; Berkeley Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Grace D O'Connell
- Berkeley Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California
| | - Adrian B Tepole
- Tepole Mechanics and Mechanobiology Laboratory, School of Mechanical Engineering, Purdue University, West Lafayette, Indiana.
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, Berkeley, California; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, Berkeley, California.
| |
Collapse
|
11
|
Uesugi K, Obata S, Nagayama K. Micro tensile tester measurement of biomechanical properties and adhesion force of microtubule-polymerization-inhibited cancer cells. J Mech Behav Biomed Mater 2024; 156:106586. [PMID: 38805872 DOI: 10.1016/j.jmbbm.2024.106586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Both mechanical and adhesion properties of cancer cells are complex and reciprocally related to migration, invasion, and metastasis with large cell deformation. Therefore, we evaluated these properties for human cervical cancer cells (HeLa) simultaneously using our previously developed micro tensile tester system. For efficient evaluation, we developed image analysis software to modify the system. The software can analyze the tensile force in real time. The modified system can evaluate the tensile stiffness of cells to which a large deformation is applied, also evaluate the adhesion strength of cancer cells that adhered to a culture substrate and were cultured for several days with their adhesion maturation. We used the modified system to simultaneously evaluate the stiffness of the cancer cells to which a large deformation was applied and their adhesion strength. The obtained results revealed that the middle phase of tensile stiffness and adhesion force of the microtubule-depolymerized group treated with colchicine (an anti-cancer drug) (stiffness, 13.4 ± 7.5 nN/%; adhesion force, 460.6 ± 258.2 nN) were over two times larger than those of the control group (stiffness, 5.0 ± 3.5 nN/%; adhesion force, 168.2 ± 98.0 nN). Additionally, the same trend was confirmed with the detailed evaluation of cell surface stiffness using an atomic force microscope. Confocal fluorescence microscope observations showed that the stress fibers (SFs) of colchicine-treated cells were aligned in the same direction, and focal adhesions (FAs) of the cells developed around both ends of the SFs and aligned parallel to the developed direction of the SFs. There was a possibility that the microtubule depolymerization by the colchicine treatment induced the development of SFs and FAs and subsequently caused an increment of cell stiffness and adhesion force. From the above results, we concluded the modified system would be applicable to cancer detection and anti-cancer drug efficacy tests.
Collapse
Affiliation(s)
- Kaoru Uesugi
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan
| | - Shota Obata
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan
| | - Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Nakanarusawa-cho, Hitachi, 316-8511, Japan.
| |
Collapse
|
12
|
Ghoytasi I, Bavi O, Kaazempur Mofrad MR, Naghdabadi R. An in-silico study on the mechanical behavior of colorectal cancer cell lines in the micropipette aspiration process. Comput Biol Med 2024; 178:108744. [PMID: 38889631 DOI: 10.1016/j.compbiomed.2024.108744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Cancer alters the structural integrity and morphology of cells. Consequently, the cell function is overshadowed. In this study, the micropipette aspiration process is computationally modeled to predict the mechanical behavior of the colorectal cancer cells. The intended cancer cells are modeled as an incompressible Neo-Hookean visco-hyperelastic material. Also, the micropipette is assumed to be rigid with no deformation. The proposed model is validated with an in-vitro study. To capture the equilibrium and time-dependent behaviors of cells, ramp, and creep tests are respectively performed using the finite element method. Through the simulations, the effects of the micropipette geometry and the aspiration pressure on the colorectal cancer cell lines are investigated. Our findings indicate that, as the inner radius of the micropipette increases, despite the increase in deformation rate and aspirated length, the time to reach the equilibrium state increases. Nevertheless, it is obvious that increasing the tip curvature radius has a small effect on the change of the aspirated length. But, due to the decrease in the stress concentration, it drastically reduces the equilibrium time and increases the deformation rate significantly. Interestingly, our results demonstrate that increasing the aspiration pressure somehow causes the cell stiffening, thereby reducing the upward trend of deformation rate, equilibrium time, and aspirated length. Our findings provide valuable insights for researchers in cell therapy and cancer treatment and can aid in developing more precise microfluidic.
Collapse
Affiliation(s)
- Ibrahim Ghoytasi
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran.
| | - Mohammad Reza Kaazempur Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Reza Naghdabadi
- Department of Mechanical Engineering, Sharif University of Technology, 89694-14588, Tehran, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 89694-14588, Tehran, Iran.
| |
Collapse
|
13
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
14
|
Singam A, Bhattacharya C, Park S. Aging-related changes in the mechanical properties of single cells. Heliyon 2024; 10:e32974. [PMID: 38994100 PMCID: PMC11238009 DOI: 10.1016/j.heliyon.2024.e32974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mechanical properties, along with biochemical and molecular properties, play crucial roles in governing cellular function and homeostasis. Cellular mechanics are influenced by various factors, including physiological and pathological states, making them potential biomarkers for diseases and aging. While several methods such as AFM, particle-tracking microrheology, optical tweezers/stretching, magnetic tweezers/twisting cytometry, microfluidics, and micropipette aspiration have been widely utilized to measure the mechanical properties of single cells, our understanding of how aging affects these properties remains limited. To fill this knowledge gap, we provide a brief overview of the commonly used methods to measure single-cell mechanical properties. We then delve into the effects of aging on the mechanical properties of different cell types. Finally, we discuss the importance of studying cellular viscous and viscoelastic properties as well as aging induced by different stressors to gain a deeper understanding of the aging process and aging-related diseases.
Collapse
Affiliation(s)
- Amarnath Singam
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Chandrabali Bhattacharya
- Department of Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
15
|
Aghajanloo B, Hadady H, Ejeian F, Inglis DW, Hughes MP, Tehrani AF, Nasr-Esfahani MH. Biomechanics of circulating cellular and subcellular bioparticles: beyond separation. Cell Commun Signal 2024; 22:331. [PMID: 38886776 PMCID: PMC11181607 DOI: 10.1186/s12964-024-01707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Biomechanical attributes have emerged as novel markers, providing a reliable means to characterize cellular and subcellular fractions. Numerous studies have identified correlations between these factors and patients' medical status. However, the absence of a thorough overview impedes their applicability in contemporary state-of-the-art therapeutic strategies. In this context, we provide a comprehensive analysis of the dimensions, configuration, rigidity, density, and electrical characteristics of normal and abnormal circulating cells. Subsequently, the discussion broadens to encompass subcellular bioparticles, such as extracellular vesicles (EVs) enriched either from blood cells or other tissues. Notably, cell sizes vary significantly, from 2 μm for platelets to 25 μm for circulating tumor cells (CTCs), enabling the development of size-based separation techniques, such as microfiltration, for specific diagnostic and therapeutic applications. Although cellular density is relatively constant among different circulating bioparticles, it allows for reliable density gradient centrifugation to isolate cells without altering their native state. Additionally, variations in EV surface charges (-6.3 to -45 mV) offer opportunities for electrophoretic and electrostatic separation methods. The distinctive mechanical properties of abnormal cells, compared to their normal counterparts, present an exceptional opportunity for diverse medical and biotechnological approaches. This review also aims to provide a holistic view of the current understanding of popular techniques in this domain that transcend conventional boundaries, focusing on early harvesting of malignant cells from body fluids, designing effective therapeutic options, cell targeting, and resonating with tissue and genetic engineering principles.
Collapse
Affiliation(s)
- Behrouz Aghajanloo
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Science, Research and Technology (DISAT), Politecnico di Torino, Turin, Italy
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hanieh Hadady
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - David W Inglis
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Michael Pycraft Hughes
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
16
|
Jian HY, Liang ZC, Wen H, Zhang Z, Zeng PH. Shi-pi-xiao-ji formula suppresses hepatocellular carcinoma by reducing cellular stiffness through upregulation of acetyl-coA acetyltransferase 1. World J Gastrointest Oncol 2024; 16:2727-2741. [PMID: 38994152 PMCID: PMC11236261 DOI: 10.4251/wjgo.v16.i6.2727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Previous studies have shown that the Shi-pi-xiao-ji (SPXJ) herbal decoction formula is effective in suppressing hepatocellular carcinoma (HCC), but the underlying mechanisms are not known. Therefore, this study investigated whether the antitumor effects of the SPXJ formula in treating HCC were mediated by acetyl-coA acetyltransferase 1 (ACAT1)-regulated cellular stiffness. Through a series of experiments, we concluded that SPXJ inhibits the progression of HCC by upregulating the expression level of ACAT1, lowering the level of cholesterol in the cell membrane, and altering the cellular stiffness, which provides a new idea for the research of traditional Chinese medicine against HCC. AIM To investigate the anti-tumor effects of the SPXJ formula on the malignant progression of HCC. METHODS HCC cells were cultured in vitro with SPXJ-containing serum prepared by injecting SPXJ formula into wild-type mice. The apoptotic rate and proliferative, invasive, and migratory abilities of control and SPXJ-treated HCC cells were compared. Atomic force microscopy was used to determine the cell surface morphology and the Young's modulus values of the control and SPXJ-treated HCC cells. Plasma membrane cholesterol levels in HCC cells were detected using the Amplex Red cholesterol detection kit. ACAT1 protein levels were estimated using western blotting. RESULTS Compared with the vehicle group, SPXJ serum considerably reduced proliferation of HCC cells, increased stiffness and apoptosis of HCC cells, inhibited migration and invasion of HCC cells, decreased plasma membrane cholesterol levels, and upregulated ACAT1 protein levels. However, treatment of HCC cells with the water-soluble cholesterol promoted proliferation, migration, and invasion of HCC cells as well as decreased cell stiffness and plasma membrane cholesterol levels, but did not alter the apoptotic rate and ACAT1 protein expression levels compared with the vehicle control. CONCLUSION SPXJ formula inhibited proliferation, invasion, and migration of HCC cells by decreasing plasma membrane cholesterol levels and altering cellular stiffness through upregulation of ACAT1 protein expression.
Collapse
Affiliation(s)
- Hui-Ying Jian
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zi-Cheng Liang
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Huan Wen
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410006, Hunan Province, China
| | - Zhen Zhang
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410006, Hunan Province, China
| | - Pu-Hua Zeng
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410006, Hunan Province, China
| |
Collapse
|
17
|
Jian HY, Liang ZC, Wen H, Zhang Z, Zeng PH. Shi-pi-xiao-ji formula suppresses hepatocellular carcinoma by reducing cellular stiffness through upregulation of acetyl-coA acetyltransferase 1. World J Gastrointest Oncol 2024; 16:2715-2729. [DOI: 10.4251/wjgo.v16.i6.2715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/14/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Previous studies have shown that the Shi-pi-xiao-ji (SPXJ) herbal decoction formula is effective in suppressing hepatocellular carcinoma (HCC), but the underlying mechanisms are not known. Therefore, this study investigated whether the antitumor effects of the SPXJ formula in treating HCC were mediated by acetyl-coA acetyltransferase 1 (ACAT1)-regulated cellular stiffness. Through a series of experiments, we concluded that SPXJ inhibits the progression of HCC by upregulating the expression level of ACAT1, lowering the level of cholesterol in the cell membrane, and altering the cellular stiffness, which provides a new idea for the research of traditional Chinese medicine against HCC.
AIM To investigate the anti-tumor effects of the SPXJ formula on the malignant progression of HCC.
METHODS HCC cells were cultured in vitro with SPXJ-containing serum prepared by injecting SPXJ formula into wild-type mice. The apoptotic rate and proliferative, invasive, and migratory abilities of control and SPXJ-treated HCC cells were compared. Atomic force microscopy was used to determine the cell surface morphology and the Young’s modulus values of the control and SPXJ-treated HCC cells. Plasma membrane cholesterol levels in HCC cells were detected using the Amplex Red cholesterol detection kit. ACAT1 protein levels were estimated using western blotting.
RESULTS Compared with the vehicle group, SPXJ serum considerably reduced proliferation of HCC cells, increased stiffness and apoptosis of HCC cells, inhibited migration and invasion of HCC cells, decreased plasma membrane cholesterol levels, and upregulated ACAT1 protein levels. However, treatment of HCC cells with the water-soluble cholesterol promoted proliferation, migration, and invasion of HCC cells as well as decreased cell stiffness and plasma membrane cholesterol levels, but did not alter the apoptotic rate and ACAT1 protein expression levels compared with the vehicle control.
CONCLUSION SPXJ formula inhibited proliferation, invasion, and migration of HCC cells by decreasing plasma membrane cholesterol levels and altering cellular stiffness through upregulation of ACAT1 protein expression.
Collapse
Affiliation(s)
- Hui-Ying Jian
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zi-Cheng Liang
- Graduate School, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Huan Wen
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410006, Hunan Province, China
| | - Zhen Zhang
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410006, Hunan Province, China
| | - Pu-Hua Zeng
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western, Cancer Research Institute of Hunan Academy of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410006, Hunan Province, China
| |
Collapse
|
18
|
Taheri M, Sousanabadi Farahani A. Experimental extraction of Young's modulus of gastric tissue with development of spherical, cylindrical, and crowned rollers contact theories. Heliyon 2024; 10:e31848. [PMID: 38867961 PMCID: PMC11167291 DOI: 10.1016/j.heliyon.2024.e31848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/05/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Nanotechnology has been considered with the aim of recognizing the structural and mechanical properties as well as improving the treatment and diagnostic process in the field of medicine. The process of nanomanipulation by examining healthy and cancerous tissues in nanoscale is one of the processes used in this field. Therefore, in this article, considering the importance of recognizing the properties of cancerous and healthy tissues in improving the treatment and diagnosis process, one of the most common types of cancer has been studied. Young modulus has been used as a parameter in the diagnosis of cancerous tissue and its value has been calculated for gastric cancerous tissue. To achieve this goal, atomic force microscopy (AFM) was used during the manipulation process. This tool with the ability to study cancerous tissues in different environments and with the least amount of damage to the target tissue, is one of the effective tools in the field of nanomanipulation. The parameter studied in this study is the geometry of gastric cancer tissue. Therefore, the simulations have been performed by considering contact models with spherical, cylindrical and crowned rollers geometries. The force-indentation depth diagram for gastric tissue is plotted experimentally and compared with theoretical results. According to the experimental work done after reviewing the recorded topographic images, the approximate range of the Young's modulus value for gastric tissue has been calculated according to different geometries. Since the geometry of the crowned rollers is closer to the geometry of the gastric tissue, it has a higher accuracy and the values of the Young's modulus have been calculated according to this geometry in the range of 316-310 KPa.
Collapse
Affiliation(s)
- Moein Taheri
- Department of Mechanical Engineering, Faculty of Engineering, Arak University, Arak, Iran
| | | |
Collapse
|
19
|
Mallah A, Stojkova K, Cohen RN, Abu-Lail N, Brey EM, Gonzalez Porras MA. Atomic force microscopy characterization of white and beige adipocyte differentiation. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00925-z. [PMID: 38831186 DOI: 10.1007/s11626-024-00925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 06/05/2024]
Abstract
Adipose tissue plays an essential role in systemic metabolism with white adipose tissue (WAT) making up most of the tissue and being involved in the regulation of energy homeostasis, and brown and beige adipose tissue (BAT) exhibiting thermogenic activity. There is promise in the conversion of white adipocytes into beige ones as a therapeutic potential to control and enhance systemic metabolism, but it is difficult to maintain this transformation in vivo because we do not fully understand the mechanism of conversion. In this study, we applied atomic force microscopy (AFM) to characterize beige or white adipocytes during the process of differentiation for morphology, roughness, adhesion, and elasticity at different time points. As cells differentiated to white and beige adipocytes, they exhibited morphological changes as they lipid loaded, transitioning from flattened elongated cells to a rounded shape indicating adipogenesis. While there was an initial decrease in elasticity for both beige and white adipocytes, white adipocytes exhibited a higher elasticity than beige adipocytes at all time points. Beige and white adipogenesis exhibited a decrease in adhesion energy compared to preadipocytes, yet at day 12, white adipocytes had a significant increase in adhesion energy compared to beige adipocytes. This work shows significant differences in the mechanical properties of white vs. beige adipocytes during differentiation. Results from this study contribute to a better understanding of the differentiation of adipocytes which are vital to the therapeutic induction, engineered models, and maintenance of beige adipocytes as a potential approach for enhancing systemic metabolism.
Collapse
Affiliation(s)
- Alia Mallah
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, TX, 78249, USA
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, TX, 78249, USA
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, USA
| | - Ronald N Cohen
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nehal Abu-Lail
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, TX, 78249, USA
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, TX, 78249, USA
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, USA
| | - Maria A Gonzalez Porras
- Department of Biomedical Engineering and Chemical Engineering, University of Texas at San Antonio, AET 1.3681 UTSA Circle, San Antonio, TX, 78249, USA.
- Institute of Regenerative Medicine, University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
20
|
Yokoyama Y, Kameo Y, Sunaga J, Maki K, Adachi T. Chondrocyte hypertrophy in the growth plate promotes stress anisotropy affecting long bone development through chondrocyte column formation. Bone 2024; 182:117055. [PMID: 38412894 DOI: 10.1016/j.bone.2024.117055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
The length of long bones is determined by column formation of proliferative chondrocytes and subsequent chondrocyte hypertrophy in the growth plate during bone development. Despite the importance of mechanical loading in long bone development, the mechanical conditions of the cells within the growth plate, such as the stress field, remain unclear owing to the difficulty in investigating spatiotemporal changes within dynamically growing tissues. In this study, the mechanisms of longitudinal bone growth were investigated from a mechanical perspective through column formation of proliferative chondrocytes within the growth plate before secondary ossification center formation using continuum-based particle models (CbPMs). A one-factor model, which simply describes essential aspects of a biological signaling cascade regulating cell activities within the growth plate, was developed and incorporated into CbPM. Subsequently, the developmental process and maintenance of the growth plate structure and resulting bone morphogenesis were simulated. Thus, stress anisotropy in the proliferative zone that affects bone elongation through chondrocyte column formation was identified and found to be promoted by chondrocyte hypertrophy. These results provide further insights into the mechanical regulation of multicellular dynamics during bone development.
Collapse
Affiliation(s)
- Yuka Yokoyama
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshitaka Kameo
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Engineering Science and Mechanics, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu Koto-ku, Tokyo, 135-8548, Japan
| | - Junko Sunaga
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichiro Maki
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
21
|
Zhang X, van den Hurk EAN, Weickenmeier J. Insights into the Mechanical Characterization of Mouse Brain Tissue Using Microindentation Testing. Curr Protoc 2024; 4:e1011. [PMID: 38648070 DOI: 10.1002/cpz1.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Indentation testing is the most common approach to quantify mechanical brain tissue properties. Despite a myriad of studies conducted already, reported stiffness values vary extensively and continue to be subject of study. Moreover, the growing interest in the relationship between the brain's spatially heterogeneous microstructure and local tissue stiffness warrants the development of standardized measurement protocols to enable comparability between studies and assess repeatability of reported data. Here, we present three individual protocols that outline (1) sample preparation of a 1000-µm thick coronal slice, (2) a comprehensive list of experimental parameters associated with the FemtoTools FT-MTA03 Micromechanical Testing System for spherical indentation, and (3) two different approaches to derive the elastic modulus from raw force-displacement data. Lastly, we demonstrate that our protocols deliver a robust experimental framework that enables us to determine the spatially heterogeneous microstructural properties of (mouse) brain tissue. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Mouse brain sample preparation Basic Protocol 2: Indentation testing of mouse brain tissue using the FemtoTools FT-MTA03 Micromechanical Testing and Assembly System Basic Protocol 3: Tissue stiffness identification from force-displacement data.
Collapse
Affiliation(s)
- Xuesong Zhang
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
| | - Eva A N van den Hurk
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Johannes Weickenmeier
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey
- Center for Neuromechanics, Stevens Institute of Technology, Hoboken, New Jersey
| |
Collapse
|
22
|
Xue Y, Ma Y, Sun Z, Liu X, Zhang M, Zhang J, Xi N. Identification and Measurement of Biomarkers at Single Microorganism Level for In Situ Monitoring Deep Ultraviolet Disinfection Process. IEEE Trans Nanobioscience 2024; 23:242-251. [PMID: 37676797 DOI: 10.1109/tnb.2023.3312754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Since the COVID-19 disease has been further aggravated, the prevention of pathogen transmission becomes a vital issue to restrain casualties. Recent research outcomes have shown the possibilities of the viruses existing on inanimate surfaces up to few days, which carry the risk of touch propagation of the disease. Deep ultraviolet germicide irradiation (UVGI) with the wavelength of 255-280nm has been verified to efficiently disinfect various types of bacteria and virus, which could prevent the aggravation of pandemic spread. Even though considerable experiments and approaches have been applied to evaluate the disinfection effects, there are only few reports about how the individual bio-organism behaves after ultraviolet C (UVC) irradiation, especially in the aspect of mechanical changes. Furthermore, since the standard pathway of virus transmission and reproduction requires the host cell to assemble and transport newly generated virus, the dynamic response of infectious cell is always the vital aspect of virology study. In this work, high power LEDs array has been established with 270nm UVC irradiation to evaluate disinfection capability on various types of bio-organism, and incubator embedded atomic force microscopy (AFM) is used to investigate the single bacterium and virus under UVGI. The real-time tracking of the living Vero cells infected with adenovirus has also been presented in this study. The results show that after sufficient UVGI, the outer shell of bacteria and viruses remain intact in structure, however the bio-organisms lost the capability of reproduction and normal metabolism. The experiment results also indicate that once the host cell is infected with adenovirus, the rapid production of newborn virus capsid will gradually destroy the cellular normal metabolism and lose mechanical integrity.
Collapse
|
23
|
Combriat T, Olsen PA, Låstad SB, Malthe-Sørenssen A, Krauss S, Dysthe DK. Acoustic Wave-Induced Stroboscopic Optical Mechanotyping of Adherent Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307929. [PMID: 38417124 DOI: 10.1002/advs.202307929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Indexed: 03/01/2024]
Abstract
In this study, a novel, high content technique using a cylindrical acoustic transducer, stroboscopic fast imaging, and homodyne detection to recover the mechanical properties (dynamic shear modulus) of living adherent cells at low ultrasonic frequencies is presented. By analyzing the micro-oscillations of cells, whole populations are simultaneously mechanotyped with sub-cellular resolution. The technique can be combined with standard fluorescence imaging allowing to further cross-correlate biological and mechanical information. The potential of the technique is demonstrated by mechanotyping co-cultures of different cell types with significantly different mechanical properties.
Collapse
Affiliation(s)
- Thomas Combriat
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
- Hybrid Technology Hub, University of Oslo, Institute of Basic Medical Sciences P.O. Box 1110 Blindern, Oslo, 0317, Norway
- Center for Computing in Science Education, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| | - Petter Angell Olsen
- Hybrid Technology Hub, University of Oslo, Institute of Basic Medical Sciences P.O. Box 1110 Blindern, Oslo, 0317, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
| | - Silja Borring Låstad
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| | - Anders Malthe-Sørenssen
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
- Center for Computing in Science Education, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| | - Stefan Krauss
- Hybrid Technology Hub, University of Oslo, Institute of Basic Medical Sciences P.O. Box 1110 Blindern, Oslo, 0317, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, Oslo, 0424, Norway
| | - Dag Kristian Dysthe
- Njord Centre, Department of Physics, University of Oslo, P.O. Box 1048 Blindern, Oslo, 0316, Norway
| |
Collapse
|
24
|
Mirzakhel Z, Reddy GA, Boman J, Manns B, Veer ST, Katira P. "Patchiness" in mechanical stiffness across a tumor as an early-stage marker for malignancy. BMC Ecol Evol 2024; 24:33. [PMID: 38486161 PMCID: PMC10938681 DOI: 10.1186/s12862-024-02221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/03/2024] [Indexed: 03/17/2024] Open
Abstract
Mechanical phenotyping of tumors, either at an individual cell level or tumor cell population level is gaining traction as a diagnostic tool. However, the extent of diagnostic and prognostic information that can be gained through these measurements is still unclear. In this work, we focus on the heterogeneity in mechanical properties of cells obtained from a single source such as a tissue or tumor as a potential novel biomarker. We believe that this heterogeneity is a conventionally overlooked source of information in mechanical phenotyping data. We use mechanics-based in-silico models of cell-cell interactions and cell population dynamics within 3D environments to probe how heterogeneity in cell mechanics drives tissue and tumor dynamics. Our simulations show that the initial heterogeneity in the mechanical properties of individual cells and the arrangement of these heterogenous sub-populations within the environment can dictate overall cell population dynamics and cause a shift towards the growth of malignant cell phenotypes within healthy tissue environments. The overall heterogeneity in the cellular mechanotype and their spatial distributions is quantified by a "patchiness" index, which is the ratio of the global to local heterogeneity in cell populations. We observe that there exists a threshold value of the patchiness index beyond which an overall healthy population of cells will show a steady shift towards a more malignant phenotype. Based on these results, we propose that the "patchiness" of a tumor or tissue sample, can be an early indicator for malignant transformation and cancer occurrence in benign tumors or healthy tissues. Additionally, we suggest that tissue patchiness, measured either by biochemical or biophysical markers, can become an important metric in predicting tissue health and disease likelihood just as landscape patchiness is an important metric in ecology.
Collapse
Affiliation(s)
- Zibah Mirzakhel
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Gudur Ashrith Reddy
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Jennifer Boman
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Brianna Manns
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Savannah Ter Veer
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA
| | - Parag Katira
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, USA.
- Computational Science Research Center, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
25
|
Marcuccio F, Chau CC, Tanner G, Elpidorou M, Finetti MA, Ajaib S, Taylor M, Lascelles C, Carr I, Macaulay I, Stead LF, Actis P. Single-cell nanobiopsy enables multigenerational longitudinal transcriptomics of cancer cells. SCIENCE ADVANCES 2024; 10:eadl0515. [PMID: 38446884 PMCID: PMC10917339 DOI: 10.1126/sciadv.adl0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Single-cell RNA sequencing has revolutionized our understanding of cellular heterogeneity, but routine methods require cell lysis and fail to probe the dynamic trajectories responsible for cellular state transitions, which can only be inferred. Here, we present a nanobiopsy platform that enables the injection of exogenous molecules and multigenerational longitudinal cytoplasmic sampling from a single cell and its progeny. The technique is based on scanning ion conductance microscopy (SICM) and, as a proof of concept, was applied to longitudinally profile the transcriptome of single glioblastoma (GBM) brain tumor cells in vitro over 72 hours. The GBM cells were biopsied before and after exposure to chemotherapy and radiotherapy, and our results suggest that treatment either induces or selects for more transcriptionally stable cells. We envision the nanobiopsy will contribute to transforming standard single-cell transcriptomics from a static analysis into a dynamic assay.
Collapse
Affiliation(s)
- Fabio Marcuccio
- Faculty of Medicine, Imperial College London, London, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Chalmers C. Chau
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Georgette Tanner
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Marilena Elpidorou
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Martina A. Finetti
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Shoaib Ajaib
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Morag Taylor
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Carolina Lascelles
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Ian Carr
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Iain Macaulay
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Lucy F. Stead
- Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| | - Paolo Actis
- Bragg Centre for Materials Research, University of Leeds, Leeds, UK
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
26
|
Yang Y, Chen S, Zhang M, Shi Y, Luo J, Huang Y, Gu Z, Hu W, Zhang Y, He X, Yu C. Mesoporous nanoperforators as membranolytic agents via nano- and molecular-scale multi-patterning. Nat Commun 2024; 15:1891. [PMID: 38424084 PMCID: PMC10904871 DOI: 10.1038/s41467-024-46189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Plasma membrane lysis is an effective anticancer strategy, which mostly relying on soluble molecular membranolytic agents. However, nanomaterial-based membranolytic agents has been largely unexplored. Herein, we introduce a mesoporous membranolytic nanoperforators (MLNPs) via a nano- and molecular-scale multi-patterning strategy, featuring a spiky surface topography (nanoscale patterning) and molecular-level periodicity in the spikes with a benzene-bridged organosilica composition (molecular-scale patterning), which cooperatively endow an intrinsic membranolytic activity. Computational modelling reveals a nanospike-mediated multivalent perforation behaviour, i.e., multiple spikes induce nonlinearly enlarged membrane pores compared to a single spike, and that benzene groups aligned parallelly to a phospholipid molecule show considerably higher binding energy than other alignments, underpinning the importance of molecular ordering in phospholipid extraction for membranolysis. Finally, the antitumour activity of MLNPs is demonstrated in female Balb/c mouse models. This work demonstrates assembly of organosilica based bioactive nanostructures, enabling new understandings on nano-/molecular patterns co-governed nano-bio interaction.
Collapse
Affiliation(s)
- Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- South Australian immunoGENomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Shiwei Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Min Zhang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yiru Shi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiangqi Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yiming Huang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Zhengying Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wenli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Ye Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
27
|
赵 甜, 吴 昊, 陈 世, 王 佳, 刘 贻, 李 亭. [Research Progress on the Influence of Tumor Extracellular Matrix Mechanic Properties on Nanodrug Delivery]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:13-18. [PMID: 38322528 PMCID: PMC10839498 DOI: 10.12182/20240160205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 02/08/2024]
Abstract
Nanodrugs are widely utilized in the biomedical fields, exhibiting immense potential in cancer therapy in particular. However, tumors exist in an extremely complicated microenvironment where substances like collagen are continuously deposited and remodeled, leading to significant alterations in the mechanical properties of the extracellular matrix (ECM) during tumor development. Previous research has primarily focused on the specific physicochemical properties of nanodrugs, such as particle size, electric charge, shape, surface chemistry, etc., and their effects on cellular uptake, cytotoxicity, and in vivo pharmacokinetics. Limited studies have been done to explore the impact of ECM mechanical properties on nanodrug delivery. In this review, we systematically summarized the relevant research findings on this topic from the perspective of the characteristics and testing methods of tumor ECM mechanics. Additionally, we made a thorough discussion of the potential mechanical and biological mechanisms involved in nanodrug delivery. We proposed several noteworthy research directions. Regarding the overall strategy, there is a need to emphasize targeted delivery that combines ECM mechanics and nanomechanics to achieve precise drug delivery. Regarding the spatial aspect, attention should be given to the nonlinear spatial mechanical heterogeneity within the interior of solid tumors and the construction of mechanic microenvironment-adaptive nanocarriers to improve the delivery efficiency. Regarding the temporal aspect, emphasis should be placed on the dynamic development and changes in the mechanical microenvironment during solid tumor growth and treatment processes. Based on the stromal mechanical characteristics of the tumor tissues of individual patients, personalized treatment strategies can be formulated, which will enhance treatment specificity and efficacy. In addition, issues such as mechanically targeted nanodrug delivery, degradation, and metabolism under dynamic ECM mechanical conditions warrant further investigation.
Collapse
Affiliation(s)
- 甜 赵
- 电子科技大学生命科学与技术学院 (成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - 昊 吴
- 电子科技大学生命科学与技术学院 (成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - 世桓 陈
- 电子科技大学生命科学与技术学院 (成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - 佳雯 王
- 电子科技大学生命科学与技术学院 (成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - 贻尧 刘
- 电子科技大学生命科学与技术学院 (成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - 亭亭 李
- 电子科技大学生命科学与技术学院 (成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
28
|
Fuselier C, Dufay E, Berquand A, Terryn C, Bonnomet A, Molinari M, Martiny L, Schneider C. Dynamized ultra-low dilution of Ruta graveolens disrupts plasma membrane organization and decreases migration of melanoma cancer cell. Cell Adh Migr 2023; 17:1-13. [PMID: 36503402 PMCID: PMC9746621 DOI: 10.1080/19336918.2022.2154732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Cutaneous melanoma is a cancer with a very poor prognosis mainly because of metastatic dissemination and therefore a deregulation of cell migration. Current therapies can benefit from complementary medicines as supportive care in oncology. In our study, we show that a dynamized ultra-low dilution of Ruta Graveolens leads to an in vitro inhibition of migration on fibronectin of B16F10 melanoma cells, as well as a decrease in metastatic dissemination in vivo. These effects appear to be due to a disruption of plasma membrane organization, with a change in cell and membrane stiffness, associated with a disorganization of the actin cytoskeleton and a modification of the lipid composition of the plasma membrane. Together, these results demonstrate, in in vitro and in vivo models of cutaneous melanoma, an anti-cancer and anti-metastatic activity of ultra-low dynamized dilution of Ruta graveolens and reinforce its interest as complementary medicine in oncology.
Collapse
Affiliation(s)
- Camille Fuselier
- Center Armand-Frappier Santé Biotechnologie of the INRS, University of Quebec, Laval, Quebec, Canada
| | - Eleonore Dufay
- CNRS UMR 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | | | - Christine Terryn
- Platform PICT, University of Reims Champagne-Ardenne, Reims, France
| | - Arnaud Bonnomet
- Platform PICT, University of Reims Champagne-Ardenne, Reims, France
| | - Michael Molinari
- Institute of Chemistry & Biology of Membranes & Nano-objects, Bordeaux, France
| | - Laurent Martiny
- CNRS UMR 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | | |
Collapse
|
29
|
Hong TJ, Sivakumar C, Luo CW, Ho MS. Investigation of TiO 2 nanoparticle interactions in the fibroblast NIH-3T3 cells via liquid-mode atomic force microscope. Arch Toxicol 2023; 97:2893-2901. [PMID: 37612376 DOI: 10.1007/s00204-023-03585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Long before we recognized how significant they were, nanoparticles were already all around in the environment. Since then, an extensive number of synthetic nanoparticles have been engineered to improve our quality of life through rigorous scientific research on their uses in practically every industry, including semiconductor devices, food, medicine, and agriculture. The extensive usage of nanoparticles in commodities that come into proximity with human skin and internal organs through medicine has raised significant concerns over the years. TiO2 nanoparticles (NPs) are widely employed in a wide range of industries, such as cosmetics and food packaging. The interaction and internalization of TiO2 NPs in living cells have been studied by the scientific community for many years. In the present study, we investigated the cell viability, nanomechanical characteristics, and fluorescence response of NIH-3T3 cells treated with sterile DMEM TiO2 nanoparticle solution using a liquid-mode atomic force microscope and a fluorescence microscope. Two different sorts of response systems have been observed in the cells depending on the size of the NPs. TiO2 nanoparticles smaller than 100 nm support its initial stages cell viability, and cells internalize and metabolize NPs. In contrast, bigger TiO2 NPs (> 100 nm) are not completely metabolized and cannot impair cell survival. Furthermore, bigger NPs above 100 nm could not be digested by the cells, therefore hindering cell development, whereas below 100 nm TiO2 stimulated uncontrolled cell growth akin to cancerous type cells. The cytoskeleton softens as a result of particle internalization, as seen by the nanomechanical characteristics of the nanoparticle treated cells. According to our investigations, TiO2 smaller than 100 nm facilitates unintended cancer cell proliferation, whereas larger NPs ultimately suppress cell growth. Before being incorporated into commercial products, similar effects or repercussions that could result from employing different NPs should be carefully examined.
Collapse
Affiliation(s)
- Tz-Ju Hong
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | | | - Chih-Wei Luo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, 30076, Taiwan
- Institute of Physics and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
- Taiwan Consortium of Emergent Crystalline Materials (TCECM), Ministry of Science and Technology, Taipei, 10601, Taiwan
| | - Mon-Shu Ho
- Department of Physics, National Chung Hsing University, Taichung City, 40227, Taiwan.
| |
Collapse
|
30
|
Woodcock E, Gorelkin PV, Goff PS, Edwards CRW, Zhang Y, Korchev Y, Sviderskaya EV. Measuring Melanoma Nanomechanical Properties in Relation to Metastatic Ability and Anti-Cancer Drug Treatment Using Scanning Ion Conductance Microscopy. Cells 2023; 12:2401. [PMID: 37830615 PMCID: PMC10571876 DOI: 10.3390/cells12192401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
A cell's mechanical properties have been linked to cancer development, motility and metastasis and are therefore an attractive target as a universal, reliable cancer marker. For example, it has been widely published that cancer cells show a lower Young's modulus than their non-cancerous counterparts. Furthermore, the effect of anti-cancer drugs on cellular mechanics may offer a new insight into secondary mechanisms of action and drug efficiency. Scanning ion conductance microscopy (SICM) offers a nanoscale resolution, non-contact method of nanomechanical data acquisition. In this study, we used SICM to measure the nanomechanical properties of melanoma cell lines from different stages with increasing metastatic ability. Young's modulus changes following treatment with the anti-cancer drugs paclitaxel, cisplatin and dacarbazine were also measured, offering a novel perspective through the use of continuous scan mode SICM. We found that Young's modulus was inversely correlated to metastatic ability in melanoma cell lines from radial growth, vertical growth and metastatic phases. However, Young's modulus was found to be highly variable between cells and cell lines. For example, the highly metastatic cell line A375M was found to have a significantly higher Young's modulus, and this was attributed to a higher level of F-actin. Furthermore, our data following nanomechanical changes after 24 hour anti-cancer drug treatment showed that paclitaxel and cisplatin treatment significantly increased Young's modulus, attributed to an increase in microtubules. Treatment with dacarbazine saw a decrease in Young's modulus with a significantly lower F-actin corrected total cell fluorescence. Our data offer a new perspective on nanomechanical changes following drug treatment, which may be an overlooked effect. This work also highlights variations in cell nanomechanical properties between previous studies, cancer cell lines and cancer types and questions the usefulness of using nanomechanics as a diagnostic or prognostic tool.
Collapse
Affiliation(s)
- Emily Woodcock
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK; (E.W.)
- Department of Medicine, Imperial College London, W12 0NN London, UK (Y.K.)
| | - Peter V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology MISiS, Moscow 119049, Russia
| | - Philip S. Goff
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK; (E.W.)
| | | | - Yanjun Zhang
- Department of Medicine, Imperial College London, W12 0NN London, UK (Y.K.)
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuri Korchev
- Department of Medicine, Imperial College London, W12 0NN London, UK (Y.K.)
- Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Elena V. Sviderskaya
- Molecular and Clinical Sciences Research Institute, St George’s, University of London, London SW17 0RE, UK; (E.W.)
| |
Collapse
|
31
|
Gogoi RP, Galoforo S, Fox A, Morris C, Ramos H, Gogoi VK, Chehade H, Adzibolosu NK, Shi C, Zhang J, Tedja R, Morris R, Alvero AB, Mor G. A Novel Role of Connective Tissue Growth Factor in the Regulation of the Epithelial Phenotype. Cancers (Basel) 2023; 15:4834. [PMID: 37835529 PMCID: PMC10571845 DOI: 10.3390/cancers15194834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is a biological process where epithelial cells lose their adhesive properties and gain invasive, metastatic, and mesenchymal properties. Maintaining the balance between the epithelial and mesenchymal stage is essential for tissue homeostasis. Many of the genes promoting mesenchymal transformation have been identified; however, our understanding of the genes responsible for maintaining the epithelial phenotype is limited. Our objective was to identify the genes responsible for maintaining the epithelial phenotype and inhibiting EMT. METHODS RNA seq was performed using an vitro model of EMT. CTGF expression was determined via qPCR and Western blot analysis. The knockout of CTGF was completed using the CTGF sgRNA CRISPR/CAS9. The tumorigenic potential was determined using NCG mice. RESULTS The knockout of CTGF in epithelial ovarian cancer cells leads to the acquisition of functional characteristics associated with the mesenchymal phenotype such as anoikis resistance, cytoskeleton remodeling, increased cell stiffness, and the acquisition of invasion and tumorigenic capacity. CONCLUSIONS We identified CTGF is an important regulator of the epithelial phenotype, and its loss is associated with the early cellular modifications required for EMT. We describe a novel role for CTGF, regulating cytoskeleton and the extracellular matrix interactions necessary for the conservation of epithelial structure and function. These findings provide a new window into understanding the early stages of mesenchymal transformation.
Collapse
Affiliation(s)
- Radhika P. Gogoi
- Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, MI 48202, USA;
| | - Sandra Galoforo
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Alexandra Fox
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Colton Morris
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Harry Ramos
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Vir K. Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Nicholas K. Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Chenjun Shi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA; (C.S.); (J.Z.)
| | - Jitao Zhang
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA; (C.S.); (J.Z.)
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Robert Morris
- Karmanos Cancer Institute, Wayne State University, 4100 John R St, Detroit, MI 48202, USA;
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48202, USA; (S.G.); (A.F.); (C.M.); (H.R.); (V.K.G.); (H.C.); (N.K.A.); (R.T.); (A.B.A.)
| |
Collapse
|
32
|
Gao Z, Guo J, Gou B, Gu Z, Jia T, Ma S, Jiang L, Liu W, Zhou L, Gu Q. Microcarriers promote the through interface movement of mouse trophoblast stem cells by regulating stiffness. Bioact Mater 2023; 28:196-205. [PMID: 37250864 PMCID: PMC10220236 DOI: 10.1016/j.bioactmat.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Mechanical force is crucial in the whole process of embryonic development. However, the role of trophoblast mechanics during embryo implantation has rarely been studied. In this study, we constructed a model to explore the effect of stiffness changes in mouse trophoblast stem cells (mTSCs) on implantation: microcarrier was prepared by sodium alginate using a droplet microfluidics system, and mTSCs were attached to the microcarrier surface with laminin modifications, called T(micro). Compared with the spheroid, formed by the self-assembly of mTSCs (T(sph)), we could regulate the stiffness of the microcarrier, making the Young's modulus of mTSCs (367.70 ± 79.81 Pa) similar to that of the blastocyst trophoblast ectoderm (432.49 ± 151.90 Pa). Moreover, T(micro) contributes to improve the adhesion rate, expansion area and invasion depth of mTSCs. Further, T(micro) was highly expressed in tissue migration-related genes due to the activation of the Rho-associated coiled-coil containing protein kinase (ROCK) pathway at relatively similar modulus of trophoblast. Overall, our study explores the embryo implantation process with a new perspective, and provides theoretical support for understanding the effect of mechanics on embryo implantation.
Collapse
Affiliation(s)
- Zili Gao
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jia Guo
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bo Gou
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhen Gu
- Department of Chemistry and Biological Engineering, University of Science and Technology, Beijing, 100083, PR China
| | - Tan Jia
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Sinan Ma
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- School of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Liyuan Jiang
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- School of Life Sciences, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenli Liu
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
| | - Lixun Zhou
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
33
|
Daniel C, Traub F, Sachsenmaier S, Riester R, Mederake M, Konrads C, Danalache M. An exploratory study of cell stiffness as a mechanical label-free biomarker across multiple musculoskeletal sarcoma cells. BMC Cancer 2023; 23:862. [PMID: 37700272 PMCID: PMC10498616 DOI: 10.1186/s12885-023-11375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Cancer cells are characterized by changes in cell cytoskeletal architecture and stiffness. Despite advances in understanding the molecular mechanisms of musculoskeletal cancers, the corresponding cellular mechanical properties remain largely unexplored. The aim of this study was to investigate the changes in cellular stiffness and the associated cytoskeleton configuration alterations in various musculoskeletal cancer cells. METHODS Cell lines from five main sarcoma types of the musculoskeletal system (chondrosarcoma, osteosarcoma, Ewing sarcoma, fibrosarcoma and rhabdomyosarcoma) as well as their healthy cell counterparts (chondrocytes, osteoblasts, mesenchymal stem cells, fibroblasts, skeletal muscle cells) were subjected to cell stiffness measurements via atomic force microscopy (AFM). Biochemical and structural changes of the cytoskeleton (F-actin, β-tubulin and actin-related protein 2/3) were assessed by means of fluorescence labelling, ELISA and qPCR. RESULTS While AFM stiffness measurements showed that the majority of cancer cells (osteosarcoma, Ewing sarcoma, fibrosarcoma and rhabdomyosarcoma) were significantly less stiff than their corresponding non-malignant counterparts (p < 0.001), the chondrosarcoma cells were significant stiffer than the chondrocytes (p < 0.001). Microscopically, the distribution of F-actin differed between malignant entities and healthy counterparts: the organisation in well aligned stress fibers was disrupted in cancer cell lines and the proteins was mainly concentrated at the periphery of the cell, whereas β-tubulin had a predominantly perinuclear localization. While the F-actin content was lower in cancer cells, particularly Ewing sarcoma (p = 0.018) and Fibrosarcoma (p = 0.023), this effect was even more pronounced in the case of β-tubulin for all cancer-healthy cell duos. Interestingly, chondrosarcoma cells were characterized by a significant upregulation of β-tubulin gene expression (p = 0.005) and protein amount (p = 0.032). CONCLUSION Modifications in cellular stiffness, along with structural and compositional cytoskeleton rearrangement, constitute typical features of sarcomas cells, when compared to their healthy counterpart. Notably, whereas a decrease in stiffness is typically a feature of malignant entities, chondrosarcoma cells were stiffer than chondrocytes, with chondrosarcoma cells exhibiting a significantly upregulated β-tubulin expression. Each Sarcoma entity may have his own cellular-stiffness and cytoskeleton organisation/composition fingerprint, which in turn may be exploited for diagnostic or therapeutic purposes.
Collapse
Affiliation(s)
- Cyril Daniel
- Laboratory of Cell Biology, Department of Orthopedic Surgery, University Hospital of Tübingen, 72076, Tübingen, Germany.
- Department of Orthopedic Surgery, University Hospital of Tübingen, 72076, Tübingen, Germany.
| | - Frank Traub
- Department of Orthopedic Surgery, University Hospital of Tübingen, 72076, Tübingen, Germany
- Department of Orthopedics and Traumatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55122, Mainz, Germany
| | - Saskia Sachsenmaier
- Laboratory of Cell Biology, Department of Orthopedic Surgery, University Hospital of Tübingen, 72076, Tübingen, Germany
- Department of Orthopedic Surgery, University Hospital of Tübingen, 72076, Tübingen, Germany
| | - Rosa Riester
- Laboratory of Cell Biology, Department of Orthopedic Surgery, University Hospital of Tübingen, 72076, Tübingen, Germany
| | - Moritz Mederake
- Department of Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, 72076, Tübingen, Germany
| | - Christian Konrads
- Department of Orthopedics and Traumatology, Hanseatic Hospital Stralsund, 18437, Stralsund, Germany
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopedic Surgery, University Hospital of Tübingen, 72076, Tübingen, Germany
- Department of Orthopedic Surgery, University Hospital of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
34
|
Brito C, Pereira JM, Mesquita FS, Cabanes D, Sousa S. Src-Dependent NM2A Tyrosine Phosphorylation Regulates Actomyosin Remodeling. Cells 2023; 12:1871. [PMID: 37508535 PMCID: PMC10377941 DOI: 10.3390/cells12141871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Non-muscle myosin 2A (NM2A) is a key cytoskeletal enzyme that, along with actin, assembles into actomyosin filaments inside cells. NM2A is fundamental for cell adhesion and motility, playing important functions in different stages of development and during the progression of viral and bacterial infections. Phosphorylation events regulate the activity and the cellular localization of NM2A. We previously identified the tyrosine phosphorylation of residue 158 (pTyr158) in the motor domain of the NM2A heavy chain. This phosphorylation can be promoted by Listeria monocytogenes infection of epithelial cells and is dependent on Src kinase; however, its molecular role is unknown. Here, we show that the status of pTyr158 defines cytoskeletal organization, affects the assembly/disassembly of focal adhesions, and interferes with cell migration. Cells overexpressing a non-phosphorylatable NM2A variant or expressing reduced levels of Src kinase display increased stress fibers and larger focal adhesions, suggesting an altered contraction status consistent with the increased NM2A activity that we also observed. We propose NM2A pTyr158 as a novel layer of regulation of actomyosin cytoskeleton organization.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
- MCBiology PhD Program-Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Joana M Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
- MCBiology PhD Program-Instituto de Ciências Biomédicas Abel Salazar-ICBAS, University of Porto, 4050-313 Porto, Portugal
| | - Francisco S Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC, Instituto de Biologia Celular e Molecular, 4200-135 Porto, Portugal
| |
Collapse
|
35
|
Zhao C, Yang Q, Tang R, Li W, Wang J, Yang F, Zhao J, Zhu J, Pang W, Li N, Zhang X, Tian XY, Yao W, Zhou J. DNA methyltransferase 1 deficiency improves macrophage motility and wound healing by ameliorating cholesterol accumulation. NPJ Regen Med 2023; 8:29. [PMID: 37291182 DOI: 10.1038/s41536-023-00306-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Healing of the cutaneous wound requires macrophage recruitment at the sites of injury, where chemotactic migration of macrophages toward the wound is regulated by local inflammation. Recent studies suggest a positive contribution of DNA methyltransferase 1 (Dnmt1) to macrophage pro-informatory responses; however, its role in regulating macrophage motility remains unknown. In this study, myeloid-specific depletion of Dnmt1 in mice promoted cutaneous wound healing and de-suppressed the lipopolysaccharides (LPS)-inhibited macrophage motility. Dnmt1 inhibition in macrophages eliminated the LPS-stimulated changes in cellular mechanical properties in terms of elasticity and viscoelasticity. LPS increased the cellular accumulation of cholesterol in a Dnmt1-depedent manner; cholesterol content determined cellular stiffness and motility. Lipidomic analysis indicated that Dnmt1 inhibition altered the cellular lipid homeostasis, probably through down-regulating the expression of cluster of differentiation 36 CD36 (facilitating lipid influx) and up-regulating the expression of ATP-binding cassette transporter ABCA1 (mediating lipid efflux) and sterol O-acyltransferase 1 SOAT1 (also named ACAT1, catalyzing the esterification of cholesterol). Our study revealed a Dnmt1-dependent epigenetic mechanism in the control of macrophage mechanical properties and the related chemotactic motility, indicating Dnmt1 as both a marker of diseases and a potential target of therapeutic intervention for wound healing.
Collapse
Affiliation(s)
- Chuanrong Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Qianru Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Runze Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Wang Li
- School of Engineering Sciences, University of Chinese Academy of Science, Beijing, 100190, China
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Fangfang Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Jianan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Juanjuan Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Ning Li
- School of Engineering Sciences, University of Chinese Academy of Science, Beijing, 100190, China
- Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Weijuan Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, 100191, China.
| |
Collapse
|
36
|
Kita K, Asanuma K, Okamoto T, Kawamoto E, Nakamura K, Hagi T, Nakamura T, Shimaoka M, Sudo A. A Novel Approach to Reducing Lung Metastasis in Osteosarcoma: Increasing Cell Stiffness with Carbenoxolone. Curr Issues Mol Biol 2023; 45:4375-4388. [PMID: 37232747 DOI: 10.3390/cimb45050278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
AIM Primary malignant bone tumor osteosarcoma can metastasize to the lung. Diminishing lung metastasis would positively affect the prognosis of patients. Our previous studies demonstrated that highly metastatic osteosarcoma cell lines are significantly softer than low-metastasis cell lines. We therefore hypothesized that increasing cell stiffness would suppress metastasis by reducing cell motility. In this study, we tested whether carbenoxolone (CBX) increases the stiffness of LM8 osteosarcoma cells and prevents lung metastasis in vivo. METHODS We evaluated the actin cytoskeletal structure and polymerization of CBX-treated LM8 cells using actin staining. Cell stiffness was measured using atomic force microscopy. Metastasis-related cell functions were analyzed using cell proliferation, wound healing, invasion, and cell adhesion assays. Furthermore, lung metastasis was examined in LM8-bearing mice administered with CBX. RESULTS Treatment with CBX significantly increased actin staining intensity and stiffness of LM8 cells compared with vehicle-treated LM8 cells (p < 0.01). In Young's modulus images, compared with the control group, rigid fibrillate structures were observed in the CBX treatment group. CBX suppressed cell migration, invasion, and adhesion but not cell proliferation. The number of LM8 lung metastases were significantly reduced in the CBX administration group compared with the control group (p < 0.01). CONCLUSION In this study, we demonstrated that CBX increases tumor cell stiffness and significantly reduces lung metastasis. Our study is the first to provide evidence that reducing cell motility by increasing cell stiffness might be effective as a novel anti-metastasis approach in vivo.
Collapse
Affiliation(s)
- Kouji Kita
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Kunihiro Asanuma
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Koichi Nakamura
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Tomohito Hagi
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Tomoki Nakamura
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| |
Collapse
|
37
|
Bai J, Zeng X. Computational modeling and simulation of epithelial wound closure. Sci Rep 2023; 13:6265. [PMID: 37069231 PMCID: PMC10110613 DOI: 10.1038/s41598-023-33111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Wounds in the epithelium may lead to serious injurious events or chronic inflammatory diseases, however, multicellular organisms have the ability to self-repair wounds through the movement of epithelial cell toward the wound area. Despite intensive studies exploring the mechanism of wound closure, the role of mechanics in epithelial wound closure is still not well explained. In order to investigate the role of mechanical properties on wound closure process, a three-dimensional continuum physics-based computational model is presented in this study. The model takes into account the material property of the epithelial cell, intercellular interactions between neighboring cells at cell-cell junctions, and cell-substrate adhesion between epithelial cells and ECM. Through finite element simulation, it is found that the closure efficiency is related to the initial gap size and the intensity of lamellipodial protrusion. It is also shown that cells at the wound edge undergo higher stress compared with other cells in the epithelial monolayer, and the cellular normal stress dominates over the cellular shear stress. The model presented in this study can be employed as a numerical tool to unravel the mechanical principles behind the complex wound closure process. These results might have the potential to improve effective wound management and optimize the treatment.
Collapse
Affiliation(s)
- Jie Bai
- Department of Mechanical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Xiaowei Zeng
- Department of Mechanical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
38
|
Yokoyama Y, Kameo Y, Adachi T. Development of continuum-based particle models of cell growth and proliferation for simulating tissue morphogenesis. J Mech Behav Biomed Mater 2023; 142:105828. [PMID: 37104898 DOI: 10.1016/j.jmbbm.2023.105828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023]
Abstract
Biological tissues acquire various characteristic shapes through morphogenesis. Tissue shapes result from the spatiotemporally heterogeneous cellular activities influenced by mechanical and biochemical environments. To investigate multicellular tissue morphogenesis, this study aimed to develop a novel multiscale method that can connect each cellular activity to the mechanical behaviors of the whole tissue by constructing continuum-based particle models of cellular activities. This study proposed mechanical models of cell growth and proliferation that are expressed as volume expansion and cell division by extending the material point method. By simulating cell hypertrophy and proliferation under both free and constraint conditions, the proposed models demonstrated potential for evaluating the mechanical state and tracing cells throughout tissue morphogenesis. Moreover, the effect of a cell size checkpoint was incorporated into the cell proliferation model to investigate the mechanical behaviors of the whole tissue depending on the condition of cellular activities. Consequently, the accumulation of strain energy density was suppressed because of the influence of the checkpoint. In addition, the whole tissues acquired different shapes depending on the influence of the checkpoint. Thus, the models constructed herein enabled us to investigate the change in the mechanical behaviors of the whole tissue according to each cellular activity depending on the mechanical state of the cells during morphogenesis.
Collapse
Affiliation(s)
- Yuka Yokoyama
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Yoshitaka Kameo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
39
|
Kerdegari S, Canepa P, Odino D, Oropesa-Nuñez R, Relini A, Cavalleri O, Canale C. Insights in Cell Biomechanics through Atomic Force Microscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2980. [PMID: 37109816 PMCID: PMC10142950 DOI: 10.3390/ma16082980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
We review the advances obtained by using Atomic Force Microscopy (AFM)-based approaches in the field of cell/tissue mechanics and adhesion, comparing the solutions proposed and critically discussing them. AFM offers a wide range of detectable forces with a high force sensitivity, thus allowing a broad class of biological issues to be addressed. Furthermore, it allows for the accurate control of the probe position during the experiments, providing spatially resolved mechanical maps of the biological samples with subcellular resolution. Nowadays, mechanobiology is recognized as a subject of great relevance in biotechnological and biomedical fields. Focusing on the past decade, we discuss the intriguing issues of cellular mechanosensing, i.e., how cells sense and adapt to their mechanical environment. Next, we examine the relationship between cell mechanical properties and pathological states, focusing on cancer and neurodegenerative diseases. We show how AFM has contributed to the characterization of pathological mechanisms and discuss its role in the development of a new class of diagnostic tools that consider cell mechanics as new tumor biomarkers. Finally, we describe the unique ability of AFM to study cell adhesion, working quantitatively and at the single-cell level. Again, we relate cell adhesion experiments to the study of mechanisms directly or secondarily involved in pathologies.
Collapse
Affiliation(s)
- Sajedeh Kerdegari
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| | - Paolo Canepa
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| | - Davide Odino
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| | - Reinier Oropesa-Nuñez
- Department of Materials Science and Engineering, Uppsala University, Ångströmlaboratoriet, Box 35, SE-751 03 Uppsala, Sweden;
| | - Annalisa Relini
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| | - Ornella Cavalleri
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| | - Claudio Canale
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy; (S.K.); (P.C.); (D.O.); (A.R.)
| |
Collapse
|
40
|
Xu W, Kabariti S, Young KM, Swingle SP, Liu AY, Sulchek T. Strain-dependent elastography of cancer cells reveals heterogeneity and stiffening due to attachment. J Biomech 2023; 150:111479. [PMID: 36871429 DOI: 10.1016/j.jbiomech.2023.111479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Because cells vary in thickness and in biomechanical properties, the use of a constant force trigger during atomic force microscopy (AFM) stiffness mapping produces a varied nominal strain that can obfuscate the comparison of local material properties. In this study, we measured the biomechanical spatial heterogeneity of ovarian and breast cancer cells by using an indentation-dependent pointwise Hertzian method. Force curves and surface topography were used together to determine cell stiffness as a function of nominal strain. By recording stiffness at a particular strain, it may be possible to improve comparison of the material properties of cells and produce higher contrast representations of cell mechanical properties. Defining a linear region of elasticity that corresponds to a modest nominal strain, we were able to clearly distinguish the mechanics of the perinuclear region of cells. We observed that, relative to the lamelopodial stiffness, the perinuclear region was softer for metastatic cancer cells than their nonmetastatic counterparts. Moreover, contrast in the strain-dependent elastography in comparison to conventional force mapping with Hertzian model analysis revealed a significant stiffening phenomenon in the thin lamellipodial region in which the modulus scales inversely and exponentially with cell thickness. The observed exponential stiffening is not affected by relaxation of cytoskeletal tension, but finite element modeling indicates it is affected by substrate adhesion. The novel cell mapping technique explores cancer cell mechanical nonlinearity that results from regional heterogeneity, which could help explain how metastatic cancer cells can show soft phenotypes while simultaneously increasing force generation and invasiveness.
Collapse
Affiliation(s)
- Wenwei Xu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Saif Kabariti
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Katherine M Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Steven P Swingle
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Alan Y Liu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Todd Sulchek
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA.
| |
Collapse
|
41
|
Kuang X, Guan G, Tang C, Zhang L. MorphoSim: an efficient and scalable phase-field framework for accurately simulating multicellular morphologies. NPJ Syst Biol Appl 2023; 9:6. [PMID: 36806172 PMCID: PMC9938209 DOI: 10.1038/s41540-023-00265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 01/04/2023] [Indexed: 02/19/2023] Open
Abstract
The phase field model can accurately simulate the evolution of microstructures with complex morphologies, and it has been widely used for cell modeling in the last two decades. However, compared to other cellular models such as the coarse-grained model and the vertex model, its high computational cost caused by three-dimensional spatial discretization hampered its application and scalability, especially for multicellular organisms. Recently, we built a phase field model coupled with in vivo imaging data to accurately reconstruct the embryonic morphogenesis of Caenorhabditis elegans from 1- to 8-cell stages. In this work, we propose an improved phase field model by using the stabilized numerical scheme and modified volume constriction. Then we present a scalable phase-field framework, MorphoSim, which is 100 times more efficient than the previous one and can simulate over 100 mechanically interacting cells. Finally, we demonstrate how MorphoSim can be successfully applied to reproduce the assembly, self-repairing, and dissociation of a synthetic artificial multicellular system - the synNotch system.
Collapse
Affiliation(s)
- Xiangyu Kuang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- School of Physics, Peking University, Beijing, 100871, China.
| | - Lei Zhang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.
- Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, China.
- Center for Machine Learning Research, Peking University, Beijing, 100871, China.
| |
Collapse
|
42
|
Argatov I, Jin X, Mishuris G. Atomic force microscopy-based indentation of cells: modelling the effect of a pericellular coat. J R Soc Interface 2023; 20:20220857. [PMCID: PMC9943889 DOI: 10.1098/rsif.2022.0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
A simple analytical model is built up to account for the interface deformation effect in a spherical atomic force microscopy (AFM)-based quasi-static indentation of a living cell covered with a pericellular brush. The compression behaviour of the pericellular coat is described using the Alexander–de Gennes model that allows for nonlinear deformation. An approximate second-order relation between contact force and indenter displacement is obtained in implicit form, using the Hertzian solution as a first-order approximation. A method of fitting the indentation brush/cell model to experimental data is suggested based on the non-dimensionalized version of the displacement–force relation in the parametric form and illustrated with a specific example of AFM raw data taken from the literature.
Collapse
Affiliation(s)
- Ivan Argatov
- College of Aerospace Engineering, Chongqing University, Chongqing, 400030, People’s Republic of China,Institut für Mechanik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Xiaoqing Jin
- College of Aerospace Engineering, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Gennady Mishuris
- Department of Mathematics, Aberystwyth University, Ceredigion SY23 3BZ, Wales, UK
| |
Collapse
|
43
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
44
|
Xing H, Huang Y, Kunkemoeller BH, Dahl PJ, Muraleetharan O, Malvankar NS, Murrell MP, Kyriakides TR. Dysregulation of TSP2-Rac1-WAVE2 axis in diabetic cells leads to cytoskeletal disorganization, increased cell stiffness, and dysfunction. Sci Rep 2022; 12:22474. [PMID: 36577792 PMCID: PMC9797577 DOI: 10.1038/s41598-022-26337-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Fibroblasts are a major cell population that perform critical functions in the wound healing process. In response to injury, they proliferate and migrate into the wound space, engaging in extracellular matrix (ECM) production, remodeling, and contraction. However, there is limited knowledge of how fibroblast functions are altered in diabetes. To address this gap, several state-of-the-art microscopy techniques were employed to investigate morphology, migration, ECM production, 2D traction, 3D contraction, and cell stiffness. Analysis of cell-derived matrix (CDM) revealed that diabetic fibroblasts produce thickened and less porous ECM that hindered migration of normal fibroblasts. In addition, diabetic fibroblasts were found to lose spindle-like shape, migrate slower, generate less traction force, exert limited 3D contractility, and have increased cell stiffness. These changes were due, in part, to a decreased level of active Rac1 and a lack of co-localization between F-actin and Waskott-Aldrich syndrome protein family verprolin homologous protein 2 (WAVE2). Interestingly, deletion of thrombospondin-2 (TSP2) in diabetic fibroblasts rescued these phenotypes and restored normal levels of active Rac1 and WAVE2-F-actin co-localization. These results provide a comprehensive view of the extent of diabetic fibroblast dysfunction, highlighting the regulatory role of the TSP2-Rac1-WAVE2-actin axis, and describing a new function of TSP2 in regulating cytoskeleton organization.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA
| | - Yaqing Huang
- Department of Pathology, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA
| | - Britta H Kunkemoeller
- Department of Pathology, Yale University, New Haven, USA.,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA
| | - Peter J Dahl
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA.,Microbial Sciences Institute, Yale University, New Haven, USA
| | | | - Nikhil S Malvankar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA.,Microbial Sciences Institute, Yale University, New Haven, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, New Haven, USA.,Department of Physics, Yale University, New Haven, USA.,Systems Biology Institute, Yale University, New Haven, USA
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, USA. .,Department of Pathology, Yale University, New Haven, USA. .,Vascular Biology and Therapeutics Program, Yale University, New Haven, USA.
| |
Collapse
|
45
|
Marocco L, Umrath F, Sachsenmaier S, Rabiner R, Wülker N, Danalache M. 5-Aminolevulinic Acid-Mediated Photodynamic Therapy Potentiates the Effectiveness of Doxorubicin in Ewing Sarcomas. Biomedicines 2022; 10:biomedicines10112900. [PMID: 36428464 PMCID: PMC9687703 DOI: 10.3390/biomedicines10112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Ewing sarcomas (ES) are aggressive primary bone tumors that require radical therapy. Promising low toxicity, 5-aminolevulinic acid (5-ALA)-mediated photodynamic therapy (PDT) could enhance the effectiveness of conventional treatment modalities (e.g., doxorubicin (DOX)), improving, thus, the anti-tumorigenic effects. In this study, we investigated the effects of DOX and 5-ALA PDT alone or in combination on three different human ES cell lines. Cell viability, reactive oxygen species (ROS) production, and cellular stiffness were measured 24 h after PDT (blue light-wavelength 436 nm with 5-ALA) with or without DOX. ES cell lines have a different sensitivity to the same doses and exposure of 5-ALA PDT. DOX in combination with 5-ALA PDT was found to be effective in impairing the viability of all ES cells while also increasing cytotoxic activity by high ROS production. The stiffness of the ES cells increased significantly (p < 0.05) post treatment. Overall, our results showed that across multiple ES cell lines, 5-ALA PDT can successfully and safely be combined with DOX to potentiate the therapeutic effect. The 5-ALA PDT has the potential to be a highly effective treatment when used alone or in conjunction with other treatments. More research is needed to assess the effectiveness of 5-ALA PDT in in vivo settings.
Collapse
Affiliation(s)
- Lea Marocco
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, 72072 Tübingen, Germany
- Correspondence:
| | - Felix Umrath
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, 72072 Tübingen, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital of Tübingen, 72076 Tübingen, Germany
| | - Saskia Sachsenmaier
- Department of Orthopaedic Surgery, University Hospital of Tübingen, 72076 Tübingen, Germany
| | | | - Nikolaus Wülker
- Department of Orthopaedic Surgery, University Hospital of Tübingen, 72076 Tübingen, Germany
| | - Marina Danalache
- Laboratory of Cell Biology, Department of Orthopaedic Surgery, University Hospital of Tübingen, 72072 Tübingen, Germany
| |
Collapse
|
46
|
Marchant CL, Malmi-Kakkada AN, Espina JA, Barriga EH. Cell clusters softening triggers collective cell migration in vivo. NATURE MATERIALS 2022; 21:1314-1323. [PMID: 35970965 PMCID: PMC9622418 DOI: 10.1038/s41563-022-01323-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/28/2022] [Indexed: 05/02/2023]
Abstract
Embryogenesis, tissue repair and cancer metastasis rely on collective cell migration. In vitro studies propose that cells are stiffer while migrating in stiff substrates, but softer when plated in compliant surfaces which are typically considered as non-permissive for migration. Here we show that cells within clusters from embryonic tissue dynamically decrease their stiffness in response to the temporal stiffening of their native substrate to initiate collective cell migration. Molecular and mechanical perturbations of embryonic tissues reveal that this unexpected mechanical response involves a mechanosensitive pathway relying on Piezo1-mediated microtubule deacetylation. We further show that decreasing microtubule acetylation and consequently cluster stiffness is sufficient to trigger collective cell migration in soft non-permissive substrates. This suggests that reaching an optimal cluster-to-substrate stiffness ratio is essential to trigger the onset of this collective process. Overall, these in vivo findings challenge the current understanding of collective cell migration and its physiological and pathological roles.
Collapse
Affiliation(s)
- Cristian L Marchant
- Mechanisms of Morphogenesis Laboratory, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Abdul N Malmi-Kakkada
- Computational Biological Physics Laboratory, Department of Chemistry and Physics, Augusta University, Augusta, GA, USA
| | - Jaime A Espina
- Mechanisms of Morphogenesis Laboratory, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Laboratory, Gulbenkian Institute of Science (IGC), Oeiras, Portugal.
| |
Collapse
|
47
|
Gong L, Zhang Y, Yang Y, Yan Q, Ren J, Luo J, Tiu YC, Fang X, Liu B, Lam RHW, Lam K, Lee AW, Guan X. Inhibition of lysyl oxidase-like 2 overcomes adhesion-dependent drug resistance in the collagen-enriched liver cancer microenvironment. Hepatol Commun 2022; 6:3194-3211. [PMID: 35894804 PMCID: PMC9592791 DOI: 10.1002/hep4.1966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/13/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is considered to be one of the vital mediators of tumor progression. Extracellular matrix (ECM), infiltrating immune cells, and stromal cells collectively constitute the complex ecosystem with varied biochemical and biophysical properties. The development of liver cancer is strongly tied with fibrosis and cirrhosis that alters the microenvironmental landscape, especially ECM composition. Enhanced deposition and cross-linking of type I collagen are frequently detected in patients with liver cancer and have been shown to facilitate tumor growth and metastasis by epithelial-to-mesenchymal transition. However, information on the effect of collagen enrichment on drug resistance is lacking. Thus, the present study has comprehensively illustrated phenotypical and mechanistic changes in an in vitro mimicry of collagen-enriched TME and revealed that collagen enrichment could induce 5-fluorouracil (5FU) and sorafenib resistance in liver cancer cells through hypoxia-induced up-regulation of lysyl oxidase-like 2 (LOXL2). LOXL2, an enzyme that facilitates collagen cross-linking, enhances cell adhesion-mediated drug resistance by activating the integrin alpha 5 (ITGA5)/focal adhesion kinase (FAK)/phosphoinositide 3-kinase (PI3K)/rho-associated kinase 1 (ROCK1) signaling axis. Conclusion: We demonstrated that inhibition of LOXL2 in a collagen-enriched microenvironment synergistically promotes the efficacy of sorafenib and 5FU through deterioration of focal adhesion signaling. These findings have clinical implications for developing LOXL2-targeted strategies in patients with chemoresistant liver cancer and especially for those patients with advanced fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Yu Zhang
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- Department of Pediatric OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuma Yang
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Qian Yan
- Department of Colorectal SurgeryGuangdong Institute Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jifeng Ren
- Department of Biomedical EngineeringCity University of Hong KongHong KongChina
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Jie Luo
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Yuen Chak Tiu
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Xiaona Fang
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Beilei Liu
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Raymond Hiu Wai Lam
- Department of Biomedical EngineeringCity University of Hong KongHong KongChina
| | - Ka‐On Lam
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Anne Wing‐Mui Lee
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Xin‐Yuan Guan
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
48
|
Gu Z, Guo J, Zhai J, Feng G, Wang X, Gao Z, Li K, Ji S, Wang L, Xu Y, Chen X, Wang Y, Guo S, Yang M, Li L, Han H, Jiang L, Wen Y, Wang L, Hao J, Li W, Wang S, Wang H, Gu Q. A Uterus-Inspired Niche Drives Blastocyst Development to the Early Organogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202282. [PMID: 35843885 PMCID: PMC9534964 DOI: 10.1002/advs.202202282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Indexed: 06/01/2023]
Abstract
The fundamental physical features such as the mechanical properties and microstructures of the uterus need to be considered when building in vitro culture platforms to mimic the uterus for embryo implantation and further development but have long been neglected. Here, a uterus-inspired niche (UN) constructed by grafting collagen gels onto polydimethylsiloxane based on a systematic investigation of a series of parameters (varying concentrations and thicknesses of collagen gel) is established to intrinsically specify and simulate the mechanics and microstructures of the mouse uterus. This brand-new and unique system is robust in supporting embryo invasion, as evidenced by the special interaction between the embryos and the UN system and successfully promoting E3.5 embryo development into the early organogenesis stage. This platform serves as a powerful tool for developmental biology and tissue engineering.
Collapse
|
49
|
Bermudez A, Gonzalez Z, Zhao B, Salter E, Liu X, Ma L, Jawed MK, Hsieh CJ, Lin NYC. Supracellular measurement of spatially varying mechanical heterogeneities in live monolayers. Biophys J 2022; 121:3358-3369. [PMID: 36028999 PMCID: PMC9515370 DOI: 10.1016/j.bpj.2022.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/10/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
The mechanical properties of tissues have profound impacts on a wide range of biological processes such as embryo development (1,2), wound healing (3-6), and disease progression (7). Specifically, the spatially varying moduli of cells largely influence the local tissue deformation and intercellular interaction. Despite the importance of characterizing such a heterogeneous mechanical property, it has remained difficult to measure the supracellular modulus field in live cell layers with a high-throughput and minimal perturbation. In this work, we developed a monolayer effective modulus measurement by integrating a custom cell stretcher, light microscopy, and AI-based inference. Our approach first quantifies the heterogeneous deformation of a slightly stretched cell layer and converts the measured strain fields into an effective modulus field using an AI inference. This method allowed us to directly visualize the effective modulus distribution of thousands of cells virtually instantly. We characterized the mean value, SD, and correlation length of the effective cell modulus for epithelial cells and fibroblasts, which are in agreement with previous results. We also observed a mild correlation between cell area and stiffness in jammed epithelia, suggesting the influence of cell modulus on packing. Overall, our reported experimental platform provides a valuable alternative cell mechanics measurement tool that can be integrated with microscopy-based characterizations.
Collapse
Affiliation(s)
- Alexandra Bermudez
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Bioengineering, University of California, Los Angeles, California.
| | - Zachary Gonzalez
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Physics and Astronomy, University of California, Los Angeles, California
| | - Bao Zhao
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Ethan Salter
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Bioengineering, University of California, Los Angeles, California
| | - Xuanqing Liu
- Department of Computer Science, University of California, Los Angeles, California
| | - Leixin Ma
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Mohammad Khalid Jawed
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - Cho-Jui Hsieh
- Department of Computer Science, University of California, Los Angeles, California
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA; Department of Bioengineering, University of California, Los Angeles, California; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
50
|
Molter CW, Muszynski EF, Tao Y, Trivedi T, Clouvel A, Ehrlicher AJ. Prostate cancer cells of increasing metastatic potential exhibit diverse contractile forces, cell stiffness, and motility in a microenvironment stiffness-dependent manner. Front Cell Dev Biol 2022; 10:932510. [PMID: 36200037 PMCID: PMC9527313 DOI: 10.3389/fcell.2022.932510] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
During metastasis, all cancer types must migrate through crowded multicellular environments. Simultaneously, cancers appear to change their biophysical properties. Indeed, cell softening and increased contractility are emerging as seemingly ubiquitous biomarkers of metastatic progression which may facilitate metastasis. Cell stiffness and contractility are also influenced by the microenvironment. Stiffer matrices resembling the tumor microenvironment cause metastatic cells to contract more strongly, further promoting contractile tumorigenic phenotypes. Prostate cancer (PCa), however, appears to deviate from these common cancer biophysics trends; aggressive metastatic PCa cells appear stiffer, rather than softer, to their lowly metastatic PCa counterparts. Although metastatic PCa cells have been reported to be more contractile than healthy cells, how cell contractility changes with increasing PCa metastatic potential has remained unknown. Here, we characterize the biophysical changes of PCa cells of various metastatic potential as a function of microenvironment stiffness. Using a panel of progressively increasing metastatic potential cell lines (22RV1, LNCaP, DU145, and PC3), we quantified their contractility using traction force microscopy (TFM), and measured their cortical stiffness using optical magnetic twisting cytometry (OMTC) and their motility using time-lapse microscopy. We found that PCa contractility, cell stiffness, and motility do not universally scale with metastatic potential. Rather, PCa cells of various metastatic efficiencies exhibit unique biophysical responses that are differentially influenced by substrate stiffness. Despite this biophysical diversity, this work concludes that mechanical microenvironment is a key determinant in the biophysical response of PCa with variable metastatic potentials. The mechanics-oriented focus and methodology of the study is unique and complementary to conventional biochemical and genetic strategies typically used to understand this disease, and thus may usher in new perspectives and approaches.
Collapse
Affiliation(s)
- Clayton W. Molter
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Eliana F. Muszynski
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Neuroscience, McGill University, Montreal, QC, Canada
| | - Yuanyuan Tao
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Tanisha Trivedi
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Anna Clouvel
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|