1
|
Hushmandi K, Einollahi B, Lee EHC, Sakaizawa R, Glaviano A, Reiter RJ, Saadat SH, Farani MR, Huh YS, Aref AR, Salimimoghadam S, Kumar AP. Bispecific antibodies as powerful immunotherapeutic agents for urological cancers: Recent innovations based on preclinical and clinical evidence. Int J Biol Sci 2025; 21:1410-1435. [PMID: 39990653 PMCID: PMC11844292 DOI: 10.7150/ijbs.96155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/25/2024] [Indexed: 02/25/2025] Open
Abstract
Conventional immunotherapy has emerged as a key option for cancer treatment. However, its efficacy has been limited in urological cancers, especially prostate cancer, because of the immunosuppressive tumor microenvironment (TME), difficulty in drug delivery, aberrant immune response, and damage to normal cells. Bispecific antibodies (BsAbs) are engineered proteins with two different antigen-binding domains, designed using different technologies and in various formats. BsAb-based tumor immunotherapy has yielded optimistic results in preclinical and clinical investigations of many tumor types, including urological cancers. However, a series of challenges, including tumor heterogeneity, TME, Ab immunogenicity, adverse effects, serum half-life, low response rates, and drug resistance, hamper the application of BsAbs. In this review, we provide insights into the most common BsAb platforms with different mechanisms of action, which are under preclinical and clinical research, along with ways to overcome the challenges in BsAb administration for treating urological cancer.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reo Sakaizawa
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, Texas USA
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX Inc., Boston, MA, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
2
|
Cheng K, Ge L, Song M, Li W, Zheng J, Liu J, Luo Y, Sun P, Xu S, Cheng Z, Yu J, Liu J. Preclinical Evaluation and Pilot Clinical Study of CD137 PET Radiotracer for Noninvasive Monitoring Early Responses of Immunotherapy. J Nucl Med 2024:jnumed.124.268068. [PMID: 39667816 DOI: 10.2967/jnumed.124.268068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Given the variability in the effectiveness of immune checkpoint blocking therapy among patients and tumor types, development of noninvasive methods for longitudinal assessment of immune cell function and early tumor response is crucial for precision immunotherapy. CD137 (4-1BB), a marker of activated T cells, plays a significant role in immunotherapy. However, its potential as an imaging biomarker for activated T cells in the tumor microenvironment has not been explored. This study introduces a bicyclic peptide-based probe that targets CD137 for noninvasive PET imaging of tumor-infiltrating activated T cells. Methods: A bicyclic peptide-based probe, [18F]AlF-NOTA-BCP137, was first designed and synthesized for quantitative and longitudinal whole-body visualization of CD137 dynamics. Initially, [18F]AlF-NOTA-BCP137 was assessed in mouse models with varying CD137 expression levels. Next, [18F]AlF-NOTA-BCP137 was used for longitudinal monitoring of systemic CD137 changes in a humanized tumor-bearing mouse model. Lastly, the probe was further evaluated in a small group of patients with hepatocellular carcinoma undergoing immunotherapy or combination immunotherapy. Results: [18F]AlF-NOTA-BCP137 PET accurately characterized CD137 expression in homologous transplanted mouse models and tumor patients. The findings from animal studies indicated that uptake of [18F]AlF-NOTA-BCP137 was predictive of the early therapeutic response to combination immunotherapies and was positively associated with the increased survival rates of mice with tumors. A preliminary clinical study involving small patient cohorts demonstrated that [18F]AlF-NOTA-BCP137 imaging effectively predicted early patient responses to immunotherapeutic interventions. Conclusion: [18F]AlF-NOTA-BCP137 PET imaging of CD137 is a promising and reliable method for evaluating the efficacy of multiple combination immunotherapies and merits further validation in larger-scale clinical trials. This approach has the potential for early noninvasive visualization of individual patient responses in combination cancer immunotherapy and will aid in tailoring personalized strategies for patients.
Collapse
Affiliation(s)
- Kai Cheng
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Luna Ge
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Miaomiao Song
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Wanhu Li
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinsong Zheng
- Department of PET/CT Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingru Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuxi Luo
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Pengfei Sun
- Department of Hepato-Biliary Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China; and
| | - Shengnan Xu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China;
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Jinming Yu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China;
| | - Jie Liu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China;
| |
Collapse
|
3
|
Gayen S, Mukherjee S, Dasgupta S, Roy S. Emerging druggable targets for immune checkpoint modulation in cancer immunotherapy: the iceberg lies beneath the surface. Apoptosis 2024; 29:1879-1913. [PMID: 39354213 DOI: 10.1007/s10495-024-02022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/03/2024]
Abstract
The immune system serves as a fundamental defender against the initiation and progression of cancer. Failure of the immune system augments immunosuppressive action that leading to cancer manifestation. This immunosuppressive effect causes from significant alterations in immune checkpoint expression associated with tumoral progression. The tumor microenvironment promotes immune escape mechanisms that further amplifying immunosuppressive actions. Notably, substantial targeting of immune checkpoints has been pragmatic in the advancement of cancer research. This study highlights a comprehensive review of emerging druggable targets aimed at modulating immune checkpoint co-inhibitory as well as co-stimulatory molecules in response to immune system activation. This modulation has prompted to the development of newer therapeutic insights, eventually inducing immunogenic cell death through immunomodulatory actions. The study emphasizes the role of immune checkpoints in immunogenic regulation of cancer pathogenesis and explores potential therapeutic avenues in cancer immunotherapy.Modulation of Immunosuppressive and Immunostimulatory pathways of immune checkpoints in cancer immunotherapy.
Collapse
Affiliation(s)
- Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India
| | - Sandipan Dasgupta
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Kolkata, West Bengal, 741249, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B. L. Saha Road, Tara Park, Behala, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
4
|
Gao W, Zhao Z, Bi Y, Li J, Tian N, Zhang C, Pan S, Deng L, Zhang Y. 4-1BBL-Armed Oncolytic Herpes Simplex Virus Exerts Antitumor Effects in Pancreatic Ductal Adenocarcinoma. Vaccines (Basel) 2024; 12:1309. [PMID: 39771971 PMCID: PMC11680369 DOI: 10.3390/vaccines12121309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a notably poor response to therapy due to its immunosuppressive tumor microenvironment (TME) and intrinsic drug resistance. The oncolytic virus (OV) represents a promising therapeutic strategy capable of transforming the "cold" immunological profile of PDAC tumors to a "hot" one by reshaping the TME. 4-1BB (CD137), a crucial member of the tumor necrosis factor receptor superfamily, plays a significant role in T-cell activation and function. Methods: In this study, we constructed an oncolytic herpes simplex virus armed with 4-1BBL (oHSV-4-1BBL), the ligand for the 4-1BB receptor, and investigated its therapeutic effects in two mouse models of pancreatic cancer, Pan02_HVEM and KPC. Results: We found that oHSV-4-1BBL remarkably inhibited tumor growth and extended the median survival time in both models. To amplify the therapeutic effect, we further combined oHSV-4-1BBL with PD-1 antibody. This combination therapy not only further suppressed tumor growth but also extended the median survival time by an additional 11 days compared to oHSV (armed with GFP as a control) combined with PD-1 antibody treatment, with some mice achieving complete tumor regression. Conclusions: Our findings confirm the potential of combining oncolytic viral therapy with 4-1BB targeting in enhancing the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenrui Gao
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China (N.T.); (S.P.)
| | - Zhuoqian Zhao
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Ying Bi
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China (N.T.); (S.P.)
| | - Jinghua Li
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China (N.T.); (S.P.)
| | - Na Tian
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China (N.T.); (S.P.)
| | - Cuizhu Zhang
- College of Life Science, Nankai University, Tianjin 300071, China
| | - Shuyuan Pan
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China (N.T.); (S.P.)
| | - Li Deng
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China (N.T.); (S.P.)
| | - Yuntao Zhang
- Beijing Institute of Biological Products Company Limited, Beijing 100176, China (N.T.); (S.P.)
- China National Biotec Group Company Limited, Beijing 100024, China
| |
Collapse
|
5
|
Jeon SH, You G, Park J, Chung Y, Park K, Kim H, Jeon J, Kim Y, Son WC, Jeong DS, Shin EC, Lee JY, Han DH, Jung J, Park SH. Anti-4-1BB×PDL1 Bispecific Antibody Reinvigorates Tumor-Specific Exhausted CD8+ T Cells and Enhances the Efficacy of Anti-PD1 Blockade. Clin Cancer Res 2024; 30:4155-4166. [PMID: 38743752 DOI: 10.1158/1078-0432.ccr-23-2864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE To overcome the limited efficacy of immune checkpoint blockade, there is a need to find novel cancer immunotherapeutic strategies for the optimal treatment of cancer. The novel anti-4-1BB×PDL1 bispecific antibody-ABL503 (also known as TJ-L14B)-was designed to simultaneously target PDL1 and 4-1BB and demonstrated strong antitumor T-cell responses without considerable toxicity. In this study, we investigated the mechanisms by which the combination of ABL503 and anti-PD1 blockade affected the reinvigoration of exhausted tumor-infiltrating CD8+ T cells (CD8+ TIL) and antitumor efficacy. EXPERIMENTAL DESIGN Single-cell suspensions of hepatocellular carcinoma and ovarian cancer tissues from treatment-naïve patients were used for immunophenotyping of CD8+ TILs and in vitro functional assays. Humanized hPD1/hPDL1/h4-1BB triple-knock-in mice were used to evaluate the effects of ABL503 and anti-PD1 blockade in vivo. RESULTS We observed that ABL503 successfully restored the functions of 4-1BB+ exhausted CD8+ TILs, which were enriched for tumor-specific T cells but unresponsive to anti-PD1 blockade. Importantly, compared with anti-PD1 blockade alone, the combination of ABL503 and anti-PD1 blockade further enhanced the functional restoration of human CD8+ TILs in vitro. Consistently, the combination of ABL503 with anti-PD1 in vivo significantly alleviated tumor growth and induced enhanced infiltration and activation of CD8+ TILs. CONCLUSIONS ABL503, a PDL1 and 4-1BB dual-targeting bispecific antibody, elicits pronounced additive tumor growth inhibition, with increased infiltration and functionality of exhausted CD8+ T cells, which in turn enhances the anticancer effects of anti-PD1 blockade. These promising findings suggest that ABL503 (TJ-L14B) in combination with PD1 inhibitors will likely further enhance therapeutic benefit in clinical trials. See related commentary by Molero-Glez et al., p. 3971.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/therapeutic use
- CD8-Positive T-Lymphocytes/immunology
- Animals
- Humans
- Mice
- Female
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/drug effects
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/immunology
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/therapy
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
Collapse
Affiliation(s)
- Seung Hyuck Jeon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Gihoon You
- ABL Bio Inc., Seongnam, Republic of Korea
| | - Junsik Park
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youseung Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | | | | | | | | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Da Som Jeong
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dai Hoon Han
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeho Jung
- ABL Bio Inc., Seongnam, Republic of Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
6
|
Yuwen H, Wang H, Li T, Ren Y, Zhang YK, Chen P, Sun A, Bian G, Li B, Flowers D, Presler M, Subramanian K, Xue J, Wang J, Lynch K, Mei J, He X, Shan B, Hou B. ATG-101 Is a Tetravalent PD-L1×4-1BB Bispecific Antibody That Stimulates Antitumor Immunity through PD-L1 Blockade and PD-L1-Directed 4-1BB Activation. Cancer Res 2024; 84:1680-1698. [PMID: 38501978 PMCID: PMC11094422 DOI: 10.1158/0008-5472.can-23-2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/05/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Immune checkpoint inhibitors (ICI) have transformed cancer treatment. However, only a minority of patients achieve a profound response. Many patients are innately resistant while others acquire resistance to ICIs. Furthermore, hepatotoxicity and suboptimal efficacy have hampered the clinical development of agonists of 4-1BB, a promising immune-stimulating target. To effectively target 4-1BB and treat diseases resistant to ICIs, we engineered ATG-101, a tetravalent "2+2″ PD-L1×4-1BB bispecific antibody. ATG-101 bound PD-L1 and 4-1BB concurrently, with a greater affinity for PD-L1, and potently activated 4-1BB+ T cells when cross-linked with PD-L1-positive cells. ATG-101 activated exhausted T cells upon PD-L1 binding, indicating a possible role in reversing T-cell dysfunction. ATG-101 displayed potent antitumor activity in numerous in vivo tumor models, including those resistant or refractory to ICIs. ATG-101 greatly increased the proliferation of CD8+ T cells, the infiltration of effector memory T cells, and the ratio of CD8+ T/regulatory T cells in the tumor microenvironment (TME), rendering an immunologically "cold" tumor "hot." Comprehensive characterization of the TME after ATG-101 treatment using single-cell RNA sequencing further revealed an altered immune landscape that reflected increased antitumor immunity. ATG-101 was well tolerated and did not induce hepatotoxicity in non-human primates. According to computational semimechanistic pharmacology modeling, 4-1BB/ATG-101/PD-L1 trimer formation and PD-L1 receptor occupancy were both maximized at around 2 mg/kg of ATG-101, providing guidance regarding the optimal biological dose for clinical trials. In summary, by localizing to PD-L1-rich microenvironments and activating 4-1BB+ immune cells in a PD-L1 cross-linking-dependent manner, ATG-101 safely inhibits growth of ICI resistant and refractory tumors. SIGNIFICANCE The tetravalent PD-L1×4-1BB bispecific antibody ATG-101 activates 4-1BB+ T cells in a PD-L1 cross-linking-dependent manner, minimizing the hepatotoxicity of existing 4-1BB agonists and suppressing growth of ICI-resistant tumors. See related commentary by Ha et al., p. 1546.
Collapse
Affiliation(s)
- Hui Yuwen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Huajing Wang
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Tengteng Li
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Yijing Ren
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | | | - Peng Chen
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Ao Sun
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Gang Bian
- Shanghai Antengene Corporation Limited, Shanghai, P.R. China
| | - Bohua Li
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | | | | | | | - Jia Xue
- Crown Bioscience Inc., Taicang, P.R. China
| | | | | | - Jay Mei
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Xiaowen He
- Oricell Therapeutics Co., Ltd, Shanghai, P.R. China
| | - Bo Shan
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| | - Bing Hou
- Antengene Corporation Co., Ltd, Shaoxing, P.R. China
| |
Collapse
|
7
|
Zhou Z, Xia Y, Chen R, Gao P, Duan S. Unveiling a novel fusion gene enhances CAR T cell therapy for solid tumors. Mol Cancer 2024; 23:98. [PMID: 38730483 PMCID: PMC11084019 DOI: 10.1186/s12943-024-02007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
The efficacy of Adoptive Cell Transfer Therapy (ACT) in combating hematological tumors has been well-documented, yet its application to solid tumors faces formidable hurdles, chief among them being the suboptimal therapeutic response and the immunosuppressive milieu within the tumor microenvironment (TME). Recently, Garcia, J. et al. present compelling findings shedding light on potential breakthroughs in this domain. Their investigation reveals the pronounced augmentation of anti-tumor activity in CAR T cells through the introduction of a T cell neoplasm fusion gene, CARD11-PIK3R3. The incorporation of this gene into engineered T cell therapy holds promise as a formidable tool in the arsenal of cancer immunotherapy. The innovative strategy outlined not only mitigates the requirement for high doses of CAR T cells but also enhances tumor control while exhibiting encouraging safety profiles. The exploration of the CARD11-PIK3R3 fusion gene represents an advancement in our approach to bolstering the anti-tumor efficacy of immunotherapeutic interventions. Nonetheless, the imperative for further inquiry to ascertain its transfection efficiency and long-term safety cannot be overstated. Nevertheless, this seminal investigation offers a beacon of hope in surmounting the formidable treatment impediments posed by solid tumors, paving the way for a transformative era in cancer therapeutics.
Collapse
Affiliation(s)
- Zefeng Zhou
- Department of hematology, Yuyao People's Hospital of Zhejiang Province, The Affiliated Yangming Hospital of Ningbo University, Yuyao, Zhejiang, 315400, China
| | - Yongming Xia
- Department of hematology, Yuyao People's Hospital of Zhejiang Province, The Affiliated Yangming Hospital of Ningbo University, Yuyao, Zhejiang, 315400, China.
| | - Ruixiu Chen
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Panpan Gao
- Department of hematology, Yuyao People's Hospital of Zhejiang Province, The Affiliated Yangming Hospital of Ningbo University, Yuyao, Zhejiang, 315400, China
| | - Shiwei Duan
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Zhu X, Feng Y, Fan P, Dong D, Yuan J, Chang C, Wang R. Increased co-expression of 4-1BB with PD-1 on CD8+ tumor-infiltrating lymphocytes is associated with improved prognosis and immunotherapy response in cervical cancer. Front Oncol 2024; 14:1381381. [PMID: 38756662 PMCID: PMC11096482 DOI: 10.3389/fonc.2024.1381381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Background The combination of agonistic antibodies with immune checkpoint inhibitors presents a promising avenue for cancer immunotherapy. Our objective is to explore the co-expression of 4-1BB, ICOS, CD28, with PD-1 on CD8+ T cells in the peripheral blood and tumor tissue of cervical cancer(CC) patients, with a specific focus on the association between the co-expression levels of 4-1BB with PD-1 and clinical features, prognosis as well as immunotherapy response. The goal is to offer valuable insights into cervical cancer immunotherapy. Methods In this study, 50 treatment-naive patients diagnosed with CC were enrolled. Flow cytometry was used to detect PD-1/4-1BB, PD-1/ICOS and PD-1/CD28 co-expression on CD8+ T cells. Subsequent analysis aimed to investigate the differential co-expression between peripheral blood and cancer tissue, and also the correlation between co-expression and clinical features in these patients. Gene Expression Omnibus (GEO) datasets, The Cancer Genome Atlas (TCGA) cohort, The IMvigor210 cohort, The BMS038cohort and Immunophenoscores were utilized to investigate the correlation between PD-1/4-1BB and the immune microenvironment, prognosis, immunotherapy, and drug sensitivity in cervical cancer. Results The co-expression levels of PD-1/4-1BB, PD-1/ICOS, and PD-1/CD28 on CD8+ tumor-infiltrating lymphocytes (TILs) were significantly higher in cervical cancer patients compared to those in peripheral blood. Clinical feature analysis reveals that on CD8+ TILs, the co-expression of PD-1/4-1BB is more closely correlated with clinical characteristics compared to PD-1/ICOS, PD-1/CD28, PD-1, and 4-1BB. Pseudo-time analysis and cell communication profiling reveal close associations between the subgroups harboring 4-1BB and PD-1. The prognosis, tumor mutation burden, immune landscape, and immunotherapy response exhibit statistically significant variations between the high and low co-expression groups of PD-1/4-1BB. The high co-expression group of PD-1/4-1BB is more likely to benefit from immunotherapy. Conclusion PD-1/4-1BB, PD-1/ICOS, and PD-1/CD28 exhibit elevated co-expression on CD8+TILs of cervical cancer, while demonstrating lower expression in circulating T cells. The co-expression patterns of PD-1/4-1BB significantly contributed to the prediction of immune cell infiltration characteristics, prognosis, and tailored immunotherapy tactics. PD-1/4-1BB exhibits potential as a target for combination immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Xiaonan Zhu
- The Third Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yaning Feng
- Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Urumqi, Xinjiang, China
| | - Peiwen Fan
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Urumqi, Xinjiang, China
| | - Danning Dong
- Department of Head and Neck Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianlin Yuan
- The Third Department of Gynecology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Cheng Chang
- Nuclear Medicine Department, Affiliated Tumor Hospital, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ruozheng Wang
- Xinjiang Uygur Autonomous Region Radiotherapy Clinical Research and Training Center, Urumqi, Xinjiang, China
- Clinical Key Specialty of the Health Commission, Urumqi, Xinjiang, China
| |
Collapse
|
9
|
Yi L, Xu Z, Ma T, Wang C, Wei P, Xiao B, Zhang H, Che N, Liu Z, Han Y. T-cell subsets and cytokines are indicative of neoadjuvant chemoimmunotherapy responses in NSCLC. Cancer Immunol Immunother 2024; 73:99. [PMID: 38619623 PMCID: PMC11018727 DOI: 10.1007/s00262-024-03687-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
PURPOSE Neoadjuvant PD-1 blockade combined with chemotherapy is a promising treatment for resectable non-small cell lung cancer (NSCLC), yet the immunological mechanisms contributing to tumor regression and biomarkers corresponding to different pathological responses remain unclear. METHODS Using dynamic and paired blood samples from NSCLC patients receiving neoadjuvant chemoimmunotherapy, we analyzed the frequencies of CD8 + T-cell and Treg subsets and their dynamic changes during neoadjuvant treatment through flow cytometry. Cytokine profiles and function-related gene expression of CD8 + T cells and Tregs were analyzed through flow cytometry and mRNA-seq. Infiltrating T-cell subsets in resected tissues from patients with different pathological responses were analyzed through multiplex immunofluorescence. RESULTS Forty-two NSCLC patients receiving neoadjuvant chemoimmunotherapy were enrolled and then underwent surgical resection and pathological evaluation. Nineteen patients had pCR (45%), 7 patients had MPR (17%), and 16 patients had non-MPR (38%). In patients with pCR, the frequencies of CD137 + CD8 + T cells (P = 0.0475), PD-1 + Ki-67 + CD8 + T cells (P = 0.0261) and Tregs (P = 0.0317) were significantly different from those of non-pCR patients before treatment. pCR patients usually had low frequencies of CD137 + CD8 + T cells, PD-1 + Ki-67 + CD8 + T cells and Tregs, and their AUCs were higher than that of tissue PD-L1 expression. Neoadjuvant chemoimmunotherapy markedly improved CD8 + T-cell proliferation and activation, especially in pCR patients, as the frequencies of CD137 + CD8 + (P = 0.0136) and Ki-67 + CD8 + (P = 0.0391) T cells were significantly increased. The blood levels of cytokines such as IL-2 (P = 0.0391) and CXCL10 (P = 0.0195) were also significantly increased in the pCR group, which is consistent with the high density of activated cytotoxic T cells at the tumor site (P < 0.0001). CONCLUSION Neoadjuvant chemoimmunotherapy drives CD8 + T cells toward a proliferative and active profile. The frequencies of CD137 + CD8 + T cells, PD-1 + Ki-67 + CD8 + T cells and Tregs at baseline might predict the response to neoadjuvant chemoimmunotherapy in NSCLC patients. The increase in IL-2 and CXCL10 might reflect the chemotaxis and enrichment of cytotoxic T cells at the tumor site and a better response to neoadjuvant chemoimmunotherapy.
Collapse
Affiliation(s)
- Ling Yi
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ziwei Xu
- Department of Minimally Invasive Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Tianyu Ma
- Department of Thoracic Surgery II, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chong Wang
- Department of Minimally Invasive Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Panjian Wei
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bo Xiao
- Department of Minimally Invasive Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Zhidong Liu
- Department of Thoracic Surgery II, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| | - Yi Han
- Department of Minimally Invasive Surgery, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
10
|
Rakké YS, Buschow SI, IJzermans JNM, Sprengers D. Engaging stimulatory immune checkpoint interactions in the tumour immune microenvironment of primary liver cancers - how to push the gas after having released the brake. Front Immunol 2024; 15:1357333. [PMID: 38440738 PMCID: PMC10910082 DOI: 10.3389/fimmu.2024.1357333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the first and second most common primary liver cancer (PLC). For decades, systemic therapies consisting of tyrosine kinase inhibitors (TKIs) or chemotherapy have formed the cornerstone of treating advanced-stage HCC and CCA, respectively. More recently, immunotherapy using immune checkpoint inhibition (ICI) has shown anti-tumour reactivity in some patients. The combination regimen of anti-PD-L1 and anti-VEGF antibodies has been approved as new first-line treatment of advanced-stage HCC. Furthermore, gemcibatine plus cisplatin (GEMCIS) with an anti-PD-L1 antibody is awaiting global approval for the treatment of advanced-stage CCA. As effective anti-tumour reactivity using ICI is achieved in a minor subset of both HCC and CCA patients only, alternative immune strategies to sensitise the tumour microenvironment of PLC are waited for. Here we discuss immune checkpoint stimulation (ICS) as additional tool to enhance anti-tumour reactivity. Up-to-date information on the clinical application of ICS in onco-immunology is provided. This review provides a rationale of the application of next-generation ICS either alone or in combination regimen to potentially enhance anti-tumour reactivity in PLC patients.
Collapse
Affiliation(s)
- Yannick S. Rakké
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Sonja I. Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery, Erasmus MC-Transplant Institute, University Medical Center, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-Cancer Institute-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
11
|
Li BB, Chen LJ, Lu SL, Lei B, Yu GL, Yu SP. C-reactive protein to albumin ratio predict responses to programmed cell death-1 inhibitors in hepatocellular carcinoma patients. World J Gastrointest Oncol 2024; 16:61-78. [PMID: 38292845 PMCID: PMC10824115 DOI: 10.4251/wjgo.v16.i1.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Over the years, programmed cell death-1 (PD-1) inhibitors have been routinely used for hepatocellular carcinoma (HCC) treatment and yielded improved survival outcomes. Nonetheless, significant heterogeneity surrounds the outcomes of most studies. Therefore, it is critical to search for biomarkers that predict the efficacy of PD-1 inhibitors in patients with HCC. AIM To investigate the role of the C-reactive protein to albumin ratio (CAR) in evaluating the efficacy of PD-1 inhibitors for HCC. METHODS The clinical data of 160 patients with HCC treated with PD-1 inhibitors from January 2018 to November 2022 at the First Affiliated Hospital of Guangxi Medical University were retrospectively analyzed. RESULTS The optimal cut-off value for CAR based on progression-free survival (PFS) was determined to be 1.20 using x-tile software. Cox proportional risk model was used to determine the factors affecting prognosis. Eastern Cooperative Oncology Group performance status [hazard ratio (HR) = 1.754, 95% confidence interval (95%CI) = 1.045-2.944, P = 0.033], CAR (HR = 2.118, 95%CI = 1.057-4.243, P = 0.034) and tumor number (HR = 2.932, 95%CI = 1.246-6.897, P = 0.014) were independent prognostic factors for overall survival. CAR (HR = 2.730, 95%CI = 1.502-4.961, P = 0.001), tumor number (HR = 1.584, 95%CI = 1.003-2.500, P = 0.048) and neutrophil to lymphocyte ratio (HR = 1.120, 95%CI = 1.022-1.228, P = 0.015) were independent prognostic factors for PFS. Two nomograms were constructed based on independent prognostic factors. The C-index index and calibration plots confirmed that the nomogram is a reliable risk prediction tool. The ROC curve and decision curve analysis confirmed that the nomogram has a good predictive effect as well as a net clinical benefit. CONCLUSION Overall, we reveal that the CAR is a potential predictor of short- and long-term prognosis in patients with HCC treated with PD-1 inhibitors. If further verified, CAR-based nomogram may increase the number of markers that predict individualized prognosis.
Collapse
Affiliation(s)
- Bai-Bei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lei-Jie Chen
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Nanning 410011, Guangxi Zhuang Autonomous Region, China
| | - Shi-Liu Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Biao Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gui-Lin Yu
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shui-Ping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
12
|
Jin X, Yi L, Wang X, Yan Z, Wei P, Yang B, Zhang H. Costimulatory capacity of CD137 mAbs on T cells depends on elaborate CRD structures but not on blocking ligand-receptor binding. Eur J Immunol 2023; 53:e2350493. [PMID: 37675596 DOI: 10.1002/eji.202350493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/17/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
CD137 is mainly a costimulatory receptor of CD8+ T cells. Two representative CD137 antibodies, utomilumab, and urelumab, show different costimulatory capacities in clinical trials. Balancing the antitumor effect and systemic toxicity of T cells activated by CD137 signaling is a challenge that requires clinical consideration. In this study, a panel of specific anti-human CD137 monoclonal antibodies (mAbs) were prepared and their affinities, isotypes, CD137-CRD (cysteine-rich domain) binding regions, cross-reactivity to mouse and rhesus CD137, inhibition of ligand-receptor binding and costimulatory activities were analyzed. The results showed that anti-human CD137 mAbs had high cross-reactivity with rhesus CD137. MAbs fell into three clusters according to their different binding regions of the CD137 extracellular domain. They bound to CRDI+CRDII, CRDIII or CRDIV+STP. CRDIII-binding mAbs had the strongest blocking activity. Highly costimulatory CD137 mAbs showed stronger abilities to promote CD8+ T-cell proliferation. However, the costimulatory capacity of mAbs on T cells was not closely related to their ability to block CD137L-CD137 binding and may be controlled by more elaborate CRD conformational structures. This study provides additional information for the development of next-generation CD137 mAbs to meet clinical needs.
Collapse
Affiliation(s)
- Xin Jin
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ling Yi
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Zhuohong Yan
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Panjian Wei
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hongtao Zhang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumour Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Piroozkhah M, Gholinezhad Y, Piroozkhah M, Shams E, Nazemalhosseini-Mojarad E. The molecular mechanism of actions and clinical utilities of tumor infiltrating lymphocytes in gastrointestinal cancers: a comprehensive review and future prospects toward personalized medicine. Front Immunol 2023; 14:1298891. [PMID: 38077386 PMCID: PMC10704251 DOI: 10.3389/fimmu.2023.1298891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal (GI) cancers remain a significant global health burden, accounting for a substantial number of cases and deaths. Regrettably, the inadequacy of dependable biomarkers hinders the precise forecasting of patient prognosis and the selection of appropriate therapeutic sequencing for individuals with GI cancers, leading to suboptimal outcomes for numerous patients. The intricate interplay between tumor-infiltrating lymphocytes (TILs) and the tumor immune microenvironment (TIME) has been shown to be a pivotal determinant of response to anti-cancer therapy and consequential clinical outcomes across a multitude of cancer types. Therefore, the assessment of TILs has garnered global interest as a promising prognostic biomarker in oncology, with the potential to improve clinical decision-making substantially. Moreover, recent discoveries in immunotherapy have progressively changed the landscape of cancer treatment and significantly prolonged the survival of patients with advanced cancers. Nonetheless, the response rate remains constrained within solid tumor sufferers, even when TIL landscapes appear comparable, which calls for the development of our understanding of cellular and molecular cross-talk between TIME and tumor. Hence, this comprehensive review encapsulates the extant literature elucidating the TILs' underlying molecular pathogenesis, prognostic significance, and their relevance in the realm of immunotherapy for patients afflicted by GI tract cancers. Within this review, we demonstrate that the type, density, and spatial distribution of distinct TIL subpopulations carries pivotal implications for the prediction of anti-cancer treatment responses and patient survival. Furthermore, this review underscores the indispensable role of TILs in modulating therapeutic responses within distinct molecular subtypes, such as those characterized by microsatellite stability or programmed cell death ligand-1 expression in GI tract cancers. The review concludes by outlining future directions in TIL-based personalized medicine, including integrating TIL-based approaches into existing treatment regimens and developing novel therapeutic strategies that exploit the unique properties of TILs and their potential as a promising avenue for personalized cancer treatment.
Collapse
Affiliation(s)
- Moein Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mobin Piroozkhah
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Shams
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Sawada K, Chung H, Softic S, Moreno-Fernandez ME, Divanovic S. The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metab 2023; 35:1852-1871. [PMID: 37939656 PMCID: PMC10680147 DOI: 10.1016/j.cmet.2023.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for end-stage liver diseases with no available therapies. Dysregulated immune responses are critical culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive arms of the immune system or their unidirectional interplay are commonly studied in MASLD. However, the bidirectional communication between innate and adaptive immune systems and its impact on MASLD remain insufficiently understood. Given that both innate and adaptive immune cells are indispensable for the development and progression of inflammation in MASLD, elucidating pathogenic contributions stemming from the bidirectional interplay between these two arms holds potential for development of novel therapeutics for MASLD. Here, we review the immune cell types and bidirectional pathways that influence the pathogenesis of MASLD and highlight potential pharmacologic approaches to combat MASLD based on current knowledge of this bidirectional crosstalk.
Collapse
Affiliation(s)
- Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hak Chung
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samir Softic
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
15
|
Zhou C, Sun BY, Zhou PY, Yang ZF, Wang ZT, Liu G, Gan W, Wang Z, Zhou J, Fan J, Yi Y, Ren N, Qiu SJ. MAIT cells confer resistance to Lenvatinib plus anti-PD1 antibodies in hepatocellular carcinoma through TNF-TNFRSF1B pathway. Clin Immunol 2023; 256:109770. [PMID: 37717672 DOI: 10.1016/j.clim.2023.109770] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 08/20/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
The combination of antiangiogenic agents and immune checkpoint inhibitors is more efficient than monotherapy in the management of hepatocellular carcinoma (HCC). Lenvatinib plus anti-PD1 antibodies have become the mainstay in HCC treatment. However, more than half the patients with HCC are non-responsive, and the mechanisms underlying drug resistance are unknown. To address this issue, we performed single-cell sequencing on samples from six HCC patients, aiming to explore cellular signals and molecular pathways related to the effect of lenvatinib plus anti-PD1 antibody treatment. GSVA analysis revealed that treatment with lenvatinib plus anti-PD1 antibody led to an increase in the TNF-NFKB pathway across all immune cell types, as compared to the non-treatment group. Mucosal-associated invariant T (MAIT) cells were found to secrete TNF, which activates TNFRSF1B on regulatory T cells, thereby promoting immunosuppression. Additionally, TNFSF9 was highly expressed in anticancer immune cells, including CD8+ effector T cells, MAIT, and γδ T cells in the treatment group. We also detected CD3+ macrophages in both HCC and pan-cancer tissues. Overall, our findings shed light on the potential mechanisms behind the effectiveness of lenvatinib plus anti-PD1 antibody treatment in HCC patients. By understanding these mechanisms better, we may be able to develop more effective treatment strategies for patients who do not respond to current therapies.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bao-Ye Sun
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pei-Yun Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhu-Tao Wang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gao Liu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Gan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Wang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Yi
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China..
| | - Ning Ren
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.; Institute of Fudan Minhang Academic Health System, and Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer, Minhang Hospital & AHS, Fudan University, Shanghai, China.
| | - Shuang-Jian Qiu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China..
| |
Collapse
|
16
|
Hao L, Li S, Hu X. New insights into T-cell exhaustion in liver cancer: from mechanism to therapy. J Cancer Res Clin Oncol 2023; 149:12543-12560. [PMID: 37423958 DOI: 10.1007/s00432-023-05083-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Liver cancer is one of the most common malignancies. T-cell exhaustion is associated with immunosuppression of tumor and chronic infection. Although immunotherapies that enhance the immune response by targeting programmed cell death-1(PD-1)/programmed cell death ligand 1 (PD-L1) have been applied to malignancies, these treatments have shown limited response rates. This suggested that additional inhibitory receptors (IRs) also contributed to T-cell exhaustion and tumor prognosis. Exhausted T-cells (Tex) in the tumor immune microenvironment (TME) are usually in a dysfunctional state of exhaustion, such as impaired activity and proliferative ability, increased apoptosis rate, and reduced production of effector cytokines. Tex cells participate in the negative regulation of tumor immunity mainly through IRs on the cell surface, changes in cytokines and immunomodulatory cell types, causing tumor immune escape. However, T-cell exhaustion is not irreversible and targeted immune checkpoint inhibitors (ICIs) can effectively reverse the exhaustion of T-cells and restore the anti-tumor immune response. Therefore, the research on the mechanism of T-cell exhaustion in liver cancer, aimed at maintaining or restoring the effector function of Tex cells, might provide a new method for the treatment of liver cancer. In this review, we summarized the basic characteristics of Tex cells (such as IRs and cytokines), discussed the mechanisms associated with T-cell exhaustion, and specifically discussed how these exhaustion characteristics were acquired and shaped by key factors within TME. Then new insights into the molecular mechanism of T-cell exhaustion suggested a potential way to improve the efficacy of cancer immunotherapy, namely to restore the effector function of Tex cells. In addition, we also reviewed the research progress of T-cell exhaustion in recent years and provided suggestions for further research.
Collapse
Affiliation(s)
- Liyuan Hao
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Shenghao Li
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
17
|
Sun Y, Yu X, Wang X, Yuan K, Wang G, Hu L, Zhang G, Pei W, Wang L, Sun C, Yang P. Bispecific antibodies in cancer therapy: Target selection and regulatory requirements. Acta Pharm Sin B 2023; 13:3583-3597. [PMID: 37719370 PMCID: PMC10501874 DOI: 10.1016/j.apsb.2023.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
In recent years, the development of bispecific antibodies (bsAbs) has been rapid, with many new structures and target combinations being created. The boom in bsAbs has led to the successive issuance of industry guidance for their development in the US and China. However, there is a high degree of similarity in target selection, which could affect the development of diversity in bsAbs. This review presents a classification of various bsAbs for cancer therapy based on structure and target selection and examines the advantages of bsAbs over monoclonal antibodies (mAbs). Through database research, we have identified the preferences of available bsAbs combinations, suggesting rational target selection options and warning of potential wastage of medical resources. We have also compared the US and Chinese guidelines for bsAbs in order to provide a reference for their development.
Collapse
Affiliation(s)
- Yanze Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xinmiao Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Gefei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guoyu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenli Pei
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
18
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
19
|
Shen X, Zhang R, Nie X, Yang Y, Hua Y, Lü P. 4-1BB Targeting Immunotherapy: Mechanism, Antibodies, and Chimeric Antigen Receptor T. Cancer Biother Radiopharm 2023; 38:431-444. [PMID: 37433196 DOI: 10.1089/cbr.2023.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
4-1BB (CD137, TNFRSF9) is a type I transmembrane protein which binds its natural ligand, 4-1BBL. This interaction has been exploited to improve cancer immunotherapy. With ligand binding by 4-1BB, the nuclear factor-kappa B signaling pathway is activated, which results in transcription of corresponding genes such as interleukin-2 and interferon-γ, as well as the induction of T cell proliferation and antiapoptotic signals. Moreover, monoclonal antibodies that target-4-1BB, for example, Urelumab and Utomilumab, are widely used in the treatments of B cell non-Hodgkin lymphoma, lung cancer, breast cancer, soft tissue sarcoma, and other solid tumors. Furthermore, 4-1BB as a costimulatory domain, for chimeric antigen receptor T (CAR-T) cells, improves T cell proliferation and survival as well as reduces T cell exhaustion. As such, a deeper understanding of 4-1BB will contribute to improvements in cancer immunotherapy. This review provides a comprehensive analysis of current 4-1BB studies, with a focus on the use of targeting-4-1BB antibodies and 4-1BB activation domains in CAR-T cells for the treatment of cancer.
Collapse
Affiliation(s)
- Xiaoling Shen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rusong Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaojuan Nie
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Lee SH, Kim SH, Nam TM, Jang JH, Kim KH, Lee YS, Kim MS, Kim MS, Jin SY, Lee M, Lee SH, Kim YZ. Epigenetic Regulation of the Expression of T Cell Stimulatory and Inhibitory Factors by Histone H3 Lysine Modification Enzymes and Its Prognostic Roles in Glioblastoma. J Korean Med Sci 2023; 38:e258. [PMID: 37605497 PMCID: PMC10442499 DOI: 10.3346/jkms.2023.38.e258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/11/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND This study aimed to identify the specific T cell co-stimulatory and co-inhibitory factors that play prognostic roles in patients with glioblastoma. Additionally, the unique histone H3 modification enzymes that regulate the expression levels of these specific co-stimulatory and co-inhibitory factors were investigated. METHODS The medical records of 84 patients newly diagnosed with glioblastoma at our institution from January 2006 to December 2020 were retrospectively reviewed. Immunohistochemical (IHC) staining for T cell co-stimulatory factors (CD27, CD28, CD137, OX40, and ICOS), T cell co-inhibitory factors (CTLA4, PD1, PD-L1, TIM3, and CD200R), and histone H3 lysine modification enzymes (MLL4, RIZ, EZH1, NSD2, KDM5c, JMJD1a, UTX, and JMJD5) was performed on archived paraffin-embedded tissues obtained by biopsy or resection. Quantitative real time-polymerase chain reaction (qRT-PCR) was performed for specific factors, which demonstrated causal relationships, in order to validate the findings of the IHC examinations. RESULTS The mean follow-up duration was 27.5 months (range, 4.1-43.5 months). During this period, 76 patients (90.5%) died, and the mean OS was 19.4 months (95% confidence interval, 16.3-20.9 months). Linear positive correlations were observed between the expression levels of CD28 and JMJD1a (R2 linear = 0.982) and those of CD137 and UTX (R2 linear = 1.528). Alternatively, significant negative correlations were observed between the expression levels of CTLA4 and RIZ (R2 linear = -1.746) and those of PD-L1 and EZH1 (R2 linear = -2.118); these relationships were confirmed by qRT-PCR. In the multivariate analysis, increased expression levels of CD28 (P = 0.042), and CD137 (P = 0.009), and decreased expression levels of CTLA4 (P = 0.003), PD-L1 (P = 0.020), and EZH1 (P = 0.040) were significantly associated with longer survival. CONCLUSION These findings suggest that the expression of certain T cell co-stimulatory factors, such as CD28 and CD 137, and co-inhibitory factors, such as CTLA4 and PD-L1 are associated with prognosis of glioblastoma patients.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Seung Hwan Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Taek Min Nam
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Ji Hwan Jang
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Kyu Hong Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
- Well Aging Research Center, Division of Biotechnology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Minseok S Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
- Translational Responsive Medicine Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Mee-Seon Kim
- Department of Pathology, School of Dentistry, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Sung Yup Jin
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Moonok Lee
- Department of Anesthesiology and Pain Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Sung-Hun Lee
- Cancer Research Institute, Clinomics Inc., Suwon, Korea
| | - Young Zoon Kim
- Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea.
| |
Collapse
|
21
|
Salek-Ardakani S, Zajonc DM, Croft M. Agonism of 4-1BB for immune therapy: a perspective on possibilities and complications. Front Immunol 2023; 14:1228486. [PMID: 37662949 PMCID: PMC10469789 DOI: 10.3389/fimmu.2023.1228486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Costimulatory receptors on immune cells represent attractive targets for immunotherapy given that these molecules can increase the frequency of individual protective immune cell populations and their longevity, as well as enhance various effector functions. 4-1BB, a member of the TNF receptor superfamily, also known as CD137 and TNFRSF9, is one such molecule that is inducible on several cell types, including T cells and NK cells. Preclinical studies in animal models have validated the notion that stimulating 4-1BB with agonist reagents or its natural ligand could be useful to augment conventional T cell and NK cell immunity to protect against tumor growth and against viral infection. Additionally, stimulating 4-1BB can enhance regulatory T cell function and might be useful in the right context for suppressing autoimmunity. Two human agonist antibodies to 4-1BB have been produced and tested in clinical trials for cancer, with variable results, leading to the production of a wealth of second-generation antibody constructs, including bi- and multi-specifics, with the hope of optimizing activity and selectivity. Here, we review the progress to date in agonism of 4-1BB, discuss the complications in targeting the immune system appropriately to elicit the desired activity, together with challenges in engineering agonists, and highlight the untapped potential of manipulating this molecule in infectious disease and autoimmunity.
Collapse
Affiliation(s)
| | - Dirk M. Zajonc
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
- Department of Medicine, University of California (UC) San Diego, La Jolla, CA, United States
| |
Collapse
|
22
|
Shen A, Liu W, Wang H, Zeng X, Wang M, Zhang D, Zhao Q, Fang Q, Wang F, Cheng L, Shen G, Li Y. A novel 4-1BB/HER2 bispecific antibody shows potent antitumor activities by increasing and activating tumor-infiltrating T cells. Am J Cancer Res 2023; 13:3246-3256. [PMID: 37559991 PMCID: PMC10408481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/12/2023] [Indexed: 08/11/2023] Open
Abstract
Resistance to HER2-targeted therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB/CD137 is a promising drug target as a costimulatory molecule of immune cells, no therapeutic drug has been approved in the clinic because of systemic toxicity or limited efficacy. Previously, we developed a humanized anti-HER2 monoclonal antibody (mAb) HuA21 and anti-4-1BB mAb HuB6 with distinct antigen epitopes for cancer therapy. Here, we generated an Fc-muted IgG4 HER2/4-1BB bispecific antibody (BsAb) HK006 by the fusion of HuB6 scFv and HuA21 Fab. HK006 exhibited synergistic antitumor activity by blocking HER2 signal transduction and stimulating the 4-1BB signaling pathway simultaneously and strictly dependent on HER2 expression in vitro and in vivo. Strikingly, HK006 treatment enhanced antitumor immunity by increasing and activating tumor-infiltrating T cells. Moreover, HK006 did not induce nonspecific production of proinflammatory cytokines and had no obvious toxicity in mice. Overall, these data demonstrated that HK006 should be a promising candidate for HER2-positive cancer immunotherapy.
Collapse
Affiliation(s)
- Aolin Shen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
| | - Wenting Liu
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Mengli Wang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
| | - Liansheng Cheng
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
- Hefei HankeMab Biotechnology Co., Ltd.Hefei 230088, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd.Hefei 230088, Anhui, China
| | - Guodong Shen
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition TherapyHefei 230001, Anhui, China
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230032, Anhui, China
| |
Collapse
|
23
|
Joseph J, Premeaux TA, Pinto DO, Rao A, Guha S, Panfil AR, Carey AJ, Ndhlovu LC, Bergmann‐Leitner ES, Jain P. Retroviral b-Zip protein (HBZ) contributes to the release of soluble and exosomal immune checkpoint molecules in the context of neuroinflammation. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e102. [PMID: 37547182 PMCID: PMC10399615 DOI: 10.1002/jex2.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/13/2023] [Accepted: 07/01/2023] [Indexed: 08/08/2023]
Abstract
HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive, neuroinflammatory demyelinating condition of the spinal cord. We have previously shown that aberrant expression and activity of immune checkpoint (ICP) molecules such as PD-1 and PD-L1/PD-L2, negatively associates with the cytolytic potential of T cells in individuals with HAM/TSP. Interestingly, ICPs can exist in a soluble cell-free form and can be carried on extracellular vesicles (EVs) and exosomes (small EVs, <300nm) while maintaining their immunomodulatory activity. Therefore, we investigated the role of soluble and exosomal ICPs in HTLV-1 associated neuroinflammation. For the very first time, we demonstrate a unique elevated presence of several stimulatory (CD27, CD28, 4-1BB) and inhibitory (BTLA, CTLA-4, LAG-3, PD-1, PD-L2) ICP receptors in HAM/TSP sera, and in purified exosomes from a HAM/TSP-derived HTLV-1-producing (OSP2) cells. These ICPs were found to be co-localized with the endosomal sorting complex required for transport (ESCRT) pathway proteins and exhibited functional binding with their respective ligands. Viral proteins and cytokines (primarily IFNγ) were found to be present in purified exosomes. IFNγ exposure enhanced the release of ICP molecules while antiretroviral drugs (Azidothymidine and Lopinavir) significantly inhibited this process. HTLV-1 b-Zip protein (HBZ) has been linked to factors that enhance EV release and concurrent knockdown here led to the reduced expression of ESCRT associated genes (eg. Hrs, Vsp4, Alix, Tsg101) as well as abrogated the release of ICP molecules, suggesting HBZ involvement in this process. Moreso, exosomes from OSP2 cells adversely affected CD8 T-cell functions by dimishing levels of cytokines and cytotoxic factors. Collectively, these findings highlight exosome-mediated immunmodulation of T-cell functions with HBZ and ESCRT pathways as an underlying mechanism in the context of HTLV-1-induced neuroinflammation.
Collapse
Affiliation(s)
- Julie Joseph
- Department of Microbiology & ImmunologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Thomas A. Premeaux
- Weill Cornel Medicine Department of MedicineDivision of Infectious DiseasesNew YorkNYUSA
| | - Daniel O. Pinto
- Immunology Core, Biologics Research and DevelopmentWalter Reed Army Institute of ResearchSilver SpringsMDUSA
- Oak Ridge Institute for Science and EducationOak RidgeTNUSA
| | - Abhishek Rao
- Department of Microbiology & ImmunologyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Shrobona Guha
- Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaPAUSA
| | - Amanda R. Panfil
- The Ohio State University, College of Veterinary Medicine, Center for Retrovirus ResearchColumbusOhioUSA
| | - Alison J. Carey
- Department of Microbiology & ImmunologyDrexel University College of MedicinePhiladelphiaPAUSA
- Department of PediatricsDrexel University College of MedicinePhiladelphiaPAUSA
| | - Lishomwa C. Ndhlovu
- Weill Cornel Medicine Department of MedicineDivision of Infectious DiseasesNew YorkNYUSA
| | - Elke S. Bergmann‐Leitner
- Immunology Core, Biologics Research and DevelopmentWalter Reed Army Institute of ResearchSilver SpringsMDUSA
| | - Pooja Jain
- Department of Microbiology & ImmunologyDrexel University College of MedicinePhiladelphiaPAUSA
- Department of Neurobiology and AnatomyDrexel University College of MedicinePhiladelphiaPAUSA
| |
Collapse
|
24
|
Guan Q, Han M, Guo Q, Yan F, Wang M, Ning Q, Xi D. Strategies to reinvigorate exhausted CD8 + T cells in tumor microenvironment. Front Immunol 2023; 14:1204363. [PMID: 37398660 PMCID: PMC10311918 DOI: 10.3389/fimmu.2023.1204363] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
CD8+ T cell exhaustion is a stable dysfunctional state driven by chronic antigen stimulation in the tumor microenvironment (TME). Differentiation of exhausted CD8+ T cells (CD8+ TEXs) is accompanied by extensive transcriptional, epigenetic and metabolic reprogramming. CD8+ TEXs are mainly characterized by impaired proliferative and cytotoxic capacity as well as the increased expression of multiple co-inhibitory receptors. Preclinical tumor studies and clinical cohorts have demonstrated that T cell exhaustion is firmly associated with poor clinical outcomes in a variety of cancers. More importantly, CD8+ TEXs are regarded as the main responder to immune checkpoint blockade (ICB). However, to date, a large number of cancer patients have failed to achieve durable responses after ICB. Therefore, improving CD8+ TEXs may be a breakthrough point to reverse the current dilemma of cancer immunotherapy and eliminate cancers. Strategies to reinvigorate CD8+ TEXs in TME mainly include ICB, transcription factor-based therapy, epigenetic therapy, metabolism-based therapy and cytokine therapy, which target on different aspects of exhaustion progression. Each of them has its advantages and application scope. In this review, we mainly focus on the major advances of current strategies to reinvigorate CD8+ TEXs in TME. We summarize their efficacy and mechanisms, identify the promising monotherapy and combined therapy and propose suggestions to enhance the treatment efficacy to significantly boost anti-tumor immunity and achieve better clinical outcomes.
Collapse
|
25
|
Cheng LS, Zhu M, Gao Y, Liu WT, Yin W, Zhou P, Zhu Z, Niu L, Zeng X, Zhang D, Fang Q, Wang F, Zhao Q, Zhang Y, Shen G. An Fc-muted bispecific antibody targeting PD-L1 and 4-1BB induces antitumor immune activity in colorectal cancer without systemic toxicity. Cell Mol Biol Lett 2023; 28:47. [PMID: 37259060 DOI: 10.1186/s11658-023-00461-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Resistance to immune checkpoint inhibitor (ICI) therapy narrows the efficacy of cancer immunotherapy. Although 4-1BB is a promising drug target as a costimulatory molecule of immune cells, no 4-1BB agonist has been given clinical approval because of severe liver toxicity or limited efficacy. Therefore, a safe and efficient immunostimulatory molecule is urgently needed for cancer immunotherapy. METHODS HK010 was generated by antibody engineering, and the Fab/antigen complex structure was analyzed using crystallography. The affinity and activity of HK010 were detected by multiple in vitro bioassays, including enzyme-linked immunosorbent assay (ELISA), surface plasmon resonance (SPR), flow cytometry, and luciferase-reporter assays. Humanized mice bearing human PD-L1-expressing MC38 (MC38/hPDL1) or CT26 (CT26/hPDL1) tumor transplants were established to assess the in vivo antitumor activity of HK010. The pharmacokinetics (PK) and toxicity of HK010 were evaluated in cynomolgus monkeys. RESULTS HK010 was generated as an Fc-muted immunoglobulin (Ig)G4 PD-L1x4-1BB bispecific antibody (BsAb) with a distinguished Fab/antigen complex structure, and maintained a high affinity for human PD-L1 (KD: 2.27 nM) and low affinity for human 4-1BB (KD: 493 nM) to achieve potent PD-1/PD-L1 blockade and appropriate 4-1BB agonism. HK010 exhibited synergistic antitumor activity by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously, and being strictly dependent on the PD-L1 receptor in vitro and in vivo. In particular, when the dose was decreased to 0.3 mg/kg, HK010 still showed a strong antitumor effect in a humanized mouse model bearing MC38/hPDL1 tumors. Strikingly, HK010 treatment enhanced antitumor immunity and induced durable antigen-specific immune memory to prevent rechallenged tumor growth by recruiting CD8+ T cells and other lymphocytes into tumor tissue and activating tumor-infiltrating lymphocytes. Moreover, HK010 not only did not induce nonspecific production of proinflammatory cytokines but was also observed to be well tolerated in cynomolgus monkeys in 5 week repeated-dose (5, 15, or 50 mg/kg) and single-dose (75 or 150 mg/kg) toxicity studies. CONCLUSION We generated an Fc-muted anti-PD-L1x4-1BB BsAb, HK010, with a distinguished structural interaction with PD-L1 and 4-1BB that exhibits a synergistic antitumor effect by blocking the PD-1/PD-L1 signaling pathway and stimulating the 4-1BB signaling pathway simultaneously. It is strictly dependent on the PD-L1 receptor with no systemic toxicity, which may offer a new option for cancer immunotherapy.
Collapse
Affiliation(s)
- Lian-Sheng Cheng
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
- Anhui Province Key Laboratory of Gene Engineering Pharmaceutical, Biomedicine Technology Innovation Center of Hefei, Anhui Anke Biotechnology (Group) Co., Ltd., Hefei, 230088, Anhui, China
| | - Min Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yan Gao
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Wen-Ting Liu
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Wu Yin
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China
| | - Pengfei Zhou
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Zhongliang Zhu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Liwen Niu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoli Zeng
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Dayan Zhang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qing Fang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Fengrong Wang
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Qun Zhao
- Hefei HankeMab Biotechnology Limited, Hefei, 230088, Anhui, China
| | - Yan Zhang
- School of Health Service Management, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Guodong Shen
- Department of Geriatrics, The First Affiliated Hospital of University of Science and Technology of China, Gerontology Institute of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, Anhui, China.
| |
Collapse
|
26
|
Xie S, Yan R, Zheng A, Shi M, Tang L, Li X, Liu J, Gan Y, Wang Y, Jiang D, Liu L, Wu H, Wang Z. T cell receptor and B cell receptor exhibit unique signatures in tumor and adjacent non-tumor tissues of hepatocellular carcinoma. Front Immunol 2023; 14:1161417. [PMID: 37313417 PMCID: PMC10258310 DOI: 10.3389/fimmu.2023.1161417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
Background The tumor microenvironment in hepatocellular carcinoma (HCC) is complicated. Tumor-infiltrating T and B cells play a pivotal role in anti-tumor immunity. T cell receptor (TCR) and B cell receptor (BCR) features may reflect the disease-associated antigen response. Methods By combining bulk TCR/BCR-sequencing, RNA-sequencing, whole exome-sequencing, and human leukocyte antigen-sequencing, we examined the immune repertoire (IR) features of tumor and adjacent non-tumor tissues obtained from 64 HCC patients. Results High IR heterogeneity with weak similarity was discovered between tumor and non-tumor tissues. Higher BCR diversity, richness, and somatic hypermutation (SHM) were found in non-tumor tissues, while TCRα and TCRβ diversity and richness were comparable or higher in tumor. Additionally, lower immune infiltration was found in tumor than non-tumor tissues; the microenvironment in tumor appeared to keep stably inhibited and changed slightly with tumor progression. Moreover, BCR SHM was stronger, whereas TCR/BCR diversity declined with HCC progression. Importantly, we found that higher IR evenness in tumor and lower TCR richness in non-tumor tissues indicated better survival in HCC patients. Collectively, the results revealed that TCR and BCR exhibited distinct features in tumor and non-tumor tissues. Conclusions We demonstrated that IR features vary between different tissues of HCC. IR features may represent a biomarker for the diagnosis and treatment of HCC patients, providing references for subsequent immunotherapy research and strategy selection.
Collapse
Affiliation(s)
- Shi Xie
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Yan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Zheng
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengfen Shi
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | - Xueying Li
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiabang Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yifan Gan
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deke Jiang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongkai Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhanhui Wang
- Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Cirillo A, Zizzari IG, Botticelli A, Strigari L, Rahimi H, Scagnoli S, Scirocchi F, Pernazza A, Pace A, Cerbelli B, d'Amati G, Marchetti P, Nuti M, Rughetti A, Napoletano C. Circulating CD137 + T Cell Levels Are Correlated with Response to Pembrolizumab Treatment in Advanced Head and Neck Cancer Patients. Int J Mol Sci 2023; 24:ijms24087114. [PMID: 37108276 PMCID: PMC10138766 DOI: 10.3390/ijms24087114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Pembrolizumab, an anti-PD-1 antibody, has been approved as first-line treatment for recurrent or metastatic head and neck squamous cell carcinoma ((R/M) HNSCC). However, only a minority of patients benefit from immunotherapy, which highlights the need to identify novel biomarkers to optimize treatment strategies. CD137+ T cells have been identified as tumour-specific T cells correlated with immunotherapy responses in several solid tumours. In this study, we investigated the role of circulating CD137+ T cells in (R/M) HNSCC patients undergoing pembrolizumab treatment. PBMCs obtained from 40 (R/M) HNSCC patients with a PD-L1 combined positive score (CPS) ≥1 were analysed at baseline via cytofluorimetry for the expression of CD137, and it was found that the percentage of CD3+CD137+ cells is correlated with the clinical benefit rate (CBR), PFS, and OS. The results show that levels of circulating CD137+ T cells are significantly higher in responder patients than in non-responders (p = 0.03). Moreover, patients with CD3+CD137+ percentage ≥1.65% had prolonged OS (p = 0.02) and PFS (p = 0.02). Multivariate analysis, on a combination of biological and clinical parameters, showed that high levels of CD3+CD137+ cells (≥1.65%) and performance status (PS) = 0 are independent prognostic factors of PFS (CD137+ T cells, p = 0.007; PS, p = 0.002) and OS (CD137+ T cells, p = 0.006; PS, p = 0.001). Our results suggest that levels of circulating CD137+ T cells could serve as biomarkers for predicting the response of (R/M) HNSCC patients to pembrolizumab treatment, thus contributing to the success of anti-cancer treatment.
Collapse
Affiliation(s)
- Alessio Cirillo
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, 00161 Rome, Italy
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Lidia Strigari
- Medical Physics Unit, "Sant'Orsola-Malpighi" Hospital, 40138 Bologna, Italy
| | - Hassan Rahimi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Simone Scagnoli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Fabio Scirocchi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Angelina Pernazza
- Department of Radiology, Oncology and Pathology, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Angelica Pace
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Bruna Cerbelli
- Department of Radiology, Oncology and Pathology, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giulia d'Amati
- Department of Radiology, Oncology and Pathology, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Paolo Marchetti
- Istituto Dermopatico dell'Immacolata (IDI-IRCCS), 00161 Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
28
|
Dhanasekaran R, Hansen AS, Park J, Lemaitre L, Lai I, Adeniji N, Kuruvilla S, Suresh A, Zhang J, Swamy V, Felsher DW. MYC Overexpression Drives Immune Evasion in Hepatocellular Carcinoma That Is Reversible through Restoration of Proinflammatory Macrophages. Cancer Res 2023; 83:626-640. [PMID: 36525476 PMCID: PMC9931653 DOI: 10.1158/0008-5472.can-22-0232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Cancers evade immune surveillance, which can be reversed through immune-checkpoint therapy in a small subset of cases. Here, we report that the MYC oncogene suppresses innate immune surveillance and drives resistance to immunotherapy. In 33 different human cancers, MYC genomic amplification and overexpression increased immune-checkpoint expression, predicted nonresponsiveness to immune-checkpoint blockade, and was associated with both Th2-like immune profile and reduced CD8 T-cell infiltration. MYC transcriptionally suppressed innate immunity and MHCI-mediated antigen presentation, which in turn impeded T-cell response. Combined, but not individual, blockade of PDL1 and CTLA4 could reverse MYC-driven immune suppression by leading to the recruitment of proinflammatory antigen-presenting macrophages with increased CD40 and MHCII expression. Depletion of macrophages abrogated the antineoplastic effects of PDL1 and CTLA4 blockade in MYC-driven hepatocellular carcinoma (HCC). Hence, MYC is a predictor of immune-checkpoint responsiveness and a key driver of immune evasion through the suppression of proinflammatory macrophages. The immune evasion induced by MYC in HCC can be overcome by combined PDL1 and CTLA4 blockade. SIGNIFICANCE Macrophage-mediated immune evasion is a therapeutic vulnerability of MYC-driven cancers, which has implications for prioritizing MYC-driven hepatocellular carcinoma for combination immunotherapy.
Collapse
Affiliation(s)
- Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aida S. Hansen
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedicine, Aarhus University, Aarhus C 8000, Denmark
| | - Jangho Park
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Lai
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nia Adeniji
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sibu Kuruvilla
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Akanksha Suresh
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Varsha Swamy
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dean W. Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Chen HA, Ho YJ, Mezzadra R, Adrover JM, Smolkin R, Zhu C, Woess K, Bernstein N, Schmitt G, Fong L, Luan W, Wuest A, Tian S, Li X, Broderick C, Hendrickson RC, Egeblad M, Chen Z, Alonso-Curbelo D, Lowe SW. Senescence Rewires Microenvironment Sensing to Facilitate Antitumor Immunity. Cancer Discov 2023; 13:432-453. [PMID: 36302222 PMCID: PMC9901536 DOI: 10.1158/2159-8290.cd-22-0528] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023]
Abstract
Cellular senescence involves a stable cell-cycle arrest coupled to a secretory program that, in some instances, stimulates the immune clearance of senescent cells. Using an immune-competent liver cancer model in which senescence triggers CD8 T cell-mediated tumor rejection, we show that senescence also remodels the cell-surface proteome to alter how tumor cells sense environmental factors, as exemplified by type II interferon (IFNγ). Compared with proliferating cells, senescent cells upregulate the IFNγ receptor, become hypersensitized to microenvironmental IFNγ, and more robustly induce the antigen-presenting machinery-effects also recapitulated in human tumor cells undergoing therapy-induced senescence. Disruption of IFNγ sensing in senescent cells blunts their immune-mediated clearance without disabling the senescence state or its characteristic secretory program. Our results demonstrate that senescent cells have an enhanced ability to both send and receive environmental signals and imply that each process is required for their effective immune surveillance. SIGNIFICANCE Our work uncovers an interplay between tissue remodeling and tissue-sensing programs that can be engaged by senescence in advanced cancers to render tumor cells more visible to the adaptive immune system. This new facet of senescence establishes reciprocal heterotypic signaling interactions that can be induced therapeutically to enhance antitumor immunity. See related article by Marin et al., p. 410. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Hsuan-An Chen
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yu-Jui Ho
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Riccardo Mezzadra
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Ryan Smolkin
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Changyu Zhu
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Katharina Woess
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | | | - Linda Fong
- Calico Life Sciences, South San Francisco, California
| | - Wei Luan
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexandra Wuest
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sha Tian
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xiang Li
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Caroline Broderick
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald C. Hendrickson
- Microchemistry and Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Zhenghao Chen
- Calico Life Sciences, South San Francisco, California
| | - Direna Alonso-Curbelo
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Scott W. Lowe
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
30
|
Peng X, Gong C, Zhang W, Zhou A. Advanced development of biomarkers for immunotherapy in hepatocellular carcinoma. Front Oncol 2023; 12:1091088. [PMID: 36727075 PMCID: PMC9885011 DOI: 10.3389/fonc.2022.1091088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and one of the leading causes of cancer-related deaths in the world. Mono-immunotherapy and combination therapy with immune checkpoint inhibitors (ICIs) and multitargeted tyrosine kinase inhibitors (TKIs) or anti-vascular endothelial growth factor (anti-VEGF) inhibitors have become new standard therapies in advanced HCC (aHCC). However, the clinical benefit of these treatments is still limited. Thus, proper biomarkers which can predict treatment response to immunotherapy to maximize clinical benefit while sparing unnecessary toxicity are urgently needed. Contrary to other malignancies, up until now, no acknowledged biomarkers are available to predict resistance or response to immunotherapy for HCC patients. Furthermore, biomarkers, which are established in other cancer types, such as programmed death ligand 1 (PD-L1) expression and tumor mutational burden (TMB), have no stable predictive effect in HCC. Thus, plenty of research focusing on biomarkers for HCC is under exploration. In this review, we summarize the predictive and prognostic biomarkers as well as the potential predictive mechanism in order to guide future research direction for biomarker exploration and clinical treatment options in HCC.
Collapse
|
31
|
Claus C, Ferrara-Koller C, Klein C. The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy. MAbs 2023; 15:2167189. [PMID: 36727218 PMCID: PMC9897756 DOI: 10.1080/19420862.2023.2167189] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
The clinical development of 4-1BB agonists for cancer immunotherapy has raised substantial interest during the past decade. The first generation of 4-1BB agonistic antibodies entering the clinic, urelumab (BMS-663513) and utomilumab (PF-05082566), failed due to (liver) toxicity or lack of efficacy, respectively. The two antibodies display differences in the affinity and the 4-1BB receptor epitope recognition, as well as the isotype, which determines the Fc-gamma-receptor (FcγR) crosslinking activity. Based on this experience a very diverse landscape of second-generation 4-1BB agonists addressing the liabilities of first-generation agonists has recently been developed, with many entering clinical Phase 1 and 2 studies. This review provides an overview focusing on differences and their scientific rationale, as well as challenges foreseen during the clinical development of these molecules.
Collapse
Affiliation(s)
- Christina Claus
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Claudia Ferrara-Koller
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| |
Collapse
|
32
|
Müller D. Targeting Co-Stimulatory Receptors of the TNF Superfamily for Cancer Immunotherapy. BioDrugs 2023; 37:21-33. [PMID: 36571696 PMCID: PMC9836981 DOI: 10.1007/s40259-022-00573-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/27/2022]
Abstract
The clinical approval of immune checkpoint inhibitors is an important advancement in the field of cancer immunotherapy. However, the percentage of beneficiaries is still limited and it is becoming clear that combination therapies are required to further enhance the treatment efficacy. The potential of strategies targeting the immunoregulatory network by "hitting the gas pedal" as opposed to "blocking the brakes" is being recognized and intensively investigated. Hence, next to immune checkpoint inhibitors, agonists of co-stimulatory receptors of the tumor necrosis factor superfamily (TNF-SF) are emerging as promising options to expand the immunomodulatory toolbox. In this review the development of different categories of recombinant antibody and ligand-based agonists of 4-1BB, OX40, and GITR is summarized and discussed in the context of the challenges presented by the structural and mechanistical features of the TNFR-SF. An overview of current formats, trends, and clinical studies is provided.
Collapse
Affiliation(s)
- Dafne Müller
- grid.5719.a0000 0004 1936 9713Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
33
|
Wang Y, Zhang X, Xu C, Nan Y, Fan J, Zeng X, Kwon BS, Ju D. Targeting 4-1BB and PD-L1 induces potent and durable antitumor immunity in B-cell lymphoma. Front Immunol 2022; 13:1004475. [PMID: 36544785 PMCID: PMC9762552 DOI: 10.3389/fimmu.2022.1004475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Although PD-1/L1 mAb has demonstrated clinical benefits in certain cancer types, low response rate and resistance remain the main challenges for the application of these immune checkpoint inhibitors (ICIs). 4-1BB is a co-stimulator molecule expressed in T cells, which could enhance T cell proliferation and activation. Herein, the synergetic antitumor effect and underlying mechanism of 4-1BB agonist combined with PD-1/PD-L1 blockade were determined in B-cell lymphoma (BCL). Methods Subcutaneous transplantation BCL tumor models and metastasis models were established to evaluate the therapeutic effect of PD-L1 antibody and/or 4-1BB agonist in vivo. For the mechanistic study, RNA-seq was applied to analyze the tumor microenvironment and immune-related signal pathway after combination treatment. The level of IFN-γ, perforin, and granzyme B were determined by ELISA and Real-time PCR assays, while tumor-infiltrating T cells were measured by flow cytometry and immunohistochemical analysis. CD4/CD8 specific antibodies were employed to deplete the related T cells to investigate the role CD4+ and CD8+ T cells played in combination treatment. Results Our results showed that combining anti-PD-L1 ICI and 4-1BB agonists elicited regression of BCL and significantly extended the survival of mice compared to either monotherapy. Co-targeting PD-L1 and 4-1BB preferentially promoted intratumoral cytotoxic lymphocyte infiltration and remodeled their function. RNA-sequence analysis uncovered a series of up-regulated genes related to the activation and proliferation of cytotoxic T lymphocytes, further characterized by increased cytokines including IFN-γ, granzyme B, and perforin. Furthermore, depleting CD8+ T cells not CD4+ T cells totally abrogated the antitumor efficacy, indicating the crucial function of the CD8+ T cell subset in the combination therapy. Discussion In summary, our findings demonstrated that 4-1BB agonistic antibody intensified the antitumor immunity of anti-PD-1/PD-L1 ICI via promoting CD8+ T cell infiltration and activation, providing a novel therapeutic strategy to BCL.
Collapse
Affiliation(s)
- Yichen Wang
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Xuyao Zhang
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Caili Xu
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Yanyang Nan
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Jiajun Fan
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Xian Zeng
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| | - Byoung S. Kwon
- Eutilex Institute for Biomedical Research, Eutilex Co., Ltd, Seoul, South Korea
| | - Dianwen Ju
- School of Pharmacy and Minhang Hospital, Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China,Department of Biologics, Fudan Zhangjiang Institute, Shanghai, China,*Correspondence: Dianwen Ju,
| |
Collapse
|
34
|
Ge W, Dong Y, Deng Y, Chen L, Chen J, Liu M, Wu J, Wang W, Ma X. Potential biomarkers: Identifying powerful tumor specific T cells in adoptive cellular therapy. Front Immunol 2022; 13:1003626. [PMID: 36451828 PMCID: PMC9702804 DOI: 10.3389/fimmu.2022.1003626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/27/2022] [Indexed: 12/01/2023] Open
Abstract
Tumor-specific T cells (TSTs) are essential components for the success of personalized tumor-infiltrating lymphocyte (TIL)-based adoptive cellular therapy (ACT). Therefore, the selection of a common biomarker for screening TSTs in different tumor types, followed by ex vivo expansion to clinical number levels can generate the greatest therapeutic effect. However, studies on shared biomarkers for TSTs have not been realized yet. The present review summarizes the similarities and differences of a number of biomarkers for TSTs in several tumor types studied in the last 5 years, and the advantages of combining biomarkers. In addition, the review discusses the possible shortcomings of current biomarkers and highlights strategies to identify TSTs accurately using intercellular interactions. Finally, the development of TSTs in personalized TIL-based ACT for broader clinical applications is explored.
Collapse
Affiliation(s)
- Wu Ge
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuqian Dong
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yao Deng
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lujuan Chen
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Juan Chen
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Muqi Liu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianmin Wu
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Wang
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoqian Ma
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
35
|
Harkus U, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data. Semin Cancer Biol 2022; 86:799-815. [PMID: 35065242 DOI: 10.1016/j.semcancer.2022.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related deaths in the world, and for patients with advanced disease there are few therapeutic options available. The complex immunological microenvironment of HCC and the success of immunotherapy in several types of tumours, has raised the prospect of potential benefit for immune based therapies, such as immune checkpoint inhibitors (ICIs), in HCC. This has led to significant breakthrough research, numerous clinical trials and the rapid approval of multiple systemic drugs for HCC by regulatory bodies worldwide. Although some patients responded well to ICIs, many have failed to achieve significant benefit, while others showed unexpected and paradoxical deterioration. The aim of this review is to discuss the pathophysiology of HCC, the tumour microenvironment, key clinical trials evaluating ICIs in HCC, various resistance mechanisms to ICIs, and possible ways to overcome these impediments to improve patient outcomes.
Collapse
Affiliation(s)
- Uasim Harkus
- Townsville University Hospital, Townsville, Queensland 4811, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia
| | - Pranavan Palamuthusingam
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; Townsville University Hospital, Townsville, Queensland 4811, Australia; Mater Hospital, Townsville, Queensland 4811, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales 2145, Australia.
| |
Collapse
|
36
|
Sung PS, Lee IK, Roh PR, Kang MW, Ahn J, Yoon SK. Blood-based biomarkers for immune-based therapy in advanced HCC: Promising but a long way to go. Front Oncol 2022; 12:1028728. [PMID: 36387149 PMCID: PMC9659956 DOI: 10.3389/fonc.2022.1028728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 09/08/2024] Open
Abstract
The introduction of immune checkpoint inhibitors (ICIs) represents a key shift in the management strategy for patients with hepatocellular carcinoma (HCC). However, there is a paucity of predictive biomarkers that facilitate the identification of patients that would respond to ICI therapy. Although several researchers have attempted to resolve the issue, the data is insufficient to alter daily clinical practice. The use of minimally invasive procedures to obtain patient-derived specimen, such as using blood-based samples, is increasingly preferred. Circulating tumor DNA (ctDNA) can be isolated from the blood of cancer patients, and liquid biopsies can provide sufficient material to enable ongoing monitoring of HCC. This is particularly significant for patients for whom surgery is not indicated, including those with advanced HCC. In this review, we summarize the current state of understanding of blood-based biomarkers for ICI-based therapy in advanced HCC, which is promising despite there is still a long way to go.
Collapse
Affiliation(s)
- Pil Soo Sung
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Isaac Kise Lee
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Pu Reun Roh
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
| | - Min Woo Kang
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
| | - Jaegyoon Ahn
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Seung Kew Yoon
- Department of Biomedicine and Health Sciences, The Catholic University Liver Research Center, College of Medicine, POSTECH-Catholic Biomedical Engineering Institute, The Catholic University of Korea, Seoul, South Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
37
|
PD-L1-directed PlGF/VEGF blockade synergizes with chemotherapy by targeting CD141 + cancer-associated fibroblasts in pancreatic cancer. Nat Commun 2022; 13:6292. [PMID: 36272973 PMCID: PMC9588060 DOI: 10.1038/s41467-022-33991-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year overall survival rate. Patients with PDAC display limited benefits after undergoing chemotherapy or immunotherapy modalities. Herein, we reveal that chemotherapy upregulates placental growth factor (PlGF), which directly activates cancer-associated fibroblasts (CAFs) to induce fibrosis-associated collagen deposition in PDAC. Patients with poor prognosis have high PIGF/VEGF expression and an increased number of PIGF/VEGF receptor-expressing CAFs, associated with enhanced collagen deposition. We also develop a multi-paratopic VEGF decoy receptor (Ate-Grab) by fusing the single-chain Fv of atezolizumab (anti-PD-L1) to VEGF-Grab to target PD-L1-expressing CAFs. Ate-Grab exerts anti-tumor and anti-fibrotic effects in PDAC models via the PD-L1-directed PlGF/VEGF blockade. Furthermore, Ate-Grab synergizes with gemcitabine by relieving desmoplasia. Single-cell RNA sequencing identifies that a CD141+ CAF population is reduced upon Ate-Grab and gemcitabine combination treatment. Overall, our results elucidate the mechanism underlying chemotherapy-induced fibrosis in PDAC and highlight a combinatorial therapeutic strategy for desmoplastic cancers.
Collapse
|
38
|
Rakké YS, Campos Carrascosa L, van Beek AA, de Ruiter V, van Gemerden RS, Doukas M, Doornebosch PG, Vermaas M, ter Borg S, van der Harst E, Coene PPL, Kliffen M, Grünhagen DJ, Verhoef C, IJzermans JN, Kwekkeboom J, Sprengers D. GITR Ligation Improves Anti-PD1-Mediated Restoration of Human MMR-Proficient Colorectal Carcinoma Tumor-Derived T Cells. Cell Mol Gastroenterol Hepatol 2022; 15:77-97. [PMID: 36155259 PMCID: PMC9672455 DOI: 10.1016/j.jcmgh.2022.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS In contrast to mismatch repair deficient colorectal carcinoma (CRC), MMR proficient (pMMR) CRC does not respond to immune checkpoint blockade. We studied immune checkpoint stimulation via glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) on ex vivo functionality of human tumor-infiltrating lymphocytes (TIL) isolated from pMMR primary CRC and liver metastases (CRLM). METHODS Using lymphocytes from resected tumor, adjacent tissues, and peripheral blood mononuclear cells (PBMC) of 132 pMMR primary CRC or CRLM patients, we determined GITR expression and the in vitro T-cell agonistic activity of recombinant GITR ligation. RESULTS Here, we show that GITR was overexpressed on TIL when compared with other stimulatory immune checkpoints (4-1BB, OX40). Its expression was enhanced in TIL compared with PBMC and adjacent tissues. Among CD4+ TIL, GITR expression was primarily expressed by CD45RA- FoxP3hi activated regulatory T cells. Within CD8+ TIL, GITR was predominantly expressed on functionally exhausted and putative tumor-reactive CD103+ CD39+ TIL. Strikingly, recombinant GITRL reinvigorated ex vivo TIL responses by significantly enhancing CD4+ and CD8+ TIL numbers. Dual treatment with GITRL and nivolumab (anti-PD1) enhanced CD8+ TIL expansion compared with GITRL monotherapy. Moreover, GITRL/anti-PD1 dual therapy further improved anti-PD1-mediated reinvigoration of interferon gamma secretion by exhausted CD8 TIL from primary CRC. CONCLUSIONS GITR is overexpressed on CD4+ and CD8+ TIL from pMMR CRC and CRLM. Agonistic targeting of GITR enhances ex vivo human TIL functionality and may therefore be a promising approach for novel monotherapy or combined immunotherapies in primary pMRR CRC and CRLM.
Collapse
Affiliation(s)
- Yannick S. Rakké
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Lucia Campos Carrascosa
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Adriaan A. van Beek
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Valeska de Ruiter
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Rachelle S. van Gemerden
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | | | - Maarten Vermaas
- Department of Surgery, IJsselland Hospital, Capelle aan den IJssel, the Netherlands
| | | | | | | | - Mike Kliffen
- Department of Pathology, Maasstad Hospital, Rotterdam, the Netherlands
| | - Dirk J. Grünhagen
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Cornelis Verhoef
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jan N.M. IJzermans
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
39
|
Chen Y, Qiu X, Wu D, Lu X, Li G, Tang Y, Jia C, Xiong Z, Wang T. PROZ Associated with Sorafenib Sensitivity May Serve as a Potential Target to Enhance the Efficacy of Combined Immunotherapy for Hepatocellular Carcinoma. Genes (Basel) 2022; 13:genes13091535. [PMID: 36140703 PMCID: PMC9498926 DOI: 10.3390/genes13091535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/30/2022] Open
Abstract
Targeted combined immunotherapy has significantly improved the prognosis of patients with advanced hepatocellular carcinoma and has now become the primary treatment for advanced hepatocellular carcinoma. However, some patients still have poor efficacy or are resistant to treatment. The further exploration of molecular markers related to efficacy or finding molecular targets to increase efficacy is an urgent problem that needs to be resolved. In this research, we found that PROZ was a gene related to KDR expression that had significantly low expression in cancer tissue by analyzing the differential genes of cancer tissue and adjacent tissue and the intersection of KDR-related genes in hepatocellular carcinoma. The correlation analysis of clinical data showed that the low expression of PROZ was significantly correlated with the poor prognosis of hepatocellular carcinoma, and further studies found that PROZ was closely related to the expression of p-ERK and VEGFR2 in hepatocellular carcinoma. In addition, intracellular detection also showed that the expression of p-ERK increased and VEGFR2 expression decreased after PROZ interference, and PROZ downregulation with increased p-ERK and decreased VEGFR2 was also detected in sorafenib-resistant strains. At the same time, our analysis found that PROZ was negatively correlated with genes related to immunotherapy efficacy such as CD8A, CD274 and GZMA, and was also negatively correlated with T-cell infiltration in tumor tissue. Conclusion: PROZ is a gene related to the prognosis of hepatocellular carcinoma and it is closely related to the efficacy of sorafenib and immunotherapy. It may serve as a potential molecular target to improve the efficacy of targeted combined immunotherapy.
Collapse
Affiliation(s)
- Yinkui Chen
- Department of Medical Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Donghao Wu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xu Lu
- Department of Hepatic Surgery Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Guanghui Li
- Department of Hepatic Surgery Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yongsheng Tang
- Department of Hepatic Surgery Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Zhiyong Xiong
- Department of General Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Correspondence: (Z.X.); (T.W.); Tel.: +86-020-82179735 (Z.X.); +86-020-85252161 (T.W.)
| | - Tiantian Wang
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Correspondence: (Z.X.); (T.W.); Tel.: +86-020-82179735 (Z.X.); +86-020-85252161 (T.W.)
| |
Collapse
|
40
|
Chen J, Zhang D, Yuan Y. Anti-PD-1/PD-L1 immunotherapy in conversion treatment of locally advanced hepatocellular carcinoma. Clin Exp Med 2022:10.1007/s10238-022-00873-6. [PMID: 36018466 DOI: 10.1007/s10238-022-00873-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Curative surgery and locoregional therapy are radical therapies for patients with HCC. But more than 80% of HCC patients cannot be fitful for radical therapies because of local progression or distant metastasis at initial diagnosis. Among patients with unresectable locally advanced hepatocellular carcinoma (HCC), some patients can be converted to be technically resectable by conversion treatment and salvage surgery. For unresectable locally advanced hepatocellular, conversion treatment prior to salvage surgery with transcatheter arterial chemoembolization (TACE) and other locoregional therapies improve outcomes. PD-1/PD-L1 inhibitors as immune checkpoint inhibitor (ICI) therapy which show high antineoplastic activity in HCC patients by preclinical and clinical researches can also be a good choice for conversion therapy. PD-1/PD-L1 inhibitor combined with locoregional therapy plus antiangiogenic agents or not is most potential conversion therapy comparing to PD-1 inhibitor monotherapy and PD-1/PD-L1 inhibitor combined with antiangiogenic agents or CTLA-4 inhibitor. As more clinical evidence reported, PD-1/PD-L1 immunotherapy would be widely used in conversion treatment of locally advanced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiaqi Chen
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ding Zhang
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
41
|
Zhang W, Gong C, Peng X, Bi X, Sun Y, Zhou J, Wu F, Zeng H, Wang Y, Zhou H, Zhao H, Cai J, Zhou A. Serum Concentration of CD137 and Tumor Infiltration by M1 Macrophages Predict the Response to Sintilimab plus Bevacizumab Biosimilar in Advanced Hepatocellular Carcinoma Patients. Clin Cancer Res 2022; 28:3499-3508. [PMID: 35275208 PMCID: PMC9662860 DOI: 10.1158/1078-0432.ccr-21-3972] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/05/2022] [Accepted: 03/09/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE This study aimed to investigate the biomarkers of sintilimab (anti-PD-1) plus IBI305 (a bevacizumab biosimilar) in advanced hepatocellular carcinoma (HCC), as well as their safety and efficacy. PATIENTS AND METHODS A total of 50 patients with advanced HCC received sintilimab (200 mg) plus IBI305 (7.5 or 15 mg/kg), treated every 3 weeks in a phase Ib clinical study. We performed baseline serum cytokine analysis using bead-based multiplex immunoassay and multiplex immunofluorescence on tissue specimens to discover novel biomarkers of response to VEGF/PD-1 combination therapy in HCC. RESULTS The overall response rate was 34.0% (17/50). The median progression-free survival (PFS) and the median overall survival were 10.5 and 20.2 months, respectively. The incidence of grade 3 to 5 adverse events was lower in the 7.5 mg/kg (13.8%) than in the 15 mg/kg (28.6%) dose groups. Biomarker analysis showed that the serum CD137 concentration was significantly higher in patients with clinical benefit (CB) than in those without CB (median, 32.8 pg/mL vs. 19.8 pg/mL, P = 0.034). A markedly longer PFS was observed in patients with high CD137 concentrations compared with those with low concentrations (median, 14.2 months vs. 4.1 months, P = 0.001). The higher density of M1 macrophages (CD68+CD163-) in the stroma was also associated with higher efficacy (P = 0.033) and a longer PFS (P = 0.024). CONCLUSIONS Sintilimab plus IBI305 was well tolerated and was effective therapy for advanced HCC. Both serum concentrations of CD137 and tumor infiltration of M1 macrophages may serve as potential predictive biomarkers. See related commentary by Cappuyns and Llovet, p. 3405.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caifeng Gong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuenan Peng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Bi
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongkun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianguo Zhou
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiying Zeng
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Innovent Biologics, Suzhou, China
| | - Hui Zhou
- Innovent Biologics, Suzhou, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Corresponding Authors: Aiping Zhou, Department of Medical Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. E-mail: ; Jianqiang Cai, Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. E-mail: ; and Hong Zhao, Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. E-mail:
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Corresponding Authors: Aiping Zhou, Department of Medical Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. E-mail: ; Jianqiang Cai, Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. E-mail: ; and Hong Zhao, Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. E-mail:
| | - Aiping Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Corresponding Authors: Aiping Zhou, Department of Medical Oncology, National Cancer Center / National Clinical Research Center for Cancer / Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. E-mail: ; Jianqiang Cai, Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. E-mail: ; and Hong Zhao, Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. E-mail:
| |
Collapse
|
42
|
Barsch M, Salié H, Schlaak AE, Zhang Z, Hess M, Mayer LS, Tauber C, Otto-Mora P, Ohtani T, Nilsson T, Wischer L, Winkler F, Manne S, Rech A, Schmitt-Graeff A, Bronsert P, Hofmann M, Neumann-Haefelin C, Boettler T, Fichtner-Feigl S, van Boemmel F, Berg T, Rimassa L, Di Tommaso L, Saeed A, D'Alessio A, Pinato DJ, Bettinger D, Binder H, John Wherry E, Schultheiss M, Thimme R, Bengsch B. T-cell exhaustion and residency dynamics inform clinical outcomes in hepatocellular carcinoma. J Hepatol 2022; 77:397-409. [PMID: 35367533 DOI: 10.1016/j.jhep.2022.02.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Despite recent translation of immunotherapies into clinical practice, the immunobiology of hepatocellular carcinoma (HCC), in particular the role and clinical relevance of exhausted and liver-resident T cells remain unclear. We therefore dissected the landscape of exhausted and resident T cell responses in the peripheral blood and tumor microenvironment of patients with HCC. METHODS Lymphocytes were isolated from the blood, tumor and tumor-surrounding liver tissue of patients with HCC (n = 40, n = 10 treated with anti-PD-1 therapy). Phenotype, function and response to anti-PD-1 were analyzed by mass and flow cytometry ex vivo and in vitro, tissue residence was further assessed by immunohistochemistry and imaging mass cytometry. Gene signatures were analyzed in silico. RESULTS We identified significant enrichment of heterogeneous populations of exhausted CD8+ T cells (TEX) in the tumor microenvironment. Strong enrichment of severely exhausted CD8 T cells expressing multiple immune checkpoints in addition to PD-1 was linked to poor progression-free and overall survival. In contrast, PD-1 was also expressed on a subset of more functional and metabolically active CD103+ tissue-resident memory T cells (TRM) that expressed few additional immune checkpoints and were associated with better survival. TEX enrichment was independent of BCLC stage, alpha-fetoprotein levels or age as a variable for progression-free survival in our cohort. These findings were in line with in silico gene signature analysis of HCC tumor transcriptomes from The Cancer Genome Atlas. A higher baseline TRM/TEX ratio was associated with disease control in anti-PD-1-treated patients. CONCLUSION Our data provide information on the role of peripheral and intratumoral TEX-TRM dynamics in determining outcomes in patients with HCC. The dynamics between exhausted and liver-resident T cells have implications for immune-based diagnostics, rational patient selection and monitoring during HCC immunotherapies. LAY SUMMARY The role of the immune response in hepatocellular carcinoma (HCC) remains unclear. T cells can mediate protection against tumor cells but are frequently dysfunctional and exhausted in cancer. We found that patients with a predominance of exhausted CD8+ T cells (TEX) had poor survival compared to patients with a predominance of tissue-resident memory T cells (TRM). This correlated with the molecular profile, metabolic and functional status of these cell populations. The enrichment of TEX was independently associated with prognosis in addition to disease stage, age and tumor markers. A high TRM proportion was also associated with better outcomes following checkpoint therapy. Thus, these T-cell populations are novel biomarkers with relevance in HCC.
Collapse
Affiliation(s)
- Maryam Barsch
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Henrike Salié
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | | | - Zhen Zhang
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Moritz Hess
- University Medical Center Freiburg, Institute for Medical Biometry and Statistics (IMBI), Germany
| | - Lena Sophie Mayer
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Catrin Tauber
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Patricia Otto-Mora
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Takuya Ohtani
- University of Pennsylvania, Perelman School of Medicine, Institute for Immunology, USA
| | - Tobias Nilsson
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Lara Wischer
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Frances Winkler
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Sasikant Manne
- University of Pennsylvania, Perelman School of Medicine, Institute for Immunology, USA
| | - Andrew Rech
- University of Pennsylvania, Perelman School of Medicine, Institute for Immunology, USA
| | | | - Peter Bronsert
- University Medical Center Freiburg, Institute of Clinical Pathology, Germany
| | - Maike Hofmann
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | | | - Tobias Boettler
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Stefan Fichtner-Feigl
- University Medical Center Freiburg, Clinic for General and Visceral Surgery, Germany
| | - Florian van Boemmel
- Leipzig University Medical Center, Division of Hepatology, Dpt. of Medicine II, Germany
| | - Thomas Berg
- Leipzig University Medical Center, Division of Hepatology, Dpt. of Medicine II, Germany
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Medical Oncology and Hematology Unit, Rozzano (Milan), Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Pathology Unit IRCCS Humanitas Research Hospital Rozzano, Milan, Italy
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, Kansas University Cancer Center, Kansas City, Kansas, USA
| | - Antonio D'Alessio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Imperial College London, Faculty of Medicine, Department of Surgery & Cancer, UK
| | - David J Pinato
- Imperial College London, Faculty of Medicine, Department of Surgery & Cancer, UK; Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Dominik Bettinger
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Harald Binder
- University Medical Center Freiburg, Institute for Medical Biometry and Statistics (IMBI), Germany
| | - E John Wherry
- University of Pennsylvania, Perelman School of Medicine, Institute for Immunology, USA
| | - Michael Schultheiss
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Robert Thimme
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany
| | - Bertram Bengsch
- University Medical Center Freiburg, Clinic for Internal Medicine II, Germany; University of Freiburg, Signalling Research Centres BIOSS and CIBSS, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany.
| |
Collapse
|
43
|
Montanari NR, Ramírez R, Aggarwal A, van Buuren N, Doukas M, Moon C, Turner S, Diehl L, Li L, Debes JD, Feierbach B, Boonstra A. Multi-parametric analysis of human livers reveals variation in intrahepatic inflammation across phases of chronic hepatitis B infection. J Hepatol 2022; 77:332-343. [PMID: 35218813 DOI: 10.1016/j.jhep.2022.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Chronic HBV is clinically categorized into 4 phases by a combination of serum HBV DNA levels, HBeAg status and alanine aminotransferase (ALT): immunotolerant (IT), immune-active (IA), inactive carrier (IC) and HBeAg-negative hepatitis (ENEG). Immune and virological measurements in the blood have proven useful but are insufficient to explain the interrelation between the immune system and the virus since immune dynamics differ in the blood and liver. Furthermore, the inflammatory response in the liver and parenchymal cells cannot be fully captured in blood. METHODS Immunological composition and transcriptional profiles of core needle liver-biopsies in chronic HBV phases were compared to those of healthy controls by multiplex immunofluorescence and RNA-sequencing (n = 37 and 78, respectively) analyses. RESULTS Irrespective of the phase-specific serological profiles, increased immune-gene expression and frequency was observed in chronic HBV compared to healthy livers. Greater transcriptomic deregulation was seen in IA and ENEG (172 vs. 243 DEGs) than in IT and IC (13 vs. 35 DEGs) livers. Interferon-stimulated genes, immune-activation and exhaustion genes (ICOS, CTLA4, PDCD1) together with chemokine genes (CXCL10, CXCL9) were significantly induced in IA and ENEG livers. Moreover, distinct immune profiles associated with ALT elevation and a more accentuated immune-exhaustion profile (CTLA4, TOX, SLAMF6, FOXP3) were observed in ENEG, which set it apart from the IA phase (LGALS9, PDCD1). Interestingly, all HBV phases showed downregulation of metabolic pathways vs. healthy livers (fatty and bile acid metabolism). Finally, increased leukocyte infiltrate correlated with serum ALT, but not with HBV DNA or viral proteins. CONCLUSION Our comprehensive multi-parametric analysis of human livers revealed distinct inflammatory profiles and pronounced differences in intrahepatic gene profiles across all chronic HBV phases in comparison to healthy liver. LAY SUMMARY Immunological studies on chronic HBV remain largely restricted to assessment of peripheral responses due to the limited access to the site of infection, the liver. In this study, we comprehensively analyzed livers from a well-defined cohort of patients with chronic HBV and uninfected controls with state-of-the-art techniques, and evaluated the differences in gene expression profiles and inflammation characteristics across distinct disease phases in patients with chronic HBV.
Collapse
Affiliation(s)
- Noe Rico Montanari
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Michael Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | - Li Li
- Gilead Sciences, Foster City, CA, USA
| | - Jose D Debes
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Medicine, Division of Gastroenterology & Division of Infectious Diseases, University of Minnesota, Minneapolis, MN, USA
| | | | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
44
|
Lu Y, Ma S, Ding W, Sun P, Zhou Q, Duan Y, Sartorius K. Resident Immune Cells of the Liver in the Tumor Microenvironment. Front Oncol 2022; 12:931995. [PMID: 35965506 PMCID: PMC9365660 DOI: 10.3389/fonc.2022.931995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
The liver is a central immunomodulator that ensures a homeostatic balance between protection and immunotolerance. A hallmark of hepatocellular carcinoma (HCC) is the deregulation of this tightly controlled immunological network. Immune response in the liver involves a complex interplay between resident innate, innate, and adaptive immune cells. The immune response in the liver is modulated by its continuous exposure to toxic molecules and microorganisms that requires a degree of immune tolerance to protect normal tissue from damage. In HCC pathogenesis, immune cells must balance a dual role that includes the elimination of malignant cells, as well as the repair of damaged liver tissue to maintain homeostasis. Immune response in the innate and adaptive immune systems extends to the cross-talk and interaction involving immune-regulating non-hematopoietic cells, myeloid immune cells, and lymphoid immune cells. In this review, we discuss the different immune responses of resident immune cells in the tumor microenvironment. Current FDA-approved targeted therapies, including immunotherapy options, have produced modest results to date for the treatment of advanced HCC. Although immunotherapy therapy to date has demonstrated its potential efficacy, immune cell pathways need to be better understood. In this review article, we summarize the roles of specific resident immune cell subsets and their cross-talk subversion in HCC pathogenesis, with a view to identifying potential new biomarkers and therapy options.
Collapse
Affiliation(s)
- Yunjie Lu
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Shiying Ma
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Pengcheng Sun
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Qi Zhou
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| | - Yunfei Duan
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| | - Kurt Sartorius
- Hepatitis Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- University of Kwazulu-Natal Gastrointestinal Cancer Research Unit (UKZN/GICRC), Durban, South Africa
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| |
Collapse
|
45
|
Ji H, Zhou Z. A ‘Hybrid’ Radiotherapy Regimen Designed for Immunomodulation: Combining High-Dose Radiotherapy with Low-Dose Radiotherapy. Cancers (Basel) 2022; 14:cancers14143505. [PMID: 35884565 PMCID: PMC9319172 DOI: 10.3390/cancers14143505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Radiotherapy is an important cancer treatment. Aside from its direct killing effect, it also affects anti-tumor immunity. However, radiotherapy’s immune effect is not clear; it depends on the dose and fraction, cancer type, combined immunotherapy, and many other factors. Studies have focused on the optimal radiotherapy regimen to stimulate anti-tumor immunity, but conflicts exist, especially regarding the best radiation dose and fractions. Interestingly, high-dose radiotherapy and low-dose radiotherapy have complementary effects on stimulating anti-tumor immunity. Preclinical studies supporting this finding have accumulated, but gaps between theory and clinical practice still exist. This review summarizes the evidence supporting the use of this ‘hybrid’ radiotherapy approach to effectively stimulate anti-tumor immunity, explains the immune mechanisms of this combination, raises questions that must be addressed in clinical practice, and provides ideas for designing individualized treatment to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy. Abstract Radiotherapy (RT) affects anti-tumor immunity. However, the exact impact of RT on anti-tumor immune response differs among cancer types, RT dose and fractions, patients’ innate immunity, and many other factors. There are conflicting findings on the optimal radiation dose and fractions to stimulate effective anti-tumor immunity. High-dose radiotherapy (HDRT) acts in the same way as a double-edged sword in stimulating anti-tumor immunity, while low-dose radiotherapy (LDRT) seems to play a vital role in modulating the tumor immune microenvironment. Recent preclinical data suggest that a ‘hybrid’ radiotherapy regimen, which refers to combining HDRT with LDRT, can reap the advantages of both. Clinical data have also indicated a promising potential. However, there are still questions to be addressed in order to put this novel combination therapy into clinical practice. For example, the selection of treatment site, treatment volume, the sequencing of high-dose radiotherapy and low-dose radiotherapy, combined immunotherapy, and so on. This review summarizes the current evidence supporting the use of HDRT + LDRT, explains possible immune biology mechanisms of this ‘hybrid’ radiotherapy, raises questions to be considered when working out individualized treatment plans, and lists possible avenues to increase efficiency in stimulating anti-tumor immunity using high-dose plus low-dose radiotherapy.
Collapse
|
46
|
Shen Y, Li XL, Li YX, Shan ZG, Zhao YL, Cheng P, Zhao Z, Zhang JY, Chen W, Zhuang Y, Ma DY, Zou QM, Qiu Y, Peng LS. Distribution, phenotype, functional and clinical relevance of CD8 +CD103 + tissue-resident memory T cells in human gastric cancer. Cancer Immunol Immunother 2022; 71:1645-1654. [PMID: 34767045 PMCID: PMC10992218 DOI: 10.1007/s00262-021-03105-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
CD8+CD103+ tissue-resident memory T cells (TRMs) are involved in tumor immune response and linked to favorable clinical outcome in human cancer. However, the distribution, phenotype, functional properties and clinical relevance of these cells in gastric cancer (GC) remain elusive. Here, our data show that, in comparison to non-tumor tissues, the percentages of CD8+CD103+ TRMs in tumors are significantly decreased. Most tumor-infiltrating CD8+CD103+ TRMs are CD45RA-CCR7- effector-memory cells with higher PD-1 and 4-1BB expression than those from non-tumor tissues. Further, tumor-infiltrating CD8+CD103+ TRMs show impaired cytolytic capacity due to decreased granzyme B and perforin expression. Moreover, ex vivo PD-1 blockade could restore the cytolytic capacity of tumor-infiltrating CD8+CD103+ TRMs, and such anti-PD-1-mediated reinvigoration of CD8+CD103+ TRMs could be further enhanced by 4-1BB co-stimulation. Finally, lower levels of Tumor-infiltrating CD8+CD103+ TRMs are positively correlated with GC progression and poor patients' survival. Our data suggest that restoring CD8+CD103+ TRM function by combining PD-1 blockade and 4-1BB co-stimulation may be a promising strategy for treating GC.
Collapse
Affiliation(s)
- Yang Shen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Xiao-Long Li
- Department of General Surgery of Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yu-Xian Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zhi-Guo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yong-Liang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jin-Yu Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Weisan Chen
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, 3085, Australia
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Dai-Yuan Ma
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yuan Qiu
- Department of General Surgery of Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Liu-Sheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
47
|
Kamiya T, Ohtani N. The role of immune cells in the liver tumor microenvironment: an involvement of gut microbiota-derived factors. Int Immunol 2022; 34:467-474. [PMID: 35652367 DOI: 10.1093/intimm/dxac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
More than 500 species of microbiota reside in the human intestine and coexist with humans, their host. Gut microbial metabolites and components are absorbed from the intestine and influence cells in the liver, including hepatocytes and stromal cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, Kupffer cells, natural killer (NK) cells, NK T cells, and other immune cells. This gut-originated axis to the liver is called the "gut-liver axis", which underscores the importance of the link between the gut and the liver. In this review, we discuss the gut microbial components and metabolites that affect cells in the liver, particularly in association with immune cells, and the related responses. We also highlight the mechanisms underlying gut microbiota-mediated liver carcinogenesis and discuss cancer prevention, including the recently clarified modulation of immune checkpoint inhibitor efficacy by the gut microbiota.
Collapse
Affiliation(s)
- Tomonori Kamiya
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Naoko Ohtani
- Department of Pathophysiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
48
|
Jouinot A, Lippert J, Sibony M, Violon F, Jeanpierre L, De Murat D, Armignacco R, Septier A, Perlemoine K, Letourneur F, Izac B, Ragazzon B, Leroy K, Pasmant E, North MO, Gaujoux S, Dousset B, Groussin L, Libe R, Terris B, Fassnacht M, Ronchi CL, Bertherat J, Assie G. Transcriptome in paraffin samples for the diagnosis and prognosis of adrenocortical carcinoma. Eur J Endocrinol 2022; 186:607-617. [PMID: 35266879 PMCID: PMC9066577 DOI: 10.1530/eje-21-1228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
DESIGN Molecular classification is important for the diagnosis and prognosis of adrenocortical tumors (ACT). Transcriptome profiles separate adrenocortical adenomas 'C2' from carcinomas, and identify two groups of carcinomas 'C1A' and 'C1B', of poor and better prognosis respectively. However, many ACT cannot be profiled because of improper or absent freezing procedures, a mandatory requirement so far. The main aim was to determine transcriptome profiles on formalin-fixed paraffin-embedded (FFPE) samples, using the new 3'-end RNA-sequencing technology. A secondary aim was to demonstrate the ability of this technique to explore large FFPE archives, by focusing on the rare oncocytic ACT variants. METHODS We included 131 ACT: a training cohort from Cochin hospital and an independent validation cohort from Wuerzburg hospital. The 3' transcriptome was generated from FFPE samples using QuantSeq (Lexogen, Vienna, Austria) and NextSeq500 (Illumina, San Diego, CA, USA). RESULTS In the training cohort, unsupervised clustering identified three groups: 'C1A' aggressive carcinomas (n = 28, 29%), 'C1B' more indolent carcinomas (n = 28, 29%), and 'C2' adenomas (n = 39, 41%). The prognostic value of FFPE transcriptome was confirmed in the validation cohort (5-year OS: 26% in 'C1A' (n = 26) and 100% in 'C1B' (n = 10), P = 0.003). FFPE transcriptome was an independent prognostic factor in a multivariable model including tumor stage and Ki-67 (OS HR: 7.5, P = 0.01). Oncocytic ACT (n = 19) did not form any specific cluster. Oncocytic carcinomas (n = 6) and oncocytic ACT of uncertain malignant potential (n = 4) were all in 'C1B'. CONCLUSIONS The 3' RNA-sequencing represents a convenient solution for determining ACT molecular class from FFPE samples. This technique should facilitate routine use and large retrospective studies.
Collapse
Affiliation(s)
- Anne Jouinot
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
- Endocrinology, AP-HP Hôpital Cochin, Paris, France
- Institut Curie, INSERM U900, MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, Paris, France
| | - Juliane Lippert
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Mathilde Sibony
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
- Pathology, AP-HP Hôpital Cochin, Paris, France
| | - Florian Violon
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
- Pathology, AP-HP Hôpital Cochin, Paris, France
| | - Lindsay Jeanpierre
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
- Pathology, AP-HP Hôpital Cochin, Paris, France
| | - Daniel De Murat
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
| | - Roberta Armignacco
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
| | - Amandine Septier
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
| | - Karine Perlemoine
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
| | - Franck Letourneur
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
| | - Brigitte Izac
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
| | - Bruno Ragazzon
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
| | - Karen Leroy
- Genetics and Molecular Biology, AP-HP Hôpital Cochin, Paris, France
| | - Eric Pasmant
- Genetics and Molecular Biology, AP-HP Hôpital Cochin, Paris, France
| | | | - Sébastien Gaujoux
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
- Digestive and Endocrine Surgery, AP-HP Hôpital Cochin, Paris, France
| | - Bertrand Dousset
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
- Digestive and Endocrine Surgery, AP-HP Hôpital Cochin, Paris, France
| | - Lionel Groussin
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
- Endocrinology, AP-HP Hôpital Cochin, Paris, France
| | - Rossella Libe
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
- Endocrinology, AP-HP Hôpital Cochin, Paris, France
| | | | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
| | - Cristina L Ronchi
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Correspondence should be addressed to C L Ronchi or G Assié; or
| | - Jérôme Bertherat
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
- Endocrinology, AP-HP Hôpital Cochin, Paris, France
| | - Guillaume Assie
- Université de Paris, Institut Cochin, INSERM U-1016, CNRS UMR-8104, Paris, France
- Endocrinology, AP-HP Hôpital Cochin, Paris, France
- Correspondence should be addressed to C L Ronchi or G Assié; or
| |
Collapse
|
49
|
Zizzari IG, Di Filippo A, Botticelli A, Strigari L, Pernazza A, Rullo E, Pignataro MG, Ugolini A, Scirocchi F, Di Pietro FR, Rossi E, Gelibter A, Schinzari G, D'Amati G, Rughetti A, Marchetti P, Nuti M, Napoletano C. Circulating CD137+ T Cells Correlate with Improved Response to Anti-PD1 Immunotherapy in Patients with Cancer. Clin Cancer Res 2022; 28:1027-1037. [PMID: 34980602 PMCID: PMC9377756 DOI: 10.1158/1078-0432.ccr-21-2918] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/09/2021] [Accepted: 12/28/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE CD137 molecule is expressed by activated lymphocytes, and in patients with cancer identifies the tumor-reactive T cells. In solid tumors, high levels of circulating CD137+ T cells are associated with the clinical response and the disease-free status. Here, we examined the role of the CD137+ T cells in the improvement of patients' selection for immunotherapy treatment. EXPERIMENTAL DESIGN Peripheral blood mononuclear cells derived from 109 patients with metastatic cancer (66 patients for the identification cohort and 43 for the validation cohort) were analyzed for the expression of CD3, CD4, CD8, CD137, and PD1 molecules before the beginning of anti-PD1 therapy. Twenty healthy donors were used as control. The soluble form of CD137 (sCD137) was also analyzed. The CD137+ T cell subsets and the sCD137 were correlated with the clinicopathologic characteristics. The distribution of CD137+ T cells was also examined in different tumor settings. RESULTS The percentage of CD137+ T cells was higher in healthy donors and in those patients with a better clinical status (performance status = 0-1, n°metastasis≤2) and these high levels were ascribed to the CD8+CD137+ T cell population. The high frequency of CD137+ and CD8+CD137+ T cells resulted as a prognostic factor of overall survival (OS) and progression-free survival (PFS), respectively, and were confirmed in the validation cohort. High levels of CD3+CD137+PD1+ lymphocytes were associated with a low number of metastasis and longer survival. Instead, the high concentration of the immunosuppressive sCD137 in the serum is associated with a lower PFS and OS. In tumor bed, patients with a complete response showed a high percentage of CD137+ and CD8+ T cells. CONCLUSIONS We propose the CD137+ T subset as an immune biomarker to define the wellness status of the immune system for successful anticancer immunotherapy.
Collapse
Affiliation(s)
- Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Alessandra Di Filippo
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Botticelli
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy
| | - Lidia Strigari
- Medical Physics Unit, “S. Orsola-Malpighi” Hospital, Bologna, Italy
| | - Angelina Pernazza
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Rome, Italy
| | - Emma Rullo
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Rome, Italy
| | - Maria Gemma Pignataro
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Rome, Italy
| | - Alessio Ugolini
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy.,Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Fabio Scirocchi
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesca Romana Di Pietro
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alain Gelibter
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, “Sapienza” University of Rome, Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Medical Oncology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia D'Amati
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Paolo Marchetti
- Oncology Unit, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.,Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy.,AOU Policlinico Umberto I, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapies, Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy.,Corresponding Author: Chiara Napoletano, Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, Rome 00161, Italy. Phone: 3906-4997-3025; E-mail:
| |
Collapse
|
50
|
Jia C, Zhang F, Lin J, Feng L, Wang T, Feng Y, Yuan F, Mai Y, Zeng X, Zhang Q. Black phosphorus-Au-thiosugar nanosheets mediated photothermal induced anti-tumor effect enhancement by promoting infiltration of NK cells in hepatocellular carcinoma. J Nanobiotechnology 2022; 20:90. [PMID: 35189896 PMCID: PMC8862374 DOI: 10.1186/s12951-022-01286-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/30/2022] [Indexed: 01/14/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a heterogeneous cancer required combination therapy, such as photothermal therapy and chemotherapy. In recent years, cancer immunotherapies are rapidly evolving and are some of the most promising avenues to approach malignancies. Thus, the combination of the traditional therapies and immunotherapy in one platform may improve the efficacy for HCC treatment. Results In this work, we have prepared a black phosphorus (BP)-Au-thiosugar nanosheets (BATNS), in which Au-thiosugar coating and functionalization improved the stability of both black phosphorus nanosheets (BPNS) and gold ions in different simulated physiological environments. The compression of the BATNS band gap can convert more photon energy to heat generation compared with BPNS, resulting in higher photothermal conversion efficiency. The in vitro and in vivo results also revealed a stronger reduction on the hepatocellular carcinoma of mice and prolonged survival of disease models compared with BPNS. More importantly, BATNS showed an additional immune effect by increasing local NK cell infiltration but not T cell on the liver cancer treatment, and this immune effect was caused by the thermal effect of BATNS photothermal treatment. Conclusions The novel BATNS could improve the stability of BPNS and simultaneously combine the cancer thermotherapy and immunotherapy leaded by local NK cell infiltration, resulting in a better therapeutic efficacy on hepatocellular carcinoma. This work also provided a new path to design BP-based materials for biomedical applications. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01286-z.
Collapse
Affiliation(s)
- Changchang Jia
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Fan Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Jiamei Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China
| | - Liwen Feng
- Boji Medical Biotechnological Co. Ltd., Boji Pharmaceutical Research Center, Boji Medical Building, No. 62 Nanxiang First Road, Science City, Huangpu District, Guangzhou, 510000, China
| | - Tiantian Wang
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Feng Yuan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, Guangdong, China.
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|