Observational Study
Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Gastrointest Endosc. Oct 16, 2020; 12(10): 378-387
Published online Oct 16, 2020. doi: 10.4253/wjge.v12.i10.378
Predictor of respiratory disturbances during gastric endoscopic submucosal dissection under deep sedation
Mizuho Aikawa, Masaya Uesato, Ryuma Urahama, Koichi Hayano, Reiko Kunii, Yohei Kawasaki, Shiroh Isono, Hisahiro Matsubara
Mizuho Aikawa, Masaya Uesato, Ryuma Urahama, Koichi Hayano, Hisahiro Matsubara, Department of Frontier Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
Reiko Kunii, Staff of Clinical Laboratory, Seirei Sakura Citizen Hospital, Chiba 285-8765, Japan
Yohei Kawasaki, Biostatistics Section, Clinical Research Center, Chiba University Hospital, Chiba 260-8677, Japan
Shiroh Isono, Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
Author contributions: Uesato M aided in the conception of our study; Aikawa M and Uesato M participated in the drafting of the study design and writing of the article; Aikawa M, Uesato M, Urahama R, and Hayano K participated in the diagnosis and treatment; Aikawa M and Kunii R were involved with data acquisition; Aikawa M, Uesato M, Kawasaki Y, and Isono S analyzed and interpreted the data; All authors discussed the results of the article and contributed to final approval.
Supported by Japan Society for the Promotion of Science KAKENHI, No. 15K09056.
Institutional review board statement: This study was approved by the institutional Ethics Committee of Graduate School of Medicine, Chiba University, Chiba, Japan, No. 1902-2014.
Informed consent statement: The patients participating in this study gave written informed consent authorizing the use and disclosure of his protected health information.
Conflict-of-interest statement: All authors declare no conflicts of interest for this article.
Data sharing statement: No additional data are available.
STROBE statement: The authors have read the STROBE Statement-checklist of items, and the manuscript was prepared and revised according to the STROBE Statement-checklist of items.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Masaya Uesato, MD, PhD, Assistant Professor, Doctor, Surgeon, Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan. uesato@faculty.chiba-u.jp
Received: April 17, 2020
Peer-review started: April 17, 2020
First decision: June 8, 2020
Revised: June 18, 2020
Accepted: September 8, 2020
Article in press: September 8, 2020
Published online: October 16, 2020
Processing time: 179 Days and 22.4 Hours
Abstract
BACKGROUND

Sedation is commonly performed for the endoscopic submucosal dissection (ESD) of early gastric cancer. Severe hypoxemia occasionally occurs due to the respiratory depression during sedation.

AIM

To establish predictive models for respiratory depression during sedation for ESD.

METHODS

Thirty-five adult patients undergoing sedation using propofol and pentazocine for gastric ESDs participated in this prospective observational study. Preoperatively, a portable sleep monitor and STOP questionnaires, which are the established screening tools for sleep apnea syndrome, were utilized. Respiration during sedation was assessed by a standard polysomnography technique including the pulse oximeter, nasal pressure sensor, nasal thermistor sensor, and chest and abdominal respiratory motion sensors. The apnea-hypopnea index (AHI) was obtained using a preoperative portable sleep monitor and polysomnography during ESD. A predictive model for the AHI during sedation was developed using either the preoperative AHI or STOP questionnaire score.

RESULTS

All ESDs were completed successfully and without complications. Seventeen patients (49%) had a preoperative AHI greater than 5/h. The intraoperative AHI was significantly greater than the preoperative AHI (12.8 ± 7.6 events/h vs 9.35 ± 11.0 events/h, P = 0.049). Among the potential predictive variables, age, body mass index, STOP questionnaire score, and preoperative AHI were significantly correlated with AHI during sedation. Multiple linear regression analysis determined either STOP questionnaire score or preoperative AHI as independent predictors for intraoperative AHI ≥ 30/h (area under the curve [AUC]: 0.707 and 0.833, respectively) and AHI between 15 and 30/h (AUC: 0.761 and 0.778, respectively).

CONCLUSION

The cost-effective STOP questionnaire shows performance for predicting abnormal breathing during sedation for ESD that was equivalent to that of preoperative portable sleep monitoring.

Keywords: Deep sedation; Respiratory depression; Polysomnography; Endoscopic submucosal dissection; Sleep apnea syndrome; STOP questionnaire

Core Tip: Risk factors for sedation during endoscopic submucosal dissection (ESD) have not been systematically explored. Our study demonstrated that the preoperative portable sleep monitor and STOP questionnaire scores accurately predict abnormal breathing during sedation and the cost-effective questionnaire can be clinically used for risk stratification of respiratory depression during ESD, leading to a safe ESD procedure.