Nemes K, Åberg F, Gylling H, Isoniemi H. Cholesterol metabolism in cholestatic liver disease and liver transplantation: From molecular mechanisms to clinical implications. World J Hepatol 2016; 8(22): 924-932 [PMID: 27574546 DOI: 10.4254/wjh.v8.i22.924]
Corresponding Author of This Article
Katriina Nemes, MD, PhD, University of Helsinki and Helsinki University Central Hospital, Transplantation and Liver Surgery Clinic, Meilahti Hospital, P.O. BOX 340, FI-00029 HUS, Finland. katriina.nemes@outlook.com
Research Domain of This Article
Gastroenterology & Hepatology
Article-Type of This Article
Minireviews
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Hepatol. Aug 8, 2016; 8(22): 924-932 Published online Aug 8, 2016. doi: 10.4254/wjh.v8.i22.924
Cholesterol metabolism in cholestatic liver disease and liver transplantation: From molecular mechanisms to clinical implications
Katriina Nemes, Fredrik Åberg, Helena Gylling, Helena Isoniemi
Katriina Nemes, Fredrik Åberg, Helena Isoniemi, University of Helsinki and Helsinki University Central Hospital, Transplantation and Liver Surgery Clinic, Meilahti Hospital, P.O. BOX 340, FI-00029 HUS, Finland
Helena Gylling, University of Helsinki and Helsinki University Central Hospital, Internal Medicine, Biomedicum Helsinki C 4 22, P.O. BOX 700, FI-00029 HUS, Finland
Author contributions: Nemes K wrote the first draft; Åberg F made critical revisions and constructed the figures; Gylling H and Isoniemi H further revised the manuscript; all authors have approved the final version of the manuscript and its submission.
Conflict-of-interest statement: The authors declare no conflict of interests for this article.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Correspondence to: Katriina Nemes, MD, PhD, University of Helsinki and Helsinki University Central Hospital, Transplantation and Liver Surgery Clinic, Meilahti Hospital, P.O. BOX 340, FI-00029 HUS, Finland. katriina.nemes@outlook.com
Telephone: +358-40-5002151 Fax: +358-9-174975
Received: March 31, 2016 Peer-review started: April 6, 2016 First decision: May 17, 2016 Revised: June 7, 2016 Accepted: July 11, 2016 Article in press: July 13, 2016 Published online: August 8, 2016 Processing time: 124 Days and 11.6 Hours
Core Tip
Core tip: The liver plays key roles in cholesterol metabolism. Cholestatic liver disease leads to alterations of cholesterol metabolism: Cholesterol homeostasis is disturbed and cholesterol synthesis and especially cholesterol absorption are reduced, and lipoprotein X may develop. The latter can interfere with cardiovascular risk assessment. Apolipoprotein B-100 measurement may be useful in such cases. Cholesterol metabolism in cholestasis could be better described using cholesterol precursor sterols, diet-derived plant sterols, and cholestanol (the liver-synthesized derivate of cholesterol). Accurate lipid profile evaluation is particularly important after liver transplantation, when both atherogenic and non-atherogenic hypercholesterolemia may co-exist.