Basic Study
Copyright ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Hepatol. Feb 27, 2022; 14(2): 386-399
Published online Feb 27, 2022. doi: 10.4254/wjh.v14.i2.386
Development of the nervous system in mouse liver
Naoto Koike, Tomomi Tadokoro, Yasuharu Ueno, Satoshi Okamoto, Tatsuya Kobayashi, Soichiro Murata, Hideki Taniguchi
Naoto Koike, Department of Surgery, Seirei Sakura Citizen Hospital, Sakura 285-8765, Chiba, Japan
Naoto Koike, Tomomi Tadokoro, Yasuharu Ueno, Satoshi Okamoto, Tatsuya Kobayashi, Soichiro Murata, Hideki Taniguchi, Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
Yasuharu Ueno, Hideki Taniguchi, Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
Author contributions: Koike N and Taniguchi H designed and coordinated the study; Koike N, Kobayashi T and Okamoto S performed immunohistochemical study and analyzed data; Tadokoro T and Murata S performed animal experiments; Ueno Y performed genetic analysis; Koike N wrote the manuscript; all authors approved the final version of the article.
Supported by Grant-in-Aid for scientific research (B) from the Ministry of Education, Culture, Sports and Science and Technology of Japan, No. 18H02874 and No. 21H02991.
Institutional animal care and use committee statement: The mice were bred and maintained according to the Yokohama City University institutional guidelines for the use of laboratory animals. All experimental procedures were approved by the institutional review board of the Animal Research Center, Yokohama City University School of Medicine (No. 075).
Conflict-of-interest statement: All authors declare no conflicts of interest.
Data sharing statement: No additional data are available.
ARRIVE guidelines statement: The authors have read the ARRIVE guidelines, and the manuscript was prepared and revised according to the ARRIVE guidelines.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: Naoto Koike, MD, PhD, Chief Doctor, Department of Surgery, Seirei Sakura Citizen Hospital, 2-36-2 Ebaradai, Sakura 285-8765, Chiba, Japan. naotk@sis.seirei.or.jp
Received: July 31, 2021
Peer-review started: July 31, 2021
First decision: September 29, 2021
Revised: October 12, 2021
Accepted: January 19, 2022
Article in press: January 19, 2022
Published online: February 27, 2022
Processing time: 206 Days and 7.8 Hours
Core Tip

Core Tip: The portal tract (PT) consists of branches of the hepatic artery (HA), portal vein, intrahepatic bile ducts (IHBD), and autonomic nerves. This study evaluated the mouse hepatic nervous system development using immunohistochemistry. Hepatic nerve fibers (NFs) first emerge at the hepatic hilus just before birth and extend toward the periphery with IHBD in the PT after birth. The hepatic NFs associated more frequently with the HA than the IHBD in the PT after birth. The hepatic NFs may play important roles in the morphogenesis and stabilization of the PT during development of the liver.