Observational Study
Copyright ©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Hepatol. Apr 27, 2020; 12(4): 149-159
Published online Apr 27, 2020. doi: 10.4254/wjh.v12.i4.149
Comparison of four non-alcoholic fatty liver disease detection scores in a Caucasian population
Lars Lind, Lars Johansson, Håkan Ahlström, Jan W Eriksson, Anders Larsson, Ulf Risérus, Joel Kullberg, Jan Oscarsson
Lars Lind, Jan W Eriksson, Anders Larsson, Department of Medical Sciences, Uppsala University, Uppsala 75185, Sweden
Lars Johansson, Håkan Ahlström, Joel Kullberg, Antaros Medical AB, BioVenture Hub, Mölndal 43153, Sweden
Håkan Ahlström, Joel Kullberg, Department of Surgical Sciences, Uppsala University, Uppsala 75185, Sweden
Ulf Risérus, Department of Public Health and Caring Sciences Clinical Nutrition and Metabolism, Uppsala University, Uppsala 75122, Sweden
Jan Oscarsson, Global Medicines Development, AstraZeneca, MöIndal 43150, Sweden
Author contributions: Lind L, Johansson L, Ahlström H, Eriksson JW, Larsson A, Risérus U, Kullberg J, and Oscarsson J contributed to the concept, design, and conduct of the study; All authors have read and approved the final manuscript.
Institutional review board statement: The study was approved by the Ethics Committee of Uppsala University (D5881C00007/EFFECT I and D5883C00004/EFFECT II).
Informed consent statement: All the participants gave their written informed consent.
Conflict-of-interest statement: Dr. Lind, Dr. Larsson, and Dr. Risérus declare no conflicts. Dr. Johansson, Dr. Kullberg and Dr. Ahlström are cofounders, co-owners, and part-time employees of Antaros Medical AB, BioVenture Hub, Mölndal, Sweden; Dr. Eriksson has received consultancy fees for planning of this study and received research grants or honoraria from AstraZeneca, Bristol-Myers Squibb, Merck Sharp and Dohme, Novo Nordisk, and Sanofi; Dr. Oscarsson is an employee of AstraZeneca.
Data sharing statement: Data underlying the findings described in this manuscript may be obtained in accordance with AstraZeneca’s data sharing policy described at https://astrazenecagrouptrials.pharmacm.com/ST/Submission/Disclosure.
STROBE statement: The authors have read the STROBE Statement-checklist of items, and the manuscript was prepared and revised according to the STROBE Statement-checklist of items.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: Lars Lind, MD, PhD, Professor, Department of Medical Sciences, Uppsala University, Akademiska Sjukhuset, Entrance 40, 5th Floor, Uppsala 75185, Sweden. lars.lind@medsci.uu.se
Received: December 20, 2019
Peer-review started: December 20, 2019
First decision: January 6, 2020
Revised: March 16, 2020
Accepted: March 22, 2020
Article in press: March 22, 2020
Published online: April 27, 2020
Core Tip

Core tip: Several non-invasive indices based on routinely available biochemical and physical parameters have been developed for the detection of non-alcoholic fatty liver (NAFLD) disease. However, data comparing the efficacy of these indices within a population-based sample are lacking. Here we compared four non-invasive indices, namely, fatty liver index, lipid accumulation product, hepatic steatosis index, and liver fat score, in a population-based (Prospective investigation of obesity, energy and metabolism study) sample and a high-risk (EFFECT studies) sample. Our study demonstrated differences in NAFLD detection between the scores in the two samples. Of the four evaluated scores, fatty liver index was preferable in the population-based sample (NAFLD prevalence, 23%), whereas liver fat score performed best in the high-risk sample (NAFLD prevalence, 73%).