Basic Study
Copyright ©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Hepatol. Feb 27, 2021; 13(2): 187-217
Published online Feb 27, 2021. doi: 10.4254/wjh.v13.i2.187
Adult human liver slice cultures: Modelling of liver fibrosis and evaluation of new anti-fibrotic drugs
Daria Kartasheva-Ebertz, Jesintha Gaston, Loriane Lair-Mehiri, Pierre-Philippe Massault, Olivier Scatton, Jean-Christophe Vaillant, Vladimir Alexei Morozov, Stanislas Pol, Sylvie Lagaye
Daria Kartasheva-Ebertz, Jesintha Gaston, Loriane Lair-Mehiri, Stanislas Pol, Sylvie Lagaye, Institut Pasteur, Immunobiologie des Cellules Dendritiques, INSERM U1223, Paris 75015, France
Daria Kartasheva-Ebertz, Jesintha Gaston, Loriane Lair-Mehiri, BioSPC, Université de Paris, Paris 75005, France
Pierre-Philippe Massault, Service de Chirurgie digestive, Hépato-biliaire et Endocrinienne, AP-HP, Groupe Hospitalier Cochin, Paris 75014, France
Olivier Scatton, Jean-Christophe Vaillant, Service de Chirurgie digestive et Hépato bilio pancréatique, AP-HP, Groupe Hospitalier La Pitié-Salpétrière, Medecine Sorbonne Université, Paris 75013, France
Vladimir Alexei Morozov, Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
Stanislas Pol, Département d'Hépatologie, AP-HP, Groupe Hospitalier Cochin, Université de Paris, Paris 75014, France
Author contributions: Kartasheva-Ebertz D, Gaston J, Lair-Mehiri L, Morozov VA, Pol S, and Lagaye S were responsible for the overall study design; Massault PP, Scatton O, Vaillant JC, and Pol S selected and contributed patients’ samples; Kartasheva-Ebertz D, Gaston J, Lair-Mehiri L, and Lagaye S performed experiments; Kartasheva-Ebertz D, Morozov VA, Pol S, and Lagaye S analyzed and interpreted the data; Kartasheva-Ebertz D, Morozov VA, Pol S, and Lagaye S contributed to the writing of the manuscript, discussed and refined the manuscript.
Supported by the Institut National de la Santé et de la Recherche Médicale (INSERM, France) and by Institut Pasteur (Paris, France); Daria Kartasheva-Ebertz received a PhD Fellowship from Assistance Publique-Hôpitaux de Paris (AP-HP, France).
Institutional review board statement: An institutional review board statement is not required for manuscript submission in our Institution.
Conflict-of-interest statement: No conflict of interest to declare indicated in the manuscript.
Data sharing statement: No data sharing.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See:
Corresponding author: Sylvie Lagaye, DSc, PhD, Senior Scientist, Institut Pasteur, Immunobiologie des Cellules Dendritiques, INSERM U1223, 25-28 rue du Dr Roux, Paris 75015, France.
Received: August 27, 2020
Peer-review started: August 26, 2020
First decision: October 21, 2020
Revised: November 4, 2020
Accepted: December 30, 2020
Article in press: December 30, 2020
Published online: February 27, 2021
Research background

Liver fibrosis is frequently associated with viral infection [Hepatitis C virus (HCV) and Hepatitis B virus] infection, chronic inflammation, and excessive alcohol consumption. Despite effective antiviral treatment, morbidity and hepatitis-related mortalities are still increasing. Moreover, the number of non-viral liver diseases such as nonalcoholic steatohepatitis and alcoholic liver disease is steadily growing.

Research motivation

In previous studies, we developed a three dimensional (3D) ex vivo model of HCV replication using human liver slice cultures that were followed for 10 days to evaluate a new antiviral drug.

Research objectives

We aimed to establish a 3D ex vivo liver slice model viable in vitro for 21 days allowing us to examine human liver fibrogenesis by fibrosis inducers and anti-fibrotic therapies.

Research methods

The adult human liver tissue samples from twenty patients were collected after liver resection, and divided into three groups according to their METAVIR score (F): Non-fibrotic F0-F1, obtained during surgery for colorectal cancer liver metastases or fibrotic ranging from F2 to F4. HCV infection, alcohol (ethanol stimulation), and steatosis (palmitate stimulation) were examined in non-fibrotic F0-F1 human liver slices (HLS) compared to fibrotic (F2 to F4) liver slices (FLS) infected (or not) with HCV [Con1/C3 (genotype1b)] (INF). HLS of 350 µm (2.7 × 106 cells per slice) were cultivated for up to 21 days. At day 0, either ursodeoxycholic acid (only choleretic and hepatoprotective properties) and/or α-tocopherol (Toco, anti-oxidant properties which could reduce fibrosis progression) were added to standard of care concentrations on HLS and FLS. The following fibrosis markers expression were assayed in HLS, in FLS and in INF FLS, [tumor growth factor-beta (TGF-β1), Hsp47, Alpha smooth muscle actin, Procol1A1, Matrix metalloproteinases 2, 9 (MMP-2, 9), Vascular endothelial growth factor] and checked by real-time reverse transcription-quantitative polymerase chain reaction and the triglyceride production by enzyme-linked immunosorbent assay assays.

Research results

Here, for the first time, human LS cultures (stages F0-F4) were successfully maintained and evaluated for 21 days allowing to explore molecular fibrogenesis in more detail including the role of important factors such as HCV infection, ethanol (EtOH), or steatosis, three of the main causes of liver injury in clinical practice. In addition, it was demonstrated that LS cultures are efficient instruments to study anti-fibrotic drugs and their combination. We obtained real-time reverse transcription-quantitative polymerase chain reaction analyses of the biomarkers (TGF-β1, procol1A1, MMP-2, MMP-9, Alpha smooth muscle actin, HSP47, and Vascular Endothelial Growth Factor) involved in molecular fibrogenesis, and estimation of anti-fibrotic drugs potency, in both non-fibrotic (F0-F1) and fibrotic livers samples (F2-F3, F4). Expression of the fibrosis biomarkers and the progression to steatosis (estimated by triglyceride production) increased with the addition of HCV and /or EtOH or palmitate. We observed a significant decrease in both of the expression of TGF-β1, and procollagen1A1 as well as in the production of triglycerides observed in a combined anti-fibrotic treatment applied to the F2-F4 LS cultures infected with HCV.

Research conclusions

The 3D ex vivo LS model provides hepatocyte-specific gene expression for 21 days, and effectively reproduces liver fibrogenesis related to HCV infection, EtOH, or lipids exposure, thus, mimicking human viral, alcoholic, and nonalcoholic steatohepatitis liver diseases. Our study is the proof of concept that this relatively easy model can be used to study human liver fibrogenesis of different origins and evaluate the potency of new anti-fibrotic therapies that are currently under development. In particular, this system might estimate unpredictable side effects when testing certain drug combinations.

Research perspectives

Using the ex vivo model of human liver slice culture, the perspectives would be to evaluate the potency of new anti-fibrotic therapies alone or in combination and to study the immune components of liver disease.