Published online Oct 27, 2021. doi: 10.4254/wjh.v13.i10.1208
Peer-review started: March 7, 2021
First decision: April 6, 2021
Revised: April 18, 2021
Accepted: September 14, 2021
Article in press: September 14, 2021
Published online: October 27, 2021
Processing time: 228 Days and 20.2 Hours
Macrovesicular Steatosis (MS) is an independent risk factor for adverse post-liver transplant (LT) outcomes. The degree of MS is intimately related to the viability of the liver graft, which in turn is crucial to the success of the operation. An ideal liver graft should have no MS and most centres would find it unacceptable to use a donor liver with severe MS for LT. While a formal liver biopsy is the gold-standard diagnostic test for MS, given the logistical and time constraints it is not universally feasible. Other tests like a frozen section biopsy are plagued by issues of fallibility with reporting and sampling bias making them inferior to a liver biopsy. Hence, the development of an accurate, non-invasive, easy-to-use, handheld, real-time device for quantification of MS would fill this lacuna in the deceased donor selection process. We present the hypothesis, design and proof-of-concept of a study, which aims to standardise and determine the feasibility and accuracy of a novel handheld device applying the principle of diffuse reflectance spectroscopy for real-time quantification of MS.
Core Tip: The degree of macrovesicular steatosis (MS) is intimately related to the viability of the liver graft, which in turn is crucial to the success of the liver transplant operation. The development of an accurate, non-invasive, easy-to-use, handheld, real-time device for quantification of MS would fill a lacuna in the deceased donor selection process. We present the hypothesis, design and proof-of-concept study for a novel handheld device for real-time quantification of MS.