Published online Dec 27, 2020. doi: 10.4254/wjh.v12.i12.1276
Peer-review started: July 28, 2020
First decision: August 22, 2020
Revised: September 7, 2020
Accepted: November 5, 2020
Article in press: November 5, 2020
Published online: December 27, 2020
Processing time: 142 Days and 17 Hours
Malnutrition in cirrhotic patients is correlated with mortality and a better response to liver transplantation. However, recovery of the nutritional status in these patients is a challenge due to the difficulty in establishing a reliable nutritional diagnosis. The bioelectrical impedance vector analysis (BIVA) method appears as a feasible tool in clinical practice to define the physiological state of cirrhotic patients by assessing hydration and body cellularity.
To evaluate body composition in cirrhotic patients using BIVA.
This retrospective cross-sectional study was carried out by following cirrhotic outpatients at a hospital in Porto Alegre, Brazil. A tetrapolar bioelectrical impedance analysis device was used to evaluate cellularity and hydration and to perform the BIVA. The BIVA graphic was elaborated by software and for statistical analysis a significance level of 5% (P ≤ 0.05) was considered.
One hundred and ninety patients, 61.1% males, with a mean age of 56.6 ± 11.0 years, were evaluated. Of these, 56.3% had Child-Turcotte-Pugh (CTP) A score, and the prevalent etiology was hepatitis C virus (47.4%). The patients were classified according to cellularity and hydration by the quadrants and ellipses of the BIVA method, quadrant 1 (47.9%); quadrant 2 (18.9%); quadrant 3 (14.2%); and quadrant 4 (18.9%). Those classified in quadrant 1 and 2 had a higher phase angle compared to those in quadrants 3 and 4 (P < 0.001). Quadrant 2 patients had a lower average age than the other groups. The association with CTP score showed that patients in quadrant 2 had a higher proportion of CTP A, and those in quadrant 4 had a higher proportion of CTP C (P < 0.052).
The BIVA method allows identification of the cellularity and hydration status of cirrhotic patients, and its association with clinical factors determines the disease severity, age and prognostic index.
Core Tip: Using the bioelectrical impedance vector analysis method, it is feasible in clinical practice to identify hydration and cellularity status in patients with liver cirrhosis, regardless of their etiology. This tool allows health professionals to establish an effective treatment for these patients with the objectives of clinical improvement, a better quality of life and better response to orthotopic liver transplantation.