Desai CS, Gerber DA. Concise review of machine perfusion in liver transplantation. World J Hepatol 2020; 12(1): 6-9 [PMID: 31984116 DOI: 10.4254/wjh.v12.i1.6]
Corresponding Author of This Article
David A Gerber, MD, Professor, Department of Surgery, University of North Carolina at Chapel Hill, CB#7211, 4025 Burnett-Womack Building, Chapel Hill, NC 27599, United States. david_gerber@med.unc.edu
Research Domain of This Article
Gastroenterology & Hepatology
Article-Type of This Article
Minireviews
Open-Access Policy of This Article
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
World J Hepatol. Jan 27, 2020; 12(1): 6-9 Published online Jan 27, 2020. doi: 10.4254/wjh.v12.i1.6
Concise review of machine perfusion in liver transplantation
Chirag S Desai, David A Gerber
Chirag S Desai, David A Gerber, Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
David A Gerber, Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
Author contributions: Gerber DA performed the review and wrote the paper; Desai CS wrote the paper.
Conflict-of-interest statement: The authors declare that they have no conflicts of interest.
Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Corresponding author: David A Gerber, MD, Professor, Department of Surgery, University of North Carolina at Chapel Hill, CB#7211, 4025 Burnett-Womack Building, Chapel Hill, NC 27599, United States. david_gerber@med.unc.edu
Received: September 1, 2019 Peer-review started: September 1, 2019 First decision: September 20, 2019 Revised: November 21, 2019 Accepted: November 29, 2019 Article in press: November 29, 2019 Published online: January 27, 2020 Processing time: 123 Days and 6.5 Hours
Abstract
With the advances and clinical growth in liver transplantation over the last four decades the focus on expanding deceased donor organs has been in need of scientific research. In the past ten years several researchers have looked at the domain of machine perfusion as it applies to deceased donor livers. The following review focuses on the clinical trials and recent advances that will likely have the earliest entrance into the clinical arena.
Core tip: The processes involved in optimizing and expanding the deceased donor liver pool has led to the incorporation of machine perfusion technologies (as is similarly done in kidney transplantation). While none of the systems is approved for clinical use, several have gone through clinical trials. This summary provides an overview of those technologies that are likely to be used in clinical liver transplantation.