Published online Aug 27, 2019. doi: 10.4254/wjh.v11.i8.619
Peer-review started: March 11, 2019
First decision: April 11, 2019
Revised: July 5, 2019
Accepted: July 16, 2019
Article in press: July 17, 2019
Published online: August 27, 2019
Processing time: 170 Days and 11.2 Hours
Non-alcoholic fatty liver disease (NAFLD) has become an epidemic largely due to the worldwide increase in obesity. While lifestyle modifications and pharmacotherapies have been used to alleviate NAFLD, successful treatment options are limited. One of the main barriers to finding safe and effective drugs for long-term use in NAFLD is the fast initiation and progression of disease in the available preclinical models. Therefore, we are in need of preclinical models that (1) mimic the human manifestation of NAFLD and (2) have a longer progression time to allow for the design of superior treatments.
To characterize a model of prolonged high-fat diet (HFD) feeding for investigation of the long-term progression of NAFLD.
In this study, we utilized prolonged HFD feeding to examine NAFLD features in C57BL/6 male mice. We fed mice with a HFD (60% fat, 20% protein, and 20% carbohydrate) for 80 wk to promote obesity (Old-HFD group, n = 18). A low-fat diet (LFD) (14% fat, 32% protein, and 54% carbohydrate) was administered for the same duration to age-matched mice (Old-LFD group, n = 15). An additional group of mice was maintained on the LFD (Young-LFD, n = 20) for a shorter duration (6 wk) to distinguish between age-dependent and age-independent effects. Liver, colon, adipose tissue, and feces were collected for histological and molecular assessments.
Prolonged HFD feeding led to obesity and insulin resistance. Histological analysis in the liver of HFD mice demonstrated steatosis, cell injury, portal and lobular inflammation and fibrosis. In addition, molecular analysis for markers of endoplasmic reticulum stress established that the liver tissue of HFD mice have increased phosphorylated Jnk and CHOP. Lastly, we evaluated the gut microbial composition of Old-LFD and Old-HFD. We observed that prolonged HFD feeding in mice increased the relative abundance of the Firmicutes phylum. At the genus level, we observed a significant increase in the abundance of Adercreutzia, Coprococcus, Dorea, and Ruminococcus and decreased relative abundance of Turicibacter and Anaeroplasma in HFD mice.
Overall, these data suggest that chronic HFD consumption in mice can mimic pathophysiological and some microbial events observed in NAFLD patients.
Core tip: This work describes how mice consuming a chronic high-fat diet can mimic the clinical characteristics of non-alcoholic fatty liver disease. We used histopathological, metabolic, and molecular approaches to establish that prolonged high-fat-diet feedings in mice may be used as a pre-clinical model to study long-term interventions involving steatosis, steatohepatitis, fibrosis, glucose disturbances, endoplasmic reticulum stress, and gut microbial dysbiosis.