1
|
Ebrahimi P, Soleimani H, Mahalleh M, Farisi P, Taheri M, Ramezani P, Soltani P, Nazari R, Senobari N, Mousavinezhad SM, Payab M, Gooshvar M, Zadeh AZ, Hosseini K, Ebrahimpur M. Cardiovascular outcomes of SGLT-2 inhibitors' subtypes in type 2 diabetes; an updated systematic review and meta-analysis of randomized controlled trials. J Diabetes Metab Disord 2025; 24:47. [PMID: 39816986 PMCID: PMC11730052 DOI: 10.1007/s40200-024-01545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
Introduction The effects of Sodium-glucose cotransporter-2 (SGLT-2) inhibitors on cardiac outcomes, cardiovascular mortality (CVM), and all-cause mortality (ACM) in type 2 diabetes mellitus (T2DM) patients have been reported heterogeneously in different studies. Methods PubMed, Scopus, Embase, Cochrane Library, and Scholar databases were searched with relevant MeSH terms from January 1, 2010, to November 14, 2023. The study used Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The primary outcomes in all trials included the risk of ACM, CVM, hospitalization for heart failure (HHF), myocardial infarction (MI), and cerebrovascular accidents (CVA) in T2DM patients who were treated with one of the SGLT-2 inhibitors. Heterogeneity between studies was evaluated using Cochran's Q and I2 tests. The Egger's test was used to check for publication bias. Results Eighteen studies, including 70,830 participants, were included. A pooled estimate showed that SGLT-2 inhibitor treatment was significantly associated with reduced ACM (OR: 0.82, 95% CI: 0.75-0.90, p-value: 0.001, I2: 35.1%), CVM (OR: 0.88, 95% CI: 0.80-0.96, p-value: 0.001, I2: 0%), MI (OR: 0.88, 95% CI: 0.79-0.98, p-value: 0.001, I2: 0%), and HHF (OR: 0.67, 95% CI: 0.58-0.77, p-value: 0.001). SGL-2 inhibitor treatment had no significant relationship with CVA (stroke) (OR: 0.95, 95% CI: 0.8-1.10, p-value: 0.896). Subgroup analysis showed that the effect of SGLT-2 inhibitor treatment on outcomes varied based on the type of SGLT-2 inhibitor. Conclusion SGLT-2 inhibitor treatment significantly reduced CVM, ACM, MI, and HHF. Empagliflozin, Canagliflozin, and Dapagliflozin significantly reduced ACM. Canagliflozin was significantly associated with a reduction in CVM. All SGLT-2 inhibitor treatments were associated with a reduction in HHF.
Collapse
Affiliation(s)
- Pouya Ebrahimi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- EMRI (Endocrinology and Metabolism Research Institute), No 10, Jalal-Al-Ahmad Street, North Kargar Avenue, Tehran, 14117-13137 Iran
| | - Hamidreza Soleimani
- Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mahalleh
- Cardiovascular Disease Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Farisi
- Cardiovascular Disease Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Taheri
- Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Pedram Ramezani
- Department of Cardiology, Faculty of Medicine, Azad University of Medical Sciences Central Branch, Tehran, Iran
| | - Parnian Soltani
- Research Committee, Shahid Modarres Educational Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Nazari
- Research Committee, Shahid Modarres Educational Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Senobari
- Research Committee, Shahid Modarres Educational Hospital, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Maryam Mousavinezhad
- Cardiology Research Department, Faculty of Medicine, Ahwaz Jundishapur University of Medical Sciences, Ahwaz, Iran
| | - Moloud Payab
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- EMRI (Endocrinology and Metabolism Research Institute), No 10, Jalal-Al-Ahmad Street, North Kargar Avenue, Tehran, 14117-13137 Iran
| | - Mehrdad Gooshvar
- Cardiology Research Department, Faculty of Medicine, Ahwaz Jundishapur University of Medical Sciences, Ahwaz, Iran
| | - Amin Zaki Zadeh
- Cardiology Research Department, Faculty of Medicine, Ahwaz Jundishapur University of Medical Sciences, Ahwaz, Iran
| | - Kaveh Hosseini
- Cardiovascular Disease Research Institute, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpur
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gangwar T, Poonia N, Subudhi RN, Arora V. Therapeutic potential and underlying mechanisms of phytoconstituents: emphasizing on resveratol, curcumin, quercetin, berberine, and hesperidin in ulcerative colitis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:6579-6596. [PMID: 39878817 DOI: 10.1007/s00210-025-03811-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025]
Abstract
Ulcerative colitis is a long-term inflammatory colon illness that significantly affects patients quality of life. Traditional medicines and therapies often come with challenges such as side effects, instability, unpredictability, and high costs. This has captured interest in natural products that have huge health benefits. Various natural compounds, including resveratrol, curcumin, quercetin, berberine, and hesperidin demonstrate immunomodulatory and oxido-inflammatory properties inside the gut epithelium, showing potential in managing ulcerative colitis. These compounds attenuate inflammatory mediators, NF-κB, and TLR4 signaling leading to a reduction in the production of inflammation-related cytokines, including TNF-α and IL-6. They also augment the activity of internal defense compounds, including superoxide radical dismutase enzyme and heme oxygenase-1, thereby alleviating oxidative damage. In addition, natural compounds have a profound effect on the endogenous microbiota and thus, support mucosal healing and intercellular barrier integrity. Both experimental and clinical analyses provide evidence that these bioactive compounds may help reduce clinical manifestations, induce and sustain remission, and improve the well-being of individuals suffering from ulcerative colitis. This review seeks to discuss various aspects of natural compounds in the management of ulcerative colitis, including mechanisms, therapeutic prospects, and hurdles, and hence the basis for future research and practice.
Collapse
Affiliation(s)
- Tanuj Gangwar
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India.
| | - Rudra Narayan Subudhi
- Institute of Pharmaceutical Sciences, J.S. University, Shikohabad, Uttar Pradesh, India
| | - Vimal Arora
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| |
Collapse
|
3
|
Lu J, Zhou Y, Song YX, Wang JY, Xian JX. Natural alkaloids modulating macrophage polarization: Innovative therapeutic strategies for inflammatory, cardiovascular, and cancerous diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156709. [PMID: 40250001 DOI: 10.1016/j.phymed.2025.156709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Macrophage polarization, switching between pro-inflammatory M1 and anti-inflammatory M2 states, is crucial for disease dynamics in inflammatory, metabolic, and cancer contexts. Modulating this polarization is a clinical challenge, but natural alkaloids, with their potent anti-inflammatory and immunomodulatory effects, show promise in reprogramming macrophage phenotypes. PURPOSE This review explores the applications of natural alkaloids-such as matrine, berberine, koumine, sophoridine, and curcumin-in modulating macrophage polarization. It aims to highlight their potential in reprogramming macrophage phenotypes and improving therapeutic outcomes across various diseases. METHODS A comprehensive literature review was conducted using databases like PubMed, Web of Science, Science Direct and Google Scholar, employing targeted keywords related to natural alkaloids, macrophage polarization, and disease treatment. The analysis primarily focused on articles published between 2020 and 2024. RESULTS This review summarizes how natural alkaloids regulate macrophage polarization, promoting the M2 phenotype to reduce inflammation, thereby playing a therapeutic role in anti-inflammatory, cardiovascular, and metabolic diseases. At the same time, they also promote M1 polarization to inhibit tumor development. CONCLUSION Accumulating evidence demonstrates that macrophage polarization regulation by natural alkaloids holds notable clinical value for disease intervention. They alleviate inflammation, enhance antitumor immunity, and improve treatment outcomes, demonstrating their importance in innovative therapeutic strategies. Moreover, combining alkaloids with immunotherapy enhances treatment efficacy, further highlighting their versatility in a variety of therapeutic applications.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi-Xuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie-Ying Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia-Xun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
4
|
Cheng K, Lin J, Wu M, Wang J, Liu X, Yang K, Ni C, Liu Q, Wu J, Wu W. Berberine promotes hair growth by targeting Axin2 and activating Wnt/β-catenin pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156669. [PMID: 40220423 DOI: 10.1016/j.phymed.2025.156669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Androgenetic alopecia (AGA) is the most common type of hair loss, with high incidence of comorbidities such as polycystic ovary syndrome (PCOS), metabolic syndrome, insulin resistance and cardiovascular diseases. Berberine (BBR) has been widely used clinically to treat diarrhea in China for a long time. Although recent studies have revealed its therapeutic potential in comorbidities of AGA, there are few reports on its regulatory effects on hair growth. PURPOSE To explore the effects of BBR on hair loss and its mechanism. METHODS Human dermal papilla cells (hDPCs), normal and miniaturized hair follicles (HFs) were employed to evaluate the impact of BBR on hair growth in vitro. Depilation-induced hair growth mouse model was used to find the optimum concentration of BBR in vivo. Network pharmacology, RNA sequencing, cell transfection and reporter gene assay, immunohistochemistry, and molecular docking verification were used to explore the molecular mechanisms. RESULTS These models revealed that BBR enhanced the proliferation of hDPCs, increased the length of both normal and miniaturized HFs, and prolonged the anagen phase. In the depilation-induced hair growth mouse model and histological staining, BBR treatment significantly accelerated hair growth, facilitated the transition to the anagen phase, and prolonged its duration. Mechanistic studies confirmed that BBR promoted hair growth through regulating cell cycle, mediated by targeting Axin and activating the Wnt/β-catenin pathway. Importantly, knockdown of Axin2 reduced BBR's ability to enhance hDPCs proliferation. CONCLUSIONS These results suggested that BBR promotes hair growth by targeting Axin2 and activating Wnt/β-catenin pathway, presenting a promising therapeutic avenue for hair loss treatment.
Collapse
Affiliation(s)
- Ke Cheng
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, PR China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, PR China
| | - Mengyi Wu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Jiayi Wang
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, PR China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, PR China
| | - Kai Yang
- Department of Dermatology, Jing'an District Central Hospital of Shanghai, Shanghai, PR China
| | - Chunya Ni
- Department of Dermatology, Jing'an District Central Hospital of Shanghai, Shanghai, PR China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, PR China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, PR China.
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Shanghai Institute of Dermatology, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, PR China; Department of Dermatology, Jing'an District Central Hospital of Shanghai, Shanghai, PR China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, PR China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, and Academy for Engineering and Technology, Fudan University, Shanghai, PR China.
| |
Collapse
|
5
|
Mu Y, Geng J, Liu C, Jiang S, Han Y, Jiang J, Wang Y. Exploring the Multi-Faceted Effects of Berberine in Ameliorating Diastolic Dysfunction in Rats with Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2025; 26:4847. [PMID: 40429987 PMCID: PMC12112712 DOI: 10.3390/ijms26104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/01/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF), marked by cardiac diastolic dysfunction, contributes to half of all heart failure cases globally and poses a significant public health challenge. Effective therapies for HFpEF are rare, largely due to its complex and heterogeneous pathophysiology, which often involves multiple comorbidities. Berberine (BBR), an isoquinoline alkaloid, has demonstrated beneficial effects on multiple metabolic and cardiovascular disorders; however, its impact on cardiac diastolic dysfunction in HFpEF remains poorly understood. In this study, we utilized a rat model of HFpEF induced by a sustained high-fat/high-sucrose (HFHS) diet to explore the impact and mechanisms of BBR on diastolic dysfunction. The results revealed that BBR administration effectively alleviated cardiac diastolic dysfunction and alleviated extracardiac comorbidities, including increased weight, impaired glucose tolerance, hypercholesterolemia and hypertension, in rats fed an HFHS diet. Furthermore, BBR mitigated myocardial inflammation, oxidative stress, microvascular endothelial dysfunction, and notably restored the disturbed NO-cGMP-PKG pathway. Additionally, BBR reduced myocardial fibrosis and inhibited the abnormally activated TGF-β/Smads signaling. Moreover, BBR attenuated the systemic inflammation and corrected immune dysregulation in an HFHS diet-fed rats. Our study suggests that BBR exhibits multi-beneficial effects in the prevention and management of HFpEF, demonstrating its potential as a holistic therapeutic candidate for HFpEF.
Collapse
Affiliation(s)
- Yu Mu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Geng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chilu Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuang Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanxing Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuhong Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Hu Y, Chen X, Zhao Q, Li G, Zhang H, Ma Z, Yu H, Zeng Q, Zhang H, Xu D. Berberine improves cardiac insufficiency through AMPK/PGC-1α signaling-mediated mitochondrial homeostasis and apoptosis in HFpEF mice. Int Immunopharmacol 2025; 155:114613. [PMID: 40222275 DOI: 10.1016/j.intimp.2025.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for approximately half of cases of HF and is frequently clinically underdiagnosed. Although new therapies continue to emerge, determining optimal treatment strategies persists as a key clinical dilemma. Berberine(BBR), an isoquinoline alkaloid, is known to attenuate HF with reduced ejection fraction. PURPOSE In this study, we explored the cardiovascular benefits of BBR in diastolic dysfunction associated with HFpEF, both in vitro and in vivo. METHODS In vivo, adult male mice were fed with chow or a high-fat diet (60 % calories from lard) with L-NAME (0.5 g/L in drinking water) for 15 weeks. During the last 4 weeks, BBR (100 mg/Kg/d and 200 mg/Kg/d) was administered orally. Rat cardiac myoblast H9C2 cells were pretreated with BBR for 2 h, followed by exposure to palmitic acid (PA, 100 μM) for 24 h. RESULTS Exposure to a high-fat stimulation led to p-AMPK and PGC-1α downregulation, apoptotic cascade activation, elevated mt-ROS production, and disruption of mitochondrial homeostasis both in vivo and in vitro. Notably, BBR intervention elevated the expressions of p-AMPK and PGC-1α, inhibited apoptotic reaction, reduced mt-ROS, ameliorated TFAM/NRF1-mediated mitochondrial biogenesis disorder, alleviated mitochondrial impairment, and improved cardiac function. On the other hand, AMPK knockdown abolished the beneficial impact of BBR. Collectively, our findings underscored the cardioprotective role of BBR in maintaining mitochondrial homeostasis and preventing apoptosis, achieved through the modulation of the AMPK/PGC-1α pathway. CONCLUSIONS In summary, BBR possesses protective activity against cardiac insufficiency in HFpEF by maintaining mitochondrial homeostasis and inhibiting apoptosis.
Collapse
Affiliation(s)
- Yingchun Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaoyu Chen
- Department of Nephrology, Rheumatism and Immunology, Chongqing Jiulongpo People's Hospital, Chongqing 400050, China
| | - Qiming Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Guohao Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hao Zhang
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhuang Ma
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hao Yu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Qingchun Zeng
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Hanping Zhang
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Dingli Xu
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
7
|
Xu HJ, Su Y. Potential of Berberine for Rheumatoid Arthritis Prevention and Treatment. Chin J Integr Med 2025:10.1007/s11655-025-4217-y. [PMID: 40366564 DOI: 10.1007/s11655-025-4217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 05/15/2025]
Affiliation(s)
- Hao-Jie Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, 100044, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Rheumatology and Immunology, Peking University People's Hospital, Qingdao, Shandong Province, 266111, China.
| |
Collapse
|
8
|
Shang W, Geng X, Sun X, Fan X, Li A, Zhang C, Kang Y, Liang Y, Zhang J. Non-coding RNAs modulate pyroptosis in diabetic cardiomyopathy: A comprehensive review. Int J Biol Macromol 2025; 309:142865. [PMID: 40188918 DOI: 10.1016/j.ijbiomac.2025.142865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of heart failure (HF) among individuals with diabetes, presenting a significant medical challenge due to its complex pathophysiology and the lack of targeted therapies. Pyroptosis, a pro-inflammatory form of programmed cell death (PCD), is the predominant mode of cell death in the primary resident cells involved in DCM. It has been reported to be critical in DCM's onset, progression, and pathogenesis. Non-coding RNAs (ncRNAs), diverse transcripts lacking protein-coding potential, are essential for cellular physiology and the progression of various diseases. Increasing evidence indicates that ncRNAs are pivotal in the pathogenesis of DCM by regulating pyroptosis. This observation suggests that targeting the regulation of pyroptosis by ncRNAs may offer a novel therapeutic approach for DCM. However, a comprehensive review of this topic is currently lacking. Our objective is to elucidate the regulatory role of ncRNAs in pyroptosis associated with DCM and to elucidate the relationships among these factors. Additionally, we explored how ncRNAs influence pyroptosis and contribute to the pathophysiology of DCM. By doing so, we aim to identify new research targets for the clinical diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Wenyu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xiaofei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xitong Sun
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xinbiao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Aolin Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yuxin Kang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yongchun Liang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Junping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China.
| |
Collapse
|
9
|
Li X, Chen W, Jia Z, Xiao Y, Shi A, Ma X. Mitochondrial Dysfunction as a Pathogenesis and Therapeutic Strategy for Metabolic-Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2025; 26:4256. [PMID: 40362504 PMCID: PMC12072025 DOI: 10.3390/ijms26094256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Metabolic-dysfunction-associated steatotic liver disease (MASLD) has emerged as a significant public health concern, attributed to its increasing prevalence and correlation with metabolic disorders, including obesity and type 2 diabetes. Recent research has highlighted that mitochondrial dysfunction can result in the accumulation of lipids in non-adipose tissues, as well as increased oxidative stress and inflammation. These factors are crucial in advancing the progression of MASLD. Despite advances in the understanding of MASLD pathophysiology, challenges remain in identifying effective therapeutic strategies targeting mitochondrial dysfunction. This review aims to consolidate current knowledge on how mitochondrial imbalance affects the development and progression of MASLD, while addressing existing research gaps and potential avenues for future research. This review was conducted after a systematic search of comprehensive academic databases such as PubMed, Embase, and Web of Science to gather information on mitochondrial dysfunction as well as mitochondrial-based treatments for MASLD.
Collapse
Affiliation(s)
- Xiangqiong Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Wenling Chen
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Zhuangzhuang Jia
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Yahui Xiao
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Anhua Shi
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| | - Xuan Ma
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming 650500, China; (X.L.); (Y.X.); (X.M.)
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Kunming 650500, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Kunming 650500, China
| |
Collapse
|
10
|
Zhang L, Wang W, Liu X, Yan K, Li Q, Li M, Li C, Li Y, Chen L. Traditional Chinese medicine compounds modulate signaling pathways to improve cardiac-related pathology. Front Pharmacol 2025; 16:1499060. [PMID: 40242436 PMCID: PMC12000890 DOI: 10.3389/fphar.2025.1499060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease poses a significant risk to human health and remains the leading cause of illness and death globally, with its incidence continuing to rise. The intricate pathophysiological mechanisms of CVDs include inflammation, oxidative stress, autophagy, and myocardial fibrosis. In light of these underlying mechanisms, traditional Chinese medicine (TCM) and its constituents have demonstrated distinct advantages in managing CVDs. By exerting synergistic effects across multiple components and targets, traditional Chinese medicine can modulate the inflammatory response, mitigate oxidative stress, regulate excessive autophagy, and enhance myocardial fibrosis repair. This article reviews the latest advancements in understanding how TCM compounds regulate signaling pathways involved in the treatment of CVDs.
Collapse
Affiliation(s)
- Luwen Zhang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Wei Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province Traditional Chinese Medicine Epidemic Diseases Engineering Research Center, Zhengzhou, Henan, China
| | - Xincan Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Kuipo Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Qiang Li
- The First Affiliated Hospital of Hena University of Chinese Medicine, Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Ming Li
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Chunying Li
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Yanxin Li
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Lei Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Wang H, Wang Z, Wang D, Nie K, Wu W, Gao Y, Chen S, Jiang X, Tang Y, Su H, Hu M, Fang K, Dong H. Berberine Attenuates Nonalcoholic Hepatic Steatosis by Regulating Lipid Droplet-Associated Proteins: In Vivo, In Vitro and Molecular Evidence. J Cell Mol Med 2025; 29:e70524. [PMID: 40194991 PMCID: PMC11975506 DOI: 10.1111/jcmm.70524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/27/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Hepatic lipid droplet (LD) accumulation is a hallmark of nonalcoholic fatty liver disease (NAFLD). Although the clinical efficacy of berberine (BBR) in treating NAFLD has been established, the mechanism remains uncertain. This study is to evaluate the effects of BBR on hepatic LDs and investigate the underlying mechanisms. Using high-fat diet-induced obese (DIO) mice as the model for NAFLD, BBR was administered daily by gavage for 4 weeks. Liver tissue was examined for changes in lipid deposition and histology. Transcriptomics was performed to screen differently expressed genes. The potential targets of BBR against NAFLD were then determined by Western Blot and immunostaining. In oleic acid (OA)-induced HepG2 cells, the link between BBR and potential targets was further elucidated through the activation or antagonism of PPARα. The binding of BBR to potential targets was predicted using molecular docking. BBR significantly reduced hepatic steatosis by decreasing LD size rather than number. Transcriptomics with validation demonstrated that BBR modulated the expression of LD-associated proteins CIDEA and PLIN4 in the liver. Further investigations revealed that BBR reversed the abnormal elevation of BSCL2 and PLIN2 in steatotic livers. Finally, we found that BBR reduced LD size in OA-induced HepG2 cells by regulating BSCL2 and PPARα-mediated CIDEA/PLIN4/PLIN2. Notably, BBR could bind well to PPARα and BSCL2. BBR can attenuate hepatic steatosis in DIO mice by reducing LD size through the regulation of LD-associated proteins.
Collapse
Affiliation(s)
- Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Zhi Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Wenbin Wu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Meilin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ke Fang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
12
|
Liu Y, Yuan J, Zhang Y, Ma T, Ji Q, Tian S, Liu C. Non-coding RNA as a key regulator and novel target of apoptosis in diabetic cardiomyopathy: Current status and future prospects. Cell Signal 2025; 128:111632. [PMID: 39922440 DOI: 10.1016/j.cellsig.2025.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/10/2025]
Abstract
The occurrence of diabetic cardiomyopathy (DCM) can be independent of several risk factors such as hypertension and myocardial ischemia, which can lead to heart failure, thus seriously threatening human health and life. Sustained hyperglycemic stimulation can induce cardiomyocyte apoptosis, which is recognized as the pathological basis of DCM. It has been demonstrated that dysregulation induced by apoptosis is closely associated to progression of DCM, but mechanisms behind it requires further clarification. Currently, increasing evidence has shown that non-coding RNA (ncRNA), especially microRNA, long-chain non-coding RNA (lncRNA), and circular RNA (circRNA), play a regulative role in apoptosis, thus affecting the progression of DCM. Notably, some ncRNAs have also exhibit potential significance as biomarkers and/or therapeutic targets for patients with DCM. In this review, recent findings regarding the potential mechanisms of ncRNA in regulating apoptosis and their role in the progression of DCM were systematically summarized in this research. The conclusion reveals that ncRNA abnormalities exert a crucial role in pathological changes of DCM, which offers potential therapeutic targets for the prevention of DCM.
Collapse
Affiliation(s)
- Yicheng Liu
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jie Yuan
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yuhang Zhang
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Ma
- College of Rehabilitation Medicine,Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qianqian Ji
- Department one of Cardiovascular Disease, Tai'an Hospital of Traditional Chinese Medicine, Taian 271000, China
| | - Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chunxiao Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
13
|
Guo S, Wang Y, Li J, Liu Y, Han Y, Huang C, Wu H, Hu J, Liu Z. In vitro killing effect of berberine and niclosamide on ocular Demodex folliculorum. Cont Lens Anterior Eye 2025; 48:102336. [PMID: 39616005 DOI: 10.1016/j.clae.2024.102336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 03/18/2025]
Abstract
PURPOSE To explore the in vitro killing effect of water-soluble berberine and lipid-soluble niclosamide against ocular Demodex folliculorum. METHODS Demodex with good vigor were collected from patients' eyelashes. These mites were randomly distributed into different groups with 20 mites in each group. Saline, Double Distilled Water (DDW), Polysorbate 80 (TWEEN 80), Polyethylene glycol 300 (PEG 300) and Castor Oil were used to screen solvents and cosolvents. 20 % Tea Tree Oil (TTO) and Anhydrous Ethanol (EtOH) were used as positive controls. 0.2 % Berberine, 0.25 % Niclosamide and 0.5 % Niclosamide, were designated as experimental groups. Following treatment, the analysis of Kaplan-Meier survival curves and survival time of mites and safety of drugs were then performed. RESULTS The survival of Demodex in vitro in Saline and DDW, was not significant different. Therefore, DDW, which was more conducive to the dissolution of berberine, was chosen as the solvent for berberine. 0.2 % Berberine significantly inhibited the survival distribution and survival time (P < 0.001) of Demodex in vitro compared with the DDW group. Through the evaluation of several cosolvents, PEG300 had milder effects on Demodex. Hence, the proportion of PEG300 in the niclosamide solvent group was increased to reduce the irritability of the vehicle. Furthermore, niclosamide could significantly inhibit the survival of Demodex compared with the vehicle group, and the effect of 0.5 % Niclosamide was more obvious (P < 0.001), and was better than 20 %TTO (P < 0.001). In addition, after niclosamide administration, Demodex bodies exhibited gradual distortion along with increased transparency and the presence of blurred dark particles compared to those in the vehicle group. Moreover, both drugs showed good subjective tolerability and safety in a mouse model. CONCLUSION 0.2 % berberine and 0.5 % niclosamide effectively inhibited Demodex survival in vitro, with 0.5 % niclosamide superior to 20 % TTO. These two drugs, with anti-Demodex, anti-bacterial, and anti-inflammatory properties, may offer alternative treatment for Demodex blepharitis.
Collapse
Affiliation(s)
- Shujia Guo
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuqian Wang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiani Li
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yuwen Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Yi Han
- Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Caihong Huang
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Huping Wu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiaoyue Hu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China.
| | - Zuguo Liu
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
14
|
Wang Z, Zhu Y, Yao Y, Zhang W, Wang B, Wang J, Yang Y, Liu L. Natural products targeting regulated cell deaths for adriamycin-induced cardiotoxicity. Cell Death Discov 2025; 11:112. [PMID: 40118839 PMCID: PMC11928682 DOI: 10.1038/s41420-025-02389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/01/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025] Open
Abstract
Adriamycin (ADR), as an anti-cancer drug in routine clinical application, is utilized to treat various cancers such as ovarian cancer, hematological malignant tumor, and endometrial carcinoma. However, its serious dose-dependent cardiotoxicity extremely limits its clinical application. Currently, there remains a dearth of therapeutic agents to mitigate ADR-induced cardiotoxicity. Extensive research has demonstrated that ADR can simultaneously trigger various regulated cell death (RCD) pathways, such as apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis. Therefore, drugs targeting these RCD pathways may represent effective strategies for treating ADR-induced cardiotoxicity. Natural products, with their wide availability, low cost, and diverse pharmacological activities, have increasingly gained attention. Various natural products, including polyphenols, flavonoids, terpenoids, and alkaloids, can target the RCD pathways involved in ADR-induced cardiotoxicity. Furthermore, these natural products have exhibited excellent properties in preclinical studies or in vitro experiments. This review summarizes the mechanisms of RCD in ADR-induced cardiotoxicity and systematically reviews the natural products targeting these RCD pathways. Finally, we propose future research directions of natural products in this field.
Collapse
Affiliation(s)
- Zheng Wang
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, 430070, China
| | - Yanli Zhu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Yu Yao
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Wenyu Zhang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China
| | - Bo Wang
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Jing Wang
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Northwest University First Hospital, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, 710069, China.
| | - Liwen Liu
- Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
15
|
Palumbo M, Ugolotti M, Zimetti F, Adorni MP. Anti-atherosclerotic effects of natural compounds targeting lipid metabolism and inflammation: Focus on PPARs, LXRs, and PCSK9. ATHEROSCLEROSIS PLUS 2025; 59:39-53. [PMID: 39877131 PMCID: PMC11773090 DOI: 10.1016/j.athplu.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
A large body of evidence has shown that modulation of the nuclear receptors peroxisome proliferator-activated receptors (PPARs), the liver X receptors (LXRs), the proprotein convertase subtilisin/kexin type 9 (PCSK9) and inflammatory processes by natural compounds has hypolipidemic and anti-atherosclerotic effects. These beneficial outcomes are certainly related to the crucial function of these targets in maintaining cholesterol homeostasis and regulating systemic inflammation. Currently, the therapeutic scenario for cardiovascular diseases (CVD) offers a plethora of widely validated and functional pharmacological treatments to improve the health status of patients. However, patients are increasingly sceptical of pharmacological treatments which are often associated with moderate to severe side effects. The aim of our review is to provide a collection of the most recent scientific evidence on the most common phytochemicals, used for centuries in the Mediterranean diet and traditional chinese medicine that act on these key regulators of cholesterol homeostasis and systemic inflammation, which could constitute important tools for CVD management.
Collapse
Affiliation(s)
| | | | | | - Maria Pia Adorni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Italy
| |
Collapse
|
16
|
An J, Zhou Q, Guo X, Xu C, Jia X, Cao Z, Lu Q. From Pathophysiology to Treatment: The Role of Ferroptosis in PCOS. FRONT BIOSCI-LANDMRK 2025; 30:25586. [PMID: 40018919 DOI: 10.31083/fbl25586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 03/01/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent gynecological endocrine and metabolic disorder in women, with an incidence rate of 10-13%. The etiology of PCOS is multifaceted, involving genetic predisposition, environmental influences, lifestyle factors, and endocrine metabolic dysregulation. Iron, a critical mineral, not only plays a role in regulating female physiological functions and the progression of PCOS but also requires careful management to avoid deficiency. However, excess iron can trigger ferroptosis, a form of nonapoptotic cell death characterized by the accumulation of lipid peroxides. While numerous studies have explored ferroptosis in patients with PCOS and animal models, the precise mechanisms and therapeutic implications remain inadequately understood. This review seeks to elucidate the pathophysiology of PCOS and the contributory factors of ferroptosis. Additionally, we examine the diverse manifestations of ferroptosis in PCOS and evaluate its role. Furthermore, we introduce ferroptosis-related traditional Chinese medicines that may enhance the understanding of PCOS pathogenesis and aid in the development of targeted therapies for ferroptosis in PCOS.
Collapse
Affiliation(s)
- Jie An
- Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Qin Zhou
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Xiaojing Guo
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Congya Xu
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - XiaoFang Jia
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Zhenzhen Cao
- Department of Gynecology, Kunshan Hospital of Traditional Chinese Medicine, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, 215300 Kunshan, Jiangsu, China
| | - Qibin Lu
- Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
- Department of Gynecology of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 210029 Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Zhang R, Wang N, Fan B, Zhang J. Potentiation of Sorafenib's Action by Berberine via Suppression of the mTOR Signaling Pathway in Human Hepatoma Cells. Nutr Cancer 2025; 77:553-565. [PMID: 39962812 DOI: 10.1080/01635581.2025.2466233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 04/01/2025]
Abstract
Sorafenib (SOR) is the first-line treatment for advanced hepatocellular carcinoma (HCC), while its therapeutic efficacy is unsatisfactory. Clinical studies suggest that combination therapy holds significant therapeutic potential to enhance SOR's efficacy. Berberine (BBR), a multiple-targeted agent, shows great promise in combination therapy. This study aims to investigate whether BBR can enhance SOR's effect in vitro and in vivo, and to elucidate the underlying mechanisms. We selected BEL-7402 cells and Huh7 cells for our investigation and explored the effect of BBR on the sensitivity of SOR using the cell counting kit-8 assay, cell cycle analysis, reactive oxygen species (ROS) detection assay, Annexin V/PI staining, western blotting, and the construction of tumor xenograft models. Our findings demonstrate that BBR not only enhances the proliferation-inhibitory effects, apoptosis, and ROS generation induced by SOR, but also sensitizes tumor xenograft models to SOR. Notably, this synergistic effect is found to depend on AMPK activation and the inhibition of the mTOR signaling pathway, a mechanism coincident with that of metformin (MET). Furthermore, our results reveal that BBR exhibits a stronger synergistic effect with SOR compared to MET. These results may contribute to developing innovative combination strategies for the treatment of advanced HCC.
Collapse
Affiliation(s)
- Rongrong Zhang
- School of Pharmacy, Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Na Wang
- School of Pharmacy, Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Bo Fan
- School of Pharmacy, Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Juan Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
18
|
Wu Y, Yang Y, Du C, Peng X, Fan W, Chang B, Shan C. Berberine attenuates obesity-induced skeletal muscle atrophy via regulation of FUNDC1 in skeletal muscle of mice. Sci Rep 2025; 15:4918. [PMID: 39930016 PMCID: PMC11811154 DOI: 10.1038/s41598-025-89297-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
Skeletal muscle atrophy is a complication of obesity, partially induced by impaired mitophagy. This study investigates whether Berberine(BBR) protects mice from obese skeletal muscle atrophy and the underlying molecular mechanism. Twenty C57BL/6 mice were fed a high-fat diet until they weighed more than 20% of the average body weight of the control group. The mice were then divided into two groups and gavaged with BBR or vehicle for 8 weeks. 10 mice were used as controls. Fasting blood glucose was measured, an oral glucose tolerance test was performed, and the mice were measured for grip strength and exercise capacity. H&E and Oil Red O staining were used to observe the pathological changes of skeletal muscle. MURF1, FBXO32, BAX, BCL2, P62, LC3 and mitophagy receptor FUNDC1 were observed in mice. BBR was intervened in C2C12 myotubes. The role of FUNDC1 was verified by RNA interference. We found that BBR treatment increased grip strength and improved muscle function. BBR not only reduced weight gain, excessive lipid accumulation and hyperlipidemia, but also ameliorated obesity-induced skeletal muscle atrophy and apoptosis. BBR promoted autophagy and increased FUNDC1 protein expression. The same positive effects were observed after BBR intervening on C2C12 myotubes, whereas FUNDC1 RNA interference attenuated the anti-skeletal muscle atrophy effect of BBR. These results suggest that BBR ameliorated obesity-induced skeletal muscle atrophy in mice by modulating the skeletal muscle mitophagy receptor FUNDC1, which may be a potential therapeutic target for obesity-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yijie Wu
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China
| | - Yanhui Yang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China
| | - Caixia Du
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China
| | - Xiaoyue Peng
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China
| | - Wenying Fan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China
| | - Baocheng Chang
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China.
| | - Chunyan Shan
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin, 300134, China, No.6 North Huanrui Rd, Beichen District, Tianjin, P.R China.
| |
Collapse
|
19
|
Alpaslan Ağaçdiken A, Göktaş Z. Berberine-induced browning and energy metabolism: mechanisms and implications. PeerJ 2025; 13:e18924. [PMID: 39931072 PMCID: PMC11809318 DOI: 10.7717/peerj.18924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Obesity has become a global pandemic. The approaches researched to prevent it include decreasing energy intake and/or enhancing energy expenditure. Therefore, research on brown adipose tissue is of great importance. Brown adipose tissue is characterized by its high mitochondrial content. Mitochondrial uncoupling protein 1 (UCP1) releases energy as heat instead of chemical energy. Thermogenesis increases energy expenditure. Berberine, a phytochemical widely used in Asian countries, has positive effects on body weight control. While the precise mechanisms behind this effect remain unclear, the adenosine monophosphate-activated protein kinase (AMPK) pathway is known to play a crucial role. Berberine activates AMPK through phosphorylation, significantly impacting brown adipose tissue by enhancing lipolytic activity and increasing the expression of UCP1, peroxisome proliferator-activated receptor γ-co-activator-1α (PGC1α), and PR domain containing 16 (PRDM16). While investigating the mechanism of action of berberine, both the AMPK pathway is being examined in more detail and alternative pathways are being explored. One such pathway is growth differentiation factor 15 (GDF15), known for its appetite-suppressing effect. Berberine's low stability and bioavailability, which are the main obstacles to its clinical use, have been improved through the development of nanotechnological methods. This review examines the potential mechanisms of berberine on browning and summarizes the methods developed to enhance its effect.
Collapse
Affiliation(s)
| | - Zeynep Göktaş
- Department of Nutrition and Dietetics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
20
|
Zhang Y, Lv S, Huang P, Xiao L, Lin N, Huang E. Network pharmacology study on the mechanism of berberine in Alzheimer's disease model. NPJ Sci Food 2025; 9:16. [PMID: 39900946 PMCID: PMC11790853 DOI: 10.1038/s41538-025-00378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025] Open
Abstract
Research indicated that berberine (BBR) plays a protective role in modulating Alzheimer's disease (AD). This study aimed to explore the target genes of BBR associated with AD therapy using a network pharmacology study. Through network pharmacology analysis, two main potential target genes, β-amyloid precursor protein (APP) and peroxisome proliferator-activated receptor gamma (PPARG), of BBR for AD therapy were screened out. Further experiments demonstrated that BV2 and C8-D1A treated with BBR were decreased in the mRNA and protein expression of APP and presenilin 1 while PPARG was increased with a reduction in the NF-κB pathway. A similar result was shown in vivo. Through a network pharmacology study, this study supported that BBR played a protective role in the AD mice model via blocking APP processing and amyloid plaque formation. It also promotes PPARG expression to blockage of NF-κB pathway-mediated inflammatory response and neuroinflammation.
Collapse
Affiliation(s)
- Yaoyi Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shuai Lv
- Department of Pediatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Pinyuan Huang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingmin Xiao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Nan Lin
- Fujian Key Laboratory of Vascular Aging, Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - En Huang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China.
- Scientific Research Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
21
|
Alsfouk BA, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Alruwaili M, Batiha GES. The potential therapeutic role of berberine in treating epilepsy focusing on temporal lobe epilepsy: State of art and ongoing perspective. Brain Res Bull 2025; 221:111189. [PMID: 39761924 DOI: 10.1016/j.brainresbull.2025.111189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/15/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Epilepsy is a neurological disease characterized by unprovoked recurrent epileptic seizures. Temporal lobe epilepsy (TLE) is the commonest type of focal epilepsy in adults that resist to the conventional anti-seizure medications (ASMs). Interestingly, ASMs do not affect the epileptogenesis and progression of disease. Therefore, repurposing of natural products with anti-inflammatory, anti-oxidant and anti-seizure effects such as berberine (BRB) may be logical in treating refractory epilepsy and TLE. However, the molecular mechanism of BRB against the development of epilepsy and progression of epileptic seizure mainly in TLE was not fully elucidated. Therefore, we attempt in this review to discuss the potential underlying molecular mechanism of BRB against the development and progression of epilepsy mainly the TLE.
Collapse
Affiliation(s)
- Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14132, Iraq; Jabir ibn Hayyan Medical University, Al-Ameer Qu./Najaf-Iraq, PO. Box13, Kufa, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Branch, Arish 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
22
|
Blöcher JA, Meyer-Tönnies MJ, Morof F, Rönnpagel V, Bethmann J, Vollmer M, Engeli S, Tzvetkov MV. Sex-Dependent Effects of CYP2D6 on the Pharmacokinetics of Berberine in Humans. Clin Pharmacol Ther 2025; 117:250-260. [PMID: 39488825 DOI: 10.1002/cpt.3454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/14/2024] [Indexed: 11/05/2024]
Abstract
An over-the-counter product berberine (a major alkaloid in goldenseal) is a substrate of the uptake transporter OCT1 and the metabolizing enzyme CYP2D6. The two genes exhibit common functional polymorphisms. Approximately 9% of Europeans and white Americans are either poor CYP2D6 metabolizers or poor OCT1 transporters. In this study, we investigated the effects of OCT1 and CYP2D6 polymorphisms on berberine pharmacokinetics in humans. We confirmed in vitro that berberine is an OCT1 substrate (KM of 7.0 μM, CLint of 306 ± 29 μL/min/mg). Common OCT1 alleles *3 to *6 showed uptake reduced by at least 65% and Oct1/2 knockout mice showed 3.2-fold higher AUCs in liver perfusion experiments. However, in humans, poor OCT1 transporters did not show any differences in berberine pharmacokinetics compared with reference participants. In contrast, CYP2D6 polymorphisms significantly affected berberine metabolism, but exclusively in females. Females who were poor CYP2D6 metabolizers had an 80% lower M1-to-berberine ratio. General linear model analyses suggest strong synergistic, rather than additive, effects between female sex and CYP2D6 genotype. Overall, berberine displayed low oral bioavailability, yet females had a 2.8-fold higher AUC and a 3.6-fold higher Cmax than males (P < 0.001). These effects were only partially attributable to the sex-CYP2D6 genotype interaction. In conclusion, despite berberine being an OCT1 substrate, OCT1 deficiency did not affect berberine pharmacokinetics in humans. In contrast, CYP2D6 emerges as a critical enzyme for berberine metabolism in females, but not in males, highlighting sex-specific differences. We suggest that factors beyond CYP2D6 metabolism are determining berberine's systemic exposure, especially in males (NCT05463003).
Collapse
Affiliation(s)
- Jonas A Blöcher
- Department of Clinical Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Marleen J Meyer-Tönnies
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Felix Morof
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Vincent Rönnpagel
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Jonas Bethmann
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Marcus Vollmer
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Engeli
- Department of Clinical Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| | - Mladen V Tzvetkov
- Department of General Pharmacology, Institute of Pharmacology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
23
|
Miao G, Zhang Z, Wang M, Gu X, Xiang D, Cao H. Berberine in combination with anti-PD-L1 suppresses hepatocellular carcinoma progression and metastasis via Erk signaling pathway. Ann Med Surg (Lond) 2025; 87:103-112. [PMID: 40109642 PMCID: PMC11918555 DOI: 10.1097/ms9.0000000000002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 03/22/2025] Open
Abstract
Background Berberine (BBR) is an isoquinoline alkaloid extracted from Huang Lian and other herbal medicines. It has been reported to play a crucial role in multiple metabolic diseases and cancers. Programmed cell death-1 (PD-L1) is known as the immune checkpoint; immunotherapy targeting PD1/PD-L1 axis can effectively block its pro-tumor activity. However, the effect of the combined use of BBR and anti-PD-L1 on hepatocellular carcinoma (HCC) has not been reported. Methods Hep-3B and HCCLM3 cells were chosen as the experimental objects. To determine the potential anti-cancer activity of the combination of BBR and anti-PD-L1, we first treated v cells with BBR. The cell viability of Hep-3B and HCCLM3 with BBR treatment was measured by Cell Count Kit 8 assay. Cytometry by time-of-flight was performed to analyze tumor tissues after treatment with BBR and/or anti-PD-L1. Proliferation-, migration-, and invasion-related markers were measured by western blotting and immunohistochemistry. Results The results showed that BBR significantly inhibited the proliferation of Hep-3B and HCCLM3.The combination treatment of BBR and anti-PD-L1 had a prominent inhibitory effect on HCC tumorigenesis. Cytometry by time-of-flight analysis indicated that BBR affects the immune subsets in the tumors. Besides, BBR and anti-PD-L1 inhibited the migration and invasion of HCC by inactivating the phosphorylation of Erk. Conclusion Our study proposed that the combination treatment of BBR and anti-PD-L1 markedly inhibited the tumorigenesis of HCC by Erk signaling pathway. We hope our research can provide a new strategy for the potential of BBR as a therapeutic agent in the treatment of HCC.
Collapse
Affiliation(s)
- Ganggang Miao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Zhiyu Zhang
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Meiyan Wang
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, China
| | - Xingwei Gu
- Department of General Surgery, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Zhenjiang, China
| | - Dongxiao Xiang
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Ma H, Xing C, Wei H, Li Y, Wang L, Liu S, Wu Q, Sun C, Ning G. Berberine attenuates neuronal ferroptosis via the AMPK-NRF2-HO-1-signaling pathway in spinal cord-injured rats. Int Immunopharmacol 2024; 142:113227. [PMID: 39321704 DOI: 10.1016/j.intimp.2024.113227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Ferroptosis, characterized by iron-dependent accumulation of lipid peroxides, plays an important role in spinal cord injury (SCI). Berberine (BBR), as a lipid peroxide scavenger, has been widely used in treating other diseases; however, its role in ferroptosis has not been fully elucidated. Therefore, here, to test our hypothesis that BBR can reduce the severity of SCI and promote motor function recovery by inhibiting neuronal ferroptosis, we evaluated the changes in ferroptosis-related indicators after BBR administration by establishing a cellular ferroptosis model and an SCI contusion model. We found that BBR administration significantly reduces lipid peroxidation damage, maintains normal mitochondrial function, reduces excessive accumulation of iron ions, enhances antioxidant capacity, and activates the ferroptosis defense system in vivo and in vitro. Mechanistically, BBR alleviates neuronal ferroptosis by inducing adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and up-regulating nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase-1 (HO-1) protein expression to promote glutathione production. BBR administration also significantly improves motor function recovery in SCI rats. Meanwhile, applying the AMPK inhibitor Compound C blocks the neuroprotective and all other effects of BBR. Collectively, our findings demonstrate that BBR can attenuate neuronal ferroptosis after SCI by activating the AMPK-NRF2-HO-1 pathway.
Collapse
Affiliation(s)
- Hongpeng Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Haitao Wei
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Yan Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Liyue Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Song Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Qiang Wu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China; Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China; Tianjin Institute of Orthopedic Innovation and Transformation, Tianjin, China.
| |
Collapse
|
25
|
Liu WT, Li CQ, Fu AN, Yang HT, Xie YX, Yao H, Yi GH. Therapeutic implication of targeting mitochondrial drugs designed for efferocytosis dysfunction. J Drug Target 2024; 32:1169-1185. [PMID: 39099434 DOI: 10.1080/1061186x.2024.2386620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
Efferocytosis refers to the process by which phagocytes remove apoptotic cells and related apoptotic products. It is essential for the growth and development of the body, the repair of damaged or inflamed tissues, and the balance of the immune system. Damaged efferocytosis will cause a variety of chronic inflammation and immune system diseases. Many studies show that efferocytosis is a process mediated by mitochondria. Mitochondrial metabolism, mitochondrial dynamics, and communication between mitochondria and other organelles can all affect phagocytes' clearance of apoptotic cells. Therefore, targeting mitochondria to modulate phagocyte efferocytosis is an anticipated strategy to prevent and treat chronic inflammatory diseases and autoimmune diseases. In this review, we introduced the mechanism of efferocytosis and the pivoted role of mitochondria in efferocytosis. In addition, we focused on the therapeutic implication of drugs targeting mitochondria in diseases related to efferocytosis dysfunction.
Collapse
Affiliation(s)
- Wan-Ting Liu
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Chao-Quan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Ao-Ni Fu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hao-Tian Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Yu-Xin Xie
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| | - Guang-Hui Yi
- Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan, China
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hunan, Hengyang, China
| |
Collapse
|
26
|
Yang Y, Wu J, Jia L, Feng S, Qi Z, Yu H, Wu Y, Wang S. Berberine modulates microglial polarization by activating TYROBP in Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156237. [PMID: 39566407 DOI: 10.1016/j.phymed.2024.156237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles, and aberrant neuroinflammation in the brain, Alzheimer's disease (AD) is the most common neurodegenerative disease. Microglial polarization is a subtle mechanism which maintains immunological homeostasis and has emerged as a putative therapeutic to combat AD. Berberine (BBR) is a natural alkaloid compound with multiple pharmacological effects, and has shown considerable therapeutic potential against inflammatory disorders. However, BBR functions and underlying mechanisms in neuroinflammation remain unclear. PURPOSE To examine BBR pharmacological effects and mechanisms in neuroinflammation with a view to treating AD. METHODS BBR effects on cognitive performance in 5 × FAD mice were assessed using open field, Y-maze, and Morris Water Maze (MWM) tests. Neuroinflammation-related markers and Aβ pathology were examined in brain sections from mice. Transcriptomic analyses of hippocampus tissues were also conducted. Microglial BV2 cells were also used to verify potential BBR mechanisms in neuroinflammation and microglial polarization. RESULTS BBR improved cognitive performance, reduced amyloid pathology, and alleviated aberrant neuroinflammation in an AD mouse model. BBR induced microglial polarization to an M2-like phenotype, which was manifested by lowered and elevated proinflammatory and anti-inflammatory cytokine production, respectively, improved microglial uptake and Aβ clearance. Mechanistically, BBR directly interacted with TYROBP and promoted its activation by stabilizing TYROBP oligomerization. TYROBP knockdown aggravated M1-like polarization and pro-inflammatory gene expression in microglial cells in the presence of lipopolysaccharide (LPS)+Aβ, while blocked microglial M2-like polarization benefited from BBR administration. CONCLUSIONS BBR modulated neuroinflammation by regulating microglial polarization via TYROBP activation. Our study provided new insight into BBR pharmacological actions in regulating microglial homeostasis and combating AD.
Collapse
Affiliation(s)
- Yu Yang
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Jiwen Wu
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Luping Jia
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Shicheng Feng
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Zihan Qi
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Hao Yu
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China
| | - Yili Wu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Health, School of Mental Health, Institute of Aging, Wenzhou Medical University, Wenzhou, 325000, China; Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325000, China.
| | - Shuai Wang
- Shandong Key Laboratory of Psychiatric and Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, 272013, Shandong, China; Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Jining Medical University, Jining, 272013, Shandong, China.
| |
Collapse
|
27
|
Hosseini SH, Nazarian M, Rajabi S, Jafari-Nozad AM, Mesbahzadeh B, Samargahndian S, Farkhondeh T. Protective Effect of Berberine Nanoparticles Against Cardiotoxic Effects of Arsenic Trioxide. Cardiovasc Toxicol 2024; 24:1311-1316. [PMID: 39343849 DOI: 10.1007/s12012-024-09927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Arsenic trioxide (ATO) is a potent and highly effective chemotherapeutic agent for the treatment of acute promyelocytic leukemia. However, the clinical use of ATO is hampered by different cardiopathologic outcomes, such as arrhythmia and heart failure. Berberine has several beneficial effects because of its antioxidant activity; however, the potential cardioprotective function of this alkaloid against arsenic-induced cardiac toxicity has not been fully investigated. In this study, we evaluated the effect of ATO in rat heart tissue and the effect of berberine nanoparticles (NB) on cardiac enzyme levels, oxidative stress (OS) indices, and histopathological changes in heart tissue. Thirty Wistar rats were randomly allocated into five groups (n = 6): (1) Control animals that received 0.5 cc saline via gavage, (2) ATO group (4 mg/kg), (3) ATO + NB (2.5 mg/kg), (4) ATO + NB (5 mg/kg), and (5) ATO + NB (10 mg/kg) groups. Treatments were administered intraperitoneally for 45 days. Cardiac enzymes and OS biomarkers in heart tissue were measured. Histopathological examination of the heart tissue was also conducted at the end of the study. ATO injection significantly increased cardiac enzyme levels and OS biomarkers in rat's heart tissue. It also changed the histological features of the heart. NB administration significantly decreased the serum and tissue levels of cardiac enzyme and OS biomarkers in ATO-exposed animals (p < 0.05) and improved myocardial structural damage. NB, potent antioxidant, can reduce the unfavorable effects of ATO in rat heart tissue by balancing OS markers.
Collapse
Affiliation(s)
- Seyed Hadi Hosseini
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Nazarian
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahnaz Rajabi
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Behzad Mesbahzadeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samargahndian
- Department of Physiology, School of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Tahereh Farkhondeh
- Geriatric Health Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
28
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
29
|
Gupta M, Rumman M, Singh B, Pandey S. Protective effects of berberine against diabetes-associated cognitive decline in mice. Acta Diabetol 2024:10.1007/s00592-024-02411-0. [PMID: 39514003 DOI: 10.1007/s00592-024-02411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
AIMS Diabetes associated cognitive decline (DACD) is a common CNS-related consequence of diabetes. The primary clinical manifestation of DACD includes learning and memory impairment. Unfortunately, there is no cure to delay the cognitive symptoms of diabetes. Although berberine (BBR) has shown promising effect in the treating diabetes and cognitive dysfunction, more research is needed to understand the mechanism of its therapeutic effect. For better understanding, we investigated the functions of BBR involved in anti-inflammation, anti-oxidant and neuroprotection in the hippocampus of diabetic mice. METHODS Diabetes was induced in mice using STZ. BBR was administered for 4 weeks before (pre-treatment), and after (post-treatment) STZ administration. The effect of BBR on cognitive functions in diabetic mice was determined using neurobehavioural test. Moreover, how BBR affected neuroinflammation, oxidative stress, and acetylcholine levels in the hippocampus and BBB permeability were analyzed using standard biochemical assays. Lastly, we evaluated the mRNA expression of neuroprotective genes in the hippocampus to uncover the mechanism of BBR. RESULTS Treatment with BBR improved cognition in diabetic mice. It significantly reduced the levels of IL-6, iNOS, TNF-α, IL-1β, ROS and MDA and increased the levels of TAC, GSH, SOD and Catalase. Moreover, levels of acetylcholine and BBB permeability were reduced in the diabetic mice which was reversed by BBR treatment and increased the expression of IGF and BDNF in the hippocampus of diabetic mice. CONCLUSION Our results suggest that BBR might be a potential therapeutic candidate for the treatment of DACD. Our study might serve as a basis for developing novel drugs for treating DACD.
Collapse
Affiliation(s)
- Mrinal Gupta
- Department of Biochemistry , King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biosciences , Integral University , Lucknow, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry , King George's Medical University , Lucknow, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry , King George's Medical University , Lucknow, Uttar Pradesh, India.
| |
Collapse
|
30
|
Shen F, Zheng YS, Dong L, Cao Z, Cao J. Enhanced tumor suppression in colorectal cancer via berberine-loaded PEG-PLGA nanoparticles. Front Pharmacol 2024; 15:1500731. [PMID: 39555093 PMCID: PMC11563832 DOI: 10.3389/fphar.2024.1500731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024] Open
Abstract
Colorectal cancer (CRC) stands as the third most widespread cancer globally with poor prognosis. Berberine (Ber), as one herbal phytochemical, showed promise in CRC therapy, but its exact mechanism is unclear. Small molecule traditional drugs face challenges in quick metabolism and low bio-availability after systemic administration. Nanodrug deliver system, with their unique properties, has the advantages of protecting drugs, improving drug bio-availability, and reducing toxic and side effects, which exhibited huge drug delivery potential. Herein, the PEG-PLGA nanocarrier was used for encapsulated Ber according to nanoprecipitation and obtained nanomedicine, denoted as NPBer. In vitro, the flow cytometry test and CCK8 assays indicated that NPBer was more easily taken up by HCT116 CRC cells, and had stronger inhibition on cell proliferation with the increase of drug concentration. In addition, RNA-Seq was employed to explore the alterations in the transcriptomes of cancer cells subsequent to treatment with Free Ber or NPBer.The sequencing results indicate that Free Ber could activate cellular aging mechanisms, intensified the iron death pathway, optimized oxidative phosphorylation efficiency, exacerbated apoptosis, accelerated programmed cell death, and negatively modulated key signaling pathways in CRC cells including Wnt, TGF-beta, Hippo, and mTOR signaling pathways. Based on PEG-PLGA nanocarriers, NPBer can improve the in vivo delivery efficiency of Ber, thereby enhancing its antitumor efficacy in vivo, enhancing apoptosis by enhancing the mitochondrial autophagy and autophagy activities of CRC cells, negatively regulating the inflammatory mediator to regulate TRP channels, and inhibiting the activation of Notch signaling pathway. In vivo, NPBer can significantly improve its accumulation and durable drug targeting in tumor site, resulting in induce maximum cell apoptosis and effectively inhibit the proliferation of HCT116 tumor. This strategy provided a promising antitumor therapeutic strategy using Ber-based drugs.
Collapse
Affiliation(s)
- Fei Shen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yun-Sheng Zheng
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lan Dong
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ziyang Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jie Cao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of General Surgery, Guangzhou Digestive Disease Center, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
31
|
Liang J, Zhu Y, Liu S, Kuang B, Tian Z, Zhang L, Yang S, Lin M, Chen N, Liu X, Ai Q, Yang Y. Progress of Exosomal MicroRNAs and Traditional Chinese Medicine Monomers in Neurodegenerative Diseases. Phytother Res 2024; 38:5323-5349. [PMID: 39225243 DOI: 10.1002/ptr.8322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/14/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Exosomes, extracellular vesicles secreted by various cells, actively participate in intercellular communication by facilitating the exchange of crucial molecular information such as DNA, RNA, and lipids. Within this intricate network, microRNAs, endogenous non-coding small RNAs, emerge as pivotal regulators of post-transcriptional gene expression, significantly influencing the development of neurodegenerative diseases. The historical prominence of traditional Chinese medicine (TCM) in clinical practice in China underscores its enduring significance. Notably, TCM monomers, serving as active constituents within herbal medicine, assume a critical role in the treatment of neurodegenerative diseases, particularly in mitigating oxidative stress, inhibiting apoptosis, and reducing inflammation. This comprehensive review aims to delineate the specific involvement of exosomal microRNAs in various neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, stroke, and amyotrophic lateral sclerosis. Furthermore, the exploration extends to the application of TCM monomers, elucidating their efficacy as therapeutic agents in these conditions. Additionally, the review examines the utilization of exosomes as drug delivery carriers in the context of neurodegenerative diseases, providing a nuanced understanding of the potential synergies between TCM and modern therapeutic approaches. This synthesis of knowledge aims to contribute to the advancement of our comprehension of the intricate molecular mechanisms underlying neurodegeneration and the potential therapeutic avenues offered by TCcom interventions.
Collapse
Affiliation(s)
- Jinping Liang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuchen Zhu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Boyu Kuang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhifeng Tian
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Ling Zhang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Liu
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
32
|
Shaharudin NS, Surindar Singh GK, Kek TL, Sultan S. Targeting signaling pathways with andrographolide in cancer therapy (Review). Mol Clin Oncol 2024; 21:81. [PMID: 39301125 PMCID: PMC11411607 DOI: 10.3892/mco.2024.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024] Open
Abstract
Terpenoids are a large group of naturally occurring organic compounds with a wide range of components. A phytoconstituent in this group, andrographolide, which is derived from a plant called Andrographis paniculate, offers a number of advantages, including anti-inflammatory, anticancer, anti-angiogenesis and antioxidant effects. The present review elucidates the capacity of andrographolide to inhibit signaling pathways, namely the nuclear factor-κB (NF-κB), hypoxia-inducible factor 1 (HIF-1), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Wnt/β-catenin and mitogen-activated protein kinase (MAPK) pathways, which are involved in cellular processes and responses such as the inflammatory response, apoptosis and angiogenesis. Inhibiting pathways enables andrographolide to exhibit its anticancer effects against breast, colorectal and lung cancer. The present review focuses on the anticancer effects of andrographolide, specifically in breast, colorectal and lung cancer through the NF-κB, HIF-1 and JAK/STAT signaling pathways. Therefore, the Google Scholar, PubMed and ScienceDirect databases were used to search for references to these prevalent types of cancer and the anticancer mechanisms of andrographolide associated with them. The following key words were used: Andrographolide, anticancer, JAK/STAT, HIF-1, NF-κB, PI3K/AKT/mTOR, Wnt/β-catenin and MAPK pathways, and the literature was limited to studies published between 2010 to 2023. The present review article provides details about the different involvements of signaling pathways in the anticancer mechanisms of andrographolide.
Collapse
Affiliation(s)
- Nur Shahirah Shaharudin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Gurmeet Kaur Surindar Singh
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
- Faculty of Pharmacy, Brain Degeneration and Therapeutics Research Center, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| | - Teh Lay Kek
- Department of Pharmacology and Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
| | - Sadia Sultan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor 42300, Malaysia
- Faculty of Pharmacy, Biotransformation Research Center, Universiti Teknologi MARA, Shah Alam, Selangor 40450, Malaysia
| |
Collapse
|
33
|
Ahmad S, Ahmad MFA, Khan S, Alouffi S, Khan M, Prakash C, Khan MWA, Ansari IA. Exploring aldose reductase inhibitors as promising therapeutic targets for diabetes-linked disabilities. Int J Biol Macromol 2024; 280:135761. [PMID: 39306154 DOI: 10.1016/j.ijbiomac.2024.135761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Diabetes mellitus significantly increases mortality and morbidity rates due to complications like neuropathy and nephropathy. It also leads to retinopathy and cataract formation, which is a leading cause of vision disability. The polyol pathway emerges as a promising therapeutic target among the various pathways associated with diabetic complications. This review focuses on the development of natural and synthetic aldose reductase inhibitors (ARIs), along with recent discoveries in diabetic complication treatment. AR, pivotal in the polyol pathway converting glucose to sorbitol, plays a key role in secondary diabetes complications' pathophysiology. Understanding AR's function and structure lays the groundwork for improving ARIs to mitigate diabetic complications. New developments in ARIs open up exciting possibilities for treating diabetes-related complications. However, it is still challenging to get preclinical successes to clinical effectiveness because of things like differences in how the disease starts, drug specificity, and the complexity of the AR's structure. Addressing these challenges is crucial for developing targeted and efficient ARIs. Continued research into AR's structural features and specific ARIs is essential. Overcoming these challenges could revolutionize diabetic complication treatment, enhance patient outcomes, and reduce the global burden of diabetes-related mortality and morbidity.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| | | | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Saudi Arabia
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia
| | - Mahvish Khan
- Department of Biology, College of Science, University of Hail, 2440, Saudi Arabia
| | - Chander Prakash
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Mohd Wajid Ali Khan
- Department of Chemistry, College of Science, University of Hail, 2440, Saudi Arabia; Medical and Diagnostic Research Center, University of Ha'il, Ha'il-55473, Saudi Arabia
| | - Irfan Ahmad Ansari
- Department of Biology, College of Science, University of Hail, 2440, Saudi Arabia.
| |
Collapse
|
34
|
Liu G, Pei Z, Bai H, Huo L, Deng B, Jiang S, Tao J, Xu L, Li J, Gao F, Mu X. Biomaterial-mediated delivery of traditional Chinese medicine ingredients for spinal cord injury: a systematic review. Front Pharmacol 2024; 15:1461708. [PMID: 39545067 PMCID: PMC11560789 DOI: 10.3389/fphar.2024.1461708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Objective Biomaterials loaded with ingredients derived from traditional Chinese medicine (TCM) are viewed as a promising strategy for treating spinal cord injury (SCI). However, a comprehensive analysis of the existing literature on this topic has not yet been conducted. Therefore, this paper systematically reviews researches related to this approach, aiming to identify gaps and shortcomings in the field. Methods PubMed, EMBASE, Web of Science, Chinese Biomedical Literature, Wanfang, and China National Knowledge Infrastructure (CNKI) were searched for retrieving studies on biomaterials loaded with TCM ingredients published from their inception to October 2024. Two reviewers performed screening of search results, information extraction, and literature quality assessment independently. Results For this systematic review, 41 publications were included. Six TCM ingredients-paclitaxel, curcumin, tetramethylpyrazine, resveratrol, berberine, and tanshinone IIA were combined with biomaterials for treatment of SCI. Biomaterials were categorized into hydrogels, biodegradable scaffolds, nanoparticles, and microspheres according to the type of scaffold. These drug delivery systems exhibit commendable biocompatibility, drug-loading capacity, and drug-release capabilities, and in combination with TCM ingredients, synergistically contribute to anti-oxidative stress, anti-inflammatory, neuroprotective, and anti-apoptotic effects. Conclusion These studies demonstrated the efficacy of biomaterials loaded with TCM ingredients in facilitating motor function recovery and neuroprotection in SCI rats, providing evidence for future research. However, in the complex microenvironment of SCI, achieving the maximum drug loading capacity of TCM ingredients within biomaterials, along with sustained and controlled release to fully exert their pharmacological effects, remains a major challenge for future research. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/ identifier CRD42024505000.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenzhen Pei
- Guang’an Men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Huizhong Bai
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Luyao Huo
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bowen Deng
- Division of Intelligent and Biomechanical System, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Shengyuan Jiang
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingwei Tao
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Xu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyu Li
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Gao
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Mu
- Department of Orthopedics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
36
|
Zeng L, Deng Y, Zhou X, Ji S, Peng B, Lu H, He Q, Bi J, Kwan HY, Zhou L, You Y, Wang M, Zhao X. Simiao pills alleviates renal injury associated with hyperuricemia: A multi-omics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118492. [PMID: 38936642 DOI: 10.1016/j.jep.2024.118492] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/05/2024] [Accepted: 06/23/2024] [Indexed: 06/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Simiao Pills, a classical traditional Chinese medicine prescription recorded in Cheng Fang Bian Du, has been traditionally used to treat hyperuricemia due to its heat-clearing and diuretic properties. Studies have shown that Simiao Pills effectively reduce uric acid levels. However, further research is needed to elucidate the precise composition of Simiao Pills for treating hyperuricemia and their potential pharmacological mechanism. AIM OF THE STUDY This study aimed to investigate the therapeutic effects of Simiao Pills on hyperuricemia, with a particular focus on evaluating their protective role against hyperuricemia-induced renal injury and elucidating the underlying mechanism of action. MATERIALS AND METHODS UPLC-MS/MS was used to identify the components of Simiao Pills. The hyperuricemia model mice were established by intraperitoneal injecting potassium oxonate (PO) and oral administrating hypoxanthine (HX). Network pharmacology, transcriptome, and metabolomics analyses were integrated to explore the mechanism of Simiao Pills in reducing uric acid and protecting the kidney. Mechanistic and functional studies were conducted to validate the potential mechanisms. RESULTS Simiao Pills were found to contain 12 characteristic components. Treatment with Simiao Pills significantly reduced serum uric acid levels and ameliorated hyperuricemia-induced renal injury. Simiao Pills inhibited the enzymatic activities of XOD and XDH, and regulated the uric acid transporters in the kidney and ileum. Transcriptome and network pharmacology analyses highlighted quercetin, berberine, kaempferol, and baicalein as the principal active components of Simiao Pills acting on the kidney during hyperuricemia treatment, primarily impacting fibrosis, apoptosis, and inflammation-related signaling pathways. Metabolomic analysis unveiled 21 differential metabolites and 5 metabolic pathways associated with Simiao Pills against renal injury associated with hyperuricemia. Further experimental results validated that Simiao Pills reduced renal fibrosis, apoptotic renal cells, serum inflammation levels, and inhibited the NF-κB/NLRP3/IL-1β signaling pathway. CONCLUSION This study demonstrated that Simiao Pills significantly reduced serum uric acid levels and improved renal injury by regulating inflammation, apoptosis, and renal fibrosis. These findings have provided a robust scientific pharmacological basis for the use of Simiao Pills in treating hyperuricemia patients.
Collapse
Affiliation(s)
- Liying Zeng
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xinghong Zhou
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Hanqi Lu
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Qiuxing He
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, Guangdong, 523000, China
| | - Jianlu Bi
- Department of Endocrinology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong, 510095, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, China
| | - Lin Zhou
- Department of Endocrinology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China.
| | - Xiaoshan Zhao
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
37
|
Ming Y, He X, Zhao Z, Meng X, Zhu Y, Tan H, Yang G, Hu Y, Zheng L. Nanocarrier-Assisted Delivery of Berberine Promotes Diabetic Alveolar Bone Regeneration by Scavenging ROS and Improving Mitochondrial Dysfunction. Int J Nanomedicine 2024; 19:10263-10282. [PMID: 39399826 PMCID: PMC11471107 DOI: 10.2147/ijn.s475320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose Oxidative stress and mitochondrial dysfunction are potential contributors to the compromised tissue regeneration capacity of alveolar bone in diabetic patients. Berberine, an active plant alkaloid, exhibits multiple pharmacological effects including antioxidation, blood glucose- and blood lipid-lowering properties. However, it remains uncertain whether berberine can improve impaired osteogenesis in type 2 diabetes mellitus (T2DM), and its poor solubility and oral bioavailability also constrain its applications in bone regeneration. Thus, our study aimed to probe the effects of berberine on bone marrow stem cells (BMSCs) in a diabetic microenvironment, with a greater emphasis on developing a suitable nano-delivery system for berberine and assessing its capability to repair diabetic alveolar bone defects. Methods Firstly, BMSCs were exposed to berberine within a high glucose and palmitate (HG+PA) environment. Reactive oxygen species levels, mitochondrial membrane potential, ATP generation, cell apoptosis, and osteogenic potential were subsequently assessed. Next, we explored the regulatory mechanism of autophagy flux in the positive effects of berberine. Furthermore, a nanocarrier based on emulsion electrospinning for sustained local delivery of berberine (Ber@SF/PCL) was established. We assessed its capacity to enhance bone healing in the alveolar bone defect of T2DM rats through micro-computed tomography and histology analysis. Results Berberine treatment could inhibit reactive oxygen species overproduction, mitochondrial dysfunction, apoptosis, and improve osteogenesis differentiation by restoring autophagy flux under HG+PA conditions. Notably, Ber@SF/PCL electrospun nanofibrous membrane with excellent physicochemical properties and good biological safety had the potential to promote alveolar bone remodeling in T2DM rats. Conclusion Our study shed new lights into the protective role of berberine on BMSCs under T2DM microenvironment. Furthermore, berberine-loaded composite electrospun membrane may serve as a promising approach for regenerating alveolar bone in diabetic patients.
Collapse
Affiliation(s)
- Ye Ming
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xinyi He
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Zhenxing Zhao
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Xuehuan Meng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Ye Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Hao Tan
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Guoyin Yang
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Yun Hu
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| | - Leilei Zheng
- College of Stomatology, Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People’s Republic of China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, People’s Republic of China
| |
Collapse
|
38
|
Yang S, Cao SJ, Li CY, Zhang Q, Zhang BL, Qiu F, Kang N. Berberine directly targets AKR1B10 protein to modulate lipid and glucose metabolism disorders in NAFLD. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118354. [PMID: 38762210 DOI: 10.1016/j.jep.2024.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine (BBR) is the main active component from Coptidis rhizome, a well-known Chinese herbal medicine used for metabolic diseases, especially diabetes for thousands of years. BBR has been reported to cure various metabolic disorders, such as nonalcoholic fatty liver disease (NAFLD). However, the direct proteomic targets and underlying molecular mechanism of BBR against NAFLD remain less understood. AIM OF THE STUDY To investigate the direct target and corresponding molecular mechanism of BBR on NAFLD is the aim of the current study. MATERIALS AND METHODS High-fat diet (HFD)-fed mice and oleic acid (OA) stimulated HepG2 cells were utilized to verify the beneficial impacts of BBR on glycolipid metabolism profiles. The click chemistry in proteomics, DARTS, CETSA, SPR and fluorescence co-localization analysis were conducted to identify the targets of BBR for NAFLD. RNA-seq and shRNA/siRNA were used to investigate the downstream pathways of the target. RESULTS BBR improved hepatic steatosis, ameliorated insulin resistance, and reduced TG levels in the NAFLD models. Importantly, Aldo-keto reductase 1B10 (AKR1B10) was first proved as the target of BBR for NAFLD. The gene expression of AKR1B10 increased significantly in the NAFLD patients' liver tissue. We further demonstrated that HFD and OA increased AKR1B10 expression in the C57BL/6 mice's liver and HepG2 cells, respectively, whereas BBR decreased the expression and activities of AKR1B10. Moreover, the knockdown of AKR1B10 by applying shRNA/siRNA profoundly impacted the beneficial effects on the pathogenesis of NAFLD by BBR. Meanwhile, the changes in various proteins (ACC1, CPT-1, GLUT2, etc.) are responsible for hepatic lipogenesis, fatty acid oxidation, glucose uptake, etc. by BBR were reversed by the knockdown of AKR1B10. Additionally, RNA-seq was used to identify the downstream pathway of AKR1B10 by examining the gene expression of liver tissues from HFD-fed mice. Our findings revealed that BBR markedly increased the protein levels of PPARα while downregulating the expression of PPARγ. However, various proteins of PPAR signaling pathways remained unaffected post the knockdown of AKR1B10. CONCLUSIONS BBR alleviated NAFLD via mediating PPAR signaling pathways through targeting AKR1B10. This study proved that AKR1B10 is a novel target of BBR for NAFLD treatment and helps to find new targets for the treatment of NAFLD by using active natural compounds isolated from traditional herbal medicines as the probe.
Collapse
Affiliation(s)
- Sa Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Cong-Yu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo-Li Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Ning Kang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
39
|
Zhi Y, Dong Y, Li X, Zhong W, Lei X, Tang J, Mao Y. Current Progress and Challenges in the Development of Pharmacotherapy for Metabolic Dysfunction-Associated Steatohepatitis. Diabetes Metab Res Rev 2024; 40:e3846. [PMID: 39329241 DOI: 10.1002/dmrr.3846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD), poses a significant threat to global health. Despite extensive research efforts over the past decade, only one drug has received market approval under accelerated pathways. In this review, we summarise the pathogenesis of MASH and present a comprehensive overview of recent advances in phase 2-3 clinical trials targeting MASH. These trials have highlighted considerable challenges, including low response rates to drugs, limitations of current surrogate histological endpoints, and inadequacies in the design of MASH clinical trials, all of which hinder the progress of MASH pharmacotherapy. We also explored the potential of non-invasive tests to enhance clinical trial design. Furthermore, given the strong association between MASLD and cardiometabolic disorders, we advocate for an integrated approach to disease management to improve overall patient outcomes. Continued investigation into the mechanisms and pharmacology of combination therapies may offer valuable insights for developing innovative MASH treatments.
Collapse
Affiliation(s)
- Yang Zhi
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yinuo Dong
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyun Li
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhong
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Lei
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Liu X, Liang Q, Wang Y, Xiong S, Yue R. Advances in the pharmacological mechanisms of berberine in the treatment of fibrosis. Front Pharmacol 2024; 15:1455058. [PMID: 39372209 PMCID: PMC11450235 DOI: 10.3389/fphar.2024.1455058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The rising incidence of fibrosis poses a major threat to global public health, and the continuous exploration of natural products for the effective treatment of fibrotic diseases is crucial. Berberine (BBR), an isoquinoline alkaloid, is widely used clinically for its anti-inflammatory, anti-tumor and anti-fibrotic pharmacological effects. Until now, researchers have worked to explore the mechanisms of BBR for the treatment of fibrosis, and multiple studies have found that BBR attenuates fibrosis through different pathways such as TGF-β/Smad, AMPK, Nrf2, PPAR-γ, NF-κB, and Notch/snail axis. This review describes the anti-fibrotic mechanism of BBR and its derivatives, and the safety evaluation and toxicity studies of BBR. This provides important therapeutic clues and strategies for exploring new drugs for the treatment of fibrosis. Nevertheless, more studies, especially clinical studies, are still needed. We believe that with the continuous implementation of high-quality studies, significant progress will be made in the treatment of fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | - Shuai Xiong
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Sun Z, Zhao T, Bai X, Li H, Gao J, Hao Y, Li Y, Xie Y, Hu A, Huang Q, Liu X, Zhang Y. Berberine Targets PKM2 to Activate the t-PA-Induced Fibrinolytic System and Improves Thrombosis. Pharmaceuticals (Basel) 2024; 17:1219. [PMID: 39338381 PMCID: PMC11434879 DOI: 10.3390/ph17091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Arterial thrombosis, a condition in which thrombi form in arteries, can lead to various acute cardiovascular diseases and impact the quality of life and survival of patients. Berberine (BBR), a quaternary ammonium alkaloid, has been shown to treat these diseases. However, further exploration is needed to understand underlying mechanisms of BBR. METHODS AND RESULTS Rats were administered BBR via intramuscular injection. Then, an FeCl3-coated filter paper was applied to a carotid artery to induce thrombosis. The size of the thrombus and the blood flow velocity were evaluated by carotid ultrasound. The shape of the thrombus was observed using staining and microscopy. The expression levels of mRNA and proteins were verified. Additionally, mass spectrometry and single-cell RNA sequencing analysis were conducted. The administration of BBR resulted in a significant reduction in the thrombus area and an extension of the thrombus-clogging time. Furthermore, BBR administration effectively reversed the decreasing tissue-plasminogen activator (t-PA) expression and alterations in fibrinolysis system of model group. Additionally, the expression of PKM2 was suppressed following BBR administration, and the overexpression of PKM2 inhibited t-PA expression. CONCLUSIONS BBR ameliorates thrombosis by modulating expression of PKM2, subsequently impacting the expression of t-PA within fibrinolytic system. These preliminary findings suggest that BBR could be a potential preventive and therapeutic strategy for arterial thromboembolic diseases.
Collapse
Affiliation(s)
- Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xue Bai
- College of Pharmacy, Hainan University, Haikou 570228, China
| | - Huimin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jin Gao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yutong Hao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yiyang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yanli Xie
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Ange Hu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Qiang Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
42
|
Xu N, Wu J, Wang W, Sun S, Sun M, Bian Y, Zhang H, Liu S, Yu G. Anti-tumor therapy of glycyrrhetinic acid targeted liposome co-delivery of doxorubicin and berberine for hepatocellular carcinoma. Drug Deliv Transl Res 2024; 14:2386-2402. [PMID: 38236508 DOI: 10.1007/s13346-023-01512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
During the development of hepatocellular carcinoma (HCC), hepatic stellate cells undergo activation and transform into cancer-associated fibroblasts (CAFs) due to the influence of tumor cells. The interaction between CAFs and tumor cells can compromise the effectiveness of chemotherapy drugs and promote tumor proliferation, invasion, and metastasis. This study explores the potential of glycyrrhetinic acid (GA)-modified liposomes (lip-GA) as a strategy for co-delivery of berberine (Ber) and doxorubicin (Dox) to treat HCC. The characterizations of liposomes, including particle size, zeta potential, polydispersity index, stability and in vitro drug release, were investigated. The study evaluated the anti-proliferation and anti-migration effects of Dox&Ber@lip-GA on the Huh-7 + LX-2 cell model were through MTT and wound-healing assays. Additionally, the in vivo drug distribution and anti-tumor efficacy were investigated using the H22 + NIH-3T3-bearing mouse model. The results indicated that Dox&Ber@lip-GA exhibited a nanoscale particle size, accumulated specifically in the tumor region, and was efficiently taken up by tumor cells. Compared to other groups, Dox&Ber@lip-GA demonstrated higher cytotoxicity and lower migration rates. Additionally, it significantly reduced the deposition of extracellular matrix (ECM) and inhibited tumor angiogenesis, thereby suppressing tumor growth. In conclusion, Dox&Ber@lip-GA exhibited superior anti-tumor effects both in vitro and in vivo, highlighting its potential as an effective therapeutic strategy for combating HCC.
Collapse
Affiliation(s)
- Na Xu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, China.
| | - Weihao Wang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shujie Sun
- School of Nursing, Weifang University of Science and Technology, Weifang, China
| | - Mengmeng Sun
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Yandong Bian
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Huien Zhang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shuzhen Liu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Guohua Yu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China.
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China.
| |
Collapse
|
43
|
Hajmohammadi Z, Bagher Z, Taghizadeh-Hesary F, Khodadadi M, Masror N, Asghari A, Valipour B, Seifalian A. Nanodelivery of antioxidant Agents: A promising strategy for preventing sensorineural hearing loss. Eur J Pharm Biopharm 2024; 202:114393. [PMID: 38992481 DOI: 10.1016/j.ejpb.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Sensorineural hearing loss (SNHL), often stemming from reactive oxygen species (ROS) generation due to various factors such as ototoxic drugs, acoustic trauma, and aging, remains a significant health concern. Oxidative stress-induced damage to the sensory cells of the inner ear, particularly the non-regenerating hair cells, is a critical pathologic mechanism leading to SNHL. Despite the proven efficacy of antioxidants in mitigating oxidative stress, their clinical application for otoprotection is hindered by the limitations of conventional drug delivery methods. This review highlights the challenges associated with systemic and intratympanic administration of antioxidants, including the blood-labyrinthine barrier, restricted permeability of the round window membrane, and inadequate blood flow to the inner ear. To overcome these hurdles, the application of nanoparticles as a delivery platform for antioxidants emerges as a promising solution. Nanocarriers facilitate indirect drug delivery to the cochlea through the round and oval window membrane, optimising drug absorption while reducing dosage, Eustachian tube clearance, and associated side effects. Furthermore, the development of nanoparticles carrying antioxidants tailored to the intracochlear environment holds immense potential. This literature research aimed to critically examine the root causes of SNHL and ROS overproduction in the inner ear, offering insights into the application of nanoparticle-based drug delivery systems for safeguarding sensorineural hair cells. By focusing on the intricate interplay between oxidative stress and hearing loss, this research aims to contribute to the advancement of innovative therapeutic strategies for the prevention of SNHL.
Collapse
Affiliation(s)
- Zeinab Hajmohammadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.; Department of Tissue Engineering & Regenerative Medicin, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobe Khodadadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Centre (MERC), Tehran, Iran
| | - Niki Masror
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Alimohamad Asghari
- Skull Base Research Centre, The Five Senses Health Institute, School of Medicine, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran.; Department of Anatomical Sciences, Faculty of Medicine,Tabriz University of Medical Sciences, Tabriz, Iran..
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialisation Centre, LBIC, University of London, United Kingdom.
| |
Collapse
|
44
|
Li C, Yin X, Xie C, Zeng J, Song C, Yang G, Zhang J, Chen S, Wei P, Wang Z, Gu M, Li W, An J, Pan Y. Berberine attenuates TNBS-induced colitis in mice by improving the intestinal microbiota. Front Microbiol 2024; 15:1463005. [PMID: 39268532 PMCID: PMC11392431 DOI: 10.3389/fmicb.2024.1463005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Objective To investigate the effects of berberine (BBR) as a treatment on intestinal microecological alterations and enteritis in mice produced by TNBS. Methods There were seven mice per group: seven in the healthy group (Ctrl), seven in the TNBS-induced enteritis group (TNBS), and seven in the berberine treatment group (BBR). The mice were weighed, slaughtered after 7 days, and subjected to high-throughput intestinal microecological analysis by Illumina, as well as haematological detection and imaging evaluation of colon pathology. Results The alterations in colon length, immune cell subpopulations, inflammatory factors, and intestinal microecology of mice induced by BBR were refined using a battery of experiments and observations. According to intestinal microecological studies, BBR can increase the number of bacteria, including Lactobacillus, Verrucomicrobia, Bacteroides, and Akkermansia muciniphila. Conclusion BBR has a therapeutic effect on TNBS-induced colitis in mice, which is associated with modifications in immune cell subpopulations and intestinal microecology. It also offers a viable approach as a prospective probiotic (like Akkermansia muciniphila) to IBD therapy in clinical settings.
Collapse
Affiliation(s)
- Chao Li
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xinxin Yin
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Changpeng Xie
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Jin Zeng
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Chuan Song
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Guibin Yang
- Department of Gastroenterology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jinglei Zhang
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Siai Chen
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Panjian Wei
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Ziyu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei Li
- Department of Gastroenterology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Juan An
- Department of Basic Medical Sciences, Qinghai University Medical College, Xining, China
| | - Yuanming Pan
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
45
|
Sajeev A, Sailo B, Unnikrishnan J, Talukdar A, Alqahtani MS, Abbas M, Alqahtani A, Sethi G, Kunnumakkara AB. Unlocking the potential of Berberine: Advancing cancer therapy through chemosensitization and combination treatments. Cancer Lett 2024; 597:217019. [PMID: 38849013 DOI: 10.1016/j.canlet.2024.217019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Despite considerable progress in cancer treatment options, resistance to chemotherapeutic drugs remains a significant challenge. This review focuses on Berberine (BBR), an isoquinoline alkaloid found in various medicinal plants, which has garnered attention in the field of oncology for its anticancer potential either alone or in combination with other compounds and its ability to modulate chemoresistance, acting as a natural chemosensitizer. BBR's ability to modulate chemoresistance is attributed to its diverse mechanisms of action, including inducing DNA breaks, inhibition of drug efflux pumps, modulation of apoptosis and necroptosis, downregulating multidrug resistance genes, enhancing immune response, suppressing angiogenesis and targeting multiple pathways within cancer cells, including protein kinase B/mammalian target of rapamycin (Akt/mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), poly(ADP-ribose) polymerase (PARP1), janus kinase/signal transducers and activators of transcription (JAK-STAT), Wnt/β-catenin etc. Moreover, BBR, in combination with other compounds, also offers a promising approach to cancer therapy, enforcing its broad-spectrum anticancer effects. Therefore, this review aims to elucidate the intricate mechanism of action of BBR in combinatorial therapy as a potential chemosensitizer to increase the efficiency of several drugs, including cisplatin, doxorubicin, lapatinib, tamoxifen, irinotecan, niraparib, etc. in various cancers. Additionally, this review briefly covers the origin and biological activities of BBR, exploring the specific actions underlying its anticancer effects. Further, pharmacokinetic properties of BBR are also discussed, providing insight into its therapeutic potential and optimization of its use in cancer treatment.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Bethsebie Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ayesha Talukdar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City. P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
46
|
Elvir Lazo OL, White PF, Lee C, Cruz Eng H, Matin JM, Lin C, Del Cid F, Yumul R. Use of herbal medication in the perioperative period: Potential adverse drug interactions. J Clin Anesth 2024; 95:111473. [PMID: 38613937 DOI: 10.1016/j.jclinane.2024.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/26/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Use of herbal medications and supplements has experienced immense growth over the last two decades, with retail sales in the USA exceeding $13 billion in 2021. Since the Dietary Supplement Health and Education Act (DSHEA) of 1994 reduced FDA oversight, these products have become less regulated. Data from 2012 shows 18% of U.S. adults used non-vitamin, non-mineral natural products. Prevalence varies regionally, with higher use in Western states. Among preoperative patients, the most commonly used herbal medications included garlic, ginseng, ginkgo, St. John's wort, and echinacea. However, 50-70% of surgical patients fail to disclose their use of herbal medications to their physicians, and most fail to discontinue them preoperatively. Since herbal medications can interact with anesthetic medications administered during surgery, the American Society of Anesthesiologists (ASA) and the American Association of Nurse Anesthetists (AANA) recommend stopping herbal medications 1-2 weeks before elective surgical procedures. Potential adverse drug effects related to preoperative use of herbal medications involve the coagulation system (e.g., increasing the risk of perioperative bleeding), the cardiovascular system (e.g., arrhythmias, hypotension, hypertension), the central nervous system (e.g., sedation, confusion, seizures), pulmonary (e.g., coughing, bronchospasm), renal (e.g., diuresis) and endocrine-metabolic (e.g., hepatic dysfunction, altered metabolism of anesthetic drugs). During the preoperative evaluation, anesthesiologists should inquire about the use of herbal medications to anticipate potential adverse drug interactions during the perioperative period.
Collapse
Affiliation(s)
| | - Paul F White
- Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; White Mountain Institute, The Sea Ranch, CA 95497, USA.
| | - Carol Lee
- Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Hillenn Cruz Eng
- Department of Anesthesiology, Adena Health System, Chillicothe, OH, USA.
| | - Jenna M Matin
- Tulane University School of Medicine, New Orleans, LA, USA.
| | - Cory Lin
- Department of Anesthesiology and Perioperative Care, University of California Irvine, CA, USA.
| | - Franklin Del Cid
- Department of Anesthesiology, Hospital Escuela, Tegucigalpa, Honduras.
| | - Roya Yumul
- Department of Anesthesiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA; David Geffen School of Medicine-UCLA, Charles R, Drew University of Medicine and Science, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Jin J, Zhang M. Exploring the role of NLRP3 inflammasome in diabetic nephropathy and the advancements in herbal therapeutics. Front Endocrinol (Lausanne) 2024; 15:1397301. [PMID: 39104818 PMCID: PMC11299242 DOI: 10.3389/fendo.2024.1397301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Diabetic nephropathy (DN), a prevalent complication of diabetes mellitus (DM), is clinically marked by progressive proteinuria and a decline in glomerular filtration rate. The etiology and pathogenesis of DN encompass a spectrum of factors, including hemodynamic alterations, inflammation, and oxidative stress, yet remain incompletely understood. The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a critical component of the body's innate immunity, plays a pivotal role in the pathophysiology of DN by promoting the release of inflammatory cytokines, thus contributing to the progression of this chronic inflammatory condition. Recent studies highlight the involvement of the NLRP3 inflammasome in the renal pathology associated with DN. This article delves into the activation pathways of the NLRP3 inflammasome and its pathogenic implications in DN. Additionally, it reviews the therapeutic potential of traditional Chinese medicine (TCM) in modulating the NLRP3 inflammasome, aiming to provide comprehensive insights into the pathogenesis of DN and the current advancements in TCM interventions targeting NLRP3 inflammatory vesicles. Such insights are expected to lay the groundwork for further exploration into TCM-based treatments for DN.
Collapse
Affiliation(s)
- Jiangyuan Jin
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| |
Collapse
|
48
|
Ki MR, Youn S, Kim DH, Pack SP. Natural Compounds for Preventing Age-Related Diseases and Cancers. Int J Mol Sci 2024; 25:7530. [PMID: 39062777 PMCID: PMC11276798 DOI: 10.3390/ijms25147530] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aging is a multifaceted process influenced by hereditary factors, lifestyle, and environmental elements. As time progresses, the human body experiences degenerative changes in major functions. The external and internal signs of aging manifest in various ways, including skin dryness, wrinkles, musculoskeletal disorders, cardiovascular diseases, diabetes, neurodegenerative disorders, and cancer. Additionally, cancer, like aging, is a complex disease that arises from the accumulation of various genetic and epigenetic alterations. Circadian clock dysregulation has recently been identified as an important risk factor for aging and cancer development. Natural compounds and herbal medicines have gained significant attention for their potential in preventing age-related diseases and inhibiting cancer progression. These compounds demonstrate antioxidant, anti-inflammatory, anti-proliferative, pro-apoptotic, anti-metastatic, and anti-angiogenic effects as well as circadian clock regulation. This review explores age-related diseases, cancers, and the potential of specific natural compounds in targeting the key features of these conditions.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
- Institute of Industrial Technology, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Sol Youn
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Dong Hyun Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; (M.-R.K.); (S.Y.); (D.H.K.)
| |
Collapse
|
49
|
Chen S, Wu S, Lin B. The potential therapeutic value of the natural plant compounds matrine and oxymatrine in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1417672. [PMID: 39041001 PMCID: PMC11260750 DOI: 10.3389/fcvm.2024.1417672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Matrine (MT) and Oxymatrine (OMT) are two natural alkaloids derived from plants. These bioactive compounds are notable for their diverse pharmacological effects and have been extensively studied and recognized in the treatment of cardiovascular diseases in recent years. The cardioprotective effects of MT and OMT involve multiple aspects, primarily including antioxidative stress, anti-inflammatory actions, anti-atherosclerosis, restoration of vascular function, and inhibition of cardiac remodeling and failure. Clinical pharmacology research has identified numerous novel molecular mechanisms of OMT and MT, such as JAK/STAT, Nrf2/HO-1, PI3 K/AKT, TGF-β1/Smad, and Notch pathways, providing new evidence supporting their promising therapeutic potential against cardiovascular diseases. Thus, this review aims to investigate the potential applications of MT and OMT in treating cardiovascular diseases, encompassing their mechanisms, efficacy, and safety, confirming their promise as lead compounds in anti-cardiovascular disease drug development.
Collapse
Affiliation(s)
| | | | - Bin Lin
- Department of Cardiovascular Medicine, Wenzhou Central Hospital, Wenzhou, China
| |
Collapse
|
50
|
Sun C, Dong S, Chen W, Li J, Luo E, Ji J. Berberine alleviates Alzheimer's disease by regulating the gut microenvironment, restoring the gut barrier and brain-gut axis balance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155624. [PMID: 38678955 DOI: 10.1016/j.phymed.2024.155624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. Intestinal flora and its metabolism play a significant role in ameliorating central nervous system disorders, including AD, through bidirectional interactions between the gut-brain axis. A naturally occurring alkaloid compound called berberine (BBR) has neuroprotective properties and prevents Aβ-induced microglial activation. Additionally, BBR can suppress the synthesis of Aβ and decrease BACE1 expression. However, it is still unclear if BBR therapy can alleviate AD by changing the gut flora. PURPOSE In this study, we examined whether a partial alleviation of AD could be achieved with BBR treatment and the molecular mechanisms involved. METHODS We did this by analyzing alterations in Aβ plaques, neurons, and related neuroinflammation-related markers in the brain and the transcriptome of the mouse brain. The relationship between the intestinal flora of 5xFAD model mice and BBR treatment was investigated using high-throughput sequencing analysis of 16S rRNA from mouse feces. RESULTS The findings demonstrated that treatment with BBR cleared Aβ plaques, alleviated neuroinflammation, and ameliorated spatial memory dysfunction in AD. BBR significantly alleviated intestinal inflammation, decreased intestinal permeability, and could improve intestinal microbiota composition in 5xFAD mice.
Collapse
Affiliation(s)
- Chunbin Sun
- South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Shanshan Dong
- Department of Traditional Chinese Medicine, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Weiwei Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jin Li
- Department of Traditional Chinese Medicine, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Enli Luo
- Department of Traditional Chinese Medicine, South China Hospital, Medical School, Shenzhen University, Shenzhen 518116, China
| | - Jiacui Ji
- Shandong Mental Health Center, Jinan 250014, China.
| |
Collapse
|