1
|
Li Z, Fan X, Gao F, Pan S, Ma X, Cheng H, Nakatsukasa H, Zhang W, Zhang D. Fructose metabolism and its roles in metabolic diseases, inflammatory diseases, and cancer. MOLECULAR BIOMEDICINE 2025; 6:43. [PMID: 40549205 PMCID: PMC12185857 DOI: 10.1186/s43556-025-00287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 05/27/2025] [Accepted: 06/05/2025] [Indexed: 06/28/2025] Open
Abstract
Fructose, a prevalent hexose, has become a widely used food additive, with its usage rising significantly because of socio-economic advancements and shifts in human dietary habits. Excessive fructose intake has been implicated in obesity, cardiovascular disease, metabolic syndromes, inflammation, and cancer, among other disorders. This review discusses the absorption, distribution, and metabolism of fructose and the links between fructose metabolism and major metabolic pathways. The role of fructose in metabolic diseases, including metabolic dysfunction-associated fatty liver disease, hyperinsulinemia, and hyperuricemia, is also highlighted. Furthermore, the role of fructose in the development of chronic inflammation, including gut inflammation, liver inflammation, and neuroinflammation, is discussed. Lastly, in the context of cancer development, this review summarizes the dual role of fructose in tumors, both pro- and anti-tumor effects. Future studies on the role of fructose in cancer should focus on the complexity of physiological and pathological conditions, such as the specific tumor microenvironment and metabolic status. Fructose has been shown to induce metabolic reprogramming of multiple immune cells and increase pro-inflammatory immune responses; therefore, inhibiting or promoting its metabolism may regulate immune responses. And targeting fructose metabolism may be a promising approach to treating metabolic diseases, inflammation, and cancer.
Collapse
Affiliation(s)
- Zhenhong Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
- Center for Immunology and Hematology, Department of Biotherapy and Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Xinzou Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Fan Gao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Shengguang Pan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Xiao Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China
| | - Hiroko Nakatsukasa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Wei Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
- Center for Immunology and Hematology, Department of Biotherapy and Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
- Center for Immunology and Hematology, Department of Biotherapy and Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, Chengdu, 610041, China.
| |
Collapse
|
2
|
Sarkar S, Ghosh S, Biswas M. Naringin ameliorates high-fat diet-induced hepatotoxicity and dyslipidemia in experimental rat model via modulation of anti-oxidant enzymes, AMPK and SERBP-1c signaling pathways. Toxicol Rep 2025; 14:102062. [PMID: 40520525 PMCID: PMC12167040 DOI: 10.1016/j.toxrep.2025.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/14/2025] [Accepted: 05/28/2025] [Indexed: 06/18/2025] Open
Abstract
High-fat diet causes elevation of steatosis, dyslipidemia and oxidative stress which eventually leads to hepatic injury in the form of non-alcoholic fatty liver disease (NAFLD). Naringin, a natural flavonoid, having tremendous potentiality including antioxidant, anti-inflammatory, hypolipidemic role. Based on this proposition, we investigated the role of naringin in hepatotoxicity and its possible underlying mechanism caused by high-fat diet for prolonged time. Fifteen Wistar rats were divided into three groups: Group A (CON) received normal diet; Group B (HFD) was administered with high-fat diet for 16 weeks; and Group C (THN) was treated with naringin (100 mg/kg B.W.) for last 6 weeks after induction of obesity. After autopsy, various parameters were studied like gravimetry, serum biochemistry, ROS activity, anti-oxidant enzymes, genes expression (AMPK and SREBP-1C), histochemistry, histopathology and ultrastructure of hepatic tissue. In HFD group, Masson's trichome stain intensity increased 6.8-folds, indicating the onset of liver fibrosis; ROS generation and lipid peroxidation (TBARS) were significantly (p < 0.01) increased, whereas SOD and CAT were decreased by 36.7 % and 49.7 %, respectively. Furthermore, these parameters were remained normal in THN group. Besides, HFD group displayed extreme elevation in hepatic SREBP-1C expression (147 %) and downregulation of AMPK gene (77 %) compared to control. The ultrastructural study revealed most important and new insight of this study where HFD induced extreme reticule stress in hepatic tissue which was significantly improved by the treatment of naringin. These findings demonstrate that the naringin may be used as a potential therapeutic agent to combat obesity related hyperlipidemia and NAFLD.
Collapse
Affiliation(s)
- Sweata Sarkar
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Sanjib Ghosh
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Maharaj Biswas
- Endocrinology Laboratory, Department of Zoology, University of Kalyani, Kalyani, West Bengal 741235, India
| |
Collapse
|
3
|
Feng ZT, Fan SY, Pan XY, Kong LY, Luo JG. Development of new genipin derivatives as potential NASH treatments: Design, synthesis and action mechanism. Bioorg Chem 2025; 159:108403. [PMID: 40147227 DOI: 10.1016/j.bioorg.2025.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Nonalcoholic steatohepatitis (NASH) is a multifaceted liver disease. Endoplasmic reticulum stress (ERS), a key driver in NASH pathogenesis, triggers metabolic irregularities, liver steatosis, and inflammation. Genipin, an iridoid from the traditional Chinese medicine Gardenia jasminoides, has demonstrated significant effects against ERS. In the current work, 33 new genipin derivatives were designed and synthesized to evaluate their potential to treat NASH. Notably, G15 emerged as the most potent candidate, significantly attenuating lipid accumulation induced by free fatty acids (FFAs) in L-02 cells. Further investigation revealed that G15's mitigation of ERS was primarily achieved by suppressing the levels of inositol-requiring enzyme 1 (IRE1). Western blot analysis confirmed that G15 effectively down-regulated IRE1 protein expression and decreased the expression levels of its downstream X-box binding protein 1 (XBP1) and signal transducer and activator of transcription 3 (STAT3) proteins, thereby reducing cellular lipid accumulation. In addition, G15 treatment inhibited FFA-induced nitric oxide (NO) production in a concentration-dependent manner and suppressed the secretion of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α. Collectively, these findings underscore that G15 has the potential to be a leading candidate for the treatment of NASH by down-regulating the IRE1/XBP1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zi-Tong Feng
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Shi-Ying Fan
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xing-Yu Pan
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
4
|
Lim DS, Ahn SH, Gwon HJ, Cho W, Abd El-Aty AM, Aydemir HA, Sharma N, Hong SA, Jung TW, Jeong JH. Resolvin D5: A lipid mediator with a therapeutic effect on hepatic steatosis through SIRT6/autophagy. Tissue Cell 2025; 96:102980. [PMID: 40398078 DOI: 10.1016/j.tice.2025.102980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/06/2025] [Accepted: 05/16/2025] [Indexed: 05/23/2025]
Abstract
Resolvin D5 (RD5), a lipid mediator derived from DHA via 5-lipoxygenase signaling, has been shown to resolve inflammation in various disease models. This study aimed to investigate the role of RD5 in the development of hepatic steatosis in individuals with obesity and explore the detailed mechanisms involved. Protein expression was evaluated via Western blot analysis, whereas hepatic lipid deposition was examined via Oil Red O staining and triglyceride quantification. Autophagosomes were detected via MDC staining. Our findings indicated that RD5 treatment normalized lipogenic lipid accumulation, fatty acid uptake, oxidation, apoptosis, and endoplasmic reticulum (ER) stress in palmitate-treated primary hepatocytes. As a cytoprotective signaling pathway, RD5 treatment increased the expression of SIRT6 and autophagy markers, such as those involved in LC3 conversion and p62 degradation. The beneficial effects of RD5 on hepatic lipid metabolism, apoptosis, and ER stress were negated by SIRT6 small interfering RNA or 3-methyladenine, an inhibitor of autophagy. Furthermore, RD5 administration decreased hepatic steatosis, apoptosis, and ER stress in the livers of high-fat diet (HFD)-fed mice. In line with the in vitro results, RD5 treatment elevated SIRT6 and autophagy levels in the livers of HFD-fed mice. These novel findings suggest that RD5 improves hepatic lipid metabolism, apoptosis and ER stress through SIRT6/autophagy signaling, thereby attenuating hepatic steatosis. RD5 may have therapeutic potential for treating nonalcoholic fatty liver disease with minimal side effects.
Collapse
Affiliation(s)
- Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Sung Ho Ahn
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| | - Haci Ahmet Aydemir
- Department of Family Medicine, Erzurum Regional Training and Research Hospital, Erzurum 25000, Turkey
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Park S, Jeong I, Kim OK. Ginsenoside Rh2 Mitigates Endoplasmic Reticulum Stress-Induced Apoptosis and Inflammation and Through Inhibition of Hepatocyte-Macrophage Inflammatory Crosstalk. Nutrients 2025; 17:1682. [PMID: 40431422 PMCID: PMC12114235 DOI: 10.3390/nu17101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum stress (ERS) contributes to hepatocyte inflammation, triggered by prolonged exposure to lipotoxicity, and promotes non-alcoholic fatty liver disease (NAFLD) progression by recruiting and activating hepatic macrophages, which accelerate fibrosis and exacerbate disease progression. Here, we aimed to evaluate the therapeutic potential of ginsenoside Rh2 (Rh2) in a cell model of NAFLD induced by the ERS inducer thapsigargin (THA). Methods: HepG2 cells were treated with THA to induce ERS and mimic NAFLD conditions. The effects of Rh2 on ERS, lipid accumulation, and apoptosis were assessed in HepG2 cells. Additionally, THP-1 cells were used to investigate macrophage activation upon exposure to conditioned medium (CM) from THA- and Rh2-treated HepG2 cells. Gene and protein expression of inflammatory and lipid synthesis markers were analyzed, as well as M1/M2 macrophage polarization markers. Results: Rh2 inhibited THA-induced apoptosis, ERS, and lipid accumulation in HepG2 cells. It also reduced the expression of lipid synthesis genes (SREBF1, FAS) and inflammatory markers (IL-6, IL-1β, TNF-α, MCP-1). CM from Rh2-treated HepG2 cells suppressed macrophage activation in THP-1 cells, decreased M1 polarization markers (CD80, CD86), and increased M2 markers (CD163, Arg1, MRC-1). Conclusions: These results suggest that Rh2 effectively suppresses inflammation and lipid storage in ERS-induced HepG2 cells while modulating the crosstalk between hepatocytes and macrophages. These findings underscore the potential of Rh2 as a promising therapeutic agent for the prevention and early intervention of NAFLD progression.
Collapse
Affiliation(s)
- Shinjung Park
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea; (S.P.); (I.J.)
| | - Inae Jeong
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea; (S.P.); (I.J.)
| | - Ok-Kyung Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea; (S.P.); (I.J.)
- Human Ecology Research Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Carballo-López GI, Ojeda-González J, Martínez-García KD, Cervantes-Luevano KE, Moreno-Ulloa A, Castro-Ceseña AB. Enhanced anti-inflammatory and anti-fibrotic effects of nanoparticles loaded with a combination of Aloe vera- Moringa oleifera extracts. Mol Omics 2025; 21:185-201. [PMID: 39878065 DOI: 10.1039/d4mo00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Metabolic associated steatohepatitis characterized by lipid accumulation, inflammation and fibrosis, is a growing global health issue, contributing to severe liver-related mortality. With limited effective treatments available, there is an urgent need for novel therapeutic strategies. Moringa oleifera, rich in antioxidants, offers potential for combating steatohepatitis, but its cytotoxicity presents challenges. Aloe vera, renowned for its cytocompatibility and anti-inflammatory effects, shows promise in mitigating these risks. Using infrared spectrometry and mass spectrometry, we identified 1586 metabolites from both plants across 84 chemical classes. By encapsulating these phytochemicals in nanoparticles, we achieved increased solubility, cytocompatibility, and gene modulation to hepatic stellate cells affected by steatohepatitis. Chemoinformatic analysis revealed bioactive metabolites, including hesperetin analogs, known to inhibit TGF-β. Our results demonstrate that these nanoparticles not only improved gene expression modulation related to metabolic associated steatohepatitis, particularly TGF-β and COL1A1, but also outperformed free compounds, highlighting their potential as a novel therapeutic approach.
Collapse
Affiliation(s)
- Gabriela I Carballo-López
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Jhordan Ojeda-González
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Kevin D Martínez-García
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Karla E Cervantes-Luevano
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Aldo Moreno-Ulloa
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
| | - Ana B Castro-Ceseña
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico.
- CONAHCYT - Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, Baja California, Mexico
| |
Collapse
|
7
|
Cho W, Choi SW, Lim DS, Gwon HJ, Abd El-Aty AM, Ahmet Aydemir H, Hong SA, Jeong JH, Jung TW. Donepezil alleviates hepatic steatosis by mitigating ER stress via the AMPK/autophagy pathway. Mol Cell Endocrinol 2025; 601:112523. [PMID: 40118333 DOI: 10.1016/j.mce.2025.112523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/18/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
Donepezil (Do), a drug known for its ability to reduce neuronal inflammation and for its use in the treatment of Alzheimer's disease, has shown promise in combating hepatic lipid accumulation in hyperlipidemic conditions and endoplasmic reticulum (ER) stress, a factor associated with alterations in hepatic lipid metabolism. However, the mechanisms by which these problems are alleviated have not been fully elucidated. In this study, we investigated the effects of Do on hepatic lipid metabolism through both in vitro and in vivo studies. We examined the expression of proteins associated with lipogenesis and ER stress via immunoblot analysis, and hepatic lipid accumulation was assessed via oil red O staining. In addition, autophagosome formation was analyzed by counting MDC-positive cells. Our results demonstrated that Do treatment improved hepatic lipid metabolism and reduced the expression of ER stress markers, resulting in decreased lipogenic lipid deposition and apoptosis in the hepatocytes and livers of hyperlipidemic mice. Mechanistically, knocking down AMPK or inhibiting autophagy with 3-methyladenine (3 MA) attenuated the effects of Do on palmitate-exposed hepatocytes. These results suggest that Do alleviates hepatic ER stress via the AMPK/autophagy pathway and AMPK-mediated fatty acid oxidation, resulting in improved hepatic lipid metabolism and reduced hepatic steatosis and apoptosis. Our study provides evidence that Do may be a promising therapeutic approach for Alzheimer's disease patients with metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| | - Hacı Ahmet Aydemir
- Department of Family Medicine, Erzurum Regional Training and Research Hospital, Erzurum 25000, Turkey; Dr. Filiz Dolunay Family Health Center Unit Number:59, Yakutiye, Erzurum, Turkey
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Bazina I, Šešelja K, Pirman T, Horvatić A, Erman A, Mihalj M, Baus Lončar M. The Effect of Tff3 Deficiency on the Liver of Mice Exposed to a High-Fat Diet. Biomedicines 2025; 13:1024. [PMID: 40426854 PMCID: PMC12108639 DOI: 10.3390/biomedicines13051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Trefoil factor protein 3 (Tff3) is a small peptide known as an epithelial tissue-protective protein, and it is also identified as a novel participant in complex metabolic processes. In numerous mouse models of obesity, Tff3 has been found to be downregulated in the liver and its overexpression is associated with an improvement in metabolic parameters. These mouse models with metabolic phenotypes have a multigenic background, with numerous genes contributing to their phenotype. To elucidate the role of Tff3 protein in metabolic events, we developed a mouse model with Tff3 deficiency on a C57Bl6N background without other intrinsic mutations affecting metabolism. Methods: We investigated the effects of a high-fat diet (9 weeks) on the liver of Tff3 protein-deficient mice of both sexes and the corresponding wild type. We investigated the general metabolic status of the animals and analysed the expression of markers of relevant pathophysiological pathways in the liver. Results:Tff3-deficient mice had significantly lower body weight. They also had a comparable total liver fat content but it was distributed in small vesicles, indicating the protective effect of Tff3 deficiency. The results of molecular analysis showed no major gene expression changes in inflammation-, ER- and oxidative stress-, and lipid metabolism-related genes. Tff3-/- males had reduced expression of Il1α and Cxcr7 genes in the liver and no global proteome changes; Tff3-deficient females had decreased expression of Irs2 and Atf4 genes and total proteome comparison showed decreased levels of proteins related to ribosome biosynthesis and the inhibition of acetylation. Conclusions: Our results demonstrate that Tff3 deficiency reduces lipid accumulation in the liver and we set the direction for further studies aimed at uncovering the exact molecular mechanisms in other organs. Furthermore, it emphasises the need to include both sexes in future research, as the observed phenotype differs significantly depending on sex.
Collapse
Affiliation(s)
- Iva Bazina
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Kate Šešelja
- Division of Molecular Medicine, Ruđer Boškovic Institute, Bjenička 54, 10000 Zagreb, Croatia;
| | - Tatjana Pirman
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia;
| | - Anita Horvatić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Martina Mihalj
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia;
- Department of Physiology and Immunology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Mirela Baus Lončar
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
9
|
Chen Y, Bian S, Le J. Molecular Landscape and Diagnostic Model of MASH: Transcriptomic, Proteomic, Metabolomic, and Lipidomic Perspectives. Genes (Basel) 2025; 16:399. [PMID: 40282358 PMCID: PMC12026639 DOI: 10.3390/genes16040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), a progressive form of fatty liver disease, presents a significant global health challenge. Despite extensive research, fully elucidating its complex pathogenesis and developing accurate non-invasive diagnostic tools remain key goals. Multi-omics approaches, integrating data from transcriptomics, proteomics, metabolomics, and lipidomics, offer a powerful strategy to achieve these aims. This review summarizes key findings from multi-omics studies in MASH, highlighting their contributions to our understanding of disease mechanisms and the development of improved diagnostic models. Transcriptomic studies have revealed widespread gene dysregulation affecting lipid metabolism, inflammation, and fibrosis, while proteomics has identified altered protein expression patterns and potential biomarkers. Metabolomic and lipidomic analyses have further uncovered significant changes in various metabolites and lipid species, including ceramides, sphingomyelins, phospholipids, and bile acids, underscoring the central role of lipid dysregulation in MASH. These multi-omics findings have been leveraged to develop novel diagnostic models, some incorporating machine learning algorithms, with improved accuracy compared to traditional methods. Further research is needed to validate these findings, explore the complex interplay between different omics layers, and translate these discoveries into clinically useful tools for improved MASH diagnosis and prognosis.
Collapse
Affiliation(s)
- Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shuixiu Bian
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jiamei Le
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.C.); (S.B.)
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
10
|
Liu M, Zhou M, Ren X, Xie Y. Establishment and application of murine models of alcoholic liver disease: A narrative review. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:271-284. [PMID: 39715699 DOI: 10.1111/acer.15520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024]
Abstract
In recent years, there have been significant advances in pathological research on alcoholic liver disease (ALD), with suitable animal models making a significant contribution. However, the currently established animal ALD models still have some significant drawbacks, especially the inability to induce the entire human ALD lineage, which may be related to physiological differences between animals and humans. This review comprehensively summarized the most widely used experimental models of ALD, including voluntary drinking, Lieber-DeCarli, Meadows-Cook, Tsukamoto-French, NIAAA, and the "second hit" model. "Second hit" refers to an additional factor that damages the liver. There are various "second hit" models that fall into two main categories: particular diets and drugs. These models can either simulate human drinking patterns more accurately or produce varying degrees of ALD without significantly increasing animal mortality. We introduced the established method of the original models, discussed the advantages and disadvantages of the existing models from the aspects of operability and practicality, and provided existing improvement methods, hoping to provide a reference for future researchers.
Collapse
Affiliation(s)
- Mengsi Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Mingying Zhou
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Xueyi Ren
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| | - Yandi Xie
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, Beijing, China
| |
Collapse
|
11
|
Park SY, Cho Y, Son SM, Hur JH, Kim Y, Oh H, Lee HY, Jung S, Park S, Kim IY, Lee SJ, Choi CS. Activin E is a new guardian protecting against hepatic steatosis via inhibiting lipolysis in white adipose tissue. Exp Mol Med 2025; 57:466-477. [PMID: 39948368 PMCID: PMC11873131 DOI: 10.1038/s12276-025-01403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/21/2024] [Accepted: 12/11/2024] [Indexed: 03/04/2025] Open
Abstract
Hepatic endoplasmic reticulum (ER) stress is implicated in the development of steatosis and its progression to nonalcoholic steatohepatitis (NASH). The ER in the liver can sustain metabolic function by activating defense mechanisms that delay or prevent the progression of nonalcoholic fatty liver disease (NAFLD). However, the precise mechanisms by which the ER stress response protects against NAFLD remain largely unknown. Recently, activin E has been linked to metabolic diseases such as insulin resistance and NAFLD. However, the physiological conditions and regulatory mechanisms driving hepatic Inhbe expression (which encodes activin E) as well as the metabolic role of activin E in NAFLD require further investigation. Here we found that hepatic Inhbe expression increased under prolonged fasting and ER stress conditions, which was mediated by ATF4, as determined by promoter analysis in a mouse model. Consistently, a positive correlation between INHBE and ATF4 expression levels in relation to NAFLD status was confirmed using public human NAFLD datasets. To investigate the role of activin E in hepatic steatosis, we assessed the fluxes of the lipid metabolism in an Inhbe-knockout mouse model. These mice displayed a lean phenotype but developed severe hepatic steatosis under a high-fat diet. The deficiency of Inhbe resulted in increased lipolysis in adipose tissue, leading to increased fatty acid influx into the liver. Conversely, hepatic overexpression of Inhbe ameliorated hepatic steatosis by suppressing lipolysis in adipose tissue through ALK7-Smad signaling. In conclusion, activin E serves as a regulatory hepatokine that prevents fatty acid influx into the liver, thereby protecting against NAFLD.
Collapse
Affiliation(s)
- Shi-Young Park
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Yoonil Cho
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Sae-Mi Son
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
| | - Jang Ho Hur
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Yeongmin Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, Republic of Korea
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
| | - Hyunhee Oh
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Gachon Biomedical Convergence Institute, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Hui-Young Lee
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Sungwon Jung
- Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea
- Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Sanghee Park
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Department of Exercise Rehabilitation, Gachon University, Incheon, Republic of Korea
| | - Il-Young Kim
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Integrative Metabolic Fluxomics Lab, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Cheol Soo Choi
- Korea Mouse Metabolic Phenotyping Center, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.
- Division of Molecular Medicine, Department of Medicine, Gachon University College of Medicine, Incheon, Republic of Korea.
- Endocrinology, Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
12
|
Abdou HM, Elmageed GMA, Hussein HK, Yamari I, Chtita S, El-Samad LM, Hassan MA. Antidiabetic Effects of Quercetin and Silk Sericin in Attenuating Dysregulation of Hepatic Gluconeogenesis in Diabetic Rats Through Potential Modulation of PI3K/Akt/FOXO1 Signaling: In Vivo and In Silico Studies. J Xenobiot 2025; 15:16. [PMID: 39846548 PMCID: PMC11755466 DOI: 10.3390/jox15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/31/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is an intricate disease correlated with many metabolic deregulations, including disordered glucose metabolism, oxidative stress, inflammation, and cellular apoptosis due to hepatic gluconeogenesis aberrations. However, there is no radical therapy to inhibit hepatic gluconeogenesis disturbances yet. We thus sought to probe the effectiveness and uncover the potential mechanism of quercetin (QCT) and silk sericin (SS) in mitigating hyperglycemia-induced hepatic gluconeogenesis disorder, which remains obscure. Administration of QCT and SS to diabetic male albino rats markedly restored the levels of glucose, insulin, advanced glycation end-products (AGEs), liver function enzymes, alpha-fetoprotein (AFP), globulin, and glycogen, in addition to hepatic carbohydrate metabolizing enzymes and gluconeogenesis in comparison with diabetic rats. Furthermore, treatment with QCT and SS modulated hepatic malondialdehyde (MD), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), nitric oxide, tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β), in addition to serum interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), implying their effectiveness in safeguarding cells against oxidative impairment and inflammation. Remarkably, QCT and SS treatments led to the upregulation of expression of phosphatidylinositol 3-kinases (PI3K), phospho-Akt (p-Akt), and forkhead box-O1 (FOXO1) genes in hepatic tissues compared to diabetic rats, orchestrating these singling pathways for curtailing hyperglycemia and pernicious consequences in hepatic tissues. Importantly, immunohistochemical investigations exhibited downregulation of caspase-3 expression in rats treated with QCT and SS compared to diabetic animals. Beyond that, the histopathological results of hepatic tissues demonstrated notable correlations with biochemical findings. Interestingly, the in silico results supported the in vivo findings, showing notable binding affinities of QCT and SS to PI3K, GPx, and TNF-α proteins. These results imply that QCT and SS could mitigate oxidative stress and inflammation and regulate hepatic gluconeogenesis in diabetic rats. However, QCT revealed greater molecular interactions with the studied proteins than SS. Overall, our results emphasize that QCT and SS have significant therapeutic effects on attenuating hyperglycemia-induced hepatic gluconeogenesis, with QCT showing superior effectiveness.
Collapse
Affiliation(s)
- Heba M. Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (H.M.A.); (G.M.A.E.); (H.K.H.); (L.M.E.-S.)
| | - Ghada M. Abd Elmageed
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (H.M.A.); (G.M.A.E.); (H.K.H.); (L.M.E.-S.)
| | - Hussein K. Hussein
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (H.M.A.); (G.M.A.E.); (H.K.H.); (L.M.E.-S.)
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca P. O. Box 7955, Morocco; (I.Y.); (S.C.)
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca P. O. Box 7955, Morocco; (I.Y.); (S.C.)
| | - Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (H.M.A.); (G.M.A.E.); (H.K.H.); (L.M.E.-S.)
| | - Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| |
Collapse
|
13
|
Gulzar F, Chhikara N, Kumar P, Ahmad S, Yadav S, Gayen JR, Tamrakar AK. ER stress aggravates NOD1-mediated inflammatory response leading to impaired nutrient metabolism in hepatoma cells. Biochem Biophys Res Commun 2024; 735:150827. [PMID: 39423570 DOI: 10.1016/j.bbrc.2024.150827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Nucleotide-binding Oligomerization Domain 1 (NOD1) is a cytosolic pattern recognition receptor that senses specific bacterial peptidoglycan moieties, leading to the induction of inflammatory response. Besides, sensing peptidoglycan, NOD1 has been reported to sense metabolic disturbances including the ER stress-induced unfolded protein response (UPR). However, the underpinning crosstalk between the NOD1 activating microbial ligands and the metabolic cues to alter metabolic response is not yet comprehensively defined. Here, we show that underlying ER stress aggravated peptidoglycan-induced NOD1-mediated inflammatory response in hepatoma cells. The HepG2 cells, undergoing ER stress induced by thapsigargin exhibited an amplified inflammatory response induced by peptidoglycan ligand of NOD1 (i.e. iE-DAP). This aggravated inflammatory response disrupted lipid and glucose metabolism, characterized by de novo lipogenic response, and increased gluconeogenesis in HepG2 cells. Further, we characterized that the aggravation of NOD1-induced inflammatory response was dependent on inositol-requiring enzyme 1-α (IRE1-α) and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) activation, in conjunction with calcium flux. Altogether, our findings suggest that differential UPR activation makes liver cells more sensitive towards bacterial-derived ligands to pronounce inflammatory response in a NOD1-dependent manner that impairs hepatic nutrient metabolism.
Collapse
Affiliation(s)
- Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Nikita Chhikara
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Shubhi Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Jiaur R Gayen
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, UP, India.
| |
Collapse
|
14
|
Ahn SH, Lee YJ, Lim DS, Cho W, Gwon HJ, Abd El-Aty AM, Jeong JH, Jung TW. Upadacitinib counteracts hepatic lipid deposition via the repression of JAK1/STAT3 signaling and AMPK/autophagy-mediated suppression of ER stress. Biochem Biophys Res Commun 2024; 735:150829. [PMID: 39406018 DOI: 10.1016/j.bbrc.2024.150829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
Upadacitinib (UPA) has been utilized to treat conditions such as rheumatoid arthritis, psoriatic arthritis, atopic dermatitis, ulcerative colitis, Crohn's disease, ankylosing spondylitis, and axial spondyloarthritis by modulating inflammation via the JAK pathway. However, its impact on hepatic lipogenesis remains insufficiently studied. This research evaluated protein expression through Western blotting, lipid accumulation with oil red O staining, autophagosomes in hepatocytes via MDC staining, and hepatic apoptosis via cell viability and caspase 3 activity assays. This study aimed to explore the effects of UPA on hepatic lipogenesis and the underlying molecular mechanisms in in vitro models of hepatic steatosis. These findings demonstrated that UPA reduced lipid deposition, apoptosis, and ER stress in palmitate-treated hepatocytes. UPA treatment inhibited phosphorylated JAK1 and STAT3 while promoting the expression of phosphorylated AMPK and autophagy markers. AMPK siRNA negated the effects of UPA on lipogenic lipid deposition, apoptosis, JAK1/STAT3 phosphorylation, and ER stress. These results reveal that UPAmitigates ER stress through the JAK1/STAT3/AMPK pathway, thereby reducing lipid deposition and apoptosis in hyperlipidemic hepatocytes, supporting its potential as a therapeutic strategy for treating hepatic steatosis in obese individuals.
Collapse
Affiliation(s)
- Sung Ho Ahn
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Jik Lee
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Gwon HJ, Chung YH, Lim DS, Cho W, Choi SW, Abd El-Aty AM, Song JH, Shin YK, Jeong JH, Jung TW. Uvaol ameliorates lipid deposition in hyperlipidemic hepatocytes by suppressing protein-tyrosine phosphatase 1B/ER stress signaling. Biochem Biophys Res Commun 2024; 730:150387. [PMID: 39002201 DOI: 10.1016/j.bbrc.2024.150387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Uvaol (UV), a pentacyclic triterpene found in olives and virgin olive oil, is known for its anti-inflammatory and antioxidant effects in various disease models. While olive oil is reported to reduce obesity and insulin resistance, the specific impact of UV on liver lipid metabolism and its molecular mechanisms are not fully understood. In this study, hepatic lipid accumulation was measured using oil red O staining, and protein expression levels in liver cells were assessed via Western blot analysis. Apoptosis was evaluated through cell viability and caspase 3 activity assays. UV treatment reduced lipid accumulation, fatty acid uptake, apoptosis, and ER stress in palmitate-treated liver cells. Additionally, UV enhanced fatty acid oxidation. Mechanistically, increased SIRT6 expression and autophagy were observed in UV-treated cells. SIRT6-targeted siRNA or 3-methyladenine blocked the effects of UV in hyperlipidemic cells. In conclusion, UV improves SIRT6/autophagy signaling, reducing lipid deposition and apoptosis in liver cells under high lipid conditions. This in vitro study provides strong evidence for potential therapeutic strategies for hepatic steatosis.
Collapse
Affiliation(s)
- Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Jin-Ho Song
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Yong Kyoo Shin
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
17
|
Cho W, Oh H, Abd El-Aty AM, Özten Ö, Jeong JH, Jung TW. Interleukin-27 as a novel player in alleviating hepatic steatosis: Mechanistic insights from an in vitro analysis. Biochem Biophys Res Commun 2024; 703:149671. [PMID: 38367515 DOI: 10.1016/j.bbrc.2024.149671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Abstract
Interleukin-27 (IL-27) is a recently discovered cytokine that has been implicated in inflammatory and metabolic conditions, such as atherosclerosis and insulin resistance. However, the mechanisms by which IL-27 attenuates hepatic lipid accumulation in hyperlipidemic conditions and counteracts endoplasmic reticulum (ER) stress, a known risk factor for impaired hepatic lipid metabolism, have not been elucidated. This in vitro study was designed to examine the effect of IL-27 on hepatic lipid metabolism. The study included the evaluation of lipogenesis-associated proteins and ER stress markers by Western blotting, the determination of hepatic lipid accumulation by Oil Red O staining, and the examination of autophagosome formation by MDC staining. The results showed that IL-27 treatment reduced lipogenic lipid deposition and the expression of ER stress markers in cultured hepatocytes exposed to palmitate. Moreover, treatment with IL-27 suppressed CD36 expression and enhanced fatty acid oxidation in palmitate-treated hepatocytes. The effects of IL-27 on hyperlipidemic hepatocytes were attenuated when adenosine monophosphate-activated protein kinase (AMPK) or 3-methyladenine (3 MA) were inhibited by small interfering RNA (siRNA). These results suggest that IL-27 attenuates hepatic ER stress and fatty acid uptake and stimulates fatty acid oxidation via AMPK/autophagy signaling, thereby alleviating hepatic steatosis. In conclusion, this study identified IL-27 as a promising therapeutic target for nonalcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey.
| | - Ömer Özten
- Department of Pharmacy Services, Vocational School of Health Services, Bayburt University, Bayburt, 69010, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Tian Y, Jellinek MJ, Mehta K, Seok SM, Kuo SH, Lu W, Shi R, Lee R, Lau GW, Kemper JK, Zhang K, Ford DA, Wang B. Membrane phospholipid remodeling modulates nonalcoholic steatohepatitis progression by regulating mitochondrial homeostasis. Hepatology 2024; 79:882-897. [PMID: 36999536 PMCID: PMC10544743 DOI: 10.1097/hep.0000000000000375] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/01/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND AND AIMS NASH, characterized by inflammation and fibrosis, is emerging as a leading etiology of HCC. Lipidomics analyses in the liver have shown that the levels of polyunsaturated phosphatidylcholine (PC) are decreased in patients with NASH, but the roles of membrane PC composition in the pathogenesis of NASH have not been investigated. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), a phospholipid (PL) remodeling enzyme that produces polyunsaturated PLs, is a major determinant of membrane PC content in the liver. APPROACH AND RESULTS The expression of LPCAT3 and the correlation between its expression and NASH severity were analyzed in human patient samples. We examined the effect of Lpcat3 deficiency on NASH progression using Lpcat3 liver-specific knockout (LKO) mice. RNA sequencing, lipidomics, and metabolomics were performed in liver samples. Primary hepatocytes and hepatic cell lines were used for in vitro analyses. We showed that LPCAT3 was dramatically suppressed in human NASH livers, and its expression was inversely correlated with NAFLD activity score and fibrosis stage. Loss of Lpcat3 in mouse liver promotes both spontaneous and diet-induced NASH/HCC. Mechanistically, Lpcat3 deficiency enhances reactive oxygen species production due to impaired mitochondrial homeostasis. Loss of Lpcat3 increases inner mitochondrial membrane PL saturation and elevates stress-induced autophagy, resulting in reduced mitochondrial content and increased fragmentation. Furthermore, overexpression of Lpcat3 in the liver ameliorates inflammation and fibrosis of NASH. CONCLUSIONS These results demonstrate that membrane PL composition modulates the progression of NASH and that manipulating LPCAT3 expression could be an effective therapeutic for NASH.
Collapse
Affiliation(s)
- Ye Tian
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew J. Jellinek
- Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO, USA
| | - Kritika Mehta
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sun Mi Seok
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shanny Hsuan Kuo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wei Lu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ruicheng Shi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Gee W. Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David A. Ford
- Department of Biochemistry and Molecular Biology, and Center for Cardiovascular Research, Saint Louis University, St. Louis, MO, USA
| | - Bo Wang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
19
|
Sun JL, Cho W, Oh H, Abd El-Aty AM, Hong SA, Jeong JH, Jung TW. Interleukin-38 alleviates hepatic steatosis through AMPK/autophagy-mediated suppression of endoplasmic reticulum stress in obesity models. J Cell Physiol 2024; 239:e31184. [PMID: 38197464 DOI: 10.1002/jcp.31184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Interleukin-38 (IL-38), recently recognized as a cytokine with anti-inflammatory properties that mitigate type 2 diabetes, has been associated with indicators of insulin resistance and nonalcoholic fatty liver disease (NAFLD). This study investigated the impact of IL-38 on hepatic lipid metabolism and endoplasmic reticulum (ER) stress. We assessed protein expression levels using Western blot analysis, while monodansylcadaverine staining was employed to detect autophagosomes in hepatocytes. Oil red O staining was utilized to examine lipid deposition. The study revealed elevated serum IL-38 levels in high-fat diet (HFD)-fed mice and IL-38 secretion from mouse keratinocytes. IL-38 treatment attenuated lipogenic lipid accumulation and ER stress markers in hepatocytes exposed to palmitate. Furthermore, IL-38 treatment increased AMP-activated protein kinase (AMPK) phosphorylation and autophagy. The effects of IL-38 on lipogenic lipid deposition and ER stress were nullified in cultured hepatocytes by suppressing AMPK through small interfering (si) RNA or 3-methyladenine (3MA). In animal studies, IL-38 administration mitigated hepatic steatosis by suppressing the expression of lipogenic proteins and ER stress markers while reversing AMPK phosphorylation and autophagy markers in the livers of HFD-fed mice. Additionally, AMPK siRNA, but not 3MA, mitigated IL-38-enhanced fatty acid oxidation in hepatocytes. In summary, IL-38 alleviates hepatic steatosis through AMPK/autophagy signaling-dependent attenuation of ER stress and enhancement of fatty acid oxidation via the AMPK pathway, suggesting a therapeutic strategy for treating NAFLD.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Soon Auck Hong
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Mohammadpour-Asl S, Roshan-Milani B, Roshan-Milani S, Saboory E, Ghobadian B, Chodari L. Endoplasmic reticulum stress PERK-ATF4-CHOP pathway is involved in non-alcoholic fatty liver disease in type 1 diabetic rats: The rescue effect of treatment exercise and insulin-like growth factor I. Heliyon 2024; 10:e27225. [PMID: 38468961 PMCID: PMC10926145 DOI: 10.1016/j.heliyon.2024.e27225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Endoplasmic Reticulum Stress (ERS) is a key factor in the development of Non-Alcoholic Fatty Liver Disease (NAFLD) in diabetes. The current study aimed to examine the effects of exercise and IGF-I on ERS markers in liver tissue. Rats were divided into five groups (n = 8 per group), including control (CON), diabetes (DIA), diabetes + exercise (DIA + EX), diabetes + IGF-I (DIA + IGF-I), and diabetes + exercise + IGF-I (DIA + EX + IGF-I). Type 1 diabetes was induced by an I.P. injection of streptozotocin (60 mg/kg). After 30 days of treatment with exercise or IGF-I alone or in combination, liver tissue was assessed for caspase 12, 8, and CHOP protein levels, and expression of ERS markers (ATF-6, PERK, IRE-1A) and lipid metabolism-involved genes (FAS, FXR, SREBP-1c) by western immunoblotting. In addition, for the evaluation of histopathological changes in the liver, Hematoxylin - Eosin and Masson's Trichrome staining were done. Compared to the control group, diabetes significantly caused liver fibrosis, induced ERS, increased caspase 12 and 8 levels in the liver, and changed expression levels of genes associated with lipid metabolism, including FAS, FXR, and SREBP-1c. Treatment with either exercise or IGF-I reduced fibrosis levels suppressed ER stress markers and apoptosis, and improved expression of genes associated with lipid metabolism. In addition, simultaneous treatment with exercise and IGF-I showed a synergistic effect compared to DIA + E and DIA + IGF-I. The results suggest that IGF-1 and exercise reduced liver fibrosis possibly by reducing ERS, creating adaptive ER stress status, and improving protein folding.
Collapse
Affiliation(s)
- Shadi Mohammadpour-Asl
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Shiva Roshan-Milani
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Department of Addiction Studies, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bijan Ghobadian
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Chodari
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
21
|
Lopez-Yus M, Hörndler C, Borlan S, Bernal-Monterde V, Arbones-Mainar JM. Unraveling Adipose Tissue Dysfunction: Molecular Mechanisms, Novel Biomarkers, and Therapeutic Targets for Liver Fat Deposition. Cells 2024; 13:380. [PMID: 38474344 PMCID: PMC10931433 DOI: 10.3390/cells13050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Adipose tissue (AT), once considered a mere fat storage organ, is now recognized as a dynamic and complex entity crucial for regulating human physiology, including metabolic processes, energy balance, and immune responses. It comprises mainly two types: white adipose tissue (WAT) for energy storage and brown adipose tissue (BAT) for thermogenesis, with beige adipocytes demonstrating the plasticity of these cells. WAT, beyond lipid storage, is involved in various metabolic activities, notably lipogenesis and lipolysis, critical for maintaining energy homeostasis. It also functions as an endocrine organ, secreting adipokines that influence metabolic, inflammatory, and immune processes. However, dysfunction in WAT, especially related to obesity, leads to metabolic disturbances, including the inability to properly store excess lipids, resulting in ectopic fat deposition in organs like the liver, contributing to non-alcoholic fatty liver disease (NAFLD). This narrative review delves into the multifaceted roles of WAT, its composition, metabolic functions, and the pathophysiology of WAT dysfunction. It also explores diagnostic approaches for adipose-related disorders, emphasizing the importance of accurately assessing AT distribution and understanding the complex relationships between fat compartments and metabolic health. Furthermore, it discusses various therapeutic strategies, including innovative therapeutics like adipose-derived mesenchymal stem cells (ADMSCs)-based treatments and gene therapy, highlighting the potential of precision medicine in targeting obesity and its associated complications.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (M.L.-Y.); (V.B.-M.)
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
| | - Carlos Hörndler
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
- Pathology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Sofia Borlan
- General and Digestive Surgery Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain;
| | - Vanesa Bernal-Monterde
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (M.L.-Y.); (V.B.-M.)
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Gastroenterology Department, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Jose M. Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, 50009 Zaragoza, Spain; (M.L.-Y.); (V.B.-M.)
- Instituto Aragones de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS) Aragon, 50009 Zaragoza, Spain;
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
22
|
Longhitano L, Distefano A, Musso N, Bonacci P, Orlando L, Giallongo S, Tibullo D, Denaro S, Lazzarino G, Ferrigno J, Nicolosi A, Alanazi AM, Salomone F, Tropea E, Barbagallo IA, Bramanti V, Li Volti G, Lazzarino G, Torella D, Amorini AM. (+)-Lipoic acid reduces mitochondrial unfolded protein response and attenuates oxidative stress and aging in an in vitro model of non-alcoholic fatty liver disease. J Transl Med 2024; 22:82. [PMID: 38245790 PMCID: PMC10799515 DOI: 10.1186/s12967-024-04880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. RESULTS Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 μM and 5 μM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers β-galactosidase, γH2Ax and Klotho-beta. CONCLUSIONS In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Laura Orlando
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jessica Ferrigno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Anna Nicolosi
- Hospital Pharmacy Unit, Ospedale Cannizzaro, 95125, Catania, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Federico Salomone
- Division of Gastroenterology, Ospedale Di Acireale, Azienda Sanitaria Provinciale Di Catania, Catania, Italy
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | | | - Vincenzo Bramanti
- U.O.S. Laboratory Analysis, Maggiore "Nino Baglieri" Hospital - ASP Ragusa, 97015, Modica (RG), Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health Sciences, Via Di Sant'Alessandro 8, 00131, Rome, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| |
Collapse
|
23
|
Tsukanov VV, Savchenko AA, Cherepnin MA, Vasyutin AV, Kasparov EV, Belenyuk VD, Tonkikh JL, Borisov AG. Subpopulation composition of blood T-helpers in hepatitis C patients with genotype 1 or 3. MEDITSINSKIY SOVET = MEDICAL COUNCIL 2024:168-176. [DOI: 10.21518/ms2023-447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Introduction. Despite advances in treatment, the problem of chronic viral hepatitis C (CVHC) remains very relevant for Russia. There is a debate about which of the most common genotypes in our country: 1 or 3, has a more aggressive course of CVHC. Patients with CVHC exhibit dysfunction of T-cell immunity, many aspects of which remain unclear.Aim. To research the subpopulation composition of blood T-helpers in patients with genotypes 1 and 3 of chronic viral hepatitis C (CVHC) depending on the severity of clinical and morphological manifestations.Materials and methods. Clinical, laboratory examination and determination of liver fibrosis by elastometry using the METAVIR scale were performed in 297 patients with CVHC genotype 1, 231 patients with CVHC genotype 3, and 20 healthy individuals in the control group. The study of the subpopulation composition of T-helpers in the blood by flow cytometry (Navios, Beckman Coulter, USA) with the determination of markers CD3, CD4, CD45R0 and CD62L was carried out in 74 patients with CVHC genotype 1, 70 patients with CVHC genotype 3 and 20 people in the control group.Results. Naive T-helpers (CD3+CD4+CD45RO-CD62L+), T-helpers of central (CD3+CD4+CD45R0+CD62L+) and effector memory (CD3+CD4+CD45R0+CD62L–) in the blood decreased with an increase in the severity of fibrosis and inflammation activity in the liver in both examined groups. In patients with CVHC genotype 3, the content of TEMRA T-helpers (CD3+CD4+CD45R0-CD62L-) in the blood under these conditions sharply decreased (Kruskal – Wallis test, respectively, p = 0.04 and p = 0.02). In patients with CVHC genotype 1, no such patterns were registered (Kruskal – Wallis test, respectively, p = 0.8 and p = 0.87).Conclusion. A direct correlation was determined between the deterioration of the indicators of the blood T-helpers subpopulation composition with an increase in the severity of fibrosis and inflammation activity in the liver in patients with chronic hepatitis C, which had some differences in patients with genotypes 1 and 3.
Collapse
Affiliation(s)
- V. V. Tsukanov
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - A. A. Savchenko
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - M. A. Cherepnin
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - A. V. Vasyutin
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - E. V. Kasparov
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - V. D. Belenyuk
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - Ju. L. Tonkikh
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| | - A. G. Borisov
- Krasnoyarsk Science Centre of the Siberian Branch of Russian Academy of Science, Scientific Research Institute of Medical Problems of the North
| |
Collapse
|
24
|
Yang M, Yao X, Xia F, Xiang S, Tang W, Zhou B. Hugan Qingzhi tablets attenuates endoplasmic reticulum stress in nonalcoholic fatty liver disease rats by regulating PERK and ATF6 pathways. BMC Complement Med Ther 2024; 24:36. [PMID: 38216941 PMCID: PMC10785447 DOI: 10.1186/s12906-024-04336-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress, promoting lipid metabolism disorders and steatohepatitis, contributes significantly to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Hugan Qingzhi tablets (HQT) has a definite effect in the clinical treatment of NAFLD patients, but its mechanism is still unclear. This study aims to investigate the effects of HQT on ER stress in the liver tissues of NAFLD rats and explore the underlying mechanism. METHODS The NAFLD rat model was managed with high-fat diet (HFD) for 12weeks. HQT was administrated in a daily basis to the HFD groups. Biochemical markers, pro-inflammatory cytokines, liver histology were assayed to evaluate HQT effects in HFD-induced NAFLD rats. Furthermore, the expression of ER stress-related signal molecules including glucose regulating protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), p-PERK, eukaryotic translation initiation factor 2α (EIF2α), p-EIF2α, activating transcription factor 4 (ATF4), acetyl-coenzyme A-carboxylase (ACC), activating transcription factor (ATF6), and nuclear factor-kappa B-p65 (NF-κB-p65) were detected by western blot and/or qRT-PCR. RESULTS The histopathological characteristics and biochemical data indicated that HQT exhibited protective effects on HFD-induced NAFLD rats. Furthermore, it caused significant reduction in the expression of ERS markers, such as GRP78, PERK, p-PERK, and ATF6, and subsequently downregulated the expression of EIF2α, p-EIF2α ATF4, ACC, and NF-κB-p65. CONCLUSIONS The results suggested that HQT has protective effect against hepatic steatosis and inflammation in NAFLD rats by attenuating ER stress, and the potential mechanism is through inhibition of PERK and ATF6 pathways.
Collapse
Affiliation(s)
- Miaoting Yang
- Department of Pharmacy, People's Hospital of Longhua, Shenzhen, 518109, Guangdong, China
| | - Xiaorui Yao
- Department of Pharmacy, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Fan Xia
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Shijian Xiang
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Waijiao Tang
- Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Benjie Zhou
- Department of Pharmacy, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, PR China.
| |
Collapse
|
25
|
Kim HR, Young CN. Circumventricular organ-hypothalamic circuit endoplasmic reticulum stress drives hepatic steatosis during obesity. Obesity (Silver Spring) 2024; 32:59-69. [PMID: 37794528 DOI: 10.1002/oby.23895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE Nonalcoholic fatty liver disease (NAFLD), characterized by excess liver triglyceride accumulation (hepatic steatosis), leads to an increased risk for cardiometabolic diseases and obesity-related mortality. Emerging evidence points to endoplasmic reticulum (ER) stress in the central nervous system as critical in NAFLD pathogenesis. Here, we tested the contribution of ER stress in a circumventricular organ-hypothalamic circuit in NAFLD development during obesity. METHODS C57BL/6J male mice were fed a high-fat diet (HFD) or normal chow. A combination of histological, viral tracing, intersectional viral targeting, and in vivo integrative physiological approaches were used to examine the role of ER stress in subfornical organ to hypothalamic paraventricular nucleus projecting neurons (SFO➔PVN) in NAFLD during diet-induced obesity. RESULTS Immunohistochemical analysis revealed marked unfolded protein response activation in the SFO, particularly in excitatory SFO➔PVN neurons of HFD-fed animals. Moreover, intersectional viral inhibition of ER stress in SFO➔PVN neurons resulted in a reduction in hepatomegaly, hepatic steatosis, and a blunted increase in body weight gain during diet-induced obesity, independent of changes in food intake, substrate partitioning, energy expenditure, and ambulatory activity. CONCLUSIONS These results indicate that ER stress in an SFO➔PVN neural circuit contributes to hepatic steatosis during obesity.
Collapse
Affiliation(s)
- Han Rae Kim
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Colin N Young
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
26
|
Kim G, Lee J, Ha J, Kang I, Choe W. Endoplasmic Reticulum Stress and Its Impact on Adipogenesis: Molecular Mechanisms Implicated. Nutrients 2023; 15:5082. [PMID: 38140341 PMCID: PMC10745682 DOI: 10.3390/nu15245082] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Endoplasmic reticulum (ER) stress plays a pivotal role in adipogenesis, which encompasses the differentiation of adipocytes and lipid accumulation. Sustained ER stress has the potential to disrupt the signaling of the unfolded protein response (UPR), thereby influencing adipogenesis. This comprehensive review illuminates the molecular mechanisms that underpin the interplay between ER stress and adipogenesis. We delve into the dysregulation of UPR pathways, namely, IRE1-XBP1, PERK and ATF6 in relation to adipocyte differentiation, lipid metabolism, and tissue inflammation. Moreover, we scrutinize how ER stress impacts key adipogenic transcription factors such as proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding proteins (C/EBPs) along with their interaction with other signaling pathways. The cellular ramifications include alterations in lipid metabolism, dysregulation of adipokines, and aged adipose tissue inflammation. We also discuss the potential roles the molecular chaperones cyclophilin A and cyclophilin B play in adipogenesis. By shedding light on the intricate relationship between ER stress and adipogenesis, this review paves the way for devising innovative therapeutic interventions.
Collapse
Affiliation(s)
- Gyuhui Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiyoon Lee
- Department of Biological Sciences, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30609, USA;
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (G.K.); (J.H.); (I.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
27
|
Gowda D, Shekhar C, B. Gowda SG, Chen Y, Hui SP. Crosstalk between Lipids and Non-Alcoholic Fatty Liver Disease. LIVERS 2023; 3:687-708. [DOI: 10.3390/livers3040045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a complex liver disorder that can result in non-alcoholic steatohepatitis, cirrhosis, and liver cancer, is the accumulation of fat in the liver seen in people due to metabolic dysfunction. The pathophysiology of NAFLD is influenced by several variables, such as metabolic dysregulation, oxidative stress, inflammation, and genetic susceptibility. This illness seriously threatens global health because of its link to obesity, insulin resistance, type 2 diabetes, and other metabolic disorders. In recent years, lipid–NAFLD crosstalk has drawn a lot of interest. Through numerous methods, lipids have been connected to the onset and advancement of the illness. The connection between lipids and NAFLD is the main topic of the current review, along with the various therapeutic targets and currently available drugs. The importance of hepatic lipid metabolism in the progression of NAFLD is summarized with the latest results in the field.
Collapse
Affiliation(s)
- Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Chandra Shekhar
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo 060-0812, Japan
| | - Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
28
|
Abstract
The steatotic diseases of metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), and chronic hepatitis C (HCV) account for the majority of liver disease prevalence, morbidity, and mortality worldwide. While these diseases have distinct pathogenic and clinical features, dysregulated lipid droplet (LD) organelle biology represents a convergence of pathogenesis in all three. With increasing understanding of hepatocyte LD biology, we now understand the roles of LD proteins involved in these diseases but also how genetics modulate LD biology to either exacerbate or protect against the phenotypes associated with steatotic liver diseases. Here, we review the history of the LD organelle and its biogenesis and catabolism. We also review how this organelle is critical not only for the steatotic phenotype of liver diseases but also for their advanced phenotypes. Finally, we summarize the latest attempts and challenges of leveraging LD biology for therapeutic gain in steatotic diseases. In conclusion, the study of dysregulated LD biology may lead to novel therapeutics for the prevention of disease progression in the highly prevalent steatotic liver diseases of MASLD, ALD, and HCV.
Collapse
Affiliation(s)
- Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - George N Ioannou
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
- Division of Gastroenterology, Veterans Affairs Puget Sound Healthcare System Seattle, Washington
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
29
|
Salem GA, Mohamed AAR, Khater SI, Noreldin AE, Alosaimi M, Alansari WS, Shamlan G, Eskandrani AA, Awad MM, El-Shaer RAA, Nassan MA, Mostafa M, Khamis T. Enhancement of biochemical and genomic pathways through lycopene-loaded nano-liposomes: Alleviating insulin resistance, hepatic steatosis, and autophagy in obese rats with non-alcoholic fatty liver disease: Involvement of SMO, GLI-1, and PTCH-1 genes. Gene 2023; 883:147670. [PMID: 37516284 DOI: 10.1016/j.gene.2023.147670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Non-alcoholic fatty liver (NAFL) is a prevalent hepatic disorder of global significance that can give rise to severe complications. This research endeavor delves into the potential of nano-liposomal formulated Lycopene (Lip-Lyco) in averting the development of obesity and insulin resistance, both of which are major underlying factors contributing to NAFL. The investigation further scrutinizes the impact of Lip-Lyco on intricate cellular pathways within the liver tissue of rats induced with NAFL, specifically focusing on the progression of steatosis and fibrosis. To establish an obesity-NAFL model, twenty rats were subjected to a high-fat diet (HFD) for a duration of twelve weeks, after which they received an oral treatment of Lip-Lyco (10mg/kg) for an additional eight weeks. Another group of sixteen non-obese rats were subjected to treatment with or without Lip-Lyco, serving as a control for comparison. Results: The rats on a hypercaloric diet had high body mass index (BMI) and insulin resistance, reflected in disturbed serum adipokines and lipid profiles. Oxidative stress, inflammation, and apoptosis were evident in hepatic tissue, and the autophagic process in hepatocytes was inhibited. Additionally, the hedgehog pathway was activated in the liver tissue of NAFL group. Lip-Lyco was found to counteract all these aspects of NAFL pathogenesis. Lip-Lyco exhibited antioxidant, anti-inflammatory, hypoglycemic, antiapoptotic, autophagy-inducing, and Hedgehog signaling inhibitory effects. This study concludes that Lip-Lyco, a natural compound, has promising therapeutic potential in combating NAFLdisease. However, more experimental and clinical studies are required to confirm the effectiveness of lycopene in treating NAFLdisease.
Collapse
Affiliation(s)
- Gamal A Salem
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Amany Abdel-Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
| | - Safaa I Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Manal Alosaimi
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Wafa S Alansari
- Biochemistry Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Areej A Eskandrani
- Chemistry Department, College of Science, Taibah University, Medina 30002, Saudi Arabia
| | - Marwa Mahmoud Awad
- Physiology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | | | - Mohamed A Nassan
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| |
Collapse
|
30
|
Xie Q, Gao S, Li Y, Xi W, Dong Z, Li Z, Lei M. Effects of 3021 meal replacement powder protect NAFLD via suppressing the ERS, oxidative stress and inflammatory responses. PeerJ 2023; 11:e16154. [PMID: 37868068 PMCID: PMC10586295 DOI: 10.7717/peerj.16154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/31/2023] [Indexed: 10/24/2023] Open
Abstract
Objective To explore the specific protective mechanism of 3021 meal replacement powder (MRP) against non-alcoholic fatty liver disease (NAFLD). Materials and Methods C57BL/6J male mice were divided into four groups: control group, 3021 MRP group, model group and test group. The lipid accumulation and endoplasmic reticulum stress (ERS)-related proteins in hepatocytes of mice were detected by hematoxylin-eosin (HE) staining, oil red O staining and Western blotting. Results The expressions of GRP78, GRP94, p-PERK and p-IRE1α were significantly inhibited in test group compared with those in model group. The protein expressions of p-NF-κB, p-JNK, IL-1β, IL-18 and NOX4 in test group were also significantly lower than those in model group. In vivo and in vitro experiments revealed that the body weight and lipid droplet content, and the expressions of ERS-related proteins (including BIP and XBP-1) in liver tissues all significantly declined in model group compared with those in 3021 MRP group. Conclusion In conclusion, 3021 MRP can greatly reduce lipid accumulation by inhibiting ERS, oxidative stress and inflammatory response in NAFLD.
Collapse
Affiliation(s)
- Qi Xie
- The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuqing Gao
- The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanjudi Li
- Shenzhen Anxintang Biotechnology Co., Ltd, Shenzhen, China
| | - Weifang Xi
- Xinchen Biotechnology (Guandong) Company Limited, Dongguan, China
| | - Zhiyun Dong
- Shenzhen Anxintang Biotechnology Co., Ltd, Shenzhen, China
| | - Zengning Li
- The First Hospital of Hebei Medical University, Hebei Province Key Laboratory of Nutrition and Health, Shijiazhuang, China
| | - Min Lei
- The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
31
|
Kim J, Kim NH, Youn I, Seo EK, Kim CY. Effects of Allium macrostemon Bunge Extract on Adipose Tissue Inflammation and Hepatic Endoplasmic Reticulum Stress in High-Fat Diet-Fed and Bisphenol A-Treated C57BL/6N Mice. Foods 2023; 12:3777. [PMID: 37893670 PMCID: PMC10606828 DOI: 10.3390/foods12203777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The simultaneous exposure to a high-fat (HF) diet and to bisphenol A (BPA) from delivered foods and food-delivery containers is on the rise in humans, according to the increased frequency of food delivery during the COVID-19 pandemic. This co-exposure could cause harmful tissue toxicity in the human body. Here, the preventive effect of Allium macrostemon Bunge (AM) extract against dysfunction in adipose tissue and the liver under co-exposure to BPA and an HF diet was examined using mice. C57BL/6N mice were divided into four groups (n = 6 or 7/group) according to diet and treatment: control diet with vehicle (CON), HF diet with vehicle (HF), HF diet with an oral injection of BPA (HF + BP), and HF diet with an oral injection of BPA and AM extract (HF + BP + AM). HF feeding increased body weight gain compared to CON feeding, while BP + HF and BP + HF + AM feeding suppressed body weight gain compared with HF feeding. The BP + HF group had lower body weight than the HF group, but the two groups had similar epididymal fat mass. The HF + BP + AM group showed lower pro-inflammatory gene expression levels in adipose tissue and epididymal fat mass compared to the HF + BP group. Altered endoplasmic reticulum (ER) stress response in the liver was partly observed in the HF + BP group, as shown by increased total phosphorylated Jun N-terminal kinase protein levels compared to those in the HF group. In addition, ecdysterone 25-O-β-D-glucopyranoside and 6-gingerol were identified in AM extract by mass spectrometry and molecular networking analysis. In summary, the AM extract diminished adipose tissue inflammation and hepatic ER stress in an HF diet and BPA co-exposure condition. To utilize AM as a potential food component to alleviate the harmful effect of an HF diet and BPA exposure, further research investigating the specific impact of AM extract supplementation using additional experimental groups or various treatment doses is warranted.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.K.); (N.-H.K.)
| | - Na-Hyung Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.K.); (N.-H.K.)
| | - Isoo Youn
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (I.Y.); (E.K.S.)
| | - Eun Kyoung Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (I.Y.); (E.K.S.)
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.K.); (N.-H.K.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
32
|
Wang W, Tan J, Liu X, Guo W, Li M, Liu X, Liu Y, Dai W, Hu L, Wang Y, Lu Q, Lee WX, Tang HW, Zhou Q. Cytoplasmic Endonuclease G promotes nonalcoholic fatty liver disease via mTORC2-AKT-ACLY and endoplasmic reticulum stress. Nat Commun 2023; 14:6201. [PMID: 37794041 PMCID: PMC10550995 DOI: 10.1038/s41467-023-41757-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023] Open
Abstract
Endonuclease G (ENDOG), a nuclear-encoded mitochondrial intermembrane space protein, is well known to be translocated into the nucleus during apoptosis. Recent studies have shown that ENDOG might enter the mitochondrial matrix to regulate mitochondrial genome cleavage and replication. However, little is known about the role of ENDOG in the cytosol. Our previous work showed that cytoplasmic ENDOG competitively binds with 14-3-3γ, which released TSC2 to repress mTORC1 signaling and induce autophagy. Here, we demonstrate that cytoplasmic ENDOG could also release Rictor from 14-3-3γ to activate the mTORC2-AKT-ACLY axis, resulting in acetyl-CoA production. Importantly, we observe that ENDOG could translocate to the ER, bind with Bip, and release IRE1a/PERK to activate the endoplasmic reticulum stress response, promoting lipid synthesis. Taken together, we demonstrate that loss of ENDOG suppresses acetyl-CoA production and lipid synthesis, along with reducing endoplasmic reticulum stress, which eventually alleviates high-fat diet-induced nonalcoholic fatty liver disease in female mice.
Collapse
Affiliation(s)
- Wenjun Wang
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Junyang Tan
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaomin Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenqi Guo
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Mengmeng Li
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xinjie Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yanyan Liu
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Wenyu Dai
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liubing Hu
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yimin Wang
- GeneMind Biosciences Company Limited, No. 116, Qingshuihe 1st Road, Luohu District, Shenzhen, Guangdong, 518000, China
| | - Qiuxia Lu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Qinghua Zhou
- The Sixth Affiliated Hospital of Jinan University (Dongguan Eastern Central Hospital), Jinan University, Dongguan, Guangdong, 523067, China.
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, 510632, China.
- The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
33
|
Alshimerry AF, Farhood RG. Concept of HBV and HCV as a risk factor and prevention of viral hepatitis-related hepatocellular carcinoma. MEDICAL JOURNAL OF BABYLON 2023; 20:657-660. [DOI: 10.4103/mjbl.mjbl_269_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/31/2023] [Indexed: 01/03/2025] Open
Abstract
Abstract
Hepatocellular carcinoma (HCC) represents one of the most common cancers worldwide, and it is a very important reason for cancer-related death. Infection with hepatitis B virus (HBV) and hepatitis C virus (HCV) is considered the major leading cause of HCC. The pathophysiology of HB and HC viral-related HCC includes chronic inflammation, deorganization of cell signaling pathways, and oxidative stress. Contrary to HCV, HBV is oncogenic by itself, due to its integration into the DNA of cell. Six months of ultrasound monitoring is recommended for high-risk patients. Using antiviral drugs to manage viral hepatitis decreases the risk of evolution and reoccurrence of HCC. Also, effective preventive measures are very important in decreasing the risk of HCC. The prevention involves primary prevention which is based on HBV vaccination, treatment of acute infection, and eliminating the route of transmission, while secondary prevention is based on using antiviral drugs against HBV and HCV infection to prevent the progress of disease into carcinoma. However, tertiary prevention involves treating the carcinoma to prevent the reoccurrence of the cancer.
Collapse
Affiliation(s)
| | - Rawaa Ghalib Farhood
- Department of Pathology, College of Medicine, University of Babylon, Babylon, Iraq
| |
Collapse
|
34
|
Hammoutene A, Laouirem S, Albuquerque M, Colnot N, Brzustowski A, Valla D, Provost N, Delerive P, Paradis V, the QUID-NASH Research Group. A new NRF2 activator for the treatment of human metabolic dysfunction-associated fatty liver disease. JHEP Rep 2023; 5:100845. [PMID: 37663119 PMCID: PMC10472315 DOI: 10.1016/j.jhepr.2023.100845] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background & Aims Oxidative stress triggers metabolic-associated fatty liver disease (MAFLD) and fibrosis. Previous animal studies demonstrated that the transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2), the master regulator of antioxidant response, protects against MAFLD and fibrosis. S217879, a next generation NRF2 activator has been recently shown to trigger diet-induced steatohepatitis resolution and to reduce established fibrosis in rodents. Our aim was to evaluate the therapeutic potential of S217879 in human MAFLD and its underlying mechanisms using the relevant experimental 3D model of patient-derived precision cut liver slices (PCLS). Methods We treated PCLS from 12 patients with varying stages of MAFLD with S217879 or elafibranor (peroxisome proliferator-activated receptor [PPAR]α/δ agonist used as a referent molecule) for 2 days. Safety and efficacy profiles, steatosis, liver injury, inflammation, and fibrosis were assessed as well as mechanisms involved in MAFLD pathophysiology, namely antioxidant response, autophagy, and endoplasmic reticulum-stress. Results Neither elafibranor nor S217879 had toxic effects at the tested concentrations on human PCLS with MAFLD. PPARα/δ and NRF2 target genes (pyruvate dehydrogenase kinase 4 [PDK4], fibroblast growth factor 21 [FGF21], and NAD(P)H quinone dehydrogenase 1 [NQO1], heme oxygenase 1 [HMOX1], respectively) were strongly upregulated in PCLS in response to elafibranor and S217879, respectively. Compared with untreated PCLS, elafibranor and S217879-treated slices displayed lower triglycerides and reduced inflammation (IL-1β, IL-6, chemokine (C-C motif) ligand 2 [CCL2]). Additional inflammatory markers (chemokine (C-C motif) ligand 5 [CCL5], stimulator of interferon genes [STING], intercellular adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) were downregulated by S217879. S217879 but not elafibranor lowered DNA damage (phospho-Histone H2A.X [p-H2A.X], RAD51, X-ray repair cross complementing 1 [XRCC1]) and apoptosis (cleaved caspase-3), and inhibited fibrogenesis markers expression (alpha smooth muscle actin [α-SMA], collagen 1 alpha 1 [COL1A1], collagen 1 alpha 2 [COL1A2]). Such effects were mediated through an improvement of lipid metabolism, activated antioxidant response and enhanced autophagy, without effect on endoplasmic reticulum-stress. Conclusions This study highlights the therapeutic potential of a new NRF2 activator for MAFLD using patient-derived PCLS supporting the evaluation of NRF2 activating strategies in clinical trials. Impact and implications Oxidative stress is a major driver of metabolic-associated fatty liver disease (MAFLD) development and progression. Nuclear factor (erythroid-derived 2)-like 2, the master regulator of the antioxidative stress response, is an attractive therapeutic target for the treatment of MAFLD. This study demonstrates that S217879, a new potent and selective nuclear factor (erythroid-derived 2)-like 2 activator, displays antisteatotic effects, lowers DNA damage, apoptosis, and inflammation and inhibits fibrogenesis in human PCLS in patients with MAFLD.
Collapse
Affiliation(s)
- Adel Hammoutene
- Université Paris Cité, Inserm, Centre de Recherche sur l'inflammation, F-75018, Paris, France
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Samira Laouirem
- Université Paris Cité, Inserm, Centre de Recherche sur l'inflammation, F-75018, Paris, France
| | - Miguel Albuquerque
- Université Paris Cité, Inserm, Centre de Recherche sur l'inflammation, F-75018, Paris, France
- Département de Pathologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Nathalie Colnot
- Département de Pathologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Angélique Brzustowski
- Université Paris Cité, Inserm, Centre de Recherche sur l'inflammation, F-75018, Paris, France
| | - Dominique Valla
- Université Paris Cité, Inserm, Centre de Recherche sur l'inflammation, F-75018, Paris, France
| | - Nicolas Provost
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Philippe Delerive
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
| | - Valérie Paradis
- Université Paris Cité, Inserm, Centre de Recherche sur l'inflammation, F-75018, Paris, France
- Département de Pathologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - the QUID-NASH Research Group
- Université Paris Cité, Inserm, Centre de Recherche sur l'inflammation, F-75018, Paris, France
- Cardiovascular and Metabolic Diseases Research, Institut de Recherches Servier, Suresnes, France
- Département de Pathologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| |
Collapse
|
35
|
Javeed HR, Naz N, Hassan MS, Shah SMR, Kausar S, Abid M, Hussain M, Akram M, Mahmood F. Beyond survival: unraveling the adaptive mechanisms of cucurbit weeds to salt and heavy metal stress through biochemical and physiological analyses. BRAZ J BIOL 2023; 83:e271009. [PMID: 37672433 DOI: 10.1590/1519-6984.271009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/15/2023] [Indexed: 09/08/2023] Open
Abstract
Salt stress and heavy metal are instigating hazard to crops, menace to agricultural practices. Single and combined stresses affecting adversely to the growth and metabolism of plants. To explore salt and heavy metal resistant plant lines as phytoremediants is a need of time. Physiological responses are main adaptive responses of the plants towards stresses. This response varies with species and ecotype as well as type and level of stress. Two cucurbit weeds from two ecotypes were selected to evaluate their physiological adaptations against independent and combined stresses of various levels of salt (NaCl) and heavy metal (NiCl2). Various physiological parameters like water potential, osmotic potential, pressure potential, CO2 assimilation rate, stomatal conductance, chlorophyll a and b, carotenoids, and production of adaptive chemicals like SOD, CAT, proteins, sugars and proline were studied. Citrullus colocynthis showed more adaptive response than Cucumis melo agrestis and desert ecotype was more successful than agricultural ecotype against stresses.
Collapse
Affiliation(s)
- H R Javeed
- The Islamia University of Bahawalpur, Department of Botany, Bahawalpur, Pakistan
| | - N Naz
- The Islamia University of Bahawalpur, Department of Botany, Bahawalpur, Pakistan
| | - M S Hassan
- The Islamia University of Bahawalpur, Department of Botany, Bahawalpur, Pakistan
| | - S M R Shah
- University of Education Lahore, Department of Botany, Division of Science and Technology, Lahore, Pakistan
| | - S Kausar
- Government College University Faisalabad, Department of Zoology, Faisalabad, Pakistan
| | - M Abid
- Government Graduate College Layyah, Department of Computer Sciences, Layyah, Pakistan
| | - M Hussain
- The Islamia University of Bahawalpur, Department of Veterinary Sciences, Bahawalpur, Pakistan
| | - M Akram
- The Islamia University of Bahawalpur, Department of Botany, Bahawalpur, Pakistan
| | - F Mahmood
- The Islamia University of Bahawalpur, Department of Botany, Bahawalpur, Pakistan
| |
Collapse
|
36
|
Ribeiro MDC, Cho Y, Mehta J, Wang X, Babuta M, Copeland C, Hussein H, Catalano D, Wang Y, Szabo G. Protective role of cGAS in NASH is related to the maintenance of intestinal homeostasis. Liver Int 2023; 43:1937-1949. [PMID: 37222257 PMCID: PMC10524793 DOI: 10.1111/liv.15610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND & AIMS Various intracellular pathways regulate inflammation in NASH. Cyclic GMP-AMP synthase (cGAS) is a DNA sensor that activates STING and plays a role in inflammatory diseases. Here, we explored the role of cGAS in hepatic damage, steatosis, inflammation, and liver fibrosis in mouse models of NASH. METHODS cGAS deficient (cGAS-KO) and STING deficient (STING-KO) mice received high fat-high cholesterol-high sugar diet (HF-HC-HSD) or relevant control diets. Livers were evaluated after 16 or 30 weeks. RESULTS HF-HC-HSD diet, both at 16 and 30 weeks, resulted in increased cGAS protein expression as well as in increased ALT, IL-1β, TNF-α and MCP-1 in wild-type (WT) mice compared to controls. Surprisingly, liver injury, triglyceride accumulation, and inflammasome activation were greater in HF-HC-HSD cGAS-KO compared to WT mice at 16 and to a lesser extent at 30 weeks. STING, a downstream target of cGAS was significantly increased in WT mice after HF-HC-HSD. In STING-KO mice after HF-HC-HSD feeding, we found increased ALT and attenuated MCP1 and IL-1β expression compared to WT mice. Markers of liver fibrosis were increased in cGAS- and STING-KO mice compared to WT on HF-HC-HSD. We discovered that cGAS-KO mice had a significant increase in circulating endotoxin levels on HF-HC-HSD that correlated with changes in intestinal morphology which was exacerbated by HF-HC-HSD compared to WT mice. CONCLUSION Our findings indicate that cGAS or STING deficiency exacerbate liver damage, steatosis, and inflammation in HF-HC-HSD diet-induced NASH, which might be linked to the disruption of the gut barrier.
Collapse
Affiliation(s)
- Marcelle de Carvalho Ribeiro
- Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Yeonhee Cho
- Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Jeeval Mehta
- Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Xiaojing Wang
- Department and institute of infectious diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mrigya Babuta
- Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Christopher Copeland
- Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Hosni Hussein
- Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Microbiology, Faculty of Science, Al Azhar University, Assiut 71524, Egypt
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yanbo Wang
- Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Gyongyi Szabo
- Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of MIT and Harvard; MA 02142, USA
| |
Collapse
|
37
|
Hosseini SP, Farivar S, Rezaei R, Tokhanbigli S, Hatami B, Zali MR, Baghaei K. Fibroblast growth factor 2 reduces endoplasmic reticulum stress and apoptosis in in-vitro Non-Alcoholic Fatty Liver Disease model. Daru 2023; 31:29-37. [PMID: 37156902 PMCID: PMC10238349 DOI: 10.1007/s40199-023-00459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Non-Alcoholic fatty liver disease is characterized by the accumulation of excess fat in the liver, chronic inflammation, and cell death, ranging from simple steatosis to fibrosis, and finally leads to cirrhosis and hepatocellular carcinoma. The effect of Fibroblast growth factor 2 on apoptosis and ER stress inhibition has been investigated in many studies. In this study, we aimed to investigate the effect of FGF2 on the NAFLD in-vitro model in the HepG2 cell line. METHODS The in-vitro NAFLD model was first induced on the HepG2 cell line using oleic acid and palmitic acid for 24 h and evaluated by ORO staining and Real-time PCR. The cell line was then treated with various concentrations of fibroblast growth factor 2 for 24 h, total RNA was extracted and cDNA was consequently synthesized. Real-time PCR and flow cytometry was applied to evaluate gene expression and apoptosis rate, respectively. RESULTS It was shown that fibroblast growth factor 2 ameliorated apoptosis in the NAFLD in-vitro model by reducing the expression of genes involved in the intrinsic apoptosis pathway, including caspase 3 and 9. Moreover, endoplasmic reticulum stress was decreased following upregulating the protective ER-stress genes, including SOD1 and PPARα. CONCLUSIONS FGF2 significantly reduced ER stress and intrinsic apoptosis pathway. Our data suggest that FGF2 treatment could be a potential therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Seyedeh Parisa Hosseini
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shirin Farivar
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ramazan Rezaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Son T, Jeong I, Park J, Jun W, Kim A, Kim OK. Adipose tissue-derived exosomes contribute to obesity-associated liver diseases in long-term high-fat diet-fed mice, but not in short-term. Front Nutr 2023; 10:1162992. [PMID: 37229466 PMCID: PMC10203204 DOI: 10.3389/fnut.2023.1162992] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Our study aimed to investigate the changes in hepatic endoplasmic reticulum (ER) stress, inflammation, insulin signaling, and lipid metabolism during the administration of a high-fat diet (HFD) in mice in order to identify correlations between obesity and metabolic disease development in the liver. Methods We used short-, medium-, and long-term HFD periods, corresponding to 4, 8, and 12 weeks, respectively, and isolated exosomes from adipose tissue. We confirmed the effect of adipose tissue-derived exosomes on metabolic disorders in obesity in alpha mouse liver 12 (AML12) hepatocytes. Results Adipose tissue-derived exosomes from HFD mice did not affect the AML12 cells after 4 weeks, but ER stress, inflammatory response, insulin resistance, and lipid synthesis were observed after 8 and 12 weeks. Furthermore, we confirmed that an HFD increases the amount of adipose tissue-derived exosomes in mice. Consequently, we can infer that adipose tissue-derived exosomes from HFD-fed mice significantly increase ER stress, inflammatory response, insulin resistance, and lipid synthesis in AML12 cells. Discussion Our results demonstrate that obesity alters the effects of adipose tissue-derived exosomes in the liver, potentially becoming a risk factor in the development of obesity-induced liver diseases.
Collapse
Affiliation(s)
- Taesang Son
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Inae Jeong
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
- Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
- Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Andre Kim
- Department of Pharmaceutical Engineering, Silla University, Busan, Republic of Korea
| | - Ok-Kyung Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Republic of Korea
- Human Ecology Research Institute, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
39
|
Hasan KM, Parveen M, Pena A, Bautista F, Rivera JC, Huerta RR, Martinez E, Espinoza-Derout J, Sinha-Hikim AP, Friedman TC. Fatty Acid Excess Dysregulates CARF to Initiate the Development of Hepatic Steatosis. Cells 2023; 12:1069. [PMID: 37048142 PMCID: PMC10093423 DOI: 10.3390/cells12071069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
CARF (CDKN2AIP) regulates cellular fate in response to various stresses. However, its role in metabolic stress is unknown. We found that fatty livers from mice exhibit low CARF expression. Similarly, overloaded palmitate inhibited CARF expression in HepG2 cells, suggesting that excess fat-induced stress downregulates hepatic CARF. In agreement with this, silencing and overexpressing CARF resulted in higher and lower fat accumulation in HepG2 cells, respectively. Furthermore, CARF overexpression lowered the ectopic palmitate accumulation in HepG2 cells. We were interested in understanding the role of hepatic CARF and underlying mechanisms in the development of NAFLD. Mechanistically, transcriptome analysis revealed that endoplasmic reticulum (ER) stress and oxidative stress pathway genes significantly altered in the absence of CARF. IRE1α, GRP78, and CHOP, markers of ER stress, were increased, and the treatment with TUDCA, an ER stress inhibitor, attenuated fat accumulation in CARF-deficient cells. Moreover, silencing CARF caused a reduction of GPX3 and TRXND3, leading to oxidative stress and apoptotic cell death. Intriguingly, CARF overexpression in HFD-fed mice significantly decreased hepatic steatosis. Furthermore, overexpression of CARF ameliorated the aberrant ER function and oxidative stress caused by fat accumulation. Our results further demonstrated that overexpression of CARF alleviates HFD-induced insulin resistance assessed with ITT and GTT assay. Altogether, we conclude that excess fat-induced reduction of CARF dysregulates ER functions and lipid metabolism leading to hepatic steatosis.
Collapse
Affiliation(s)
- Kamrul M. Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Meher Parveen
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Alondra Pena
- California State University Dominguez Hills, Carson, CA 90747, USA
| | | | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Roxana Ramirez Huerta
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Erica Martinez
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Theodore C. Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA 90059, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Chen H, Tan H, Wan J, Zeng Y, Wang J, Wang H, Lu X. PPAR-γ signaling in nonalcoholic fatty liver disease: Pathogenesis and therapeutic targets. Pharmacol Ther 2023; 245:108391. [PMID: 36963510 DOI: 10.1016/j.pharmthera.2023.108391] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), currently the leading cause of global chronic liver disease, has emerged as a major public health problem, more efficient therapeutics of which are thus urgently needed. Peroxisome proliferator-activated receptor γ (PPAR-γ), ligand-activated transcription factors of the nuclear hormone receptor superfamily, is considered a crucial metabolic regulator of hepatic lipid metabolism and inflammation. The role of PPAR-γ in the pathogenesis of NAFLD is gradually being recognized. Here, we outline the involvement of PPAR-γ in the pathogenesis of NAFLD through adipogenesis, insulin resistance, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. In addition, the evidence for PPAR-γ- targeted therapy for NAFLD are summarized. Altogether, PPAR-γ is a promising therapeutic target for NAFLD, and the development of drugs that can balance the beneficial and undesirable effects of PPAR-γ will bring new light to NAFLD patients.
Collapse
Affiliation(s)
- Hao Chen
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Juan Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine / West China School of Nursing, Sichuan University, Chengdu, China
| | - Yong Zeng
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haichuan Wang
- Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
41
|
Hu Z, Zhang H, Wang Y, Li B, Liu K, Ran J, Li L. Exercise activates Sirt1-mediated Drp1 acetylation and inhibits hepatocyte apoptosis to improve nonalcoholic fatty liver disease. Lipids Health Dis 2023; 22:33. [PMID: 36882837 PMCID: PMC9990292 DOI: 10.1186/s12944-023-01798-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
PURPOSE Aerobic exercise has shown beneficial effects in the prevention and treatment of non-alcoholic fatty liver disease (NAFLD). Nevertheless, the regulatory mechanism is not turely clear. Therefore, we aim to clarify the possible mechanism by investigating the effects of aerobic exercise on NAFLD and its mitochondrial dysfunction. METHODS NAFLD rat model was established by feeding high fat diet. and used oleic acid (OA) to treat HepG2 cells. Changes in histopathology, lipid accumulation, apoptosis, body weight, and biochemical parameters were assessed. In addition, antioxidants, mitochondrial biogenesis and mitochondrial fusion and division were assessed. RESULTS The obtained in vivo results showed that aerobic exercise significantly improved lipid accumulation and mitochondrial dysfunction induced by HFD, activated the level of Sirtuins1 (Srit1), and weakened the acetylation and activity of dynamic-related protein 1 (Drp1). In vitro results showed that activation of Srit1 inhibited OA-induced apoptosis in HepG2 cells and alleviated OA-induced mitochondrial dysfunction by inhibiting Drp1 acetylation and reducing Drp1 expression. CONCLUSION Aerobic exercise alleviates NAFLD and its mitochondrial dysfunction by activating Srit1 to regulate Drp1 acetylation. Our study clarifies the mechanism of aerobic exercise in alleviating NAFLD and its mitochondrial dysfunction and provides a new method for adjuvant treatment of NAFLD.
Collapse
Affiliation(s)
- Zongqiang Hu
- First People's Hospital of Kunming City, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyu Zhang
- First People's Hospital of Kunming City, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yiting Wang
- First People's Hospital of Kunming City, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Boyi Li
- First People's Hospital of Kunming City, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kaiyu Liu
- First People's Hospital of Kunming City, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jianghua Ran
- First People's Hospital of Kunming City, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Li Li
- First People's Hospital of Kunming City, The Calmette Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
42
|
Rahimi S, Angaji SA, Majd A, Hatami B, Baghaei K. Evaluating the effect of basic fibroblast growth factor on the progression of NASH disease by inhibiting ceramide synthesis and ER stress-related pathways. Eur J Pharmacol 2023; 942:175536. [PMID: 36693552 DOI: 10.1016/j.ejphar.2023.175536] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is associated with intrahepatic lipid accumulation, inflammation, and hepatocyte death. Several studies have indicated that high-fat diets increase ceramide synthases-6 (CerS-6) expression and a concomitant elevation of C16-ceramides, which can modulate endoplasmic reticulum (ER) stress and further contribute to the progression of NASH. Ceramide levels have reportedly been impacted by basic fibroblast growth factor (bFGF) in various diseases. This study looked into the role of bFGF on CerS6/C16-ceramide and ER stress-related pathways in a mouse model of NASH. Male C57BL/6J mice were fed a western diet (WD) combined with carbon tetrachloride (CCl4) for eight weeks. Next, bFGF was injected into the NASH mice for seven days of continuous treatment. The effects of bFGF on NASH endpoints (including steatosis, inflammation, ballooning, and fibrosis), ceramide levels and ER-stress-induced inflammation, reactive oxygen species (ROS) production, and apoptosis were evaluated. Treatment with bFGF significantly reduced CerS-6/C16-ceramide. Further, the inflammatory condition was alleviated with reduction of nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) gene expression. ROS level was also reduced. ER stress-related cell death diminished by reducing C/EBP homologous protein (CHOP) mRNA expression and caspase 3 activity. Furthermore, activation of the hepatic stellate cells was inhibited in the bFGF-treated mice by lowering the amount of alpha-smooth muscle actin (α-SMA) at the mRNA and protein level. According to our findings, CerS-6/C16-ceramide alteration impacts ER stress-mediated inflammation, oxidative stress, and apoptosis. The bFGF treatment effectively attenuated the development of NASH by downregulating CerS-6/C16-ceramide and subsequent ER stress-related pathways.
Collapse
Affiliation(s)
- Shahrzad Rahimi
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Seyyed Abdolhamid Angaji
- Department of Genetic, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran; Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, 1571914911, Iran
| | - Ahmad Majd
- Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, 1651153311, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran.
| |
Collapse
|
43
|
Differential Lipid Accumulation on HepG2 Cells Triggered by Palmitic and Linoleic Fatty Acids Exposure. Molecules 2023; 28:molecules28052367. [PMID: 36903612 PMCID: PMC10005272 DOI: 10.3390/molecules28052367] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Lipid metabolism pathways such as β-oxidation, lipolysis and, lipogenesis, are mainly associated with normal liver function. However, steatosis is a growing pathology caused by the accumulation of lipids in hepatic cells due to increased lipogenesis, dysregulated lipid metabolism, and/or reduced lipolysis. Accordingly, this investigation hypothesizes a selective in vitro accumulation of palmitic and linoleic fatty acids on hepatocytes. After assessing the metabolic inhibition, apoptotic effect, and reactive oxygen species (ROS) generation by linoleic (LA) and palmitic (PA) fatty acids, HepG2 cells were exposed to different ratios of LA and PA to study the lipid accumulation using the lipophilic dye Oil Red O. Lipidomic studies were also carried out after lipid isolation. Results revealed that LA was highly accumulated and induced ROS production when compared to PA. Lipid profile modifications were observed after LA:PA 1:1 (v/v) exposure, which led to a four-fold increase in triglycerides (TGs) (mainly in linoleic acid-containing species), as well as a increase in cholesterol and polyunsaturated fatty acids (PUFA) content when compared to the control cells. The present work highlights the importance of balancing both PA and LA fatty acids concentrations in HepG2 cells to maintain normal levels of free fatty acids (FFAs), cholesterol, and TGs and to minimize some of the observed in vitro effects (i.e., apoptosis, ROS generation and lipid accumulation) caused by these fatty acids.
Collapse
|
44
|
CHIP Haploinsufficiency Exacerbates Hepatic Steatosis via Enhanced TXNIP Expression and Endoplasmic Reticulum Stress Responses. Antioxidants (Basel) 2023; 12:antiox12020458. [PMID: 36830016 PMCID: PMC9951908 DOI: 10.3390/antiox12020458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
TXNIP is a critical regulator of glucose homeostasis, fatty acid synthesis, and cholesterol accumulation in the liver, and it has been reported that metabolic diseases, such as obesity, atherosclerosis, hyperlipidemia, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD), are associated with endoplasmic reticulum (ER) stress. Because CHIP, an E3 ligase, was known to be involved in regulating tissue injury and inflammation in liver, its role in regulating ER stress-induced NAFLD was investigated in two experimental NAFLD models, a tunicamycin (TM)-induced and other diet-induced NAFLD mice models. In the TM-induced NAFLD model, intraperitoneal injection of TM induced liver steatosis in both CHIP+/+ and CHIP+/- mice, but it was severely exacerbated in CHIP+/- mice compared to CHIP+/+ mice. Key regulators of ER stress and de novo lipogenesis were also enhanced in the livers of TM-inoculated CHIP+/- mice. Furthermore, in the diet-induced NAFLD models, CHIP+/- mice developed severely impaired glucose tolerance, insulin resistance and hepatic steatosis compared to CHIP+/+ mice. Interestingly, CHIP promoted ubiquitin-dependent degradation of TXNIP in vitro, and inhibition of TXNIP was further found to alleviate the inflammation and ER stress responses increased by CHIP inhibition. In addition, the expression of TXNIP was increased in mice deficient in CHIP in the TM- and diet-induced models. These findings suggest that CHIP modulates ER stress and inflammatory responses by inhibiting TXNIP, and that CHIP protects against TM- or HF-HS diet-induced NAFLD and serves as a potential therapeutic means for treating liver diseases.
Collapse
|
45
|
Tovo CV, de Mattos AZ, Coral GP, Sartori GDP, Nogueira LV, Both GT, Villela-Nogueira CA, de Mattos AA. Hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis. World J Gastroenterol 2023; 29:343-356. [PMID: 36687125 PMCID: PMC9846942 DOI: 10.3748/wjg.v29.i2.343] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 11/18/2022] [Indexed: 01/06/2023] Open
Abstract
Cirrhosis is an emerging major cause of the development of hepatocellular carcinoma (HCC), but in non-alcoholic fatty liver disease (NAFLD), up to 50% of patients with HCC had no clinical or histological evidence of cirrhosis. It is currently challenging to propose general recommendations for screening patients with NAFLD without cirrhosis, and each patient should be evaluated on a case-by-case basis based on the profile of specific risk factors identified. For HCC screening in NAFLD, a valid precision-based screening is needed. Currently, when evaluating this population of patients, the use of non-invasive methods can guide the selection of those who should undergo a screening and surveillance program. Hence, the objective of the present study is to review the epidemiology, the pathophysiology, the histopathological aspects, the current recommendations, and novel perspectives in the surveillance of non-cirrhotic NAFLD-related HCC.
Collapse
Affiliation(s)
- Cristiane Valle Tovo
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Angelo Zambam de Mattos
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Gabriela Perdomo Coral
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Giovana D P Sartori
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| | - Livia Villela Nogueira
- Department of Internal Medicine, Fundação Técnico Educacional Souza Marques, RJ 21491-630, RJ, Brazil
| | - Gustavo Tovo Both
- Department of Internal Medicine, Universidade Luterana do Brasil, Canoas 92425-350, RS, Brazil
| | | | - Angelo A de Mattos
- Department of Internal Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050170, RS, Brazil
| |
Collapse
|
46
|
Xing Y, Zhen Y, Yang L, Huo L, Ma H. Association between hemoglobin glycation index and non-alcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1094101. [PMID: 36824362 PMCID: PMC9941148 DOI: 10.3389/fendo.2023.1094101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
OBJECTIVE The hemoglobin glycation index (HGI) reflects biological variability in hemoglobin A1c. Even so, studies on the relationship between HGI and non-alcoholic fatty liver disease (NAFLD) are limited. Therefore, this study aimed to explore the relationship between HGI and NAFLD. In addition, the study also aimed to provide new methods to identify patients with a high risk for the development of NAFLD. METHODS This was a retrospective study based on physical examination data from Japan. Patients were divided into quartiles (Q1-Q4) according to their HGI level; the lowest quartile (Q1) was used as the reference group. Patents were also classified into two subgroups based on the presence or absence of NAFLD. Baseline characteristics between the groups were compared. Multivariate logistic regression analysis was used to investigate the association between the HGI and NAFLD. A mediation analysis examined the mediation relationship between HGI and NAFLD. Subgroup analyses were performed to the reliability of the results. RESULTS A total of 14280 patients were eligible for inclusion in this study; 2515 had NAFLD. Patients in the NAFLD group had higher levels of HGI than patients in the non-NAFLD group. Increases in HGI correlated with an increased risk of NAFLD. After adjusting for confounding factors, the multivariate logistic regression analysis revealed that HGI was positively related to the prevalence of NAFLD. In addition, mediation analysis showed that body mass index (BMI) partly mediated the indirect impact of HGI on NAFLD preference. Subgroup analyses were performed according to age, sex, smoking status, and waist circumference. Our results indicated that HGI significantly correlated with NAFLD in patients with one of the following factors: age ≤60 years, BMI >28 kg/m2, female sex, a history of smoking, and abdominal obesity. CONCLUSIONS HGI was an independent risk factor for NAFLD, and BMI partly mediated the association between HGI and NAFLD.
Collapse
Affiliation(s)
- Yuling Xing
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
- Department of School of Post Graduate Studies, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunfeng Zhen
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Liqun Yang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, China
| | - Lijing Huo
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, China
| | - Huijuan Ma
- Department of Clinical Laboratory, Hebei General Hospital, Shijiazhuang, China
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital Shijiazhuang, Hebei, China
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
47
|
Wiering L, Tacke F. Treating inflammation to combat non-alcoholic fatty liver disease. J Endocrinol 2023; 256:JOE-22-0194. [PMID: 36259984 DOI: 10.1530/joe-22-0194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) with its more progressive form non-alcoholic steatohepatitis (NASH) has become the most common chronic liver disease, thereby representing a great burden for patients and healthcare systems. Specific pharmacological therapies for NAFLD are still missing. Inflammation is an important driver in the pathogenesis of NASH, and the mechanisms underlying inflammation in NAFLD represent possible therapeutic targets. In NASH, various intra- and extrahepatic triggers involved in the metabolic injury typically lead to the activation of different immune cells. This includes hepatic Kupffer cells, i.e. liver-resident macrophages, which can adopt an inflammatory phenotype and activate other immune cells by releasing inflammatory cytokines. As inflammation progresses, Kupffer cells are increasingly replaced by monocyte-derived macrophages with a distinct lipid-associated and scar-associated phenotype. Many other immune cells, including neutrophils, T lymphocytes - such as auto-aggressive cytotoxic as well as regulatory T cells - and innate lymphoid cells balance the progression and regression of inflammation and subsequent fibrosis. The detailed understanding of inflammatory cell subsets and their activation pathways prompted preclinical and clinical exploration of potential targets in NAFLD/NASH. These approaches to target inflammation in NASH include inhibition of immune cell recruitment via chemokine receptors (e.g. cenicriviroc), neutralization of CD44 or galectin-3 as well as agonism to nuclear factors like peroxisome proliferator-activated receptors and farnesoid X receptor that interfere with the activation of immune cells. As some of these approaches did not demonstrate convincing efficacy as monotherapies, a rational and personalized combination of therapeutic interventions may be needed for the near future.
Collapse
Affiliation(s)
- Leke Wiering
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
48
|
Cao Y, He W, Li X, Huang J, Wang J. Rosiglitazone Protects against Acetaminophen-Induced Acute Liver Injury by Inhibiting Multiple Endoplasmic Reticulum Stress Pathways. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6098592. [PMID: 36588533 PMCID: PMC9797312 DOI: 10.1155/2022/6098592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 12/24/2022]
Abstract
Background Excessive acetaminophen (APAP) use can lead to acute liver injury (ALI) by inducing endoplasmic reticulum stress (ERS). We previously found that pretreatment with the peroxisome proliferator-activated receptor-γ (PPAR-γ) ligand rosiglitazone (RSG) alleviated ALI in APAP-treated mice. Objective To examine if RSG-mediated hepatoprotection is associated with ERS suppression. Methods Forty-eight male CD-1 mice were randomly divided into control, RSG, APAP 4 h, APAP 24 h, RSG + APAP 4 h, and RSG + APAP 24 h groups. The RSG and RSG + APAP groups received RSG (20 mg/kg) by gavage 48, 24, and 1 h before intraperitoneal injection of 300 mg/kg APAP, while the APAP group received APAP alone and the control group received only normal saline. Animals were sacrificed immediately (RSG and control groups), 4 h (APAP 4 h and RSG + APAP 4 h), or 24 h (APAP 24 h and RSG + APAP 24 h) post-APAP injection. Liver tissues were collected for hematoxylin-eosin staining, TUNEL staining, and Western blotting for ERS-associated proteins. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were also measured. A second cohort received APAP or RSG + APAP as described and were monitored for survival over one week. Results At 4 and 24 h following APAP injection alone, serum ALT and AST levels were significantly elevated, and central lobular necrosis of the liver was observed. Necrosis area reached 21.7% at 4 h and 32.1% at 24 h post-APAP, while apoptotic fractions reached 25.6% and 32.4%. Further, 50% of mice in the survival analysis cohort died within one week post-APAP. At 4 h post-APAP, the ERS marker glucose-regulated protein-78 (GRP78) and ERS-associated proteins pJNK, GRP78, p-eIF2α, pPERK, and pIRE were all significantly upregulated. Pretreatment with RSG significantly reduced serum ALT and AST, liver necrosis area, apoptosis rate, and expression of ERS-associated proteins compared to APAP alone, while increasing survival to 80%. Conclusions Rosiglitazone pretreatment can alleviate APAP-induced ALI by suppressing three branches of ERS signaling.
Collapse
Affiliation(s)
- Yuping Cao
- College of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Wei He
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Xiaoping Li
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Jiahui Huang
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Junxian Wang
- Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| |
Collapse
|
49
|
Effect of aerobic exercise on GRP78 and ATF6 expressions in mice with non-alcoholic fatty liver disease. SPORTS MEDICINE AND HEALTH SCIENCE 2022. [DOI: 10.1016/j.smhs.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
50
|
Hong Y, Lee M, Kim C, Kim GH. Dehydrocostus lactone ameliorates lipid accumulation, insulin resistance, and endoplasmic reticulum stress in palmitate-treated hepatocytes. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00349-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractFatty liver disease is caused by lipid accumulation in the liver, insulin resistance (IR), reactive oxygen species (ROS), and endoplasmic reticulum (ER) stress. Dehydrocostus lactone (DHE) has anticancer, anti-inflammatory, and anti-ulcer effects. However, its effects on hepatic steatosis and IR remain unclear. In this study, we investigated whether DHE has antisteatotic effect on fatty liver in vitro. Hepatocytes HepG2 and SNU-449 cells were exposed to 0.25 mM palmitate (PA), and then antisteatotic effect was evaluated by treatment with 10 μM DHE. DHE treatment reduced lipid accumulation and lipogenesis factor protein levels, compared with PA-treated hepatocytes. DHE treatment also decreased gluconeogenesis marker expression and recovered IR in PA-treated hepatocytes, and promoted glucose uptake in PA-treated HepG2 cells. Additionally, the levels of ROS and ER stress factors in PA-treated HepG2 cells were reduced by DHE treatment, compared with PA-treated HepG2 cells. Overall, DHE decreased lipid accumulation and lipogenesis factors as well as recovered IR, gluconeogenesis, and glucose uptake by reducing ER stress and ROS levels in PA-treated hepatocytes. Thus, DHE is a potential antisteatotic agent.
Collapse
|